第七节 二次根式 第1课时 导学案
- 格式:doc
- 大小:1.15 MB
- 文档页数:2
《二次根式》教案(第一课时)一、内容和内容解析1.内容二次根式的概念.2.内容解析本节课是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念.它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础.本节课的教学重点是:根据算术平方根的意义了解二次根式的概念教学.二、目标和目标解析1.目标(1)根据算术平方根的意义了解二次根式的概念,明白被开方数必须是非负数原因.(2)会用二次根式表示实际问题中的数量和数量关系.2.目标解析达成目标(1)的标志是:学生能从具体数的算术平方根出发,过渡到含字母的情况,通过算术平方根的概念得到二次根式的概念,并根据算术平方根的意义得到二次根式被开方数和结果均为非负数的结论.达成目标(2)的标志是:学生能够根据实际问题,利用开平方运算的意义,列出二次根式.三、教学问题诊断分析二次根式概念的获得,要让学生经历其抽象的过程,借此培养学生的抽象概括能力,加深学生对二次根式概念的理解.教学时,要充分利用教材的“思考”栏目,从生活中的实际问题引入,以激发学生的学习兴趣,让学生体会由特殊到一般的过程,由此给出二次根式的定义.在二次根式的概念中,为什么要强调被开方数大于等于零?引导学生讨论,知道二次根式被开方数必须是非负数的理由以及二次根式的结果的非负性,所以二次根式的双重非负性是本节课的难点.四、教学过程设计(一)创设情景,提出问题电视塔越高,从塔顶发射的电磁波传得越远,从而能收看到电视节目的区域越广,电视塔高h(单位:km)与电视节目信号的传播半径r(单位:km)之间存在近似关系r=其中地球半径,R≈6400km.如果两个电视塔的高分别是h1km,h2km,那么它们的传播半径之.你能化简这个式子吗?问题1式子表示什么?公式中r=的课题.设计意图:让学生借助已学的数和式子的运算,从数与式子运算的完整性角度引出要研究的问题让学生知道本章将要学习的内容,让学生提前做到心中有数.问题2用带根号的式子填空,看看写出的结果有什么特点:(1)面积为3的正方形的边长为_______,面积为S的正方形的边长为_______.(2)一个长方形围栏,长是宽的2倍,面积为130m2,则它的宽为______m.(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下的高度h (单位:m)满足关系h=5t2.如果用含有h的式子表示t,则t为=_____.设计意图:让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性.(二)合作探究,形成知识(1)这些式子分别表示什么意义?(2)这些式子有什么共同特征?教师引导学生说出各式的意义.)概括它们的共同特征:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根.(3)根据你的理解,请写出二次根式的定义.叫做二次根式.(学生总结)a≥0)的式子叫做二次根式,“”称为二次根号.(师生共同总结)(4)提醒学生注意二次根式定义包含的内容.②被开方数a≥0.③a可以是数,也可以是含有字母的式子.(5)在二次根式的定义中,为什么要有条件“a≥0”?教师引导学生回想4、0的算术平方根分别是什么?-4有没有算术平方根?最后总结只有非负数才有算术平方根.设计意图:采用具体到抽象的方式,通过归纳得出二次根式的概念.(三)初步应用,巩固知识练习:二次根式和算术平方根有什么关系?学生通过小组合作交流得出:二次根式都是非负数的算术平方根;带有根号的算术平方根是二次根式.【例1】当x在实数范围内有意义,则应满足被开方数x-2≥0.解:由x-2≥0,得x≥2.当x≥2在实数范围内有意义.【例2】当x解:因为2x≥0,所以,当x在实数范围内都有意义.由3x≥0,得x≥0.当x≥0在实数范围内有意义.设计意图:通过练习、例1、例2,加深概念理解.(四)比较辨别,探索性质0的大小.先让学生独立思考,然后教师引导学生根据概念,分a>0和a=0两种情况进行讨论.当a>0a>0;当a=0表示0=0;(a≥0)是一个非负数.设计意图:强化学生对二次根式双重非负性的认识.(五)综合应用,深化提高练习1判断下列各式哪些是二次根式:ax≥-(1(210);(3(4≤0).学生先独立完成,后小组展示确定二次根式有意义的条件(被开方数大于或等于零),所以(2)(3)(4)为二次根式.练习2当x是什么实数时,下列各式有意义.(1(2(3(4解:(1)由3-4x≥0,得x≤34.(2)由xx≥⎧⎨-≠⎩10,得≥0且1.x x≠(3)由x≤2-0,得x=0x≠0(4)由-2≥0且2-≥0x x ,得2x =.设计意图:辨析二次根式的概念,确定二次根式有意义的条件.(六)课堂小结(1)本节课你学到了哪一类新的式子?(a ≥0(2)二次根式有意义的条件是什么?二次根式的值的范围是什么?中的a ≥0≥0. 二次根式的双重非负性.(3)二次根式与算术平方根有什么关系?二次根式都是非负数的算术平方根,带有根号的算术平方根是二次根式.设计意图:回顾本节课所学的二次根式的概念,再次确定二次根式有意义的条件;理解二次根式的双重非负性以及二次根式与算术平方根的关系.(七)布置作业1x 的取值范围是( )A .0x >B .2≥x -C .2≥xD .2≤x2.已知y 3,则2xy 的值为( )A .15-B .15C .152-D .1523.求使下列各式有意义的x 的取值范围? (1)2+x -x 23-;(2)x --11+x ; (3)y =;(4)2||12--x x . 4.已知12-a +a b 2-+c b a ++=0.求a 、b 、c 的值.作业答案:1.D 202≥得≤x x -.故选D .2.B 解析:要使有意义,则25≥052≥0x x -⎧⎨-⎩,解得x =25,故y =3,∴2xy =2×25×3=15.故选B . 3.(1)322≤≤x -;(2)0≤x 且1x ≠-;(3)0≥x 且1x ≠.(4)12≥x 且2x ≠. 4.∵12-a ≥0,a b 2-≥0,c b a ++≥012-a +a b 2-+c b a ++=0∴2a -1=0,b -2a =0,a +b +c =0 ∴13122,,a b c ===-五、目标检测设计1.指出下列哪些是二次根式?(134(5≥2);(6<).a a b设计意图:考查二次根式的概念.2.a 取何值时,下列根式有意义?(1 (23 (45 设计意图:考查二次根式的有意义的条件.3n 的值为___________.设计意图:考查二次根式的有意义的条件.目标检测答案:1.(1)(4)(5)是二次根式.2.解:(1)由a +1≥0,得a ≥-1;(2)由1-2a >0,得a <12;(3)由()2-1a ≥0,得a 为任何实数;(4)a 为任何实数;(5)a =1.3.0,3,4.。
《7.1二次根式及性质》导学案 八年级数学学习目标:1、经历二次根式意义和性质的探索,掌握二次根式的概念,及性质2(0)a a =≥.2、灵活运用二次根式的意义及性质.重点:二次根式的概念,及性质2(0)a a =≥.难点:灵活运用二次根式的意义及性质. 知识链接:1、4的算术平方根是 ,平方根是 .2a 应满足什么条件?提示:(1)当a 表示 .(2)当a 表示 .(3)当a 表示. ∴a 应满足.3、当x 时,式子4x 的值必须满足的条件( ) A 、x ≥1B 、x ≤1C 、x>1D 、x<15、2= .问题导学:问题1.自学概念与性质(自学课本P4—P5页,回答下面问题)(1) 叫做二次根式,其中a 为 ,a 叫做 ,举例如: .(2)0)a ≥在 时有意义,在 时无意义.(30)a ≥具有 性.②2=(a ≥0).问题2.合作交流:(先自己独立完成,不会的小组内成员之间交流)1、下列式子中哪些是二次根式?哪些不是二次根式?(1 (2 (3 (4)(5(6)a 2(7(8)2a 的取值范围是( ) A 、a<1B 、a ≤1C 、a ≥1D 、a>13a,b 应满足( ) A 、a>0,b>0B 、a,b 同号C 、a>0,b ≥0D 、0ba≥4有意义,则x 的取值范围是( )A 、x ≥-2B 、13x ≠C 、x ≥-2且13x ≠D 、以上答案都不对5、2= ,2=6、2= ,2(=7、2(5)a ≥-=8、2=( )23=( )27=( )223=( )2 ∴a=( )2 (a ≥0)9、已知a,b 是实数,且有|0a =,则a= ,b= .10、那么直角坐标系中点A (a,b )的位置在( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 问题3.精讲点拨:例1P(m,n)的位置在第 象限。
例2、已知x,y 23(2)0y -=,则x-y= .例3是二次根式,那么x 应满足的条件是 .例4、已知9y =,求(xy-64)2的算术平方根.达标检测:(1)下列语句正确的是( )A 、二次根式中的被开方数只能是正数B 、式 C 、3D 、2是(2)当x 时,式子(3)2(-= ,22(= 。
苏教版二次根式教案第一课时教案标题:苏教版二次根式教案第一课时教学目标:1. 理解二次根式的概念和性质。
2. 掌握二次根式的化简和运算方法。
3. 能够应用二次根式解决实际问题。
教学准备:1. 教材:苏教版二次根式教材。
2. 教具:黑板、粉笔、教学PPT等。
3. 学具:练习册、作业本等。
教学步骤:Step 1:导入新知1. 引导学生回顾一元二次方程的知识,通过问题引入二次根式的概念。
2. 提问:“什么是二次根式?二次根式有哪些特点?”引导学生思考并回答。
Step 2:概念解释与讲解1. 通过教学PPT或板书,对二次根式的定义进行解释,并给出示例。
2. 讲解二次根式的基本性质,如二次根式的分子中不含有平方根、二次根式的和差化简等。
Step 3:化简与运算1. 引导学生通过例题掌握化简二次根式的方法,如合并同类项、有理化分母等。
2. 通过练习题让学生巩固化简二次根式的基本技巧。
3. 引导学生通过例题和练习题掌握二次根式的加减乘除运算方法。
Step 4:应用解决实际问题1. 设计一些与实际生活相关的问题,引导学生运用二次根式解决问题。
2. 分组讨论和展示解题过程,加深学生对二次根式应用的理解。
Step 5:小结与作业布置1. 对本节课所学内容进行小结,强调二次根式的概念、性质和运算方法。
2. 布置相应的课后作业,巩固所学知识。
教学延伸:1. 对于学习较快的学生,可以提供更多的挑战性练习,如复杂的二次根式运算或解决实际问题。
2. 对于学习较慢的学生,可以提供更多的练习机会,加强基本技能的训练。
教学反思:本节课通过引入问题、概念解释、化简与运算、应用解决实际问题等环节,全面培养学生对二次根式的理解和应用能力。
在教学过程中,教师要注重激发学生的学习兴趣,提高课堂互动,使学生能够主动思考和解决问题。
同时,教师还要根据学生的实际情况进行差异化教学,确保每个学生都能够达到预期的学习目标。
《二次根式》第1时教案设计一、内容和内容解析.内容二次根式的概念2.内容解析本节是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础教材先设置了三个实际问题,这些问题的结果都可以表示成二次根式的形式,它们都表示一些正数的算术平方根,由此引出二次根式的定义再通过例1讨论了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解本节的教学重点是:了解二次根式的概念;二、目标和目标解析教学目标(1)体会研究二次根式是实际的需要.(2)了解二次根式的概念.2教学目标解析(1)学生能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性.(2)学生能根据算术平方根的意义了解二次根式的概念,知道被开方数必须是非负数的理由,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围.三、教学问题诊断分析对于二次根式的定义,应侧重让学生理解“的双重非负性,”即被开方数≥0是非负数,的算术平方根≥0也是非负数教学时注意引导学生回忆在实数一章所学习的有关平方根的意义和特征,帮助学生理解这一要求,从而让学生得出二次根式成立的条,并运用被开方数是非负数这一条进行二次根式有意义的判断本节的教学难点为:理解二次根式的双重非负性四、教学过程设计.创设情境,提出问题问题1你能用带有根号的的式子填空吗?(1)面积为3的正方形的边长为_______,面积为S的正方形的边长为_______.(2)一个长方形围栏,长是宽的2倍,面积为130?,则它的宽为______.(3)一个物体从高处自由落下,落到地面所用的时间t (单位:s)与开始落下的高度h(单位:)满足关系h=t?,如果用含有h的式子表示t,则t=_____.师生活动:学生独立完成上述问题,用算术平方根表示结果,教师进行适当引导和评价【设计意图】让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性.问题2上面得到的式子,,分别表示什么意义?它们有什么共同特征?师生活动:教师引导学生说出各式的意义,概括它们的共同特征:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根.【设计意图】为概括二次根式的概念作铺垫.2.抽象概括,形成概念问题3你能用一个式子表示一个非负数的算术平方根吗?师生活动:学生小组讨论,全班交流.教师由此给出二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号.【设计意图】让学生体会由特殊到一般的过程,培养学生的概括能力.追问:在二次根式的概念中,为什么要强调“a≥0”?师生活动:教师引导学生讨论,知道二次根式被开方数必须是非负数的理由.【设计意图】进一步加深学生对二次根式被开方数必须是非负数的理解.3.辨析概念,应用巩固例1当时怎样的实数时,在实数范围内有意义?师生活动:引导学生从概念出发进行思考,巩固学生对二次根式的被开方数为非负数的理解.例2当是怎样的实数时,在实数范围内有意义?呢?师生活动:先让学生独立思考,再追问.【设计意图】在辨析中,加深学生对二次根式被开方数为非负数的理解.问题4 你能比较与0的大小吗?师生活动:通过分和这两种情况的讨论,比较与0的大小,引导学生得出≥0的结论,强化学生对二次根式本身为非负数的理解,【设计意图】通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生分类讨论和归纳概括的能力4.综合运用,巩固提高练习1完成教科书第3页的练习练习2 当x是什么实数时,下列各式有意义(1);(2);(3);(4)【设计意图】辨析二次根式的概念,确定二次根式有意义的条【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,开阔学生的视野,训练学生的思维.总结反思教师和学生一起回顾本节所学主要内容,并请学生回答以下问题(1)本节你学到了哪一类新的式子?(2)二次根式有意义的条是什么?二次根式的值的范围是什么?(3)二次根式与算术平方根有什么关系?师生活动:教师引导,学生小结【设计意图】:学生共同总结,互相取长补短,再一次突出本节的学习重点,掌握解题方法6.布置作业:教科书习题161第1,3,,7,10题.五、目标检测设计下列各式中,一定是二次根式的是()ABD【设计意图】考查对二次根式概念的了解,要特别注意被开方数为非负数.2当时,二次根式无意义.【设计意图】考查二次根式无意义的条,即被开方数小于0,要注意审题.3当时,二次根式有最小值,其最小值是.【设计意图】本题主要考查二次根式被开方数是非负数的灵活运用.4对于,小红根据被开方数是非负数,得出的取值范围是≥.小慧认为还应考虑分母不为0的情况.你认为小慧的想法正确吗?试求出的取值范围.【设计意图】考查二次根式的被开方数为非负数和一个式子的分母不能为0,解题时需要综合考虑.。
二次根式导学案 二次根式(1)一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
3、掌握二次根式的基本性质:)0(0≥≥a a 和)0()(2≥=a a a二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质. 难点:综合运用性质)0(0≥≥a a 和)0()(2≥=a a a 。
三、学习过程 (一)复习回顾:(1)已知a x =2,那么a 是x 的______;x 是a 的________, 记为______,a 一定是_______数。
(2)4的算术平方根为2,用式子表示为=__________;正数a 的算术平方根为_______,0的算术平方根为_______;式子)0(0≥≥a a 的意义是 。
(二)自主学习(1)16的平方根是 ;(2)一个物体从高处自由落下,落到地面的时间是t(单位:秒)与开始下落时的高度h(单位:米)满足关系式25t h =。
如果用含h 的式子表示t ,则t= ;(3)圆的面积为S ,则圆的半径是 ; (4)正方形的面积为3-b ,则边长为 。
思考:16,5h ,πs,3-b 等式子的实际意义.说一说他们的共同特征.定义: 一般地我们把形如a (0≥a )叫做二次根式,a 叫做_____________1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3,16-,34,)0(3≥a a ,12+x2、当a 为正数时a 指a 的 ,而0的算术平方根是 ,负数 ,只有非负数a 才有算术平方根。
所以,在二次根式a 中,字母a 必须满足 , a 才有意义。
3、根据算术平方根意义计算 :(1) 2)4( (2) (3)2)5.0( 42)3((4)2)31(根据计算结果,你能得出结论: ,其中0≥a ,4、由公式)0()(2≥=a a a ,我们可以得到公式a =2)(a ,利用此公式可以把任意一个非负数写成一个数的平方的形式。
二次根式第1课时导学案一、导学(一)导入课题:提问:5(板书课题).(二)学习目标:1.会判断一个式子是不是二次根式;2.会求被开方数中所含字母的取值范围.(三)学习重、难点:重点:准确判断一个式子是不是二次根式;难点:会求被开方数中所含的字母的取值范围.二、分层学习第一层次学习(一)自学指导1.自学内容:P2页到P2页例1上面的部分.2.自学时间:3分钟.3.自学方法:完成思考中的问题,从形式和被开方数两个方面理解二次根式.4.自学参考提纲:(1)课文思考中问题的答案是:(1)______;(2)______;(3)______;(4)_____; 用a 表示被开方数,则上述4个式子可以写成_______,其中a 的取值范围是______.(2)什么样的式子叫做二次根式?(3)想一想:如果a <0,则a 是否是二次根式?(二)自学:学生可参考自学参考提纲进行自学.(三)助学:1.师助生:明了学情;差异指导.2.生助生:学生自主研讨疑难之处.(四)强化: 1.试一试:判断下列各式,哪些是二次根式?哪些不是?为什么? 3,16,34,5-,12+x .2.解答课本P3面第1题3.形如a (a ≥0)的式子叫做二次根式,“”称为二次根号.注意:被开方数a ≥0.第二层次学习(一)自学指导1.自学内容:P2页例1及后面的思考部分.2.自学时间:2分钟.3.自学方法:从例题中总结解题步骤.4.自学参考提纲:(1)确定式子2-x 中字母x 的取值范围的依据是什么?解题步骤是什么?(2)a 取何值时,下列各二次根式有意义?1-a ; 32+a ;a -;a -5.(3)若1-a +a -1有意义,则a 的值为___________.(二)自学:学生可参考自学参考提纲进行自学.(三)助学:1.师助生:明了学情;差异指导.2.生助生:同桌之间相互研讨.(四)强化:1.点五名学生板演第(2)、(3)题,并点评.2.组织探讨课本思考中的问题.3.确定式子二次根式中字母的取值范围的一般步骤是:(1)根据a中a≥0的条件列不等式;(2)解不等式;(3)确定字母的取值范围.4.展示本节所学知识点和数学思想方法.三、评价:1.学生学习的自我评价(围绕三维目标).2.教师对学生的评价:(1)表现性评价;(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).。
金塔县第三中学八年级(上)数学学教练案 持案人: 课题:二次根式(一) 总第 课时主备教师:梁占科 审核人:勾设军 责任人:李春文 授课时间: 课型:新授课【学习目标】1、认识二次根式和最简二次格式的概念,探索二次根式的性质。
2、能利用二次根式的性质将二次根式化为最简二次根式的性质【学习重点】利用二次根式的性质进行化简运算。
【学习难点】二次根式性质的论证。
【导学过程】一、自主预习,认真准备1、还记得有理数的一些运算法则吗?请运用相关法则计算下列各式:①-5m ²+2 m ²= ②)4)(4(-+xy xy = ③2)32(+x =④(ab ²)3 = ⑤2010 m ·(20101)m = ⑥(x3)2= 2、一般地,形如 (a 0≥)的式子叫作二次根式, 叫作被开方数。
3、一般地,被开方数不含 ,也不含 这样的根式叫作最简二次根式。
二、自主探究,合作交流活动一:(1)计算下列各式,你能得到什么猜想?94⨯= ,4⨯9= ;94= ,44925= ,4925 (2)根据上面的猜想,估计下面每组两个式子是否相等,借助计算器验证,并与同伴进行交流。
76⨯与67⨯,76与76 小结:ab = (a ,0≥ b 0≥),ba = (a ,0≥ b>0) 积的算术平方根,等于 ;商的算术平方根,等于 。
活动二:化简:(1)6481⨯; (2)625⨯; (3)95。
观察:化简以后的结果中的被开方数又有什么特征?一般地,被开方数不含 ,也不含 ,这样的二次根式,叫做最简二次根式。
三、当堂练习,检测固学A. 基础知识1.下列平方根中, 已经简化的是( ) A. 31 B. 20 C. 22 D. 1212.化简 3272 27 18499⨯716⨯ 253⨯2512133 509 712 5.13121 53四.学教后记。
二次根式导学案二次根式(1)一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
3、掌握二次根式的基本性质:)0(0≥≥a a 和)0()(2≥=a a a二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质. 难点:综合运用性质)0(0≥≥a a 和)0()(2≥=a a a 。
三、学习过程(一)复习回顾:(1)已知a x =2,那么a 是x 的______;x 是a 的________, 记为______,a 一定是_______数。
(2)4的算术平方根为2,用式子表示为 =__________;正数a 的算术平方根为_______,0的算术平方根为_______;式子)0(0≥≥a a 的意义是 。
(二)自主学习(1)16的平方根是 ; (2)一个物体从高处自由落下,落到地面的时间是t (单位:秒)与开始下落时的高度h (单位:米)满足关系式25t h =。
如果用含h 的式子表示t ,则t = ;(3)圆的面积为S ,则圆的半径是 ;(4)正方形的面积为3-b ,则边长为 。
思考:16,5h ,πs ,3-b 等式子的实际意义.说一说他们的共同特征. 定义: 一般地我们把形如a (0≥a )叫做二次根式,a 叫做_____________。
41、试一试:判断下列各式,哪些是二次根式哪些不是为什么3,16-,34)0(3≥a a ,12+x 2、当a 为正数时a 指a 的 ,而0的算术平方根是 ,负数 ,只有非负数a 才有算术平方根。
所以,在二次根式a 中,字母a 必须满足 , a 才有意义。
3、根据算术平方根意义计算 : (1) 2)4( (2) (3)2)5.0( (4)2)31( 根据计算结果,你能得出结论: ,其中0≥a ,4、由公式)0()(2≥=a a a ,我们可以得到公式a =2)(a ,利用此公式可以把任意一个非负数写成一个数的平方的形式。
二次根式(1)【教学目标】1.了解二次根式的意义,掌握二次根式的定义;能根据定义确定被开方数中字母的取值范围.2.理解并掌握二次根式的性质:()20a a =≥()0a a =≥.⒊经历二次根式的定义的形成过程及二次根式性质的探究过程,提高数学探究能力及归纳能力.【教学重点】二次根式的概念和相关性质.【教学难点】运用二次根式的性质:()20a a =≥()0a a =≥进行计算.【教学过程】一、新课引入我们学习了平方根和算术平方根的意义,请同学们思考并回答下面3个问题:的平方根是 ,0的平方根是 ,正实数a 的平方根是 .2. a 需要满足什么条件为什么)0a ≥二、自主探究1.二次根式的概念:⑴我们把.⑵由于在实数范围内,负实数没有平方根,因此只有当被开方数是非负实数时,二次根式才在实数范围内有意义.即:被开方数0a ≥.⑶ ))00a a <<是不是二次根式.⑷根据已有的知识,说说你对二次根式的认识.①表示a 的算术平方根.②a 可以是数,也可以是式.③从形式上看,含有二次根号.④0a ≥≥2.二次根式的性质:⑴对于非负实数a a 的一个平方根,因此:()20a a =≥= ,= ,= …结论:当0a ≥=三、应用迁移(一)典例精析例1 当x 在实数范围内有意义例2 计算:⑴2; ⑵(2; ⑷ (二)变式运用.0,=.(三)综合运用已知实数0,0,a b <> 四、归纳小结⑴二次根式的定义:①形如 ②被开方数a= (0)a ≥②2= (0)a ≥五、巩固提升★⒈当x 时,.★★⒉已知2y =,求,x y 的值.★★★⒊在实数范围内,把下列多项式分解因式:⑴213;x-⑵2x-312.六、课后练习A层:教材P159 A组1、2、3B层:学法大视野P75—76课后提升七、教学反思。
二次根式(1)导学案一、复习引入1.什么叫平方根? 什么叫算数平方根?2.(算数)平方根的性质是什么?平方根是二、探究新知阅读课本第2页思考,完成下列问题在课本思考框的问题中,结果分别是 ,结果都分别是表示3,S ,65,5h 的 . 我们知道:一个正数有 个平方根,它们 ;0的平方根是 ;在实数范围内, 数没有平方根。
因此,开平方时,被开方数只能是 .【归纳a≥0)的式子叫做 ,“”称为 . 二次根式应满足两个条件: 1.形式..上必须是a 的形式; 2.被开方数必须是 .三、自我检测例1.当x 是怎样的实数时,2-x 在实数范围内有意义?例2.当a<0时,a 有意义吗?【归纳】a 的双重非负性:1. a≥0 ; 2.四、巩固训练1.下列式子,哪些是二次根式,、1x x>0)、、1x y +(x≥0,y≥0).2.当x 11x +在实数范围内有意义?【课本练习】 1、2五、拓展提升1.当x 是怎样的实数时,下列各式在实数范围内有意义?(1)48-+x x (2)2x (3)3x (4)121-x 2.若14+a 有意义,则a 能取得的最小整数值是______. 3.若x x -+有意义,则=+1x ______.已知,a b 为两个连续整数,且a b <,则____a b +=.4有意义的实数x 的值有( )A .0个B .1个C .2个D .3个5P (,)a b 在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6、(1)已知,求x y的值.(2=0,求a 2012+b 2012的值.(3)已知实数x 、y 满足324422+--+-=x x x y ,求9x +8y 的值.。
16.1 二次根式〔第1课时〕教学内容本节课主要学习二次根式的概念及其运用教学目标一、知识技能理解并掌握二次根式的概念,掌握二次根式中被开方数的取值范围。
二、数学思考理解二次根式被开方数的取值范围的重要性。
三、解决问题培养根据条件处理问题的能力及分类讨论问题。
四、情感态度经历观察比拟总结和应用等数学活动,感受数学活动充满了探索性与创造性,体验发现的快乐,并提高应用的意识。
重难点、关键重点:会求二次根式中,被开方数所含字母的取值范围。
难点:理解二次根式的概念。
关键:利用“a〔a ≥0〕〞解决具体问题教学准备教师准备:制作课件,精选习题学生准备:复习有关知识,预习本节课内容教学过程情境引入【问题情境】1、面积为3的正方形的边长为,面积为S的正方形的边长为;2、要修建一个面积为6.28 m2的圆形喷水池,它的半径为 m〔π取〕;3、一个长方形的围栏,长是宽的2倍,面积为130m2,那么它的宽为;4、一个物体从高处自由落下,落到地面所用的时间t〔单位:s〕与开始落下时的高度h〔单位:m〕满足关系h=5t2 .如果用含有h的式子表示t,那么t = 。
【活动方略】学生根据所学知识答复以下问题。
【设计意图】由实际问题入手,设置情境问题,激发学生的兴趣,让学生从不同的式子中探寻规律,为二次根式的引入作好铺垫。
一、探索新知【提出问题】1、所填的结果有什么特点?2、平方根的性质是什么?3、如果把上面所填式子叫做二次根式,那么你能用数学符号表示二次根式吗?教师提出问题。
学生总结出二次根式的概念。
【设计意图】使学生有一个由浅入深的学习过程,并体会到学习的内容是融会贯穿的。
二、 范例点击例1当x 是怎样的实数时,2x -在实数范围内有意义? 例2当x 是怎样的实数时,2x 在实数范围内有意义?3x 呢?学生活动:合作交流,讨论解答。
【设计意图】通过题目的练习,使学生加深对所学知识的理解,掌握解答二次根式取值范围的习题,防止一些常见错误。
学习目标(1) 了解二次根式的概念,初步理解二次根式有意义的条件.
(2) 通过具体问题探求并掌握二次根式的基本性质:当≥0时,= ;能运用这个性质进行一些简单的计算与化简。
学习重难点教学重点二次根式的概念以及二次根式的基本性质
教学难点经历知识产生的过程,探索新知识.
教学流程
预
习
导
航问题:
1.回顾:什么叫平方根? 什么叫算术平方根?
2.计算:
(1)16的平方根是的平方根是 .
(3)圆的面积为s,则圆的半径是 .
(4)正方形的面积为,则边长为 .
3.对上面(2)~(4)题的结果,你能发现它们有什么共同的特征吗?
合
作
探
究一、概念探究:
1.二次根式的定义.
一般地,式子(≥0)叫做二次根式,a叫做被开方数。
说说你对二次根式的认识
当a < 0时,是否有意义?
当≥0时,是否可能为负数?
总结:二次根式有意义的条件是
2.二次根式性质的探索:
22=4,即()2= 4;32=9,即()2= 9;……
观察上述等式的两边,你得到什么启示?
当≥0时,
二、例题分析:
例1: x是怎样的实数时,式子在实数范围内有意义?
解:由x-5≥0,得x≥5
当x≥5时,式子在实数范围内有意义。
16.1 《 二次根式(1)》导学案课型: 上课时间: 课时: 学习内容:二次根式的概念及其运用学习目标:1a ≥0)的意义解答具体题目.2、提出问题,根据问题给出概念,应用概念解决实际问题. 学习过程一、自主学习(一)复习回顾:(1)已知a x =2,那么a 是x 的______;x 是a 的________, 记为______,a 一定是_______数。
(2)4的算术平方根为2,用式子表示为 =__________;正数a 的算术平方根为_______,0的算术平方根为_______;式子)0(0≥≥a a 的意义是 。
(二)课前预习 学生学习课本知识1、2页(1)16的平方根是 ;(2)一个物体从高处自由落下,落到地面的时间是t (单位:秒)与开始下落时的高度h (单位:米)满足关系式25t h =。
如果用含h 的式子表示t ,则t = ;(3)圆的面积为S ,则圆的半径是 ;(4)正方形的面积为3-b ,则边长为 。
思考:这些式子的实际意义.说一说他们的共同特征.定义: 一般地我们把形如a (0≥a )叫做二次根式,a 叫做_____________。
1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?1x x>0)1x y+x ≥0,y •≥0).解:二次根式有: ;不是二次根式的有: 。
2、当a 为正数时a 指a 的 ,而0的算术平方根是 ,负数 ,只有非负数a 才有算术平方根。
所以,在二次根式a 中,字母a4必须满足 , a才有意义。
试一试:当x在实数范围内有意义?解:由得:。
当时,在实数范围内有意义.二、学生小组交流解疑,教师点拨、拓展例3.当x11x+在实数范围内有意义?例4(1)已知,求xy的值(2)若,求a2004+b2004的值.三、巩固练习教材P 3 练习1、2.课本5页练习1四、课堂检测(1)、简答题1.下列式子中,哪些是二次根式那些不是二次根式?x 1 x(2)、填空题1.形如________的式子叫做二次根式.2.面积为5的正方形的边长为________.(3)、综合提高题1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.3.x有()个.A.0 B.1 C.2 D.无数4.已知a、b=b+4,求a、b的值.。
16。
1二次根式(1)一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
3、掌握二次根式的基本性质:)0(0≥≥a a 和)0()(2≥=a a a二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质. 难点:综合运用性质)0(0≥≥a a 和)0()(2≥=a a a .三、学习过程(一)复习引入:(1)已知x 2 = a ,那么a 是x 的______; x 是a 的________, 记为______, a 一定是_______数。
(2)4的算术平方根为2,用式子表示为 =__________;正数a 的算术平方根为_______,0的算术平方根为_______;式子)0(0≥≥a a 的意义是 .(二)提出问题1、式子a 表示什么意义?2、什么叫做二次根式?3、式子)0(0≥≥a a 的意义是什么?4、)0()(2≥=a a a 的意义是什么?5、如何确定一个二次根式有无意义?(三)自主学习自学课本第2页例前的内容,完成下面的问题:1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3,16-,34,5-,)0(3≥a a ,12+x 2、计算 :(1) 2)4( (2) (3)2)5.0( (4)2)31( 根据计算结果,你能得出结论: ,其中0≥a , )0()(2≥=a a a 的意义是 。
3、当a 为正数时指a 的 ,而0的算术平方根是 ,负数 ,2)3(________)(2=a 4只有非负数a 才有算术平方根。
所以,在二次根式中,字母a 必须满足 ,才有意义。
(三)合作探究 1、学生自学课本第2页例题后,模仿例题的解答过程合作完成练习 :x 取何值时,下列各二次根式有意义? ①43-x 223x + ③ 2、(1)33a a --有意义,则a 的值为___________.(2 在实数范围内有意义,则x 为( )。
子洲三中 “双主”高效课堂 数学 导学案
2014-2015
学年第一学期 姓名: 组名: 使用时间2014年 月 日
年 级
科 目
课 题
主 备 人 备 课 方 式
负责人(签字) 审核领导(签字) 序号 八(3) 数学
第七节 二次根式 第1课时
乔智
一、【学习目标】
1.理解二次根式的概念,明确它的限制条件。
2.理解二次根式的性质,并能运用其性质进行相关计算。
3.理解二次根式的乘除法则,会运用法则进行二次根式的运算。
二、【学习过程】 (一)、学习准备
1、算术平方根的概念:一般地,如果一个_______x 的平方等于,a 即,a x 2=那么这个_______x 就叫做,a 的________________,记为“a ”,读作“根号a ”。
2、常用的乘法公式:(1)平方差公式: ________________________;
(2)完全平方公式:________________________。
3、乘法对加法的分配律:________________________。
4、阅读教材:第七节《二次根式》(一) (二)、教材精读
5、二次根式的概念
例1求下列各数的算术平方根,并用符号表示出来: (1)2
4.7; (2)
2
9.3)(-; (3)2.25;
(4).
41
2
归纳:形如)0(≥a a 的式子叫做________________,其中____________叫做被开方数。
6、例2下列各式,哪些是二次根式? (1);6 (2);18- (3)12+x ; (4);83-
归纳:对二次根式概念的理解应注意以下四点:
(1)二次根式中都含有_______________________________;
(2)在二次根式中,被开方数a 必须满足__________,当________时,二次根式无意义; (3)在二次根式中,a 可以是一个____也可以是含字母的__________; (4)二次根式)0(≥a a 是a 的_______________,所以0______a 。
7、二次根式的乘、除法法则:
例3计算下列各式:(1);336⨯
(2)
3
12。
归纳:二次根的乘、除法法则:
(1));0,0(__________≥≥=b a ab (2)
)0,0(__________>≥=b a b a。
实践练习:计算(1);327⨯ (2)
8
1
23÷。
(三)、教材拓展
8、二次根式的重要公式
例4求下列各式的值(1)2)4(; (2);42 (3)2
)(a -。
归纳:1、);0__(__________2
≥=a a )( 2、⎩⎨⎧<≥==)0____(
)0____(
_________
2a a a 实践练习:化简2
52)(-
二、 合作探究
9、例5计算下列各式:(1);63527
8
⨯-)(
(2))52(1268-+÷⨯。
归纳:1、二次根式的运算顺序与实数的运算顺序一样,先算乘方,再算乘除,最后算加减,有括号的先算括号里面的。
2、多项式乘法法则和乘法公式对二次根式的运算同样适用。
实践练习:计算(1);)(2
26+ (2)0
)1()31(3312-+--÷π。
三、 形成提升
1、填空:(1)________;324
1222=+-)((2)________)12(2=+-;
(3)_______;224)2
6
(23=÷+-
⋅(4)_________)25)(25(=+-。
2、下列说法正确的是( ) A 、若,2
a a =则;0>a B 、6的平方根是;6 C 、若,2a a =则;0<a
D 、4284b a b a =。
3、计算(1)0
2
)3()15)(15()2
1(-+-++-π;(2))2762)(2762(+-。
4、已知,315,35-=+=+xy y x 求y x +的值。
四、 小结评价 一、本课知识:
1、二次根式有意义的条件:被开方数___________。
2、开平方运算对两个非负数的乘、除(除数不能为0)具有分配率,但对两数的加、减不具有分配率。
3、二次根式的乘、除法则:把系数_____,除作系数,被开方数相乘、除作被开方数,再化简。
4、整式的乘法公式,对二次根式的乘法,同样适用。
5、化简二次根式所需条件没有明确告知时,应首先从__________中寻找。
批改日期 月 日。