第1课时 16.1 二次根式(1)
- 格式:ppt
- 大小:445.50 KB
- 文档页数:16
116.1二次根式第1课时二次根式的概念一、选择题1.下列各式中,一定是二次根式的是()A.-3 B.33 C. D.-32.要使二次根式 +1有意义,a 的值可以是()A.-1 B.-2 C.-3 D.-43.下列二次根式中,无论x 取何值,都有意义的是()A. B. 2-1 D. 2+14.已知二次根式 +3,当x=1时,此二次根式的值为()A.2B.±2C.4D.±45.若1-2 是二次根式,则x 的值不可能是()A.-2 B.-1 C.0 D.16.下列选项中,使根式有意义的a 的取值范围为a<1的是()A. -1 B.1- C.(1- )2二、填空题7.当x=54时,二次根式 +1的值为.1+ x 的取值范围是.9.若关于x 的式子4- +- +2有意义,且满足条件的所有整数x 的和为10,则a 的取值范围为.0有意义的条件是.三、解答题11.判断下列各式哪些是二次根式,哪些不是,为什么?3,-16,34,-5, 2+1.(1)求x 的取值范围;(2)求当x=-2x 的值.13.已知 -17+17- =b+8.(1)求a、b 的值;(2)求a 2-b 2的平方根和a+2b 的立方根.16.1二次根式第1课时:二次根式的概念一、选择题1.答案A A.-3符合二次根式的定义,故本选项符合题意;B.33是三次根式,故本选项不符合题意;C.当x<0时, 无意义,故本选项不符合题意;D.由于-3<0,所以-3无意义,故本选项不符合题意.故选A.2.答案A由题意得,a+1≥0,解得a≥-1,结合各选项知,只有-1符合题意,故选A.3.答案D A. ,当x≥0时,二次根式有意义,故此选项不符合题意;B. 2-1,当x2-1≥0,即x≥1或x≤-1时,二次根式有意义,故此选项不符合题意;2x≠0时,二次根式有意义,故此选项不符合题意;D. 2+1,无论x取何值,二次根式都有意义,故此选项符合题意.故选D.4.答案A当x=1时,原式=1+3=4=2,故选A.5.答案D∵1-2 是二次根式,∴1-2x≥0,解得x≤0.5,∴x的值不可能是1.故选D.6.答案D A项,当a≥1时,根式有意义;B项,当a≤1时,根式有意义;C项,无论a取何值,根式都有意义;D项,要使根式有意义,则11- ≥0且1-a≠0,解得a<1.故选D.二、填空题7.答案32解析当x=54时, +1==32.故答案为32.8.答案x>-1解析由题意得11+ ≥0且1+x≠0,∴1+x>0,解得x>-1,故答案为x>-1.9.答案1<a≤3解析∵关于x的式子4- + - +2有意义,∴4-x≥0,x-a+2≥0,解得a-2≤x≤4,∵满足条件的所有整数x的和为10,4+3+2+1=10,4+3+2+1+0=10,∴-1<a-2≤1,∴1<a≤3.10.答案x≥-2,x≠1且x≠-12解析由题意可得x+2≥0,x-1≠0且2x+1≠0,解得x≥-2,x≠1且x≠-12.2三、解答题11.解析3,-16,(a≥0), 2+1符合二次根式的定义,故是二次根式; 34是三次根式,故不是二次根式;-5中被开方数小于0,故不是二次根式.12.解析(1)根据题意,得3-12x≥0,解得x≤6.=3+1=2.(2)当x=-2∴3-12x=0,解得x=6.13.解析(1)由题意得a-17≥0,且17-a≥0,则a-17=0,解得a=17,把a=17代入 -17+17- =b+8,得b+8=0,解得b=-8.故a、b的值分别为17、-8.(2)由(1)得a=17,b=-8,∴± 2- 2=±172-(-8)2=±15,3 +2 =317+2×(-8)=31=1.故a2-b2的平方根为±15,a+2b的立方根为1.3。