A反常积分审敛法
- 格式:pdf
- 大小:230.94 KB
- 文档页数:4
第五章定积分及其应用本节主要内容:1、无穷区间上的有界函数的反常积分的审敛法2、有限区间上的无界函数的反常积分的审敛法一、回顾定积分定义与计算()()011,1lim ()d ()d lim ()(()[,],,.,()[,].,,,,[,],,.)niii ba nbi i ai f x f x x f x x f x f x f x dx x y f x a b f x a b a b a b λλξξ→=→=∆=∆=∑⎰∑⎰设函数在上有界按照分割、求和、取极限的做法得若此极限存在则称此极限值为函数在上的定积分记为即为、定积分其中称为被积函数称积分表达式叫做积分变量为积分区间为积分下限为积分上限几何定义:曲线:由()[],,.[,][,][,]()d (1),,.d (2)0()d ()()()()d ()(),,()d ()d ,babbbaaab c aaf x x a x b x S f x x f x f x k f xg x x k f x x g x x k a c b f x x f x x a b a b a b λλλ>===+=+≤≤=⎰⎰⎰⎰⎰⎰及轴围成的曲边梯形面积为存在定理:若上连续,或者在上只有有限个第一类间断点,则上的定积分存在可积2、在性质线性性质 其中为任意常数可加性 在 若则[][][]()d ,()0()d 0,(),()(),()d ()2()d ()d (), ()().(3),,.1(4),bcbab baabbaaf x x a b f x f x x a b a b f xg x a M f x x g x dxf x x f x xf x b m b f m a x +≥≥<≤≤≤-≤⎰⎰⎰⎰⎰⎰保号性 在上如果则推上则推论在区间上的最大值论如果在区间估值定理与最小值, 设分别函数则是()[][][][]d ()(),, ()d ()()3)(5) ,, (),() (d (),()=().baba xa x Mb a f x a b a b f x x f b a f x a b F x f t t f x a b F x f x ξξ≤-=-='⎰⎰⎰定积分牛中值定理如果函数在上连续则在内至少有一个 使得、定积分与不定积分的关系原函数存在定理:若在上连续,则是在上的一个原函数.显然由此得[][]()(),(), ()d ()()()bba a F x f x ab f x a b f x x F x F b F a ==-⎰顿莱布尼茨公式:若是在上的一个原函数,在上连续,则()()()41()d ()()()2()[,](t)()[,](),(),()d ((t)(t))dt 2()d ()()()()du()bba a ba b b ba aaf x x F x F b F a f x a b x t a b f x x f u x v x u x v x v x x u βαϕϕαβϕαϕβϕϕ==-'='==='=⎰⎰⎰⎰⎰、定积分的计算牛顿莱布尼茨公式: 换元积分法:在上连续,单值,在上连续,又则分部积分法:- ,其中[]()()()0202(),(), ()[()()];0,() ().2(),()()()()();()aaa aa aT TA T T AA nT Ax v x a b f x dx f x f x dx f x f x dx f x dx f x f x T f x dx f x dx f x dx f x dx --+-+'=+-⎧⎪=⎨⎪⎩===⎰⎰⎰⎰⎰⎰⎰⎰在上连续5、常用的定积分公式:1是奇函数2是偶函数3如果是以为周期的周期函数,则()()02202200220()().4cos sin 1;1331,2422cos sin .13421,2535()(sin )(cos );(sin )(sin 2T n n n f x dx n N xdx xdx n n n n n xdx xdx n n n n n f x f x dx f x dx xf x dx f x πππππππππ∈==--⎧∙∙∙∙∙⎪⎪-==⎨--⎪∙∙∙∙∙⎪-⎩==⎰⎰⎰⎰⎰⎰⎰⎰在为正偶数为大于1的设函数[0,1]奇数上连续,正0).dx π⎰例1已知211,22()11,2x xe x f x x ⎧-≤≤⎪⎪=⎨⎪-≥⎪⎩,计算212(1)f x dx -⎰.例2证明以下结论:(1)2200()(sin )(cos );f x f x dx f x dx ππ=⎰⎰设函数在[0,1]上连续,(2)2201331,2422cos sin 13421,253n n n n n n n xdx xdx n n n n n πππ--⎧∙∙∙∙∙⎪⎪-==⎨--⎪∙∙∙∙∙⎪-⎩⎰⎰为正偶数为大于1的正奇数二、无穷区间上的有界函数的反常积分(无穷积分)1、定义1设函数f (x )在区间[a ,+∞)上连续,取b >a .如果极限dx x f ba b )(lim⎰+∞→存在,则称此极限为函数f (x )在无穷区间[a ,+∞)上的反常积分,记作dx x f a )(⎰+∞,即dx x f dx x f bab a)(lim)(⎰⎰+∞→+∞=.这时也称反常积分dx x f a )(⎰+∞收敛. 如果上述极限不存在,函数f (x )在无穷区间[a ,+∞)上的反常积分dx x f a )(⎰+∞就没有意义,此时称反常积分dx x f a )(⎰+∞发散.类似地,可定义反常积分dx x f b)(⎰∞-和dx x f )(⎰+∞∞-.2、计算:如果F (x )是f (x )的原函数,则ba b ba b ax F dx x f dx x f )]([lim )(lim)(+∞→+∞→+∞==⎰⎰)()(lim )()(lim a F x F a F b F x b -=-=+∞→+∞→.即简记形式:)()(lim )]([)(a F x F x F dx x f x a a -==+∞→∞++∞⎰.类似地)(lim )()]([)(x F b F x F dx x f x bb-∞→∞-∞--==⎰,)(lim )(lim )]([)(x F x F x F dx x f x x -∞→+∞→∞+∞-+∞∞--==⎰.例3(1)计算反常积分⎰+∞-0dt te pt(p 是常数,且p >0).(2)讨论反常积分dx x p a 1⎰+∞(a >0)的敛散性.3、无穷区间上的有界函数的反常积分的审敛法()[,)(0.)()0lim (),.1,0()1,0()p x a af x a a f x x f x l p l f x dx p l f x dx →+∞+∞+∞+∞>≥=>≤<+∞≤<≤+∞⎰⎰极设函数在区间上连续,且满足则有(1)当时,无穷限反常积分收敛; (限审敛法:2)当时,无穷限反常积分发散例4讨论下列反常积分的敛散性(1)1+∞⎰(2)32211xdx x+∞+⎰三、有限区间上的无界函数的反常积分(瑕积分)1、定义2设函数f (x )在区间(a ,b ]上连续,而在点a 的右邻域内无界.取ε>0,如果极限dx x f bt at )(lim ⎰+→存在,则称此极限为函数f (x )在(a ,b ]上的反常积分,仍然记作dx x f ba )(⎰,即dx x f dx x f bta tb a )(lim )(⎰⎰+→=.这时也称反常积分dx x f ba )(⎰收敛.如果上述极限不存在,就称反常积分dx x f ba )(⎰发散.瑕点:如果函数f (x )在点a 的任一邻域内都无界,那么点a 称为函数f (x )的瑕点,也称为无界定义2'设函数f (x )在区间(a ,b ]上连续,点a 为f (x )的瑕点.函数f (x )在(a ,b ]上的反常积分定义为dx x f dx x f bt at b a )(lim )(⎰⎰+→=.类似地,函数f (x )在[a ,b )(b 为瑕点)上的反常积分定义为dx x f dx x f ta bt b a )(lim )(⎰⎰-→=.在[a ,c )⋃(c ,b ](c 为瑕点)上的反常积分定义为dx x f dx x f dx x f btct ta ct ba )(lim )(lim )(⎰⎰⎰+-→→+=.2、反常积分的计算:如果F (x )为f (x )的原函数,则有bt at btat ba x F dx x f dx x f )]([lim )(lim )(++→→==⎰⎰)(lim )()(lim )(x Fb F t F b F ax at ++→→-=-=.简记形式:(1)当a 为瑕点时,)(lim )()]([)(x F b F x F dx x f ax ba ba +→-==⎰;(2)b 为瑕点时,)()(lim )]([)(a F x F x F dx x f b x ba ba -==-→⎰.(3)当c (a <c <b )为瑕点时,)](lim )([)]()(lim [)()()(x F b F a F x F dx x f dx x f dx x f cx cx bc c a b a +-→→-+-=+=⎰⎰⎰.例5(1)计算反常积分⎰-adx xa 0221.(2)讨论反常积分⎰-ba q a x dx)(的敛散性.3、有限区间上的无界函数的反常积分的审敛法1.()(,]()0.lim ()(),0,0()1,0()p x babaf x a b f x x a f x l p l f x dx p l f x dx →+∞≥-=<<≤<+∞≥<≤+∞⎰⎰设函数在区间上连续,且满足则有(1)当极时,瑕积分收敛;(2)瑕限审敛法:当时,积分发散例6讨论下列反常积分的敛散性(1)31ln dxx⎰(2)1201()k <⎰椭圆积分(3)101dx x ⎰。
反常积分极限审敛法反常积分极限审敛法(IntegralLimitComparisonTest)是一种常用的数学分析方法,可以用来判断一个无穷级数的收敛性质以及它的收敛情况如何。
它是一种非常重要的定理,有助于我们解决无穷级数的问题。
反常积分极限审敛法(Integral Limit Comparison Test)是一种在数学分析中有着重要应用的定理,它可以根据一般情况下的某个无穷级数的收敛性质,对比另一个无穷级数,从而实现对两个无穷级数的收敛性质的比较。
其基本原理是,如果一个无穷级数的某项分母大于另一无穷级数的某项分母,且比值的反常积分不等于零,则该级数收敛。
反常积分极限审敛法的具体步骤是使用经典反常积分技术,先将待证明的无穷级数和另一个已知收敛的无穷级数,比如收敛正项级数,列出来,然后将它们做出比较,比较的结果若为恒等式,则证明无穷级数收敛;若为大于等于式,则证明无穷级数收敛;若为小于等于式,则证明无穷级数可能收敛,但不一定收敛;最后,通过对比反常积分的值,可以得出有关无穷级数收敛性质的最终结论。
反常积分极限审敛法具有很多优势,其中最主要的优势就是可以用来判断一个无穷级数的收敛性质及其如何收敛,只要满足其在无穷级数上的充要条件,就可以得出有关的结论。
另外,由于反常积分的某一项收敛性质被推广到一般情况,因此可以比较一般情况下的无穷级数的收敛性质,而不是只比较其特殊情况下的收敛情况。
最后,通过反常积分极限审敛法,可以有效解决无穷级数的问题,从而提高研究的效率。
综上所述,反常积分极限审敛法是一种非常重要的定理,在数学分析中有着十分重要的应用,它可以用来判断一个无穷级数的收敛性质以及它的收敛情况如何,并可以有效的解决无穷级数的问题,提高研究的效率。
然而,同时也要根据实际情况,审慎选择反常积分极限审敛法,以期获得比较准确的研究结果。
反常积分判敛的三种方法反常积分在数学中有着重要的地位,但有的反常积分发散,有的反常积分收敛。
那么,如何判断反常积分是否收敛呢?本文介绍三种判断反常积分是否收敛的方法。
一、比较判别法比较判别法是判断反常积分是否收敛的基本方法之一。
对于形如$\int_{a}^{+\infty}f(x)\text{d}x$ 的反常积分,若存在一个正函数 $g(x)$,使得当 $x \geq a$ 时有 $f(x) \leq g(x)$,且$\int_{a}^{+\infty}g(x)\text{d}x$ 收敛,则原积分收敛;若$\int_{a}^{+\infty}g(x)\text{d}x$ 发散,则原积分也发散。
同理,对于形如 $\int_{-\infty}^{a}f(x)\text{d}x$ 的反常积分,只需将“$x \geq a$” 替换为“$x \leq a$”,“$\leq$” 替换为“$\geq$” 即可。
二、极限判别法极限判别法是另一种判断反常积分是否收敛的方法。
对于形如$\int_{a}^{+\infty}f(x)\text{d}x$ 的反常积分,若极限 $\lim_{x \rightarrow +\infty} xf(x) = A$ 存在且有限,则积分收敛;若极限不存在或为无穷大,则积分发散。
对于形如 $\int_{-\infty}^{a}f(x)\text{d}x$ 的反常积分,则需将“$x \rightarrow +\infty$” 替换为“$x \rightarrow -\infty$”。
三、绝对收敛判别法绝对收敛判别法是在比较判别法的基础上引出的判定方法。
对于形如 $\int_{a}^{+\infty}f(x)\text{d}x$ 的反常积分,若$\int_{a}^{+\infty}|f(x)|\text{d}x$ 收敛,则原积分绝对收敛;反之,若 $\int_{a}^{+\infty}|f(x)|\text{d}x$ 发散,则原积分发散。
反常积分极限审敛法
反常积分极限审敛法(infinitesimalnormalintegrals,INI)是一种用于数学计算的极限处理方法,可以用来计算无穷级数的极限、积分、微积分以及积分变换的表达式。
它可以改善数学计算的速度,减少计算的时间和空间。
INI是一种基于几何学极限理论的数值计算方法,可以对数值系统中无穷级数求极限,并可以进行无穷级数的积分求值。
反常积分极限审敛法主要是使用紧凑方案实现多维反常积分、无限级数求极限以及积分变换等操作,以及针对椭圆和抛物面等复杂曲面的积分求值。
INI的基本原理是,在坐标空间中定义一组均匀的虚拟小网格,以虚拟小网格边界为界,绘制出一组分割的小网格,其中的每个小网格都由一组函数值组成,这些函数值的计算可以采用积分的方法完成。
然后通过积分极限的方法,求出无穷级数的极限,从而求出积分变换表达式。
在有限维空间中,INI可以极大程度地提高计算效率,可以以较低的计算时间实现较高精度的极限求解和控制。
此外,INI的优势在于在多维空间中也可以实现较快的计算,而不需要耗费大量的计算时间,也不受精度的限制。
INI在实际应用中有着广泛的用途,可以用于特征提取、状态估计、机器学习、信号处理等领域。
同时,对于微分方程常见的解析方法,INI也能提供一种数值计算方法,具有较高的解析精度和准确性。
最后,INI也可以用于包括智能控制、智能工业、智能建筑等场景。
总之,反常积分极限审敛法是一种用于计算无穷级数的极限、积分和微积分等表达式的极限处理方法,它可以提高计算效率,减少计算的时间和空间,并有广泛的应用。
反常积分极限审敛法的应用可以提高计算精度和准确性,为实现各种智能技术提供一种高效的数值计算方法。
反常积分审敛法
反常积分审敛法是一种研究微分方程未知函数的求解方法,它通过将未知函数一次积分拆分成一系列已知函数的求积数来求解这些未知函数,从而实现未知函数的求解。
反常积分审敛法是一种重要的求解微分方程未知函数的经典方法,是近代数学家们普遍采用的重要解析方法。
二、基本原理
反常积分审敛法以未知函数为准绳,以不变量的积分为目的,将相关的微分方程的一次积分拆分为一系列未知函数的求积数,从而将未知函数求解的原问题转化为反常积分审敛法的求解问题,即估计其积分常数,从而得到未知数。
三、过程步骤
反常积分审敛法的求解过程由以下几步构成:
(1)确定求解方程的形式。
将微分方程按照一般的习惯和规则统一化,常用的形式为普通微分方程和关联微分方程,常用的积分参数为时间t、位置x和其他形式的变量;
(2)写出相关的微分方程,根据其中的量确定求解的未知函数;
(3)确定积分常数的估值法,通常采用隐式函数定理方法;
(4)运用反常积分审敛法计算出未知积分常数,得到未知函数的解;
(5)验证此解是否正确,如果不正确,可重新根据估值法计算,直到未知函数的解得到正确验证。
四、应用实例
反常积分审敛法在实际问题中应用广泛,如在简谐振荡问题中,使用反常积分审敛法可以得出简谐振荡器的解析解;在光学干涉中,可以用反常积分审敛法求出空间干涉图;在流体动力学等研究中,可以使用反常积分审敛法计算粘性系数;在抛物线和椭圆等圆周率的研究中,可以使用反常积分审敛法求出对应的参数。
五、结论
反常积分审敛法是一种重要的求解复杂微分方程未知函数的解
析方法,它采用一次积分拆分的方式,将未知函数的求解问题转化成求函数积分常数的问题,解决了微分方程求解的一类重要问题,具有重要的实际意义。
反常积分的审敛法反常积分是数学中的一个重要概念,它在计算学科中有着广泛的应用。
本文将介绍反常积分的审敛法,包括其定义、性质以及常用的审敛法。
一、反常积分的定义反常积分是对于某些函数在某个区间上积分不存在或者无穷大的情况下的一种积分方法。
对于函数f(x),在区间[a, b]上的反常积分定义如下:∫[a, b] f(x)dx = lim┬(n→∞)〖∫[a, b] f(x)dx〗其中,lim表示极限,n表示一个趋向于无穷大的数列。
二、反常积分的性质1. 线性性质:对于函数f(x)和g(x),以及常数k,有如下性质:∫[a, b] (f(x)+g(x))dx = ∫[a, b] f(x)dx + ∫[a, b] g(x)dx ∫[a, b] k·f(x)dx = k·∫[a, b] f(x)dx2. 区间可加性:对于函数f(x),在区间[a, b]和[b, c]上的反常积分分别存在,则有:∫[a, c] f(x)dx = ∫[a, b] f(x)dx + ∫[b, c] f(x)dx3. 非负性:对于函数f(x),如果在区间[a, b]上f(x)≥0,则有:∫[a, b] f(x)dx ≥ 0反常积分的审敛法是判断反常积分是否收敛的一种方法。
常用的审敛法有以下几种:1. 比较审敛法:对于函数f(x)和g(x),如果在某个区间[a, b]上f(x)≤g(x),且∫[a, b] g(x)dx收敛,则有∫[a, b] f(x)dx也收敛;反之,如果∫[a, b] f(x)dx发散,则有∫[a, b] g(x)dx也发散。
2. 极限审敛法:对于函数f(x),如果存在极限lim┬(x→a)(x-a)·f(x)=L,则有∫[a, b] f(x)dx收敛,其中a为积分区间的一个端点,b为另一个端点。
3. 部分和审敛法:对于函数f(x),如果存在数列{S_n},使得lim┬(n→∞)S_n=L,则有∫[a, b] f(x)dx收敛,其中S_n表示函数f(x)在区间[a, b]上的部分和。
第11章 反常积分§11. 1 反常积分的概念一 基本内容一、无穷限反常积分定义 1 设函数()f x 在[, )a +∞上有定义,且在任意区间[, ]a u 上可积,如果lim()d uau f x x→+∞⎰存在,则称此极限为()f x 在[, )a +∞上的反常积分,亦称为()f x 在[,)a +∞上的无穷限反常积分,简称无穷限积分,记作 ()d af x x+∞⎰.ie ()d lim()d uaau f x x f x x+∞→+∞=⎰⎰:,此时并称 ()d af x x+∞⎰收敛.如果极限不存在,则称 ()d af x x+∞⎰发散.同理可定义 ()d lim()d bbuu f x x f x x-∞→-∞=⎰⎰, ()d ()d ()d a af x x f x x f x x+∞+∞-∞-∞=+⎰⎰⎰,几何解释如图.()d af x x+∞⎰收敛是指图中阴影区域的 面积存在.二、瑕积分定义 2 设函数()f x 在(, ]a b 上有定义,且在点a 的任一右邻域内无界,而在[, ](, ]u b a b ⊂上有界可积,如果 lim ()d buu a f x x+→⎰存在,则称此极限为无界函数()f x 在上(, ]a b 的反常积分,记作 ()d baf x x⎰,ie ()d lim ()d bbauu af x x f x x+→=⎰⎰:,并称 ()d baf x x⎰收敛,否则称其发散.其中a 称为瑕点.无界函数的反常积分亦称为瑕积分.同理可得b 为瑕点时,()d lim ()d buaau bf x x f x x-→=⎰⎰.当()f x 的瑕点(, )c a b ∈,则定义()d ()d ()d bcbaacf x x f x x f x x=+⎰⎰⎰lim ()d lim ()d u bauu cu cf x x f x x -+→→=+⎰⎰.若, a b 都是()f x 的瑕点,则定义()d ()d ()d bc baacf x x f x x f x x=+⎰⎰⎰lim ()d lim ()d c uucu au bf x x f x x+-→→=+⎰⎰.二 习题解答1 讨论下列无穷积分是否收敛?若收敛,则求其值 (1)2d x xe x+∞-⎰;解:由于2201d (1)2ux u xe x e --=--⎰,21limd 2ux u xe x -→+∞=⎰.所以该反常积分收敛,且收敛于12.(2)2d x xe x+∞--∞⎰;解:由于22 01d (1)2x u uxe x e -=--⎰21limd 2x ux xe x -→-∞=-⎰而2220d d d 0x x x xe x xe x xe x +∞+∞----∞-∞=+=⎰⎰⎰所以该反常积分收敛,且收敛于0.(3)0x +∞⎰;解:由于21ux ⎛⎫= ⎝⎰,lim 212u →+∞⎛⎫= ⎝.所以该反常积分收敛,且收敛于2.(4) 2 11d (1)x x x +∞+⎰;解:由于22 111111d d (1)1uu x x x x xx x ⎛⎫=-+ ⎪++⎝⎭⎰⎰ 11111ln 1ln ln 2ux u x x u u ++⎛⎫=-+=-+- ⎪⎝⎭.2 11limd 1ln 2(1)uu x x x →+∞=-+⎰.所以该反常积分收敛,且收敛于1ln 2-.(5) 2 1d 445x x x +∞-∞++⎰;解:由于 22 0 0111d d(21)4452(21)1u u x x x x x =+++++⎰⎰011arctan(21)arctan(21)228|u x u π=+=+-2 01lim d 445488uu x x x πππ→+∞=-=++⎰,0 022 111d d(21)4452(21)1u u x x x x x =+++++⎰⎰ 011arctan(21)arctan(21)282|u x u π=+=-+02 1lim d 44584u u x x x ππ→-∞=+++⎰所以该反常积分收敛,且收敛于2π.(6)1sin d x e x x+∞-⎰;解:由于 11sin d [1(sin cos )]2ux ue x x e u u --=-+⎰,11lim sin d 2ux u e x x -→+∞=⎰.所以该反常积分收敛,且收敛于12.(7) sin d x e x x+∞-∞⎰;解:由于 01sin d [1(sin cos )]2uxu e x x e u u =-+⎰,1limsin d ux u e x x →+∞=∞⎰.所以该反常积分发散. (8)1x +∞⎰.解:由于 1ln(u x u =+⎰,1lim u u x →+∞=+∞⎰.所以该反常积分发散.2 讨论下列瑕积分是否收敛?若收敛,则求其值(1) 1d ()b p a x x a -⎰; 解:由于x a =为瑕点,而11 ()1()11d 11()ln()ln()1p p b p u b a u a p x p px a b a u a p --⎧---≠⎪=--⎨-⎪---=⎩⎰,1 ()11lim d 1()1pb p u u a b a p x p x a p +-→⎧-<⎪=-⎨-⎪∞≥⎩⎰,所以1p <时,该瑕积分收敛,且值为1()1pb a p ---; 所以1p ≥时,该瑕积分发散.(2) 1201d 1x x -⎰;解:由于1x =为瑕点,而u2011d [ln(1)ln(1)]12x u u x =+---⎰,u2011lim d 1u x x -→=∞-⎰.所以该瑕积分发散.(3)2x⎰;解:由于1x =为瑕点,而2(1uux x ==⎰⎰,1lim 2uu x -→=⎰.同理21lim 2uu x +→=⎰,所以该瑕积分收敛,且值为4.(4)1x ⎰;解:由于1x =为瑕点,而1u x =⎰,1lim 1uu x -→=⎰所以该瑕积分收敛,且值为1. (5)1ln d x x⎰;解:由于0x =为瑕点,而1ln d 1ln ux x u u u=-+-⎰,1lim ln d 1uu x x +→=-⎰.所以该瑕积分收敛,且值为1-. (6)x ⎰;解:令2sin x t =,则cos dx t t t=⎰⎰2220 02sin d(1cos2)d2t t t tπππ==-=⎰⎰,所以该瑕积分收敛,且值为2π.(7)1x⎰;解:令2sinx t=,则12x tπ=⎰⎰22d tππ==⎰.所以该瑕积分收敛,且值为π.(8)11d(ln)pxx x⎰.解:由于0x=,1为瑕点,又11(ln)111d(ln)ln ln1ppx C ppxx xx C p-⎧+≠⎪-=⎨⎪+=⎩⎰,而1p=时,1limlnlnxx-→=∞,1p<时,11lim(ln)1pxxp+-→=∞-1p>时,111lim(ln)1pxxp--→=∞-所以p R∀∈,瑕积分11d(ln)pxx x⎰发散.3 举例说明:瑕积分()dbaf x x⎰收敛时,2()dbaf x x⎰不一定收敛.解:例如x⎰收敛于2π,但1d1xxx-⎰发散.4 举例说明:积分()daf x x+∞⎰收敛,且()f x在[,)a+∞上连续时,不一定有lim()0xf x→+∞=.解:例如+41sin dx x x∞⎰.因令x=+ +41 11sin d4x x x t∞∞=⎰⎰.所以 +4 1sin d x x x∞⎰收敛,且4()sin f x x x =在[,)a +∞上连续,但lim ()x f x →+∞不存在.5 证明:若 ()d af x x+∞⎰收敛,且lim ()x f x A→+∞=存在,则0A =. 证:假设0A ≠,不妨设0A >,因lim ()x f x A→+∞=,所以0M ∃>,()2Ax M f x ∍>⇒>“”.于是()d ()2uMAf x x u M >-⎰,从而lim()d uMu f x x →+∞=∞⎰.此与 ()d af x x+∞⎰收敛矛盾,故0A =.6 证明:若()f x 在[,)a +∞上可导,且 ()d af x x+∞⎰与()d af x x+∞'⎰都收敛,则lim ()0x f x →+∞=.证:因为()d ()()u af x x f u f a '=-⎰,所以由()d af x x+∞'⎰都收敛知lim ()x f x →+∞存在,故由上一题知lim ()0x f x →+∞=.§11. 2 无穷限积分的性质与收敛判别一 基本内容一、无穷限积分的性质 由无穷限积分的定义知()d af x x+∞⎰收敛lim()d uau f x x→+∞⇔⎰存在;由极限的柯西收敛准则知lim()d uau f x x→+∞⎰存在0,,G a ε⇔∀>∃≥2112 ,()d u u u u G f x x ε∍>⇒<⎰“”.定理1()d af x x+∞⎰收敛0,,G a ε⇔∀>∃≥2112 ,()d u u u u G f x x ε∍>⇒<⎰“”.性质1 若 1 ()d ,af x x +∞⎰ 2 ()d af x x+∞⎰都收敛,则12,k k ∀,[] 1111()()d ak f x k f x x +∞+⎰也收敛,且[] 11111122 ()()d ()d ()d aaak f x k f x x k f x x k f x x+∞+∞+∞+=+⎰⎰⎰.性质2 若,()u a f x ∀>在[, ]a u 上可积,则b a ∀>, ()d af x x+∞⎰与 ()d bf x x+∞⎰同收同发,且()d ()d ()d b aabf x x f x x f x x+∞+∞=+⎰⎰⎰.性质3 若,()u a f x ∀>在[, ]a u 上可积,则()d af x x+∞⎰收敛()d af x x+∞⇒⎰收敛,且()d ()d aaf x x f x x+∞+∞≤⎰⎰.定义1 如果 ()d af x x+∞⎰收敛,则 ()d af x x+∞⎰称绝对收敛.二、比较判别法比较判别法仅应用于绝对收敛的判别. 由于()()d uaF u f x x=⎰单调上升,所以,()d af x x+∞⎰收敛()()d ua F u f x x⇔=⎰有上界.定理2 若,(),()u a f x g x ∀>在[, ]a u 上可积,且,()()x a f x g x ∀>≤,则 ()d ag x x+∞⎰收敛()d af x x+∞⇒⎰收敛;而 ()d af x x+∞⎰发散()d ag x x+∞⇒⎰发散.推论 (比较判别法的极限形式)若,(),()u a f x g x ∀>在[, ]a u 上可积,, ()0x a g x ∀>>,且()lim()x f x cg x →+∞=, 则(1) 0c <<+∞ ()d af x x+∞⇒⎰与 ()d ag x x+∞⎰同收同发; (2) 0c =时, ()d ag x x+∞⎰收敛()d af x x+∞⇒⎰收敛; (3) c =+∞时, ()d ag x x+∞⎰发散()d af x x+∞⇒⎰发散.当选用 11d p x x +∞⎰为比较“尺子”时,则得下面的柯西判别法.定理3 (柯西判别法) 若0,()u a f x ∀>>在[, ]a u 上可积,则 1(1) ()p f x x ≤,且1p >时, ()d a f x x+∞⎰收敛;1(2) ()p f x x ≥,且1p ≤时, ()d a f x x+∞⎰发散.定理'3(柯西判别法的极限形式) 若0,()u a f x ∀>>在[, ]a u 上可积,且lim ()p x x f x λ→+∞=,则(1) 0λ≤<+∞,且1p >时, ()d af x x +∞⎰收敛; (2) 0λ<≤+∞,且1p ≤时, ()d af x x+∞⎰发散.三、狄立克雷判别法与阿贝尔判别法 此法是对一般无穷限积分的敛散性判别. 定理4 (狄立克雷判别法) 若,()()d uau a F u f x x∀>=⎰有界,()g x 在[,)a +∞上单调,且lim ()0x g x →+∞=,则()()a f x g x dx +∞⎰收敛.定理 5 (阿贝尔判别法) 若()d af x x+∞⎰收敛,()g x 在[,)a +∞上单调有界,则()()d af xg x x+∞⎰收敛.二 习题解答1 设()f x 与()g x 是定义在[,)a +∞上的函数,u a ∀>,()f x 与()g x 在[,]a u 上可积,证明:若2 ()d a f x x+∞⎰与 2 ()d ag x x+∞⎰都收敛,则 ()()d af xg x x+∞⎰与 2 [()()]d af xg x x+∞+⎰亦收敛.证:(1) 因为t R ∀∈,()2()()0tf x g x -≥,从而()2()()d 0a tf x g x x +∞+≥⎰, 即222()d 2()()d ()d 0aaatf x x t f xg x x g x x +∞+∞+∞-+≥⎰⎰⎰.故由判别式为负得()2222()()d 4()d ()d 0aaaf xg x x f x x g x x +∞+∞+∞-≤⎰⎰⎰.即()222()()d ()d ()d aaaf xg x xf x xg x x+∞+∞+∞≤⎰⎰⎰.而 2()d af x x+∞⎰,2()d ag x x+∞⎰收敛,所以 ()()d a f x g x x+∞⎰收敛.又2 [()()]d af xg x x+∞+⎰2()d af x x +∞=⎰2()()d af xg x x +∞+⎰2()d ag x x+∞+⎰,所以2 [()()]d af xg x x+∞+⎰收敛.证:(2) 因为 2 ()d a f x x+∞⎰与 2 ()d ag x x+∞⎰都收敛,所以22 ()()d 2af xg x x+∞+⎰收敛.而 22()()()()2f x g x f x g x +≤,故 ()()d a f x g x x+∞⎰绝对收敛,亦收敛.又2 [()()]d af xg x x+∞+⎰22 ()d 2()()d ()d aaaf x x f xg x x g x x+∞+∞+∞=++⎰⎰⎰.所以由四则运算知 2 [()()]d af xg x x+∞+⎰收敛.2 设()f x 、()g x 、()h x 是定义在[,)a +∞上的三个连续函数,且()()()f x g x h x ≤≤,证明(1) 若 ()d a f x x +∞⎰, ()d a h x x +∞⎰都收敛,则 ()d a g x x+∞⎰也收敛; 证:因为()()()f x g x h x ≤≤,所以u a ∀>,()d uaf x x ⎰()d u ag x x ≤⎰ ()d uah x x≤⎰.而()d af x x+∞⎰, ()d ah x x+∞⎰都收敛,所以 lim()d uau f x x →+∞⎰, lim ()d ua u h x x →+∞⎰都存在,从而 lim()d uau g x x→+∞⎰存在,故 ()d ag x x+∞⎰收敛.(2) 若 ()d af x x +∞⎰ ()d ah x x A+∞==⎰,则 ()d a g x x A+∞=⎰.证:因为 ()d a f x x +∞⎰ ()d ah x x A +∞==⎰所以lim()d uau f x x A→+∞=⎰, lim()d uau h x x A→+∞=⎰,于是由夹逼性定理得 lim()d uau g x x A→+∞=⎰,故 ()d a g x x A+∞=⎰.3 讨论下列无穷限积分的收敛性:(1) 0x +∞⎰;解:因为43lim 1x x →+∞=,而x+∞⎰收敛,故x+∞⎰收敛.(2)1d 1x xx e +∞-⎰;解:因为2lim 01x x x x e →+∞⋅=-,而 2 11d x x +∞⎰收敛,故 1d 1xxx e +∞-⎰收敛.(3)x +∞⎰;解:因为lim 1x =,而1x+∞⎰发散,故x+∞⎰发散.(4) 3 1arctan d 1x xx x +∞+⎰;解:因为23arctan lim 12x x x x x π→+∞⋅=+,而 2 01d x x +∞⎰收敛, 故 3 1arctan d 1x xx x +∞+⎰收敛.(5) 1ln(1)d n x x x +∞+⎰; 解:当1n ≤时, 1ln(1)d n x x x +∞+⎰发散,当1n >时, 1ln(1)d n x x x +∞+⎰收敛.(6)d (,0)1mn x x m n x +∞>+⎰.解:因为lim 11m n mn x x x x -→+∞⋅=+,所以当1n m -≤时,0d 1mn xx x +∞+⎰发散,当1n m ->时,0d 1mnx x x +∞+⎰收敛.4 讨论下列无穷限积分绝对收敛还是条件收敛: (1)1x ⎰;解:因为12lim 1x x →+∞=,而1x+∞⎰发散,所以1x ⎰发散.又1()2cos14F u x ==-≤⎰,()g x 在x →+∞时单调下降以零为极限,所以由狄氏判别法知1x x +∞⎰收敛.综上可知 1x ⎰条件收敛.(2) 2 0sgn(sin )d 1x x x +∞+⎰; 解:因为22sgn(sin )111x x x ≤++,而 201d 1x x +∞+⎰收敛,所以 2 0sgn(sin )d 1x x x +∞+⎰绝对收敛.(3)x⎰;解:因为0()cos d sin 1u F u x x u ==≤⎰,而()100g x x =+在x →+∞时单调下降以零为极限,所以由狄氏判别法知x⎰收敛.=+,而d 100x x +∞+⎰发散,0d 100xxx +∞+⎰收敛,所以x⎰发散,综上可知0x⎰条件收敛.(4)ln(ln )sin d ln ex x x x +∞⎰.解:因为()sin d cos cos 2u eF u x x e u ==-≤⎰,ln(ln )()ln x g x x =在x →+∞时单调下降以零为极限,所以由狄氏判别法知ln(ln)sin dlnexx xx+∞⎰收敛.又2ln(ln)ln(ln)ln(ln)ln(ln)sin sin cos2ln ln2ln2lnx x x xx x x x x x x≥=-,而ln(ln)dlnexxx+∞⎰发散,ln(ln)cos2dlnexx xx+∞⎰收敛,所以ln(ln)sin dlnexx xx+∞⎰条件收敛.5 举例说明,()daf x x+∞⎰收敛时,2()daf x x+∞⎰不一定收敛;()daf x x+∞⎰绝对收敛时,2()daf x x+∞⎰也不一定收敛.证:例如()f x1()df x x+∞⎰收敛,但221 1()df x x x+∞+∞=⎰⎰发散.又如345345333100,221,()1,11 01,(1)xn x n n x n nnf xn x n n x n nnx n nn n ⎧⎡⎤∈-⎪⎢⎥⎣⎦⎪⎪⎛⎫+-∈-⎪ ⎪⎝⎭⎪=⎨⎡⎤⎪-++∈+⎢⎥⎪⎣⎦⎪⎛⎫⎪∈-+-⎪⎪-⎝⎭⎩,如图.则23331111()d231236f x x nnπ+∞=⋅+⋅++⋅+=-⎰,所以 1()d f x x+∞⎰收敛且为绝对收敛.但21()df x x+∞⎰发散.6 证明:()daf x x+∞⎰若绝对收敛,且lim()0xf x→+∞=,则2()daf x x+∞⎰必定收敛.证:因为lim()0xf x→+∞=,所以110,,()1M a x M f x ε∀>∃>∍>⇒≤“”,于是1x M >时,2 ()()f x f x ≤, 又()d af x x+∞⎰收敛,就上述ε,2M a ∃>,21122,()d u u u u M f x x ε∍>⇒<⎰“”取12max{,}M M M =,则12,u u M >时,22112()d ()d u u u u f x x f x x ε≤<⎰⎰,故 2 ()d af x x+∞⎰收敛.7 证明:若()f x 是[,)a +∞上的单调函数,且 ()d a f x x +∞⎰收敛,则lim ()0x f x →+∞=. 证:不妨设()f x ,则[,),()0x a f x ∀∈+∞≥.实因假设00[,),()0x a f x ∃∈+∞<,则0x x >时,0()()f x f x ≤, 从而 000 ()d ()()ux f x x f x u x ≥-⎰,即 0lim()d ux u f x x →+∞=∞⎰,此与 ()d af x x+∞⎰收敛矛盾.又由 ()d af x x+∞⎰收敛得 0,M a ε∀>∃>,22()d 2xx x M f t t ε∍>⇒<⎰“”. 而221()d ()d ()02x xxx f t t f x t xf x ≥=≥⎰⎰,所以2x M >时,0()xf x ε≤<,于是0()f x ε≤<, 故lim ()0x f x →+∞=.8 证明:若()f x 在[,)a +∞上一致连续,且 ()d a f x x+∞⎰收敛,则lim ()0x f x →+∞=.证:假设lim ()0x f x →+∞≠,则00ε∃>,M a ∀>,0x M ∃>,00()f x ε∍≥“”.因为()f x 在[,)a +∞上一致连续,所以0δ∃>,000()()22x x f x f x εδδ∍<-<⇒-<“”. 从而00()()()()2f x f x f x f x ε≥--≥于是M a ∀>,0,x x M ∃>,00()d 24xx f x x x x εεδ∍≥->⎰“”.此与 ()d af x x+∞⎰收敛矛盾,故lim ()0x f x →+∞=.9 利用狄利克雷判别法证明阿贝尔判别法. 证:因为 ()d af x x+∞⎰收敛,所以0M ∃>,u a ∀>,()()d uaF u f x x M=≤⎰,即()F u 在[,)a +∞上有界.又()g x 单调有界,所以极限存在.设lim ()x g x A→+∞=,则()lim ()0x g x A →+∞-=,从而由狄氏差别法知() ()()d af xg x A x+∞-⎰收敛.而() ()()d ()()d ()d a aaf xg x x f x g x A x A f x x+∞+∞+∞=--⎰⎰⎰故 ()()d af xg x x+∞⎰收敛.§11. 3 瑕积分的性质与收敛判别一 基本内容一、瑕积分的性质设a 为瑕点,由瑕积分的定义知()d baf x x⎰收敛存在lim ()d buu af x x+→⇔⎰,由极限的柯西收敛准则知lim ()d buu af x x+→⎰存在0,0,εδ⇔∀>∃>2112 ,(,)()u u u u a a f x dx δε∍∈+⇒<⎰“”.定理1()d baf x x⎰收敛0,0εδ⇔∀>∃>,2112 ,(,)()d u u u u a a f x x δε∍∈+⇒<⎰“”.性质 1 设 a 为瑕点,若1 ()d baf x x⎰、2 ()d baf x x⎰都收敛,则12,k k ∀,[] 1122()()d bak f x kf x x+⎰也收敛,且[] 11221122 ()()d ()d ()d bbbaaak f x k f x x k f x x k f x x+=+⎰⎰⎰.性质2 设a 为瑕点,则(,)c a b ∀∈, ()d baf x x⎰与 ()d caf x x⎰同收同发,且收敛时,()d ()d ()d bcb aacf x x f x x f x x=+⎰⎰⎰.性质3 设 a 为瑕点,若,()u a f x ∀>在[, ]u b 上可积,则()d baf x x⎰收敛()d baf x x⇒⎰收敛,且()d ()d bbaaf x x f x x≤⎰⎰.定义1 如果收敛 ()d ba f x x⎰,则称 ()d ba f x x⎰绝对收敛. 二、比较判别法比较判别法仅应用于绝对收敛的判别.定理2 设a 为瑕点,若,(),()u a f x g x ∀>在[, ]u b 上可积,且,()()x a f x g x ∀>≤, 则 ()d ba g x x⎰收敛()d baf x x⇒⎰收敛,而()d baf x x⎰发散⇒()d bag x x⎰发散.推论(比较判别法的极限形式) 若,(),()u a f x g x ∀>在[, ]u b 上可积,, ()0x a g x ∀>>,且()lim ()x a f x c g x +→=,则(1) 0c <<+∞时, ()d ba f x x⎰与 ()d bag x x ⎰同收同发; (2) 0c =时, ()d bag x x⎰收敛()d b af x x⇒⎰收敛;(3) c =+∞时, ()d bag x x⎰发散 ()d ba f x x⇒⎰发散.定理3 (柯西判别法) 若0,()u a f x ∀>>在[, ]u b 上可积,则(1)1()()pf x x a ≤-且01p <<时, ()d b a f x x ⎰收敛; (2)1()()pf x x a ≥-且1p ≥时, ()d ba f x x ⎰发散. 定理 3 (柯西判别法的极限形式) 若0,()u a f x ∀>>在[, ]ub 上可积,且lim()|()|p x a x a f x λ+→-=,则(1) 0λ≤<+∞且01p <<时, ()d ba f x x⎰收敛;(2) 0λ<≤+∞且1p ≥时, ()d ba f x x⎰发散.二 习题解答1 讨论瑕积分的收敛性(1) 22 01d (1)x x -⎰;解:瑕点为1x =.改写积分为 2 1 2222 0 0 1111d d d (1)(1)(1)x x xx x x =+---⎰⎰⎰.因为 12 01d (1)x x -⎰发散,所以 22 01d (1)xx -⎰发散.(2) 32sin d xxx π⎰; 解:瑕点为0x =.因为2lim 1x x →=,而xπ⎰收敛,所以32sin d x xxπ⎰收敛.(3)1x⎰;解:瑕点为0,1x =.因为H 1111lim(1)lim 11x x x x x --→→→-==,而 1 01d 1x x -⎰发散,所以 1x ⎰发散.(4) 10ln d 1xx x -⎰;解:瑕点为1x =.而112H211112ln ln (1)lim(1)lim lim 012(1)x x x xx x x x xx ---→→→--⋅===--,又1x⎰收敛,所以 10ln d 1xx x -⎰收敛.(5) 130arctan d 1xx x -⎰; 解:瑕点为1x =.而3211arctan arctan lim(1)lim 1112x x x x x x x x π--→→-⋅==-++, 又 1 01d 1x x -⎰发散,所以 130arctan d 1xx x -⎰发散.(6)2 01cos d m xx x π-⎰;解:瑕点为0x =.而21cos 1lim 2m m x x x x +-→-⋅=,所以当21m -<,即3m <时21cos d m xx x π-⎰收敛;所以当21m -≥,即3m ≥时2 01cos d mxx x π-⎰发散.(7)1011sin d x x x α⎰; 解:瑕点为0x =.而111sin x x x αα≤, 所以当01α<<时, 1 011sin d x x x α⎰绝对收敛;又2α≥时,1111sin xx x αα-≤,而 1101d x x α-⎰发散,所以此时 1011sin d x x x α⎰发散; 当12α≤<时,1 011sin d x x x α⎰条件收敛. (8) 0ln d x e x x+∞-⎰.解:积分表为11ln d ln d ln d xxx e x x e x x e x x+∞+∞---=+⎰⎰⎰.就 1 0ln d x e x x-⎰,瑕点为0x =,而120lim ln 0xx x e x +-→⋅=,所以 1ln d x e x x-⎰收敛;就 1ln d x e x x+∞-⎰,因20lim ln 0xx x e x +-→⋅=,所以 1ln d x e x x+∞-⎰收敛.综上可知 0ln d x e x x+∞-⎰收敛.2 计算下列瑕积分的值 (1) 1(ln )d n x x⎰;解:设1 0(ln )d n n I x x=⎰,则1111 0lim(ln )lim (ln )d |n n n n eee e I x x n x x nI ++--→→=-=-⎰,而10 0d 1I x ==⎰,所以 1 0(ln )d (1)!n n x x n =-⎰.(2)1nx ⎰.解:令2sin x t =,则d 2sin cos d x t t t =,于是1212 02sin d nn n I x t t π+==⎰⎰ 22 02sin d(cos )n t t π=-⎰22122202sin cos 22sin cos d |nn t t n t t tππ-=-+⋅⎰212122 04sin d 4sin d n n n t t n t tππ-+=-⎰⎰12()n n n I I -=-,于是 1221n n n I I n -=+,而0I =2 02sin d 2t t π==⎰,所以212(2)!!2(!)2(21)!!(21)!n n n n I n n +=⋅=++.3 证明瑕积分2 0ln(sin )d J x xπ=⎰收敛,且ln 22J π=-,(提示:利用22 0ln(sin )d ln(cos )d x x x xππ=⎰⎰,并将它们相加).证:瑕点为0x =,而3H 20001sin lim ln(sin )lim lim 2cos x x x x x x x+++→→→=-⋅3201sin lim 02cos x x x x +→=-=,所以2 0ln(sin )d J x xπ=⎰收敛.令2x t π=-知22 0 0ln(sin )d ln(cos )d x x x x ππ=⎰⎰,于是22 0 02ln(sin )d ln(cos )d J x x x xππ=+⎰⎰22 0 0sin 2ln(sin cos )d lnd 2xx x x x ππ==⎰⎰2 0ln sin 2d ln 22x x ππ=-⎰.而令2x t =得201ln sin 2d ln sin d 2x x t t ππ=⎰⎰ 2 0 211ln sin d ln sin d 22t t t t πππ=+⎰⎰ 22 0 011ln sin d ln cos d 22t t t t J ππ=+=⎰⎰.所以ln 22J π=-.4 利用上题结果,证明(1)2ln(sin )d ln 22ππθθθ=-⎰;证:令t θπ=-,则ln(sin )d ()ln(sin )d t t tππθθθπ=-⎰⎰,于是ln(sin )d ln(sin )d 2πππθθθθθ=⎰⎰220ln(sin )d ln 22πππθθ==-⎰.(2) 0sin d 2ln 21cos πθθθπθ=-⎰.证:() 0 0sin d d ln(1cos )1cos ππθθθθθθ=--⎰⎰ln 2ln(1cos )d ππθθ=--⎰2 0 0ln 2ln 2d ln sin d 2ππθπθθ⎛⎫=-- ⎪⎝⎭⎰⎰ 02lnsin d 2πθθ=-⎰2 04lnsin d t tπ=-⎰2ln2π=. 所以 0sin d 2ln 21cos πθθθπθ=-⎰.总练习题111 证明下列等式(1) 110 1d d ,011p px x x x p x x --+∞=>++⎰⎰;证:令1x t =,则21d d x t t =-,于是1111 1112 0 00111d lim d lim d 1111p p p e e e e x x x x t x x t t t ++---→→⎛⎫==⋅⋅-⎪++⎝⎭+⎰⎰⎰1 1 10lim d d 11p p ee t t t t t t +--+∞→==++⎰⎰, 所以110 1d d ,011p px x x x p x x --+∞=>++⎰⎰.(2) 10 0d d ,0111p px x x x p x x --+∞+∞=<<++⎰⎰.证:因为01p <<,所以0x =为瑕点.令1x t =,则21d d x t t =-,于是1 0 12 00111d d d 1111p pp x t x t tx t t t t --+∞+∞-+∞=-⋅⋅=+++⎰⎰⎰所以 10 0d d 11p px x x x x x --+∞+∞=++⎰⎰.2 证明下列不等式(1)12π<<⎰; 证:1x =为瑕点.而12111lim(1)lim 2x x x --→→-==,所以1⎰收敛.又设sin x t =,则d cos d x t t =,于是12 0π=⎰⎰而1≤≤, 所以12π<<⎰. (2)201111d 122x e x e e +∞-⎛⎫-<<+ ⎪⎝⎭⎰. 证:因为22lim 0x x x e -→∞=,所以2d xe x+∞-⎰收敛.而2222110 1d d d d x x x xe x e x e x e x+∞+∞----=+>⎰⎰⎰⎰22 11201d d()2x x xe x e x --≥=--⎰⎰1122e =-.222211d d d 1d x x x xe x e x e x xe x+∞+∞+∞----=+<+⎰⎰⎰⎰()22111d 2x e x +∞-=--⎰112e =+. 故结论成立.3 计算下列反常积分的值. (1) 0cos d (0)ax e bx x a +∞->⎰;解:01cos d d(sin )axaxebx x e bx b +∞+∞--=⎰⎰1sin sin d ax axa e bx e bx x bb +∞+∞--=+⎰2d(cos )ax a e bx b +∞-=-⎰2 22cos cos d ax ax a a e bx e bx xb b +∞+∞--=--⎰222 0cos d ax a a e bx xb b+∞-=-⎰所以22 0cos d ax ae bx x a b +∞-=+⎰为所求.(2) 0sin d (0)ax e bx x a +∞->⎰;解:方法同上可得22 0sin d ax be bx x a b +∞-=+⎰.(3) 2 0ln d 1xx x +∞+⎰;解: 1 222 0 0 1ln ln ln d d d 111x x xx x x xx x +∞+∞=++++⎰⎰⎰,就 2 1ln d 1x x x +∞+⎰作变换1x t =,则21d d x t t =-,于是20 12222 1 1 0ln ln 1ln d d d 111x t t t x t t x t t t +∞⎛⎫=-⋅-=- ⎪+++⎝⎭⎰⎰⎰ 所以 20ln d 01xx x +∞=+⎰. (4)2ln(tan )d πθθ⎰.解:设tan x θ=,则21d d 1x x θ=+,于是2ln(tan )d πθθ⎰2 0ln d 01xx x +∞==+⎰.4 讨论反常积分sin d (0)bxx b x λ+∞≠⎰,λ取何值时绝对收敛,λ取何值时条件收敛.解: 1 0 0 1sin sin sin d d d bx bx bxx x x x x x λλλ+∞+∞=+⎰⎰⎰,就 1 0sin d bxx x λ⎰,当0λ>时,0x =为瑕点.当01λ<<时,sin 1bx x x λλ≤,而 1 01d x x λ⎰收敛, 所以当01λ<<时, 1 0sin d bxx xλ⎰绝对收敛.当12λ≤<时,因为10sin sin lim lim 0x x bx bxx b x x λλ-→→==>,而111d xx λ-⎰收敛,所以当12λ≤<时,10sin d bxx x λ⎰绝对收敛.当2λ≥时,因为10sin sin lim lim 0x x bx bxx b x x λλ-→→==>,而111d xx λ-⎰发散,所以当2λ≥时,10sin d bxx x λ⎰发散.就 1sin d bx x x λ+∞⎰,当0λ≤时, 1sin d bxx x λ+∞⎰发散.当01λ<≤时, 1()sin d uF u bx x=⎰在[1,)+∞上有界,1()g x x λ=单调以零为极限,由狄氏判别法知1sin d bxx x λ+∞⎰收敛.而 22sin sin 1cos bx bx bx x x x x λλλλ≥=-, 所以 1sin d bx x x λ+∞⎰发散,故 1sin d bxx x λ+∞⎰条件收敛. 当1λ>时,因为sin 1bx xx λλ≤, 而 1 01d x x λ⎰收敛,所以当1λ>时,1 0sin d bxx x λ⎰绝对收敛.综上可知,当0λ≤时,或2λ≥时, + 0sin d bxx xλ∞⎰发散;当01λ<≤时, + 0sin d bxx x λ∞⎰条件收敛;当12λ<<时, + 0sin d bxx x λ∞⎰绝对收敛.5 证明:设f 在[0,)+∞上连续,0a b <<. (1) 若lim ()x f x k→+∞=,则()()d ((0))ln f ax f bx bx f k x a +∞-=-⎰;证:令ax t =,则 ()()d d A aA a f ax f t x t x t δδ=⎰⎰,令bx t =,则 ()()d d A bA b f bx f t x t x t δδ=⎰⎰,于是 0()()()()d d d aA bA a b f ax f bx f t f t x t t x t t δδ+∞-=-⎰⎰⎰ ()()()()d d d d b bA aA bA a b bA b f t f t f t f t t t t t t t t t δδδδ=++-⎰⎰⎰⎰()()d d b bA a aA f t f t t t t t δδ=-⎰⎰ ()()d d b b a a f y f Ay y y y y ε=-⎰⎰1[()()]d b a f f A yyδξη=-⎰(积分中值定理,,(,)a b ξη∈)[()()]lnbf f A a δξη=-.令0,A δ+→→+∞得 0()()d ((0))lnf ax f bx bx f k x a +∞-=-⎰.(2) 若 ()d a f x x x +∞⎰收敛,则 0()()d (0)ln f ax f bx bx f x a +∞-=⎰.证:由(1)得()()d f ax f bx x x +∞-⎰()()d d b bA a aA f t f t t tt t δδ=-⎰⎰.因()d af x x x +∞⎰收敛,所以由柯西收敛准则得0,M a ε∀>∃>,2112(),d u u f x u u M x x ε∍>⇒<⎰“”.即 ()lim d 0bA aA A f t t t →∞=⎰. 故 0()()d (0)ln f ax f bx bx f x a +∞-=⎰.6 证明下述命题(1) 设0a >,()f x 为[,)a +∞上的非负连续函数.若 ()d axf x x+∞⎰收敛,则 ()d af x x+∞⎰也收敛.证:因为 ()d axf x x+∞⎰收敛,所以所以由柯西收敛准则得0,M a ε∀>∃>,2112,()d u u u u M xf x x a ε∍>⇒<⎰“”.而1()d ()d aa f x x xf x x a +∞+∞<⎰⎰,于是亦有21()d u u f x x ε<⎰.故 ()d af x x+∞⎰收敛.(2) 设0a >,()f x 为[,)a +∞上的连续可微函数,且当x →+∞时,()f x 递减地趋于0,则 ()d af x x+∞⎰收敛的充要条件为 ()d axf x x+∞'⎰收敛.证:()⇒设 ()d af x x+∞⎰收敛,因()d ()()d |aaaf x x xf x xf x x+∞+∞+∞'=-⎰⎰而lim ()0x xf x →+∞=(本章第二节第8题) 所以 ()d axf x x+∞'⎰收敛.()⇐设 ()d a xf x x +∞'⎰收敛,则0ε∀>,M a ∃>,()d AxA x M tf t t ε'∍>>⇒<⎰“”.因为()f x 递减地趋于0,所以()0f x '≤, 于是由积分中值定理得()d ()d [()()]AAxxtf t t f t t f A f x ξξ''==-⎰⎰,从而 0[()()][()()]x f A f x f A f x ξε≤-≤-<.又lim ()0A f A →+∞=,所以lim ()0x xf x →+∞=.从而()d ()()d |aaaxf x x xf x f x x+∞+∞+∞'=-⎰⎰()()d aaf a f x x+∞=-⎰,故 ()d af x x+∞⎰收敛.反常积分无限区间上的积分或的积分,这两类积分叫作,又名反常积分.1.无限区间上的积分一般地,我们有下列定义定义6.2设函数在区间上连续,如果极限()存在,就称上极限值为在上的广义积分.记作即( 6.24 )这时我们说广义积分存在或收敛;如果不存在,就说不存在、发散或不收敛.类似地,可以定义在及上的广义积分.( 6.25 )其中( 6.26 )对于广义积分,其收敛的充要条件是:与都收敛.广义积分收敛时,具有积分的那些性质与积分方法,如换元法、分部积分法以及等,但有时代数和运算要注意,不要随便拆开.在用广义的牛顿—莱布尼兹公式时,无穷远点应取极限.为方便起见,引入记号,这样,若为的一个原函数,则(其中)注意:这里与是独立变化的,不能合并成 .2.无界函数的积分先给出瑕点或奇点的概念,若(或)时,,则点(或点)称为无界函数的瑕点或奇点. 的无穷间断点就是的瑕点.定义6.3设函数在上连续,左端点为的瑕点,如果存在,就称此极限值为无界函数在上的广义积分.记作( 6.27 )这时我们说广义积分存在或收敛.如果不存在,就说广义积分不存在、不收敛或发散.注:表明从大于0的方向趋于0,已经隐含了 .类似地,设函数在上连续,右端点为的瑕点,如果存在,就称此极限值为无界函数在上的广义积分.记作( 6.28 )这时我们说广义积分存在或收敛.如果不存在,就说广义积分不存在、不收敛或发散.还有,设函数在上连续,左端点、右端点均为的瑕点,如果及均存在,其中为内的一个确定点,且与两者之间是独立变化的,就称存在或收敛,记作如果及中至少有一个不存在,则称不存在、不收敛或发散.对于区间端点、均为的瑕点的广义积分有存在和均存在. 和都存在.其中为内的一个确定点,且与两者之间是独立变化的,另外,设函数在上除一个内部点外连续,且内部点为的瑕点,如果和均存在,也即和都存在,其中与两者之间是独立变化的,就称存在或收敛,记作( 6.29 )如果及中至少有一个不存在,则称不存在、不收敛或发散.对于内部点为的瑕点的广义积分有存在和均存在.和都存在.广义积分收敛时,具有常义积分的那些性质与积分方法,如换元法、分部积分法以及广义牛顿—莱布尼兹公式等,但有时代数和运算要注意,不要随便拆开,参见例5与例6.在用广义的牛顿—莱布尼兹公式时,无界点处原函数应取极限.为方便起见,引入记号左端点为瑕点时,记,这时广义的牛顿—莱布尼兹公式为右端点为瑕点时,记,这时广义的牛顿—莱布尼兹公式为左端点、右端点均为瑕点时,广义的牛顿—莱布尼兹公式为(为内的一个确定点)()( 这里的值有时不必马上算出,可对抵掉. )仅内部点为瑕点时,广义的牛顿—莱布尼兹公式为注意:由于有限区间上的无界函数的广义积分常常会与常义积分混淆,因此求积分时,首先应判断积分区间上有无瑕点.有瑕点的,是广义积分;无瑕点的,是常义积分.若是广义积分,还要保证积分区间仅有一端是瑕点,中间没有瑕点.若不然,要将积分区间分段,使每一段区间仅有一端是瑕点,中间没有瑕点.。
反常积分判敛的方法在数学中,积分是一种非常重要的概念,而对于一些特殊的积分,我们需要进行判敛来确定其是否收敛。
在处理反常积分时,有一些特殊的方法可以帮助我们进行判敛,本文将介绍一些常用的反常积分判敛方法。
一、无穷积分的判敛方法对于形如$\int_{a}^{+\infty}f(x)dx$的无穷积分,我们可以通过比较判别法来确定其是否收敛。
比较判别法主要包括以下几种情况: 1. 若存在常数$M>0$和$a$,使得对充分大的$x$有$|f(x)|\leqM\cdot g(x)$,其中$\int_{a}^{+\infty}g(x)dx$收敛,则$\int_{a}^{+\infty}f(x)dx$也收敛。
2. 若存在常数$a$,使得对充分大的$x$有$0\leq f(x)\leqg(x)$,其中$\int_{a}^{+\infty}g(x)dx$发散,则$\int_{a}^{+\infty}f(x)dx$也发散。
通过比较判别法,我们可以对无穷积分的收敛性进行初步的判断。
二、无界函数积分的判敛方法对于形如$\int_{a}^{b}f(x)dx$的积分,如果被积函数在区间$(a,b)$上无界,我们可以通过以下方法进行判敛:1. 若在$(a,b)$上,$f(x)$有无穷间断点,我们可以将积分区间分割成多个小区间,分别处理每个小区间上的积分。
2. 若在$(a,b)$上,$f(x)$有无穷间断点,我们可以通过换元积分的方法将无界函数转化为有界函数,然后再进行积分计算。
通过以上方法,我们可以处理一些在有界区间上无界的函数积分,从而判断其收敛性。
三、奇异点附近积分的判敛方法对于形如$\int_{a}^{b}f(x)dx$的积分,在奇异点附近积分时,我们可以通过留数定理来判断其收敛性。
留数定理是一种处理奇异点的有效方法,可以帮助我们求解一些复杂的积分。
在处理奇异点附近积分时,我们需要注意以下几点:1. 确定奇异点的类型,包括可去奇点、极点和本性奇点。
反常积分审敛万能公式在咱们学习数学的过程中,有个叫反常积分审敛的东西,这玩意儿可不简单,不过别担心,今天咱就来聊聊所谓的反常积分审敛万能公式。
先给大家举个例子哈。
有一次我去超市买零食,看到巧克力在打折,那种巧克力平时卖得挺贵,这次居然降价了。
我就想,这降价是不是有个“极限”呢?就像反常积分,积分区间无限延伸,那这个巧克力价格的变化是不是也能找到一个类似的规律?说回反常积分审敛万能公式。
这个公式就像是一把神奇的钥匙,能帮我们打开判断反常积分收敛还是发散的大门。
比如说,对于形如∫[a,+∞) f(x)dx 的反常积分,我们通过一些特定的计算和判断,就能知道它到底是收敛还是发散。
那这个万能公式具体是啥样呢?其实它涉及到一些复杂的数学运算和条件判断。
比如说,我们得看看被积函数的形式,是多项式啊,还是指数函数啊,或者是其他更复杂的形式。
然后根据不同的形式,运用不同的方法和定理来判断。
我还记得有个学生,他在做反常积分审敛的题目时,总是搞不清楚那些条件和公式的运用。
我就跟他说,你别把这当成特别难的东西,就像你玩游戏,每个关卡都有规则,咱们只要熟悉了规则,就能通关。
后来他慢慢地掌握了,那高兴劲儿,就像终于在游戏里打败了大 boss 一样。
在实际应用中,反常积分审敛万能公式能帮我们解决很多问题。
比如说在物理中,计算一些无限过程的能量或者功的时候,就能用这个公式来判断结果是否合理。
而且,大家别觉得这个公式只是为了考试才学的。
其实在很多实际的科学研究和工程计算中,都能用到它。
就像建筑师在设计高楼的时候,需要考虑各种力的作用,这里面可能就涉及到反常积分的计算和审敛。
总之,反常积分审敛万能公式虽然看起来有点复杂,但只要我们耐心去理解、多做练习,就一定能掌握它。
就像我当初学会挑选巧克力一样,只要掌握了方法,就能买到最实惠的美味。
希望大家在学习反常积分审敛万能公式的时候,都能充满信心,加油!。
2016考研数学:反常积分的极限审敛法分析
反常积分(也称广义积分)分为两类:一类是积分区间为无限的积分,另一类是被积函数无界的积分;在考研数学中,关于反常积分常考的题型主要有两种:一是反常积分的计算,另一个是反常积分收敛性的判断;关于反常积分收敛性的判断,一部分题可以利用正常积分的计算方法来判断其收敛性,另一部分题须利用比较审敛法或极限审敛法来判断,有些同学对极限审敛法感到有些困惑,下面我们就来对其中的一些问题做些分析,供大家参考。
一、极限审敛法的基本理论
二、应用极限审敛法的关键
在应用极限审敛法来判断反常积分是否收敛时,要求大家对等价无穷小代换和其它求极限的方法比较熟,另外,如果应用极限审敛法难以判断反常积分的收敛性,则应考虑运用其它方法来判断,如:比较审敛法、通过计算来判断其收敛性,大家在做题时要灵活运用,最后预祝大家在2016考研中取得佳绩。