高考物理一轮复习第6章动量和动量守恒定律新人教版
- 格式:doc
- 大小:383.50 KB
- 文档页数:8
第1讲 动量 动量定理[A 组 基础题组]一、单项选择题1.下列解释正确的是( )A .跳高时,在落地处垫海绵是为了减小冲量B .在码头上装橡皮轮胎,是为了减小渡船靠岸过程受到的冲量C .动量相同的两个物体受相同的制动力作用,质量小的先停下来D .人从越高的地方跳下,落地时越危险,是因为落地时人受到的冲量越大解析:跳高时,在落地处垫海绵是为了延长作用时间减小冲力,不是减小冲量,故选项A 错误;在码头上装橡皮轮胎,是为了延长作用时间,从而减小冲力,不是减小冲量,故选项B 错误;动量相同的两个物体受相同的制动力作用,根据动量定理Ft =mv ,可知运动时间相等,故选项C 错误;人从越高的地方跳下,落地前瞬间速度越大,动量越大,落地时动量变化量越大,则冲量越大,故选项D 正确。
答案:D2.如图所示,AB 为固定的光滑圆弧轨道,O 为圆心,AO 水平,BO 竖直,轨道半径为R ,将质量为m 的小球(可视为质点)从A 点由静止释放,在小球从A 点运动到B 点的过程中( )A .小球所受合力的冲量方向为弧中点指向圆心B .小球所受支持力的冲量为0C .小球所受重力的冲量大小为m 2gRD .小球所受合力的冲量大小为m 2gR解析:小球受到竖直向下的重力和垂直切面指向圆心的支持力,所以合力不指向圆心,故合力的冲量也不指向圆心,故A 错误;小球的支持力不为零,作用时间不为零,故支持力的冲量不为零,故B 错误;小球在运动过程中只有重力做功,所以根据机械能守恒定律可得mgR =12mv B 2,故v B =2gR ,根据动量定理可得I 合=Δp =mv B =m 2gR ,故C 错误,D 正确。
答案:D3.一小球从水平地面上方无初速度释放,与地面发生碰撞后反弹至速度为零。
假设小球与地面碰撞没有机械能损失,运动时的空气阻力大小不变,则下列说法正确的是( ) A .上升过程中小球动量改变量等于该过程中空气阻力的冲量 B .小球与地面碰撞过程中,地面对小球的冲量为零 C .下落过程中小球动能的改变量等于该过程中重力做的功D .从释放到反弹至速度为零的过程中,小球克服空气阻力做的功等于重力做的功解析:根据动量定理可知,上升过程中小球动量改变量等于该过程中重力和空气阻力的合力的冲量,选项A 错误;小球与地面碰撞过程中,由动量定理得Ft -mgt =mv 2-(-mv 1),可知地面对小球的冲量Ft 不为零,选项B 错误;下落过程中小球动能的改变量等于该过程中重力和空气阻力做功的代数和,选项C 错误;由能量守恒关系可知,从释放到反弹至速度为零的过程中,小球克服空气阻力做的功等于重力做的功,选项D正确。
实验七验证动量守恒定律1.实验目的验证碰撞中的动量守恒.2.实验原理在一维碰撞中,测出物体的质量m和碰撞前、后物体的速度v、v′,算出碰撞前的动量p=m1v1+m2v2及碰撞后的动量p′=m1v1′+m2v2′,看碰撞前后动量是否相等。
3.实验器材方案一利用气垫导轨完成一维碰撞实验气垫导轨、光电计时器、天平、滑块(两个)、重物、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥。
方案二在光滑长木板上两车碰撞完成一维碰撞实验光滑长木板、打点计时器、纸带、小车(两个)、天平、撞针、橡皮泥。
方案三利用等大小球做平抛运动完成一维碰撞实验斜槽、大小相等质量不同的小球两个、重垂线、白纸、复写纸、天平、刻度尺、圆规、三角板。
4.实验步骤方案一利用气垫导轨完成一维碰撞实验(1)测质量:用天平测出滑块质量。
(2)安装:正确安装好气垫导轨,如图所示。
(3)测速度:接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前后的速度(①改变滑块的质量;②改变滑块的初速度大小和方向)。
(4)验证:一维碰撞中的动量守恒。
方案二在光滑长木板上两车碰撞完成一维碰撞实验(1)测质量:用天平测出两小车的质量。
(2)安装:将打点计时器固定在光滑长木板的一端,把纸带穿过打点计时器,连在小车的后面,在两小车的碰撞端分别装上撞针和橡皮泥,如图所示.(3)碰撞:接通电源,让小车A运动,小车B静止,两车碰撞时撞针插入橡皮泥中,把两小车连接成一体运动。
(4)测速度:通过纸带上两计数点间的距离及时间由v=错误!算出速度.(5)改变条件:改变碰撞条件,重复实验。
(6)验证:一维碰撞中的动量守恒。
方案三利用等大小球做平抛运动完成一维碰撞实验(1)测质量:先用天平测出入射小球、被碰小球质量m1、m2(m1>m2)。
(2)安装:按如图所示安装好实验装置,将斜槽固定在桌边,使槽的末端点切线水平,调节实验装置使两小球碰撞时处于同一水平高度,且碰撞瞬间入射小球与被碰小球的球心连线与轨道末端的切线平行,以确保两小球正碰后的速度方向水平。
第2节动量守恒定律一、动量守恒定律1.内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。
[注1] 2.表达式:m1v1+m2v2=m1v1′+m2v2′。
3.适用条件(1)理想守恒:不受外力或所受外力的合力为0。
(2)近似守恒:系统内各物体间相互作用的内力远大于它所受到的外力。
[注2](3)某一方向守恒:如果系统在某一方向上所受外力的合力为0,则系统在该方向上动量守恒。
二、碰撞、反冲、爆炸1.碰撞(1)特点:作用时间极短,内力(相互碰撞力)远大于外力,总动量守恒。
(2)分类①弹性碰撞:碰撞后系统的总动能没有损失。
[注3]②非弹性碰撞:碰撞后系统的总动能有损失。
③完全非弹性碰撞:碰撞后合为一体,机械能损失最大。
2.爆炸与碰撞类似,物体间的相互作用时间很短,作用力很大,且远大于系统所受的外力,所以系统动量守恒。
3.反冲 [注4](1)定义:当物体的一部分以一定的速度离开物体时,剩余部分将获得一个反向冲量,如发射炮弹、火箭等。
(2)特点:系统内各物体间的相互作用的内力远大于系统受到的外力,动量守恒。
【注解释疑】[注1] 外力和内力是相对的,与研究对象的选取有关。
[注2] 外力的冲量在相互作用的时间内忽略不计。
[注3] 弹性碰撞是一种理想化的物理模型,在宏观世界中不存在。
[注4] 反冲运动和爆炸问题中,系统的机械能可以增大,这与碰撞问题是不同的。
[深化理解]1.动量守恒方程为矢量方程,列方程时必须选择正方向。
2.动量守恒方程中的速度必须是系统内各物体在同一时刻相对于同一参考系(一般选地面)的速度。
3.碰撞、爆炸、反冲均因作用时间极短,内力远大于外力满足动量守恒(或近似守恒),但系统动能的变化是不同的。
4.“人船”模型适用于初状态系统内物体均静止,物体运动时满足系统动量守恒或某个方向上系统动量守恒的情形。
[基础自测]一、判断题(1)只要系统合外力做功为零,系统动量就守恒。
(×)(2)系统动量不变是指系统的动量大小和方向都不变。
第1讲动量动量定理时间:45分钟总分为:100分一、选择题(此题共10小题,每一小题7分,共70分。
其中1~7题为单项选择,8~10题为多项选择)1.下面关于物体动量和冲量的说法错误的答案是()A.物体所受合外力的冲量越大,它的动量也越大B.物体所受合外力的冲量不为零,它的动量一定要改变C.物体动量增量的方向,就是它所受冲量的方向D.物体所受合外力越大,它的动量变化就越快答案 A解析Ft越大,Δp越大,但动量不一定越大,它还与初态的动量有关,故A错误;Ft =Δp,Ft不为零,Δp一定不为零,B正确;冲量不仅与Δp大小相等,而且方向一样,C 正确;物体所受合外力越大,速度变化越快,即动量变化越快,D正确。
此题选说法错误的,应当选A。
2.将质量为0.5 kg的小球以20 m/s的初速度竖直向上抛出,不计空气阻力,g取10 m/s2,以下判断正确的答案是()A.小球从抛出至最高点受到的冲量大小为10 N·sB.小球从抛出至落回出发点动量的增量大小为0C.小球从抛出至落回出发点受到的冲量大小为0D.小球从抛出至落回出发点受到的冲量大小为10 N·s答案 A解析小球在最高点速度为零,取向下为正方向,小球从抛出至最高点受到的冲量:I =0-(-mv0)=10 N·s,A正确;因不计空气阻力,所以小球落回出发点的速度大小仍等于20 m/s,但其方向变为竖直向下,由动量定理知,小球从抛出至落回出发点受到的冲量为:I′=Δp=mv0-(-mv0)=20 N·s,如此冲量大小为20 N·s,B、C、D错误。
3.(2019·四川自贡高三一诊)校运会跳远比赛时在沙坑里填沙,这样做的目的是可以减小()A.人的触地时间B.人的动量变化率C.人的动量变化量D.人受到的冲量答案 B解析 跳远比赛时,运动员从与沙坑接触到静止,动量的变化量Δp 一定,由动量定理可知,人受到的合力的冲量I =Δp 是一定的,在沙坑中填沙延长了人与沙坑的接触时间,即t 变大,由动量定理:Δp =Ft ,可得Δpt=F ,Δp 一定,t 越大,动量变化率越小,人受到的合外力越小,人越安全,B 正确。
专题五 动力学、动量和能量观点的综合应用力学的三个基本观点:①动力学观点(牛顿运动定律、运动学基本规律);②能量观点(动能定理、机械能守恒定律、功能关系与能量守恒定律);③动量观点(动量定理、动量守恒定律).熟练应用三大观点分析和解决综合问题是本专题要达到的目的.关键能力·分层突破考点一 碰撞模型的拓展模型1“弹簧系统”模型1.模型图2.模型特点(1)在能量方面,由于弹簧的形变会具有弹性势能,系统的总动能将发生变化,若系统所受的外力和除弹簧弹力以外的内力不做功,系统机械能守恒.(2)在动量方面,系统动量守恒.(3)弹簧处于最长(最短)状态时两物体速度相等,弹性势能最大.(4)弹簧处于原长时,弹性势能为零.例1. (多选)如图甲所示,物块a、b间拴接一个压缩后被锁定的轻质弹簧,整个系统静止放在光滑水平地面上,其中a物块最初与左侧固定的挡板相接触,b物块质量为1 kg.现解除对弹簧的锁定,在a物块离开挡板后,b物块的v t关系图象如图乙所示.则下列分析正确的是( )A.a的质量为1 kgB.a的最大速度为4 m/sC.在a离开挡板后,弹簧的最大弹性势能为1.5 JD.在a离开挡板前,a、b及弹簧组成的系统动量和机械能都守恒模型2“滑块—木板”模型1.模型图2.模型特点(1)当滑块和木板的速度相等时木板的速度最大,两者的相对位移也最大.(2)系统的动量守恒,但系统的机械能不守恒,摩擦力与两者相对位移的乘积等于系统机械能的减少量,当两者的速度相等时,系统机械能损失最大.例2. 如图所示,两块相同平板P1、P2置于光滑水平面上,质量均为m.P2的右端固定一轻质弹簧,左端A与弹簧的自由端B相距L.物体P置于P1的最右端,质量为2m且可看作质点.P1与P以共同速度v0向右运动,与静止的P2发生碰撞,碰撞时间极短,碰撞后P1与P2粘连在一起.P压缩弹簧后被弹回并停在A点(弹簧始终在弹性限度内).P与P2之间的动摩擦因数为μ.求:(1)P1、P2刚碰完时的共同速度v1和P的最终速度v2;(2)此过程中弹簧的最大压缩量x和相应的弹性势能E p.教你解决问题第一步:审条件 挖隐含P的速度不变.①“与静止的P2发生碰撞,碰撞时间极短”隐含→P1、P2获得共同速度.②“碰撞后P1与P2粘连在一起”隐含→P1、P2、P三者有共同速度及整个碰撞过程③“P压缩弹簧后被弹回并停在A点”隐含→中的弹性势能变化为零.第二步:审情景 建模型①P1与P2碰撞建模碰撞模型.→②P与P2之间的相互作用建模滑块—滑板模型.→第三步:审过程 选规律①动量守恒定律―→求速度.②能量守恒定律―→求弹簧的压缩量x及弹性势能E p.模型3“子弹打木块”模型1.模型图2.模型特点(1)子弹打入木块若未穿出,系统动量守恒,能量守恒,即mv 0=(m +M )v ,Q 热=fL相对=12mv2-12(M +m )v 2.(2)若子弹穿出木块,有mv 0=mv 1+Mv 2,Q 热=fL 相对=12mv −0212mv −1212M v 22.例3.(多选)如图所示,一质量m 2=0.25 kg 的平顶小车,车顶右端放一质量m 3=0.30 kg 的小物体,小物体可视为质点,与车顶之间的动摩擦因数μ=0.45,小车静止在光滑的水平轨道上.现有一质量m 1=0.05 kg 的子弹以水平速度v 0=18 m/s 射中小车左端,并留在车中,子弹与车相互作用时间很短.若使小物体不从车顶上滑落,g 取10m s2.下列分析正确的是( )A .小物体在小车上相对小车滑行的时间为13s B .最后小物体与小车的共同速度为3 m/s C .小车的最小长度为1.0 mD .小车对小物体的摩擦力的冲量为0.45 N·s 跟进训练1.[2022·黑龙江哈尔滨模拟](多选)如图所示,两个小球A 、B 大小相等,质量分布均匀,分别为m 1、m 2,m 1<m 2,A 、B 与轻弹簧拴接,静止在光滑水平面上,第一次用锤子在左侧与A 球心等高处水平快速向右敲击A ,作用于A 的冲量大小为I 1,第二次两小球及弹簧仍静止在水平面上,用锤子在右侧与B 球心等高处水平快速向左敲击B ,作用于B 的冲量大小为I 2,I 1=I 2,则下列说法正确的是( )A .若两次锤子敲击完成瞬间,A 、B 两球获得的动量大小分别为p 1和p 2,则p 1=p 2B .若两次锤子敲击分别对A 、B 两球做的功为W 1和W 2,则W 1=W 2C .若两次弹簧压缩到最短时的长度分别为L 1和L 2,则L 1<L 2D .若两次弹簧压缩到最短时,A 、弹簧、B 的共同速度大小分别为v 1和v 2,则v 1>v 22.如图甲所示,质量为M =3.0 kg 的平板小车C 静止在光滑的水平面上,在t =0时,两个质量均为1.0 kg的小物体A和B同时从左右两端水平冲上小车,1.0 s内它们的v t 图象如图乙所示,g取10 m/s2.(1)小车在1.0 s内的位移为多大?(2)要使A、B在整个运动过程中不会相碰,车的长度至少为多少?考点二 力学三大观点解决多过程问题1.三大力学观点的选择技巧根据问题类型,确定应采用的解题方法.一般来说,只涉及作用前后的速度问题,考虑采用动量守恒和能量守恒;涉及运动时间与作用力的问题,采用动量定理,考虑动能定理;涉及变化情况分析时由于涉及变量较多,一般采用图象法等.2.三大解题策略(1)力的观点解题:要认真分析运动状态的变化,关键是求出加速度.(2)两大定理解题:应确定过程的初、末状态的动量(动能),分析并求出过程中的冲量(功).(3)过程中动量或机械能守恒:根据题意选择合适的初、末状态,列守恒关系式,一般这两个守恒定律多用于求某状态的速度(率).例4. 如图所示,质量为M=100 g、带有光滑弧形槽的滑块放在水平面上,弧形槽上圆弧对应的圆心角为θ=60°,半径R=0.2 m,与其处于同一竖直平面内的光滑半圆轨道cd的半径为r=0.2 m,c、d两点为半圆轨道竖直直径的两个端点,轨道与水平面相切于c点,已知b点左侧水平面光滑,b、c间的水平面粗糙.两质量分别为m1=100 g、m2=50 g的物块P、Q放在水平面上,两物块之间有一轻弹簧(弹簧与两物块均不拴接),用外力将轻弹簧压缩一定长度后用细线将两物块拴接在一起,初始时弹簧储存的弹性势能为E p=0.6 J.某时刻将细线烧断,弹簧将两物块弹开,两物块与弹簧分离时,物块P还未滑上弧形槽,物块Q还未滑到b点,此后立即拿走弹簧,物块P冲上弧形槽,已知x bc=1 m,重力加速度g=10 m/s2,两物块均可看成质点,忽略物块P冲上弧形槽瞬间的能量损失.(1)通过计算分析物块P能否从滑块左侧冲出,若能,求出物块P上升的最大高度,若不能,求出物块P和滑块的最终速度大小.(2)要使物块Q能冲上半圆轨道且不脱离半圆轨道,则物块Q与水平面间的动摩擦因数μ应满足什么条件?跟进训练3.如图所示,在竖直平面(纸面)内固定一内径很小、内壁光滑的圆管轨道ABC,它由两个半径均为R的四分之一圆管顺接而成,A、C两端切线水平.在足够长的光滑水平台面上静置一个光滑圆弧轨道DE,圆弧轨道D端上缘恰好与圆管轨道的C端内径下缘水平对接.一质量为m的小球(可视为质点)以某一水平速度从A点射入圆管轨道,通过C点后进入圆弧轨道运动,过C点时轨道对小球的压力为2mg,小球始终没有离开圆弧轨道.已知圆弧轨道DE的质量为2m.重力加速度为g.求:(1)小球从A点进入圆管轨道时的速度大小;(2)小球沿圆弧轨道上升的最大高度.专题五 动力学、动量和能量观点的综合应用关键能力·分层突破例1 解析:由题意可知,当b的速度最小时,弹簧恰好恢复原长,设此时a的速度最大为v,由动量守恒定律和机械能守恒定律得:m b v0=mb v1+m a v,12m b v2=12m b v12+12m a v2,代入数据解得:m a=0.5 kg,v=4 m/s,故A错误,B正确;两物块的速度相等时,弹簧弹性势能最大,由动量守恒定律和机械能守恒定律得:m b v0=(m a+m b)v2,E p=12mbv−212(ma+m b)v22,代入数据解得:Ep=1.5 J,故C正确;在a离开挡板前,a、b及弹簧组成的系统受到挡板向右的力,所以系统机械能守恒、动量不守恒,故D错误.答案:BC例2 解析:(1)P1、P2碰撞瞬间,P的速度不受影响,根据动量守恒mv0=2mv1,解得v1=v 0 2最终三个物体具有共同速度,根据动量守恒:3mv0=4mv2,解得v2=3 4 v0(2)根据能量守恒,系统动能减少量等于因摩擦产生的内能:1 2×2mv+¿1212×2mv−212×4m v22¿=2mgμ(L+x)×2解得x=v0232μg-L在从第一次共速到第二次共速过程中,弹簧弹性势能等于因摩擦产生的内能,即:E p=2mgμ(L+x)解得E p=116mv2答案:(1)v0234v0 (2)v0232μg-L 116mv2例3 解析:子弹射入小车的过程中,由动量守恒定律得:m1v0=(m1+m2)v1,解得v1=3 m/s;小物体在小车上滑行过程中,由动量守恒定律得(m1+m2)v1=(m1+m2+m3)v2,解得v2=1.5 m/s,选项B错误;以小物体为研究对象,由动量定理得I=μm3gt=m3v2,解得t=13s,选项A正确;小车对小物体的摩擦力的冲量为I=0.45 N·s,选项D正确;当系统相对静止时,小物体在小车上滑行的距离为l,由能量守恒定律得μm3gl=1 2(m1+m2)v−1212(m1+m2+m3)v22,解得l=0.5 m,所以小车的最小长度为0.5 m,选项C错误.答案:AD1.解析:由动量定理I=Δp可知,由于I1=I2,则两次锤子敲击完成瞬间有p1=p2,故A正确;由于两次锤子敲击完成瞬间两球具有动量大小相等,由E k=p22m可知,A球获得的初动能更大,由动能定理可知W1>W2,故B错误;由动量守恒定律可得m1v0=(m1+m2)v,得v=m1v0m1+m2,由能量守恒有12m1v2=12(m1+m2)v2+E p,得E p=m1m2 2(m1+m2)v2,由于p1=p2,则质量越大的,初速度越小,即A球获得的初速度较大,则敲击A球后弹簧的最大弹性势能较大,即L1<L2,故C正确;由动量守恒定律可得m1v0=(m1+m2)v=p,得v=m1v0m1+m2=pm1+m2,则两次共速的速度大小相等,即v1=v2,故D错误.答案:AC2.解析:(1)由v-t图象可知:A、B的加速度大小为a A=2 m/s2,a B=2 m/s2由牛顿第二定律可知,f A=2 N,f B=2 N所以平板小车在1.0 s内所受合力为零,故小车不动,即位移为零.(2)由图象可知0~1.0 s内A、B的位移分别为:x A=12(2+4)×1 m=3 m,x B=12×2×1 m=1 m1.0 s后,系统的动量守恒,三者的共同速度为v,则mv A=(M+2m)v,代入数据得:v=0.4 m/s1.0 s后A减速,小车和B一起加速且a车=23+1m/s2=0.5 m/s2x′A=v2−v A2-2a A=0.96 mx车=v22a车=0.16 m车的长度至少为l=x A+x B+x′A-x车=4.8 m.答案:(1)0 (2)4.8 m例4 解析:(1)弹簧将两物块弹开的过程中弹簧与两物块组成的系统动量守恒、机械能守恒,设弹簧恢复原长后P、Q两物块的速度大小分别为v1、v2,则有0=m1v1-m2v2,E p=12m1v+¿1212m2v22¿解得v1=2 m/s,v2=4 m/s物块P以速度v1冲上滑块,P与滑块相互作用的过程中水平方向动量守恒,系统的机械能守恒,假设P不能从滑块的左侧冲出,且P在滑块上运动到最高点时的速度为v,距水平面的高度为h,则有m1v1=(m1+M)v,12m1v12=12(m1+M)v2+m1gh解得h=0.1 m由于h=R(1-cos 60°),所以物块P恰好不能从滑块左侧冲出,假设成立,之后物块P沿弧形槽从滑块上滑下,设物块P返回到水平面时的速度为v3、滑块的速度为v4,由动量守恒定律和机械能守恒定律得m1v1=m1v3+Mv4,12m1v12=12m1v+¿3212M v42¿解得v3=0,v4=2 m/s.(2)若Q恰能经过d点,则Q在d点的速度v d满足m2g=m2v d2 rQ从b点运动到半圆轨道最高点d的过程,由动能定理有-μm2gx bc-2m2gr=12m2v−d212m2v22解得Q恰能经过半圆轨道最高点时μ=0.3若Q恰好能运动到与半圆轨道圆心等高点,则由动能定理得-μm2gx bc-m2gr=0−12m2v22解得Q恰能运动到与半圆轨道圆心等高点时μ=0.6若Q恰能到达c点,则由动能定理得-μm2gx bc=0−12m2v22解得Q恰能运动到c点时μ=0.8分析可知,要使Q能冲上半圆轨道且不脱离半圆轨道,应使0<μ≤0.3或0.6≤μ<0.8.答案:(1)见解析 (2)0<μ≤0.3或0.6≤μ<0.83.解析:(1)小球过C点时,有2mg+mg=m v C2R,解得v C=√3gR.小球从A到C,由机械能守恒定律得12m v2=12m vC2+mg·2R,联立解得v0=√7gR(2)小球冲上圆弧轨道后的运动过程,在水平方向上,由动量守恒定律得mv C=(m+2m)v共.由机械能守恒定律得12m vC2=12(m+2m)v共2+mgh,联立解得h=R.答案:(1)√7gR (2)R。
六动量和动量守恒定律一、基本概念和规律1.物理量的比较(1)动量定理的表达式Ft=Δp是矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F是物体或系统所受的合外力。
(2)动量定理不仅适用于恒定的力,也适用于随时间变化的力。
在这种情况下,动量定理中的力F应理解为变力在作用时间内的平均值。
(3)应用动量定理解释两类物理现象①当物体的动量变化量一定时,力的作用时间t越短,力F就越大;力的作用时间t越长,力F就越小。
如玻璃杯掉在水泥地上易碎,而掉在沙地上不易碎。
②当作用力F一定时,力的作用时间t越长,动量变化量Δp越大;力的作用时间t越短,动量变化量Δp越小。
3.动量守恒条件的判断(1)绝对条件:系统所受外力的矢量和为零或不受外力。
这一条件告诉我们,系统动量是否守恒与系统内物体间的作用力的多少、大小以及性质无关,系统内力不会改变系统的总动量,但可以改变系统内各物体的动量,使某些物体的动量增加,另外一些物体的动量减小,而总动量保持不变。
(2)近似条件:系统所受合外力虽然不为零,但系统的内力远大于外力,如碰撞、爆炸等现象中,系统的动量可近似看成守恒。
(3)某一方向上的动量守恒条件:如果系统所受的外力矢量和不为零,但外力在某一方向上的矢量和为零,则系统在该方向上动量守恒。
值得注意的是,系统的总动量并不守恒。
(4)表达式①p=p′即系统相互作用前的总动量p和相互作用后的总动量p′大小相等,方向相同。
系统总动量的求法遵循矢量运算法则。
②Δp=p′-p=0即系统总动量的变化量为零。
③Δp1=-Δp2即对由两部分组成的系统,在相互作用前后两部分的动量变化等值反向。
4.关于碰撞问题(1)弹性碰撞:碰撞结束后,形变全部消失,动能没有损失,不仅动量守恒,而且初、末动能相等。
m1v1+m2v2=m1v1′+m2v2′12m1v 21+12m2v22=12m1v1′2+12m2v2′2v1′=(m1-m2)v1+2m2v2m1+m2v2′=(m2-m1)v2+2m1v1m1+m2若v2=0,即为“一动一静”的弹性碰撞,碰后二者速度分别为v1′=m1-m2 m1+m2v1v2′=2m1m1+m2v1如果m1=m2,则v1′=0,v2′=v1,二者速度互换;如果m1<m2,则v1′<0,m1被反弹;如果m1≫m2,则v1′≈v1,速度几乎不变,v2′≈2v1。
选修3-5第六章碰撞与动量守恒第1讲动量动量定理【课程标准】通过实验和理论推导,理解动量定理,能用其解释生活中的有关现象。
【素养目标】物理观念:知道动量、冲量的概念。
科学思维:理解动量定理和动量守恒定律,能用其解释生产生活中的有关现象。
知道动量守恒定律的普适性。
科学探究:通过实验,了解弹性碰撞和非弹性碰撞的特点。
定量分析一维碰撞问题并能解释生产生活中的弹性碰撞和非弹性碰撞现象。
一、动量、动量变化、冲量1.动量:(1)定义:运动物体的质量和速度的乘积叫作物体的动量,通常用p来表示。
(2)表达式:p=mv。
(3)标矢性:动量是矢量,其方向和速度方向相同。
针对某一时刻而言,具有瞬时性。
2.动量的变化:(1)因为动量是矢量,动量的变化量Δp也是矢量,其方向与速度的改变量Δv的方向相同。
(2)动量的变化量Δp的大小,一般用末动量p′减去初动量p进行计算。
即Δp=p′-p。
3.冲量:(1)定义:力与力的作用时间的乘积叫作力的冲量,公式:I=FΔt。
(2)单位:冲量的单位是牛·秒,符号是N·s。
(3)标矢性:冲量是矢量,恒力冲量的方向与力的方向相同。
反映了力的作用对时间的积累效应。
命题·实验情境一个质量是0.1 kg的钢球,以6 m/s的速度水平向右运动,碰到一个坚硬物后被弹回,沿着同一直线以6 m/s的速度水平向左运动(如图),(1)碰撞前钢球的动量是多少?(2)碰撞后钢球的动量是多少?(3)碰撞前后钢球的动量变化了多少?提示:取水平向右为正方向。
(1)p=mv=0.1×6 kg·m/s=0.6 kg·m/s(2)p′=mv′=-0.1×6 kg·m/s=-0.6 kg·m/s(3)Δp=p′-p=-1.2 kg·m/s负号表示Δp方向与正方向相反,方向水平向左。
二、动量定理1.内容:物体在一个过程中所受力的冲量等于它在这个过程始末的动量变化量。
第2讲动量守恒定律及应用目标要求 1.理解系统动量守恒的条件.2.会应用动量守恒定律解决基本问题.3.会用动量守恒观点分析爆炸、反冲运动和人船模型.4.理解碰撞的种类及其遵循的规律.考点一动量守恒定律的理解和基本应用1.内容如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变.2.表达式(1)p=p′或m1v1+m2v2=m1v1′+m2v2′.系统相互作用前的总动量等于相互作用后的总动量.(2)Δp1=-Δp2,相互作用的两个物体动量的变化量等大反向.1.只要系统所受合外力做功为0,系统动量就守恒.(×)2.系统的动量不变是指系统的动量大小和方向都不变.(√)3.若物体相互作用时动量守恒,则机械能一定守恒.(×)4.动量守恒定律的表达式m1v1+m2v2=m1v1′+m2v2′,一定是矢量式,应用时要规定正方向,且其中的速度必须相对同一个参考系.(√)1.适用条件(1)理想守恒:不受外力或所受外力的合力为零.(2)近似守恒:系统内各物体间相互作用的内力远大于它所受到的外力.(3)某一方向守恒:如果系统在某一方向上所受外力的合力为零,则系统在这一方向上动量守恒.2.动量守恒定律的五个特性矢量性动量守恒定律的表达式为矢量方程,解题应选取统一的正方向相对性各物体的速度必须是相对同一参考系的速度(一般是相对于地面)同时性动量是一个瞬时量,表达式中的p1、p2、…应是系统中各物体在相互作用前同一时刻的动量,p1′、p2′、…应是系统中各物体在相互作用后同一时刻的动量系统性研究的对象是相互作用的两个或多个物体组成的系统普适性动量守恒定律不仅适用于低速宏观物体组成的系统,还适用于接近光速运动的微观粒子组成的系统考向1系统动量守恒的判断例1(2021·全国乙卷·14)如图,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端与滑块相连,滑块与车厢的水平底板间有摩擦.用力向右推动车厢使弹簧压缩,撤去推力时滑块在车厢底板上有相对滑动.在地面参考系(可视为惯性系)中,从撤去推力开始,小车、弹簧和滑块组成的系统()A.动量守恒,机械能守恒B.动量守恒,机械能不守恒C.动量不守恒,机械能守恒D.动量不守恒,机械能不守恒答案 B解析因为滑块与车厢水平底板间有摩擦,且撤去推力后滑块在车厢底板上有相对滑动,即摩擦力做功,而水平地面是光滑的;对小车、弹簧和滑块组成的系统,根据动量守恒和机械能守恒的条件可知撤去推力后该系统动量守恒,机械能不守恒,故选B.考向2动量守恒定律的基本应用例2(2023·浙江温州市模拟)如图所示,光滑平面上有一辆质量为2m的小车,车上左右两端分别站着甲、乙两人,他们的质量都是m,开始两个人和车一起以速度v0向右匀速运动.某一时刻,站在车右端的乙先以相对地面向右的速度v跳离小车,然后站在车左端的甲以相对于地面向左的速度v跳离小车.两人都离开小车后,小车的速度将是()A.v0B.2v0C.大于v0,小于2v0D.大于2v0答案 B解析两人和车所组成的系统动量守恒,初动量为4m v0,方向向右.当甲、乙两人先后以相对地面相等的速度向两个方向跳离时,甲、乙两人的动量和为零,则有4m v0=2m v车,可得v车=2v0,选项B正确.应用动量守恒定律解题的步骤考向3动量守恒定律的临界问题例3甲、乙两小孩各乘一辆小车在光滑的水平冰面上匀速相向行驶,速度大小均为v0=6 m/s,甲车上有质量为m=1 kg的小球若干个,甲和他的小车及小车上小球的总质量为M1=50 kg,乙和他的小车的总质量为M2=30 kg.为避免相撞,甲不断地将小球以相对地面为v′=16.5 m/s的水平速度抛向乙,且被乙接住,假如某一次甲将小球抛出且被乙接住后,刚好可保证两车不相撞.则甲总共抛出的小球个数是()A.12 B.13 C.14 D.15答案 D解析规定甲的速度方向为正方向,两车刚好不相撞,则两车速度相等,由动量守恒定律得M1v0-M2v0=(M1+M2)v,解得v=1.5 m/s,对甲、小车及从甲车上抛出的小球,由动量守恒定律得M1v0=(M1-n·m)v+n·m v′,解得n=15,D正确.考点二爆炸、反冲运动和人船模型1.爆炸现象的三个规律动量守恒爆炸物体间的相互作用力远远大于受到的外力,所以在爆炸过程中,系统的总动量守恒动能增加在爆炸过程中,有其他形式的能量(如化学能)转化为机械能,所以系统的机械能增加位置不变爆炸的时间极短,因而作用过程中物体产生的位移很小,可以认为爆炸后各部分仍然从爆炸前的位置以新的动量开始运动2.反冲运动的三点说明作用原理反冲运动是系统内两物体之间的作用力和反作用力产生的效果动量守恒反冲运动中系统不受外力或内力远大于外力,所以反冲运动遵循动量守恒定律机械能增加反冲运动中,由于有其他形式的能转化为机械能,所以系统的总机械能增加1.发射炮弹,炮身后退;园林喷灌装置一边喷水一边旋转均属于反冲现象.(√)2.爆炸过程中机械能增加,反冲过程中机械能减少.(×)考向1爆炸问题例4(2021·浙江1月选考·12)在爆炸实验基地有一发射塔,发射塔正下方的水平地面上安装有声音记录仪.爆炸物自发射塔竖直向上发射,上升到空中最高点时炸裂成质量之比为2∶1、初速度均沿水平方向的两个碎块.遥控器引爆瞬间开始计时,在5 s末和6 s末先后记录到从空气中传来的碎块撞击地面的响声.已知声音在空气中的传播速度为340 m/s,忽略空气阻力.下列说法正确的是()A.两碎块的位移大小之比为1∶2B.爆炸物的爆炸点离地面高度为80 mC.爆炸后的质量大的碎块的初速度为68 m/sD.爆炸后两碎块落地点之间的水平距离为340 m答案 B解析设碎块落地的时间为t,质量大的碎块水平初速度为v,则由动量守恒定律知质量小的碎块水平初速度为2v,爆炸后的碎块做平抛运动,下落的高度相同,则在空中运动的时间相同,由水平方向x=v0t知落地水平位移之比为1∶2,碎块位移s=x2+y2,可见两碎块的位移大小之比不是1∶2,故A项错误;据题意知,v t=(5-t)×340 (m/s),又2v t=(6-t)×340 (m/s),联立解得t =4 s ,v =85 m/s ,故爆炸点离地面高度为h =12gt 2=80 m ,故B 项正确,C 项错误;两碎块落地点的水平距离为Δx =3v t =1 020 m ,故D 项错误.考向2 反冲运动例5 (2023·河南省模拟)发射导弹过程可以简化为:将静止的质量为M (含燃料)的导弹点火升空,在极短时间内以相对地面的速度v 0竖直向下喷出质量为m 的炽热气体,忽略喷气过程中重力和空气阻力的影响,则喷气结束时导弹获得的速度大小是( ) A.mMv 0 B.M m v 0 C.M M -m v 0 D.m M -m v 0答案 D解析 由动量守恒定律得m v 0=(M -m )v ,导弹获得的速度v =mM -m v 0,故选D.考向3 人船模型1.模型图示2.模型特点(1)两物体满足动量守恒定律:m v 人-M v 船=0 (2)两物体的位移大小满足:m x 人t -M x 船t =0,x 人+x 船=L ,得x 人=M M +m L ,x 船=mM +m L3.运动特点(1)人动则船动,人静则船静,人快船快,人慢船慢,人左船右;(2)人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即x 人x 船=v 人v 船=M m. 例6 (多选)如图所示,绳长为l ,小球质量为m ,小车质量为M ,将小球向右拉至水平后放手,则(水平面光滑)( )A .系统的总动量守恒B .水平方向任意时刻小球与小车的动量等大反向或都为零C .小球不能向左摆到原高度D .小车向右移动的最大距离为2mlM +m答案 BD解析 系统只是在水平方向所受的合力为零,竖直方向的合力不为零,故水平方向的动量守恒,而总动量不守恒,A 错误,B 正确;根据水平方向的动量守恒及机械能守恒得,小球仍能向左摆到原高度,C 错误;小球相对于小车的最大位移为2l ,根据“人船模型”,系统水平方向动量守恒,设小球水平方向的平均速度为v m ,小车水平方向的平均速度为v M ,m v m -M v M =0,两边同时乘以运动时间t ,m v m t -M v M t =0,即mx m =Mx M ,又x m +x M =2l ,解得小车向右移动的最大距离为2mlM +m,D 正确.考点三 碰撞问题1.碰撞碰撞是指物体间的相互作用持续时间很短,而物体间相互作用力很大的现象. 2.特点在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的系统动量守恒. 3.分类动量是否守恒机械能是否守恒弹性碰撞 守恒 守恒 非弹性碰撞守恒有损失完全非弹性碰撞守恒 损失最大1.碰撞前后系统的动量和机械能均守恒.( × )2.在光滑水平面上的两球相向运动,碰撞后均变为静止,则两球碰撞前的动量大小一定相同.( √ )3.两球发生非弹性碰撞时,既不满足动量守恒定律,也不满足机械能守恒定律.( × )1.弹性碰撞的重要结论以质量为m 1、速度为v 1的小球与质量为m 2的静止小球发生弹性碰撞为例,则有 m 1v 1=m 1v 1′+m 2v 2′ 12m 1v 12=12m 1v 1′2+12m 2v 2′2 联立解得:v 1′=m 1-m 2m 1+m 2v 1,v 2′=2m 1m 1+m 2v 1讨论:①若m 1=m 2,则v 1′=0,v 2′=v 1(速度交换);②若m 1>m 2,则v 1′>0,v 2′>0(碰后两小球沿同一方向运动);当m 1≫m 2时,v 1′≈v 1,v 2′≈2v 1;③若m 1<m 2,则v 1′<0,v 2′>0(碰后两小球沿相反方向运动);当m 1≪m 2时,v 1′≈-v 1,v 2′≈0.2.静止物体被撞后的速度范围物体A 与静止的物体B 发生碰撞,当发生完全非弹性碰撞时损失的机械能最多,物体B 的速度最小,v B =m A m A +m B v 0,当发生弹性碰撞时,物体B 速度最大,v B =2m Am A +m B v 0.则碰后物体B的速度范围为:m A m A +m B v 0≤v B ≤2m Am A +m B v 0.考向1 碰撞的可能性例7 A 、B 两球在光滑水平面上沿同一直线、同一方向运动,m A =1 kg ,m B =2 kg ,v A =6 m/s ,v B =2 m/s ,当A 追上B 并发生碰撞后,A 、B 两球速度的可能值是( ) A .v A ′=5 m/s ,v B ′=2.5 m/s B .v A ′=2 m/s ,v B ′=4 m/sC.v A′=-4 m/s,v B′=7 m/sD.v A′=7 m/s,v B′=1.5 m/s答案 B解析虽然题给四个选项均满足动量守恒定律,但A、D两项中,碰后A的速度v A′大于B 的速度v B′,不符合实际,即A、D项错误;C项中,两球碰后的总动能E k后=122m A v A′+12=57 J,大于碰前的总动能E k前=12m A v A2+12m B v B2=22 J,违背了能量守恒定律,2m B v B′所以C项错误;而B项既符合实际情况,也不违背能量守恒定律,所以B项正确.碰撞问题遵守的三条原则(1)动量守恒:p1+p2=p1′+p2′.(2)动能不增加:E k1+E k2≥E k1′+E k2′.(3)速度要符合实际情况①碰前两物体同向运动,若要发生碰撞,则应有v后>v前,碰后原来在前的物体速度一定增大,若碰后两物体同向运动,则应有v前′≥v后′.②碰前两物体相向运动,碰后两物体的运动方向至少有一个改变.考向2弹性碰撞例8(2023·浙江省杭州二中月考)如图所示,B、C、D、E、F五个小球并排放置在光滑的水平面上,B、C、D、E四个球质量相等,而F球质量小于B球质量,A球质量等于F球质量.A球以速度v0向B球运动,所发生的碰撞均为弹性碰撞,则碰撞之后()A.3个小球静止,3个小球运动B.4个小球静止,2个小球运动C.5个小球静止,1个小球运动D.6个小球都运动答案 A解析A、B质量不等,m A<m B,A、B相碰后,A向左运动,B向右运动;B、C、D、E质量相等,弹性碰撞后,不断交换速度,最终E有向右的速度,B、C、D静止;E、F质量不等,m E >m F ,则碰后E 、F 都向右运动,所以B 、C 、D 静止,A 向左运动,E 、F 向右运动,故A 正确.考向3 非弹性碰撞例9 (2023·浙江嘉兴市模拟)如图所示,小球A 和小球B 质量相同,小球B 置于光滑水平面上,小球A 从高为h 处由静止摆下,到达最低点恰好与B 相撞,并粘合在一起继续摆动,若不计空气阻力,两球均可视为质点,则它们能上升的最大高度是( )A .h B.12h C.14h D.18h答案 C解析 小球A 由释放到摆到最低点的过程,由机械能守恒定律得m A gh =12m A v 12,则v 1=2gh .A 、B 的碰撞过程满足动量守恒定律,则m A v 1=(m A +m B )v 2,又m A =m B ,得v 2=2gh 2,对A 、B 粘在一起共同上摆的过程应用机械能守恒定律得12(m A +m B )v 22=(m A +m B )gh ′,则h ′=h4,故C 正确. 课时精练1.北京冬奥会2 000米短道速滑接力赛上,“接棒”的运动员甲提前站在“交棒”的运动员乙前面,并且开始向前滑行,待乙追上甲时,乙猛推甲一把,使甲获得更大的速度向前冲出,完成“交接棒”.忽略地面的摩擦力,在这个过程中( )A .两运动员的总动量守恒B.甲、乙运动员的动量变化量相同C.两运动员的总机械能守恒D.甲的动能增加量一定等于乙的动能减少量答案 A解析两运动员组成的系统所受合外力矢量和为0,系统动量守恒,A正确;系统动量守恒,两运动员的动量变化量等大反向,变化量不相同,B错误;在光滑冰面上“交接棒”时,后方运动员用力推前方运动员,导致机械能增加,C错误;在乙推甲的过程中,消耗体内的化学能转化为系统的动能,根据能量守恒定律可知,甲的动能增加量不等于乙的动能减小量,D错误.2.如图所示,小木块m与长木板M之间光滑,M置于光滑水平面上,一轻质弹簧左端固定在M的左端,右端与m连接,开始时m和M都静止,弹簧处于自然状态.现同时对m、M施加等大反向的水平恒力F1、F2,两物体开始运动后,对m、M、弹簧组成的系统,下列说法正确的是(整个过程中弹簧不超过其弹性限度)()A.整个运动过程中,系统机械能守恒,动量守恒B.整个运动过程中,当木块速度为零时,系统机械能一定最大C.M、m分别向左、右运行过程中,均一直做加速度逐渐增大的加速直线运动D.M、m分别向左、右运行过程中,当弹簧弹力与F1、F2的大小相等时,系统动能最大答案 D解析由于F1与F2等大反向,系统所受的合外力为零,则系统的动量守恒.由于水平恒力F1、F2对系统做功代数和不为零,则系统的机械能不守恒,故A错误;从开始到弹簧伸长到最长的过程,F1与F2分别对m、M做正功,弹簧伸长最长时,m、M的速度为零,之后弹簧收缩,F1与F2分别对m、M做负功,系统的机械能减小,因此,当弹簧有最大伸长量时,m、M的速度为零,系统机械能最大;当弹簧收缩到最短时,m、M的速度为零,系统机械能最小,故B错误;在水平方向上,M、m受到水平恒力和弹簧的弹力作用,水平恒力先大于弹力,后小于弹力,随着弹力增大,两个物体的合力先逐渐减小,后反向增大,则加速度先减小后反向增大,则M、m先做加速度逐渐减小的加速运动,后做加速度逐渐增大的减速运动,当弹簧弹力的大小与拉力F1、F2的大小相等时,m、M的速度最大,系统动能最大,故C错误,D正确.3.如图所示,气球下面有一根长绳,一个质量为m 1=50 kg 的人抓在气球下方,气球和长绳的总质量为m 2=20 kg ,长绳的下端刚好和水平面接触,当静止时人离地面的高度为h =5 m .如果这个人开始沿绳向下滑,当滑到绳下端时,他离地面的高度约为(可以把人看成质点)( )A .5 mB .3.6 mC .2.6 mD .8 m答案 B解析 当人滑到下端时,设人相对地面下滑的位移大小为h 1,气球相对地面上升的位移大小为h 2,由动量守恒定律,得m 1h 1t =m 2h 2t,且h 1+h 2=h ,解得h 2≈3.6 m ,所以他离地面的高度约为3.6 m ,故选项B 正确.4.(多选)(2023·浙江丽水市模拟)质量为M 的物块以速度v 运动,与质量为m 的静止物块发生正碰,碰撞后两者的动量正好相等,两者质量之比M m可能为( ) A .2 B .3 C .4 D .5答案 AB解析 根据动量守恒定律和能量守恒定律,设碰撞后两者的动量都为p ,则总动量为2p ,根据动量和动能的关系有:p 2=2mE k ,根据能量的关系,由于动能不增加,则有:4p 22M ≥p 22m +p 22M ,解得M m≤3,故A 、B 正确,C 、D 错误. 5.冰壶运动深受观众喜爱,在某次投掷中,冰壶甲运动一段时间后与静止的冰壶乙发生正碰,如图所示.若两冰壶质量相等,则碰后两冰壶最终停止的位置,可能是选项图中的哪幅图( )答案 B解析 两冰壶碰撞过程中动量守恒,两冰壶发生正碰,由动量守恒定律可知,碰撞前后系统动量不变,两冰壶的动量方向即速度方向,不会偏离甲原来的方向,可知,A 图情况是不可能的,故A 错误;如果两冰壶发生弹性碰撞,碰撞过程动量守恒、机械能守恒,两冰壶质量相等,碰撞后两冰壶交换速度,甲静止,乙的速度等于甲的速度,碰后乙做减速运动,最后停止,最终两冰壶的位置可能如选项B 所示,故B 正确;两冰壶碰撞后,乙在前,甲在后,选项C 所示是不可能的,故C 错误;碰撞过程机械能不可能增大,两冰壶质量相等,碰撞后甲的速度不可能大于乙的速度,碰撞后甲的位移不可能大于乙的位移,故D 错误.6.如图所示,在光滑的水平面上有三个完全相同的小球,它们排成一条直线,小球2、3静止,并靠在一起,球1以速度v 0撞向它们,设碰撞过程中不损失机械能,则碰后三个小球的速度分别为( )A .v 1=v 2=v 3=33v 0B .v 1=0,v 2=v 3=22v 0 C .v 1=0,v 2=v 3=12v 0 D .v 1=v 2=0,v 3=v 0答案 D解析 由题设条件,三球在碰撞过程中总动量和总动能守恒.设三球质量均为m ,则碰撞前系统总动量为m v 0,总动能为12m v 02.选项A 、B 中的数据都违反了动量守恒定律,故不可能.对选项C ,碰后总动量为m v 0,但总动能为14m v 02,这显然违反了机械能守恒定律,故不可能.对选项D ,既满足动量守恒定律,也满足机械能守恒定律,故选D.7.(2023·北京市第五中学检测)A 、B 物块沿光滑水平面在同一直线上运动并发生正碰,如图为两物块碰撞前后的位移-时间图像,其中a 、b 分别为A 、B 两物块碰前的位移-时间图像,c 为碰撞后两物块共同运动的位移-时间图像,若A 物块质量m =2 kg ,则由图判断,下列结论错误的是( )A .碰撞前后A 的动量变化量的大小为4 kg·m/sB .B 物块的质量为0.75 kgC .碰撞过程A 对B 所施冲量大小为4 N·sD .碰撞过程A 、B 两物块组成的系统损失的动能为10 J答案 B解析 以A 的初速度方向为正方向,由图像可知碰撞前A 的速度为v A =10-42m/s =3 m/s ,碰撞后A 、B 的共同速度为v AB =4-22m/s =1 m/s ,则碰撞前A 的动量为m v A =2×3 kg·m/s =6 kg·m/s ,碰撞后A 的动量为m v AB =2 kg·m/s ,碰撞前后A 的动量变化量的大小为4 kg·m/s ,A 正确,不符合题意;碰撞前B 的速度为v B =-42m/s =-2 m/s ,由动量守恒定律得m v A +m B v B =(m +m B )v AB ,解得m B =43 kg ,B 错误,符合题意;由动量定理得I =m B v AB -m B v B =43×1 kg·m/s -43×(-2) kg·m/s =4 N·s ,即碰撞过程A 对B 所施冲量大小为4 N·s ,C 正确,不符合题意;碰撞过程A 、B 两物块组成的系统损失的动能为ΔE k =12m v A 2+12m B v B 2-12(m +m B )v AB 2=12×2×32 J +12×43×(-2)2 J -12×(2+43)×12 J =10 J ,D 正确,不符合题意. 8.(2023·浙江宁波市月考)“爆竹声中一岁除,春风送暖入屠苏”,爆竹声响是辞旧迎新的标志,是喜庆心情的流露.有一个质量为3m 的爆竹从地面斜向上抛出,上升h 后到达最高点,此时速度大小为v 0、方向水平向东,在最高点爆炸成质量不等的两块,其中一块质量为2m ,速度大小为v ,方向水平向东;重力加速度为g .则( )A .爆竹在最高点爆炸过程中,整体的动量守恒B .质量为m 的一块,其速度为3v 0-2vC .质量为m 的一块,其速度为2v -3v 0D.质量为m的一块,在落地过程中重力冲量的大小为mg 2hg,方向水平向西答案 B解析爆竹在最高点爆炸过程中,整体水平方向上不受外力,水平方向上动量守恒,故A错误;规定向东为正方向,根据动量守恒得3m v0=2m v+m v′,解得质量为m的一块的速度v′=3v0-2v,故B正确,C错误;质量为m的一块爆炸后,做平抛运动,由h=12gt2,得运动的时间t=2hg ,则在落地过程中重力冲量的大小为mg2hg,方向竖直向下,故D错误.9.在发射地球卫星时需要运载火箭多次点火,以提高最终的发射速度.某次地球近地卫星发射的过程中,火箭喷气发动机每次喷出质量为m=800 g的气体,气体离开发动机时的对地速度v=1 000 m/s,假设火箭(含燃料在内)的总质量为M=600 kg,发动机每秒喷气20次,忽略地球引力的影响,则()A.第三次气体喷出后火箭的速度大小约为4 m/sB.地球卫星要能成功发射,速度大小至少达到11.2 km/sC.要使火箭能成功发射至少要喷气500次D.要使火箭能成功发射至少要持续喷气17 s答案 A解析设喷出三次气体后火箭的速度为v3,以火箭和喷出的三次气体为研究对象,以竖直向上为正方向,由动量守恒定律得:(M-3m)v3-3m v=0,解得:v3≈4 m/s,故A正确;地球卫星要能成功发射,喷气n次后至少要达到第一宇宙速度,即:v n=7.9 km/s,故B错误;以火箭和喷出的n次气体为研究对象,以竖直向上为正方向,由动量守恒定律得:(M-nm)v n -nm v=0,代入数据解得:n≈666,故C错误;至少持续喷气时间为:t=n20=33.3 s,故D 错误.10.(2023·浙江绍兴市调研)如图为“子母球”表演的示意图,弹性小球A和B叠放在一起,从距地面高度为h处自由落下,h远大于两小球直径,小球B的质量是A质量的3倍,假设所有的碰撞都是弹性碰撞,且都发生在下落的竖直方向上,不考虑空气阻力.则()A.下落过程中两个小球之间有相互挤压B.A与B第一次碰后小球B的速度不为零C.A与B第一次碰后小球A弹起的最大高度是2hD.A与B第一次碰后小球A弹起的最大高度是4h答案 D解析不考虑空气阻力,下落过程是自由落体运动,处于完全失重状态,则两个小球之间没有力的作用,A错误;下降过程为自由落体运动,由匀变速直线运动的速度位移公式得v2=2gh,解得小球B触地时两球速度相同,为v=2gh,小球B碰撞地之后,速度瞬间反向,大小相等,选小球A与小球B碰撞过程为研究过程,碰撞前后动量守恒,设碰后小球A、小球B速度大小分别为v1、v2,选向上为正方向,由动量守恒定律得m B v-m A v=m A v1+m B v2,由能量守恒定律得12=12m A v12+12m B v22,解得v2=0,v1=2v,B错误;碰后小球A 2(m A+m B)v弹起的最大高度H=(2v)2=4h,C错误,D正确.2g11.(多选)(2023·浙江宁波市高三检测)如图所示,某超市两辆相同的购物车质量均为m,相距L沿直线排列,静置于水平地面上.为节省收纳空间,工人猛推一下第一辆车并立即松手,第一辆车运动距离L后与第二辆车相碰并相互嵌套结为一体,两辆车一起运动了L距离后恰好停靠在墙边.若购物车运动时受到的摩擦力恒为车重力的k倍,重力加速度为g,则()A.两购物车在整个过程中克服摩擦力做功之和为2kmgLB.两购物车碰撞后瞬间的速度大小为gLC.两购物车碰撞时的能量损失为2kmgLD.工人给第一辆购物车的水平冲量大小为m10kgL答案CD解析由题意可知,两购物车在整个过程中克服摩擦力做功之和为W克f=kmgL+2kmgL=3kmgL ,A 错误;工人猛推一下第一辆车并立即松手,设此时第一辆车的速度为v 0,运动L距离后速度为v 1,由动能定理可得-kmgL =12m v 12-12m v 02,得v 1=v 02-2kgL ,设与第二辆车碰后瞬间的共同速度为v ,取第一辆车的初速度为正方向,由动量守恒定律可得m v 1=2m v ,得v =12v 1,由能量守恒定律可得3kmgL +ΔE =12m v 02,两购物车在碰撞中系统减少的能量ΔE =12m v 12-12×2m v 2=12m v 12-12×2m (12v 1)2=14m v 12=14m (v 02-2kgL ),联立解得v 0=10kgL ,ΔE =2kmgL ,v =12v 1=12v 02-2kgL =2kgL ,B 错误,C 正确;由动量定理可知,工人给第一辆购物车的水平冲量大小为I =m v 0-0=m 10kgL ,D 正确.12.(2023·浙江台州市模拟)如图所示,光滑导轨的末端放有一个质量为m 1=1 kg 的小球A ,导轨的末端与竖直墙上的O 点等高,导轨末端到竖直墙壁的水平距离为d =0.3 m .一个质量为m 2的小球B 沿导轨从距导轨末端高h =0.2 m 处由静止释放,在末端与小球A 碰撞后,两球直接从轨道末端飞出,A 、B 两球分别击中竖直墙壁上的P 、Q 两点.已知P 到O 的距离h 1=0.05 m ,Q 到O 的距离h 2=0.45 m ,小球可视为质点,重力加速度g =10 m/s 2,不计空气阻力.(1)求A 、B 两球从轨道末端飞出时的速度大小v 1、v 2;(2)求小球B 的质量m 2,并通过计算分析碰撞是否为弹性碰撞;(3)在A 、B 发生弹性碰撞的条件下,能否选择一个合适的小球B ,质量为m 2,使得两球碰后即以共同速度做抛体运动?如果能,求出m 2;若不能,请说明理由.答案 见解析解析 (1)小球在空中做平抛运动,有d =v 1t 1,h 1=12gt 12,d =v 2t 2,h 2=12gt 22, 解得v 1=3 m/s ,v 2=1 m/s(2)设B 运动到轨道末端的速度为v 0,由机械能守恒得m 2gh =12m 2v 02, 解得v 0=2 m/s在A、B碰撞前后,两球的动量守恒,以v0的方向为正方向,有m2v0=m2v2+m1v1,解得m2=3 kg碰前总动能E k=12m2v02=6 J,碰后两球总动能E k′=12m2v22+12m1v12=6 J即该碰撞为弹性碰撞.(3)不能.假设此情形下的m2存在,则由动量守恒得m2v0=(m1+m2)v求得v=m2v0m1+m2碰前总动能E k=12m2v02,碰后两球总动能E k′=12(m1+m2)v2=m22v022(m1+m2)<E k这说明碰撞前后有能量损失,与题设矛盾,故这样的m2不存在.13.(多选)(2020·全国卷Ⅱ·21)水平冰面上有一固定的竖直挡板,一滑冰运动员面对挡板静止在冰面上,他把一质量为4.0 kg的静止物块以大小为5.0 m/s的速度沿与挡板垂直的方向推向挡板,运动员获得退行速度;物块与挡板弹性碰撞,速度反向,追上运动员时,运动员又把物块推向挡板,使其再一次以大小为5.0 m/s的速度与挡板弹性碰撞.总共经过8次这样推物块后,运动员退行速度的大小大于5.0 m/s,反弹的物块不能再追上运动员.不计冰面的摩擦力,该运动员的质量可能为()A.48 kg B.53 kg C.58 kg D.63 kg答案BC解析设运动员的质量为M,第一次推物块后,运动员速度大小为v1,第二次推物块后,运动员速度大小为v2……第八次推物块后,运动员速度大小为v8,第一次推物块后,由动量守恒定律知:M v1=m v0;第二次推物块后由动量守恒定律知:M(v2-v1)=m[v0-(-v0)]=2m v0,……,第n次推物块后,由动量守恒定律知:M(v n-v n-1)=2m v0,各式相加可得v n=(2n-1)m v0M,则v7=260 kg·m/sM,v8=300 kg·m/sM.由题意知,v7<5 m/s,则M>52 kg,又知v8>5 m/s,则M<60 kg,故选B、C.。
第章 动量1.考纲展示:动量、动量定理Ⅱ 动量守恒定律及其应用Ⅱ 弹性碰撞和非弹性碰撞Ⅰ 实验:验证动量守恒定律.2.考纲变化:本章内容是模块3-5中的部分内容,考纲要求从2017年起由原来的“选考内容”调至“必考内容”.3.考情总结:本章内容是考纲要求由原来的“选考内容”调至“必考内容”.调整后的第一次命题,考查点为动量守恒定律、动量定理的应用,题型为选择题.4.命题预测:调至“必考内容”后,命题热点仍然集中在动量与能量、动量与牛顿运动定律的综合应用方面,也可能与电场、磁场、电磁感应综合命题,难度可能是中等难度以上或较难.5.2017年考题分布第一节 动量 动量定理(对应学生用书第104页)[教材知识速填]知识点1 动量1.定义:运动物体的质量和速度的乘积叫做物体的动量,通常用p 来表示. 2.表达式:p =m v .3.单位:kg·m/s.4.标矢性:动量是矢量,其方向和速度方向相同.5.动量、动能、动量变化量的比较易错判断(1)物体的动能变化时动量一定变化.(√)(2)两物体的动量相等,动能也一定相等.(×)(3)动量变化的大小,不可能等于初、末状态动量大小之和.(×)知识点2动量定理1.冲量(1)定义:力和力的作用时间的乘积叫做这个力的冲量.公式:I=Ft.(2)单位:冲量的单位是牛·秒,符号是N·s.(3)方向:冲量是矢量,恒力冲量的方向与力的方向相同.2.动量定理(1)内容:物体所受合外力的冲量等于物体动量的变化.(2)表达式:Ft=Δp=p′-p.(3)矢量性:动量变化量的方向与合外力的方向相同,可以在某一方向上应用动量定理.易错判断(1)动量定理描述的是某一状态的物理规律.(×)(2)物体所受合外力的冲量方向与物体末动量的方向相同.(×)(3)物体所受合外力的冲量方向与物体动量变化的方向相同.(√)[教材习题回访]考查点:动量变化量的理解1.(沪科选修3-5P10T3)质量为5 kg的小球以5 m/s的速度竖直落到地板上,随后以3 m/s的速度反向弹回.若取竖直向下的方向为正方向,则小球动量的变化为()A.10 kg·m/s B.-10 kg·m/sC.40 kg·m/s D.-40 kg·m/s[答案] D考查点:动量和动能的比较2.(粤教选修3-5P9T5)下列关于物体的动量和动能的说法,正确的是() A.物体的动量发生变化,其动能一定发生变化B.物体的动能发生变化,其动量一定发生变化C.若两个物体的动量相同,它们的动能也一定相同D.动能大的物体,其动量也一定大[答案] B考查点:动量定理的应用3.(粤教版选修3-5P9T4)在没有空气阻力的条件下,在距地面高为h,同时以相等初速度v0分别平抛、竖直上抛、竖直下抛一质量相等的物体m,当它们从抛出到落地时,比较它们的动量的增量Δp.有()A.平抛过程较大B.竖直上抛过程最大C.竖直下抛过程较大D.三者一样大[答案] B考查点:动量定理的应用4.(人教版选修3-5P11T2改编)在光滑水平面上,原来静止的物体在水平力F的作用下,经过时间t、通过位移l后,动量变为p、动能变为E k.以下说法正确的是()A.在F作用下,这个物体若经过位移2l,其动量将等于2pB.在F作用下,这个物体若经过时间2t,其动量将等于2pC.在F作用下,这个物体若经过时间2t,其动能将等于2E kD.在F作用下,这个物体若经过位移2l,其动能将等于4E k[答案] B(对应学生用书第105页)1.冲量是矢量,它的方向是由力的方向决定的,如果力的方向在作用时间内不变,冲量的方向就跟力的方向相同.如果力的方向在不断变化,如绳子拉物体做圆周运动时绳的拉力在时间t内的冲量,这时就不能说力的方向就是冲量的方向.对于方向不断变化的力的冲量,其方向可以通过动量变化的方向间接得出.2.冲量是过程量,说到冲量必须明确是哪个力在哪段时间内的冲量.3.冲量和功(1)冲量反映力对时间积累的效应,功反映力对空间积累的效应.(2)冲量是矢量,功是标量.(3)冲量的正、负号表示冲量的方向,功的正、负号表示动力或阻力做功.[题组通关]1.甲、乙两个质量相等的物体,以相同的初速度在粗糙程度不同的水平面上运动,甲物体先停下来,乙物体后停下来,则()A.甲物体受到的冲量大B.乙物体受到的冲量大C.两物体受到的冲量相等D.两物体受到的冲量无法比较C[由题设可知两物体动量的变化量相等,据动量定理,两物体受到的冲量是相等的.两物体不同时停下,是因为受到的合力(即摩擦力)的大小不相等,即两接触面的动摩擦因数不相等.可知正确答案为C.]2.在一光滑的水平面上,有一轻质弹簧,弹簧一端固定在竖直墙面上,另一端紧靠着一物体A,已知物体A的质量m A=4 kg,如图6-1-1所示.现用一水平力F作用在物体A上,并向左压缩弹簧,F做功50 J后(弹簧仍处在弹性限度内),突然撤去外力F,物体从静止开始运动.则当撤去F后,弹簧弹力对A物体的冲量为()【导学号:84370253】图6-1-1A.20 N·s B.50 N·sC.25 N·s D.40 N·sA[弹簧的弹力显然是变力,因此该力的冲量不能直接求解,可以考虑运用动量定理:I=Δp,即外力的冲量等于物体动量的变化.由于弹簧储存了50 J的弹性势能,我们可以利用机械能守恒求出物体离开弹簧时的速度,然后运用动量定理求冲量.所以有:E p=12m v2,I=m v.由以上两式可解得弹簧的弹力对A物体的冲量为I=20 N·s.故选A.]图象法:如图所示,该图线与时间轴围成的内的冲量.根据动量定理求变力冲量.1.动量定理的理解(1)方程左边是物体受到的所有力的总冲量,而不是某一个力的冲量.其中的F可以是恒力,也可以是变力,如果合外力是变力,则F是合外力在t时间内的平均值.(2)动量定理说明的是合外力的冲量I合和动量的变化量Δp的关系,不仅I合与Δp大小相等而且Δp的方向与I合方向相同.(3)动量定理的研究对象是单个物体或物体系统.系统的动量变化等于在作用过程中组成系统的各个物体所受外力冲量的矢量和.而物体之间的作用力(内力),由大小相等、方向相反和等时性可知不会改变系统的总动量.(4)动力学问题中的应用.在不涉及加速度和位移的情况下,研究运动和力的关系时,用动量定理求解一般较为方便.不需要考虑运动过程的细节.2.用动量定理解释的两类现象(1)物体的动量变化一定,此时力的作用时间越短,力就越大;时间越长,力就越小.(2)作用力一定,此时力的作用时间越长,动量变化越大;力的作用时间越短,动量变化越小.[多维探究]考向1用动量定理解释生活现象1.玻璃杯从同一高度落下,掉在水泥地面上比掉在草地上容易碎,这是由于玻璃杯与水泥地撞击过程中()A.玻璃杯的动量较大B.玻璃杯受到的冲量较大C.玻璃杯的动量变化较大D.玻璃杯的动量变化较快D[玻璃杯从相同高度落下,落地时的速度大小是相同的,落地后速度变为零,所以无论落在水泥地面上还是草地上,玻璃杯动量的变化量Δp是相同的,又由动量定理I=Δp,知受到的冲量也是相同的,所以A、B、C 都错.由动量定理Ft=Δp得F=Δp/t,落到水泥地面上,作用时间短,动量变化快,受力大,容易碎,D对.]2.把重物压在纸带上,用一水平力缓缓拉动纸带,重物跟着纸带一起运动;若迅速拉动纸带,纸带就会从重物下抽出,这个现象的原因是()A.在缓缓拉动纸带时,纸带给重物的摩擦力大B.在迅速拉动纸带时,纸带给重物的摩擦力小C.在缓缓拉动纸带时,纸带给重物的冲量大D.在迅速拉动纸带时,纸带给重物的冲量大C[缓缓拉动纸带时,所用时间较长,摩擦力对物体的冲量大,故选项C 正确.]考向2用动量定理求平均作用力3.高空作业须系安全带,如果质量为m的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h(可视为自由落体运动),此后经历时间t安全带达到最大伸长,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为()A.m2ght+mg B.m2ght-mgC.m ght+mg D.m ght-mgA[设高空作业人员自由下落h时的速度为v,则v2=2gh,得v=2gh,设安全带对人的平均作用力为F,由动量定理得(mg-F)·t=0-m v,解得F=m2ght+mg.]4.一个质量为0.18 kg的垒球,以25 m/s的水平速度飞向球棒,被球棒打击后反向水平飞回,速度大小为45 m/s,若球棒与垒球的作用时间为0.01 s.球棒对垒球的平均作用力的大小为()A.450 N B.810 NC.1 260 N D.360 NC[取垒球飞向球棒的方向为正方向初动量p=m v=0.18×25 kg·m/s=4.5 kg·m/s末动量p′=m v′=-0.18×45 kg·m/s=-8.1 kg·m/s由动量定理得垒球所受到的平均作用力为F=p′-pΔt=-8.1-4.50.01N=-1 260 N.即所求平均作用力大小为1 260 N,方向与所选的正方向相反.](多选)在光滑水平面上有两个质量均为2 kg的质点,质点a在水平恒力F a=4 N作用下由静止开始运动4 s,质点b在水平恒力F b=4 N作用下由静止开始运动4 m,比较这两质点所经历的过程,可以得到的正确结论是()A.质点a的位移比质点b的位移大B.质点a的末速度比质点b的末速度小C.力F a做的功比力F b做的功多D.力F a的冲量比力F b的冲量小AC[质点a的位移x a=12at2=12·F am t2=4×422×2m=16 m.由动量定理F a t a=m v a,v a=F a t am=4×42m/s=8 m/s,由动能定理得F b x b=12m v2b,v b=2×4×42m/s=4 m/s.力F a做的功W a=F a×x a=4×16 J=64 J,力F b 做的功W b=F b×x b=4×4 J=16 J.力F a的冲量I a=F a t a=4×4 N·s=16 N·s,力F b的冲量I b=Δp b=m(v b-0)=2×(4-0) N·s=8 N·s.综上可得A、C选项正确.][母题](2016·全国Ⅰ卷)某游乐园入口旁有一喷泉,喷出的水柱将一质量为M的卡通玩具稳定地悬停在空中.为计算方便起见,假设水柱从横截面积为S的喷口持续以速度v0竖直向上喷出;玩具底部为平板(面积略大于S);水柱冲击到玩具底板后,在竖直方向水的速度变为零,在水平方向朝四周均匀散开.忽略空气阻力.已知水的密度为ρ,重力加速度大小为g.求:(1)喷泉单位时间内喷出的水的质量;(2)玩具在空中悬停时,其底面相对于喷口的高度.[题眼点拨]①“悬停在空中”表明水对其冲击力的大小等于其重力大小;②“竖直方向水的速度变为零”显示水的动量变化大小是解题的突破口.[解析](1)设Δt时间内,从喷口喷出的水的体积为ΔV,质量为Δm,则Δm=ρΔV ①ΔV=v0SΔt ②由①②式得,单位时间内从喷口喷出的水的质量为ΔmΔt=ρv0S. ③(2)设玩具悬停时其底面相对于喷口的高度为h,水从喷口喷出后到达玩具底面时的速度大小为v.对于Δt时间内喷出的水,由能量守恒得12(Δm)v2+(Δm)gh=12(Δm)v20④在h高度处,Δt时间内喷射到玩具底面的水沿竖直方向的动量变化量的大小为Δp=(Δm)v ⑤设水对玩具的作用力的大小为F,根据动量定理有FΔt=Δp ⑥由于玩具在空中悬停,由力的平衡条件得F=Mg ⑦联立③④⑤⑥⑦式得h=v202g-M2g2ρ2v20S2. ⑧[答案](1)ρv0S(2)v202g-M2g 2ρ2v20S2迁移1 动量定理与图象的结合1.(多选)(2017·全国Ⅲ卷)一质量为2 kg 的物块在合外力F 的作用下从静止开始沿直线运动.F 随时间t 变化的图线如图6-1-2所示,则( )图6-1-2 A .t =1 s 时物块的速率为1 m/sB .t =2 s 时物块的动量大小为4 kg·m/sC .t =3 s 时物块的动量大小为5 kg·m/sD .t =4 s 时物块的速度为零 AB [由动量定理得:t =1 s 时,v 1=F 1Δt 1m =2×12 m/s =1 m/st =2 s 时:p 2=F 1Δt 2=2×2 kg·m/s =4 kg·m/st =3 s 时:p 3=F 1Δt 2+F 2Δt 3=2×2 kg·m/s -1×1 kg·m/s =3 kg·m/s t =4 s 时:F 1Δt 2+F 2Δt 4=m v 4v 4=2×2-1×22m/s =1 m/s 选项A 、B 正确.]一个质量为3 kg 的物体所受的合外力随时间变化的情况如图所示,那么该物体在6 s 内速度的改变量是( )A .7 m/sB .6.7 m/sC .6 m/sD .5 m/sD [F -t 图线与时间轴围成的面积在量值上代表了合外力的冲量,故合外力冲量为I =⎝ ⎛⎭⎪⎫3×4+12×2×4-12×1×2N·s =15 N·s. 根据动量定理有I =m Δv ,Δv =I m =153 m/s =5 m/s.故本题选D.]迁移2 动量定理与多过程问题的结合2.如图6-1-3所示,在光滑水平面上并排放着A 、B 两木块,质量分别为m A 和m B .一颗质量为m 的子弹以水平速度v 0先后穿过木块A 、B .木块A 、B 对子弹的阻力恒为F f .子弹穿过木块A 的时间为t 1,穿过木块B 的时间为t 2.求:(1)子弹刚穿过木块A 后,木块A 的速度v A 和子弹的速度v 1分别为多大?(2)子弹穿过木块B 后,木块B 的速度v B 和子弹的速度v 2又分别为多大?【导学号:84370254】图6-1-3 [题眼点拨] ①“并排放着A 、B 两木块”要想到子弹穿过A 的过程中,A 、B 共同运动;②“阻力恒为F f ”及“时间t 1”“时间t 2”.[解析](1)从子弹刚进入A 到刚穿出A 的过程中:对A 、B :由于A 、B 的运动情况完全相同,可以看作一个整体F f t 1=(m A +m B )v A ,所以v A =F f t 1m A +m B对子弹:-F f t 1=m v 1-m v 0,所以v 1=v 0-F f t 1m .(2)子弹刚进入B 到刚穿出B 的过程中:对物体B :F f t 2=m B v B -m B v A所以v B =F f (t 1m A +m B +t 2m B )对子弹:-F f t 2=m v 2-m v 1,所以v 2=v 0-F f (t 1+t 2)m. [答案](1)F f t 1m A +m B v 0-F f t 1m(2)F f ⎝ ⎛⎭⎪⎫t 1m A +m B +t 2m B v 0-F f (t 1+t 2)m迁移3 动量定理在风力作用中的应用3.一艘帆船在湖面上顺风航行,在风力的推动下做速度为v 0=4 m/s 的匀速直线运动.若该帆船在运动状态下突然失去风力的作用,则帆船在湖面上做匀减速直线运动,经过t =8 s 才可静止.该帆船的帆面正对风的有效面积为S =10 m 2,帆船的总质量约为M =936 kg.若帆船在航行过程中受到的阻力恒定不变,空气的密度为ρ=1.3 kg/m 3,在匀速行驶状态下估算:(1)帆船受到风的推力F 的大小;(2)风速的大小v .[解析](1)风突然停止,帆船只受到阻力f 的作用,做匀减速直线运动,设帆船的加速度为a ,则a =0-v 0t =-0.5 m/s 2根据牛顿第二定律有-f =Ma ,所以f =468 N则帆船匀速运动时,有F -f =0解得F =468 N.(2)设在时间t 内,正对着吹向帆面的空气的质量为m ,根据动量定理有-Ft =m (v 0-v )又m =ρS (v -v 0)t所以Ft=ρS(v-v0)2t解得v=10 m/s.[答案](1)468 N(2)10 m/s。
第六章动量和动量守恒定律
综合过关规范限时检测
满分:100分考试时间:60分钟
一、选择题(本题共8小题,每小题6分,共计48分。
1~5题为单选,6~8题为多选,
全部选对的得6分,选对但不全的得3分,错选或不选的得0分) 1.(2018·广东揭阳月考)如图所示,光滑的水平地面上有一辆平板车,车上有一个人。
原来车和人都静止。
当人从左向右行走的过程中导学号 21993456( D )
A.人和车组成的系统水平方向动量不守恒
B.人和车组成的系统机械能守恒
C.人和车的速度方向相同
D.人停止行走时,人和车的速度一定均为零
[解析]人和车组成的系统在水平方向上不受外力,动量守恒,故A错误。
人和车组成
的系统,初状态机械能为零,一旦运动,机械能不为零,可知人和车组成的系统机械能不守恒,故B错误。
人和车组成的系统在水平方向上动量守恒,总动量为零,可知人和车的速度方向相反,当人的速度为零时,车的速度也为零,故C错误,D正确。
2.(2018·河南灵宝中学检测)“蹦极”运动中,长弹性绳的一端固定,另一端绑在人身
上,人从几十米高处跳下。
将蹦极过程简化为人沿竖直方向的运动。
从绳恰好伸直,到人第一次下降至最低点的过程中,下列分析正确的是导学号 21993457( A )
A.绳对人的冲量始终向上,人的动量先增大后减小
B.绳对人的拉力始终做负功,人的动能一直减小
C.绳恰好伸直时,绳的弹性势能为零,人的动能最大
D.人在最低点时,绳对人的拉力等于人所受的重力
[解析]A、B项,绳子对人的拉力的方向始终向上,则绳对人的冲量方向始终向上,绳
对人的拉力做负功。
由牛顿第二定律知,当绳子向上的拉力小于人的竖直向下的重力时,人的速度不断增大;随着人不断下落,绳子不断伸长,绳子的拉力不断增大,当绳子的拉力等于人的重力时,人的速度达到最大;此后绳子的拉力大于人的重力,人的速度不断减小则人的动量和动能都先增大后减小,故A项正确,B项错误。
C项,当绳子的拉力等于人的重力时,人的动能达到最大,故C项错误。
D项,人在最低点时,速度减小至0,此时绳子的拉力大于
人的重力,故D项错误。
综上所述,本题正确答案为A。
3.(2018·重庆月考)一个钢珠从静止状态开始自由下落(不计空气阻力),然后陷入泥潭
中。
若把它在空中自由下落的过程称为Ⅰ,进入泥潭直到停止的过程称为Ⅱ,则
导学号 21993458( A )
A.过程Ⅰ中钢珠动量的改变量等于重力的冲量
B.过程Ⅱ中钢珠所受阻力的冲量大小等于过程Ⅰ中重力冲量的大小C.过程Ⅱ中钢珠所受阻力的冲量大小与过程Ⅰ中重力冲量的大小无法比较
D.过程Ⅱ中钢珠的动量改变量等于阻力的冲量
[解析]设钢珠到达泥潭时的速度大小为v,规定竖直向下为正方向,由动量定理得,
过程Ⅰ:I G1=mv-0,过程Ⅱ:I G2-I f2=0-mv,故A正确,D错误,解得I f2=I G1+I G2,故B、
C错误。
4.(2018·福建省东山二中高三上学期期中试题)质量为m的甲物块以3m/s的速度在光
滑水平面上运动,有一轻弹簧固定在甲物块上。
另一质量也为m的乙物块以4m/s的速度与甲
相向运动,如图所示。
则导学号 21993459( C )
A.甲、乙两物块在压缩弹簧过程中,由于弹力作用,系统动量不守恒
B.当两物块相距最近时,甲物块的速率为零C.当甲物块的速率为1m/s时,乙物块的速率可能为2m/s,也可能为0
D.甲物块的速率可能达到5m/s
[解析]甲、乙两物块(包括弹簧)组成的系统在弹簧压缩过程中,系统所受的合外力为
零,系统动量守恒,故A错误;当两物块相距最近时速度相同,取碰撞前乙的速度方向为正方向,设共同速率为v,由动量守恒定律得:mv乙-mv甲=2mv,代入数据解得:v=0.5m/s,故B错误.甲、乙组成的系统动量守恒,若物块甲的速率为1m/s,方向与原来相同,由动量守恒定律得:mv乙-mv甲=-mv甲′+m乙v乙′,代入数据解得:v乙′=2m/s;若物块甲的速率为1m/s,方向与原来相反,由动量守恒定律得:mv乙-mv甲=mv甲′+m乙v乙′,代入数据解得:v乙′=0,故C正确。
若物块甲的速率达到5m/s,方向与原来相同,则:mv乙-mv甲=-mv甲′+m乙v乙′,代入数据解得:v乙′=6m/s。
两个物体的速率都增大,动能都增大,违反了能量守恒定律。
若物块甲的速率达到5m/s,方向与原来相反,则:mv乙-mv甲=mv甲′+m乙v乙′,代入数据解得:v乙′=-4m/s,则碰撞后,乙的动能不变,甲的动能增加,系统总动能增加,违反了能量守恒定律。
所以物块甲的速率不可能达到5m/s,故D错误。
故选
C。
5.(2018·江西南昌联考)质量为m的小球A以速度v0在光滑水平面上运动,与质量为
2m的静止小球B发生对心碰撞,则碰撞后小球A的速度大小v A和小球B的速度大小v B可能为
导学号 21993460( AC )。