贵州专用2017秋九年级数学上册1.1第1课时菱形的性质教案2
- 格式:doc
- 大小:126.50 KB
- 文档页数:3
课题:1.1.2菱形的性质与判定教学目标:1.探索并掌握菱形的判定方法,积累经验,并能综合运用,形成解决问题的能力. 2.经历菱形的判定方法的探索过程,在活动中发展合情推理意识和主动探究的习惯,初步掌握说理的基本方法,发展有条理表达的能力.3.通过设置问题情境,丰富学生的生活经验,激发学生学习数学和应用数学的兴趣和意识. 教学重点与难点:重点:菱形判定定理的探索与证明. 难点:菱形判定定理的应用. 课前准备:制作课件. 教学过程:一、创设情境 导入新课活动内容:回答下列问题. (课件展示) 问题1:练一练1. 已知菱形的周长是12cm ,那么它的边长是______.2. 如图:菱形ABCD 中∠BAD =60 ,则∠ABD =_______.3. 菱形的两条对角线长分别为6cm 和8cm ,则菱形的边长是( )问题2:根据菱形的定义,有一组邻边相等的平行四边形是菱形.除此之外,你认为还有什么条件可以判断一个平行四边形是菱形?先想一想,再与同伴交流.处理方式:问题1先由学生回顾菱形的性质,再尝试解答,最后找3名学生分别说出答案,然后课件出示以“学海导航”的形式,回顾总结菱形的性质;对于问题2先由教师直接抛给学生,让学生思考、讨论,进而引入新课.设计意图:通过三个具体的题目回顾菱形的性质,从而更好让学生掌握所学知识. 二、探究学习,感悟新知师:可以发现,对角线互相垂直的平行四边形是菱形.下面我们证明这个结论. 活动1:对角线互相垂直的平行四边形是菱形. (出示课件) 问题1:如图,平行四边形 ABCD 的两条对角线AC 、BD 垂直相交于点O 。
四边形ABCD 是菱形吗?为什么?A师:除了运用对角线,你还有其他判定菱形的方法吗?活动2:四条边都相等的四边形是菱形.(出示课件)议一议:木工师傅在做菱形的窗格时,总是保证四条边框一样长,你能说出其中的道理吗?与同伴交流.处理方式:探寻菱形的判定方法,可以有两个思考角度:一是着眼于要判定的图形所属的X围:是平行四边形,还是四边形?二是着眼于要判定的图形的组成元素:考虑对角线,还是考虑边?先让学生自主推导,教师再利用课件演示推导过程,最后归纳总结菱形的判定方法.(出示课件) 对角线互相垂直的平行四边形是菱形.求证:四边形ABCD是菱形.证明:∵四边形ABCD是平行四边形,∴ OA=OC(平行四边形的对角线相互平分).又∵AC⊥BD,∴ BD所在直线是线段AC的垂直平分线,∴ AB=BC,∴四边形ABCD是菱形(有一组邻边相等的平行四边形是菱形).(出示课件)四条边都相等的四边形是菱形.已知:如图,四边形ABCD,AB=BC=CD=DA求证:四边形ABCD是菱形D证明:∵AB=CD,BC=AD,CA∴四边形ABCD 是平行四边形(两组对边分别相等的四边形是平行四边形). 又∵AB=BC ,∴四边形ABCD 是菱形(有一组邻边相等的平行四边形是菱形).设计意图:学生能否自主推导出来并不重要,重要的是由学生亲身经历判定的推导过程,只有经历了这一过程,他们才能发现问题、汲取教训、总结经验,形成自己的认识.在集体交流的时候,才能有感而发.三、例题解析,应用新知 活动内容: 问题1:例1 已知,AD 是△ABC 的角平分线,DE ∥AC 交AB 于点E ,DF ∥AB 交AC 于点F .求证:四边形AEDF 是菱形.C例2 已知:如图,在□ABCD 中,点O 是对角线AC 的中点,过点O 作AC 的垂线与边AD 、BC 交于点E 、F .求证:四边形AECF 是菱形.问题2:做一做:如何利用折纸、剪切的方法,既快又准确地剪出一个菱形的纸片? 小颖是这样做的:∟ABCDFE O做一做将一张长方形的纸对折、再对折,在有折痕的两边上各取一点连接成线(图中的虚线)沿此线剪下,打开即可.这就是另一类特殊的平行四边形,即菱形.你能说说她这样做的道理吗?处理方式:例1师生共同完成,例2先由学生独自完成后展示说明,学生之间互相补充,教师适时点评;问题2可以由学生按照小颖的做法现场动手操作,在操作中进一步感悟判定四边形是菱形的理由. 让学生自己通过对知识的理解,进行实际的应用,在自主探究下独立解决问题,初步明白遇到问题如何下手,从哪个角度思考、解决.在需要时教师加以引导,使得学生找出解题的关键点、得到正确答案,教师及时作出评价.设计意图:通过让学生口述交流或上黑板板演证明过程或动手操作,公示学生的思维过程,查缺补漏,了解学生的掌握情况和灵活运用所学知识的程度。
北师大版九年级上第一章《特殊平行四边形》《菱形的性质与判定》(第1课时)教案【教学目标】1.知识与技能(1).理解菱形的概念,了解它与平行四边形之间的关系.(2).经历菱形概念的抽象过程,以及它的性质的探索、猜测与证明的过程,丰富数学活动经验,进一步发展合情推理能力和演绎推理能力.2.过程与方法在探究活动中,学会与人合作并能与他人交流思维的过程和探究结果。
3.情感态度和价值观体会探索与证明过程中所蕴含的抽象、推理等数学思想.【教学重点】菱形的性质定理的证明【教学难点】菱形的性质定理的证明【教学方法】合作、探究【课前准备】多媒体课件【教学过程】一、导入新课导语:面几幅图片中都含有一些平行四边形。
观察这些平行四边形,你能发现它们有什么样的共同特征?与下图相比较,这些平行四边形特殊在哪里?这些平行四边形的邻边相等,像这样的平行四边形叫菱形。
二、探究新知1.菱形的定义:有一组邻边相等的平行四边形叫做菱形。
菱形在生活中随处可见,你能举出一些生活中菱形的例子吗?与同伴交流。
(1)菱形是特殊的平行四边形,它具有一般平行四边形的所有性质。
你能列举一些这样的性质吗?(菱形的对边平行且相等,对角相等,对角线互相平分。
中心对称图形)(2)你认为菱形还具有哪些特殊的性质?与同伴交流。
2.活动内容1:请同学们用你手中的菱形纸片折一折,回答下列问题:(1)菱形是轴对称图形吗?如果是,它有几条对称轴?对称轴之间有什么位置关系?菱形是轴对称图形,有两条对称轴,分别是两条对角线所在的直线,两条对称轴互相垂直。
(2)结合手中的折纸得到的菱形ABCD,找出图中相等的角和线段。
由折纸过程和对称轴的性质可得相等的角有:∠1=∠2;∠3=∠4;∠5=∠6;∠7=∠8;相等的线段有:AB=BC=CD=DA.处理方式:让学生利用课前准备的菱形纸片进行折叠,折叠的过程中,让学生回顾轴对称图形的意义及轴对称图形的性质,从而发现菱形的“特殊”性质,感受折纸过程对性质的初步验证.设计意图:通过折纸这一过程,引导学生发现菱形的对称性,即菱形不只是中心对称图形,还是轴对称图形,在操作过程中验证菱形的特殊性质,鼓励学生通过多种方法验证发现的结论.活动内容2:菱形性质定理的证明如何推理证明“菱形的四条边相等,对角线互相垂直”这两个性质呢? 已知:如图,在菱形ABCD 中, AB =AD ,对角线AC 与BD 相交于点O .求证:(1)AB =BC =CD =AD ;(2)AC ⊥BD .处理方式:让学生从平行四边形的性质出发,独立思考、分析证明思路.第(2)题多数学生可能会应用全等三角形的性质,想不到利用“等腰三角形的三线合一”性质,教师引导学生互相交流、确定证明思路,最后找一名学生板书证明过程,教师规范解题过程的书写.证明:(1)∵ 四边形ABCD 是菱形, ∴AB=CD ,AD=BC (菱形的对边相等). 又∵AB=AD , ∴ AB=BC=CD=AD . (2)∵AB=AD , ∴△ABD 是等腰三角形. 又∵ 四边形ABCD 是菱形,∴OB=OD (菱形的对角线互相平分). 在等腰三角形ABD 中, ∵OB=OD , ∴ AO ⊥BD . 即 AC ⊥BD .设计意图:通过对性质的分析与证明,一方面让学生养成独立思考问题的习惯,对于不能独立解决的问题,引导学生发挥小组合作的作用,提高学生的交流能力;另一方面通过解题过程的板书提高学生的书写能力,养成规范书写的习惯.教师强调:菱形的性质定理1、对角线互相垂直且平分,并且每条对角线平分一组对角;2、四条边都相等,对边平行且相等;3、对角相等,邻角互补;ACDBO4、菱形既是轴对称图形,对称轴是两条对角线所在直线,也是中心对称图形,5、菱形是特殊的平行四边形,它具备平行四边形的一切性质. 三、例题讲解例1.如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,下列说法错误的是( B ) A .AB//DC B .AC =BD C .AC ⊥BD D .OA =OC解析:根据菱形的性质:对角线互相垂直且平分得到C ,D 是正确的,再根据菱形的对边平行得到A 是正确的,故选B 。
1.1菱形的性质与判定第1课时菱形的性质1.通过折、剪纸张的方法,探索菱形独特的性质,理解菱形与平行四边形之间的联系;2.通过学生间的交流、讨论、分析、类比、归纳,运用已学过的知识总结菱形的特征;3.掌握菱形的概念和菱形的性质以及菱形的面积公式的推导.(重点、难点)一、情景导入请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念.让学生举一些日常生活中所见到过的菱形的例子.总结:(1)菱形必须满足两个条件:一是平行四边形;二是有一组邻边相等.(2)菱形是特殊的平行四边形,即当一个平行四边形的一组邻边相等时,该平行四边形是菱形.不能忽略平行四边形这一前提,而错误地认为有一组邻边相等的四边形就是菱形.二、合作探究探究点一:菱形的性质【类型一】菱形的四条边相等如图所示,在菱形ABCD中,已知∠A=60°,AB=5,则△ABD的周长是()A.10B.12C.15D.20解析:根据菱形的性质可判断△ABD是等边三角形,继而根据AB=5求出△ABD 的周长.∵四边形ABCD是菱形,∴AB=AD.又∵∠A=60°,∴△ABD是等边三角形,∴△ABD的周长=3AB=15.故选C.方法总结:如果一个菱形的内角为60°或120°,则两边与较短对角线可构成等边三角形,这是非常有用的基本图形.【类型二】菱形的对角线互相垂直如图所示,在菱形ABCD中,对角线AC、BD相交于点O,BD=12cm,AC =6cm,求菱形的周长.解析:由于菱形的四条边都相等,所以要求其周长就要先求出其边长.由菱形性质可知,其对角线互相垂直平分,因此可以在直角三角形中利用勾股定理进行计算.解:因为四边形ABCD 是菱形, 所以AC ⊥BD , AO =12AC ,BO =12BD .因为AC =6cm ,BD =12cm , 所以AO =3cm ,BO =6cm.在Rt △ABO 中,由勾股定理,得 AB =AO 2+BO 2=32+62=35(cm).所以菱形的周长=4AB =4×35=125(cm).方法总结:因为菱形的对角线把菱形分成四个全等的直角三角形,所以菱形的有关计算问题常转化到直角三角形中求解. 【类型三】 菱形是轴对称图形如图,在菱形ABCD 中,CE ⊥AB于点E ,CF ⊥AD 于点F ,求证:AE =AF .解析:要证明AE =AF ,需要先证明△ACE ≌△ACF.证明:连接AC .∵四边形ABCD 是菱形, ∴AC 平分∠BAD , 即∠BAC =∠DAC . ∵CE ⊥AB ,CF ⊥AD , ∴∠AEC =∠AFC =90°. 在△ACE 和△ACF 中, ⎩⎪⎨⎪⎧∠AEC =∠AFC ,∠BAC =∠DAC ,AC =AC , ∴△ACE ≌△ACF .∴AE =AF .方法总结:菱形是轴对称图形,它的两条对角线所在的直线都是它的对称轴,每条对角线平分一组对角.探究点二:菱形的面积的计算方法如图所示,在菱形ABCD 中,点O 为对角线AC 与BD 的交点,且在△AOB 中,AB =13,OA =5,OB =12.求菱形ABCD 两对边的距离h.解析:先利用菱形的面积等于两条对角线长度乘积的一半求得菱形的面积,又因为菱形是特殊的平行四边形,其面积等于底乘高,也就是一边长与两边之间距离的乘积,从而求得两对边的距离.解:在Rt △AOB 中,AB =13,OA =5,OB =12,于是S △AOB =12OA ·OB =12×5×12=30,所以S 菱形ABCD =4S △AOB =4×30=120.又因为菱形两组对边的距离相等, 所以S 菱形ABCD =AB ·h =13h , 所以13h =120,得h =12013.方法总结:菱形的面积计算有如下方法:(1)一边长与两对边的距离(即菱形的高)的积;(2)四个小直角三角形的面积之和(或一个小直角三角形面积的4倍);(3)两条对角线长度乘积的一半.三、板书设计菱形错误!为学生提供动手实践、研究探讨的时间与空间,让学生经历知识发生、发展的全过程,培养学生自主学习、合作学习、主动获取知识的能力,使学生经历实践、推理、交流等数学活动过程,亲身体验数学思想方法及数学观念,培养学生能力,促进学生发展.。
第一章特殊平行四边形1菱形的性质与判定第1课时菱形的性质、教学设计课题第1课时菱形的性质授课人教学目标知识技能1.掌握菱形的概念和性质,理解菱形与平行四边形的区别与联系.2.了解菱形在生活中的应用实例,能根据菱形的性质解决简单的实际问题.数学思考1.通过观察、试验、猜想、验证、推理、交流等数学活动发展学生的合情推理能力和动手操作能力及应用数学的意识和能力.2.运用菱形知识解决具体问题,培养逻辑推理能力和演绎能力.问题解决由菱形的定义能从数学的角度去探究菱形的特殊性质,并能运用菱形的性质进行有关的证明和计算,发展应用意识.情感态度在应用菱形的性质的过程中培养学生独立思考的习惯以及在数学活动中获得成功的体验.教学重点菱形的性质及其应用.教学难点菱形性质“对角线互相垂直平分”的探究.授课类型新授课课时教具可活动操作的平行四边形模型(多媒体)(续表)教学活动教学步骤师生活动设计意图回顾我们学习了平行四边形,还记得什么样的四边形是平行四边形吗?它都具有哪些性质(从边、角、对角线及对称性方面展开)?学生回忆并回答,为本课的学习提供迁移或类比方法.活动 一: 创设 情境 导入 新课1.观察以下平行四边形图片,你能发现什么?图1-1-82.教师播放课件,将平行四边形的一边慢慢地平移,直到相邻两边长度相等.让学生拿出平行四边形木框(可活动的),操作:平移平行四边形的一条边,使它与相邻的一条边相等,可以得到一个菱形.归纳:菱形定义:__有一组邻边相等__的平行四边形叫做菱形.3.举出几个生活中有关菱形的例子.图1-1-9可伸缩的衣架、中国结、伸缩门等.1.观察平行四边形中的特殊平行四边形,获得菱形的初步感性认识.2.理清平行四边形与菱形的关系,引出本节课活动的主题.3.让学生收集并在课堂上交流生活中的菱形图片,调动学生的求知欲,激发学生的探究意识,再通过教师的教具操作感受菱形的定义.活动二: 实践 探究 交流新知【探究1】 菱形是特殊的平行四边形,因此具有平行四边形的所有性质:对边__平行且相等__,对角__相等__,对角线__互相平分__.【探究2】 请同学们拿出长方形纸片,对折两次,然后沿图中虚线剪下,再打开,看一看得到了什么图形.观察这个图形(菱形),它是轴对称图形吗?有几条对称轴?对称轴在什么位置上?你能找出图中相等的线段和角吗?图1-1-10 学生活动:动手操作后发现:菱形是轴对称图形,对称轴就是它的对角线所在的直线(两条).从而利用轴对称图形的性质可得: 菱形性质:(1)菱形的四条边都相等; (2)菱形的两条对角线互相垂直平分,并且每一条对角线平分一组对角. 教师提出问题:你能证明上述结论吗? 学生独立思考后自主交流,通过交流明确目前证明线段、 1.通过折纸游戏,培养学生的动手操作能力.同时,进一步体会菱形的对称美,并为探索菱形的性质作准备.2.在学生独立思考后再通过交流和引导,明确目前证明线段、角相等的常用方法,让学生感受数学的严谨性,培养学生合情推理的能力.3.对菱形性质的归纳,是学生对菱角相等的方法是利用平行四边形的性质、三角形全等以及等腰三角形的性质.根据情况选择简便有效的证明方法.学生口述证明过程.学生完成证明过程,培养推理能力,通过证明,验证猜想的正确性,让学生感受到数学结论证明的必要性.教师深入到学生中对需要帮助的学生进行指导.证明完成后,归纳菱形的两个性质.归纳:(1)菱形的四条边__相等__;(2)菱形的对角线互相__垂直平分__,并且每一条对角线平分一组对角. 形特征的认识,是知识的一次升华,培养学生的概括能力,突出教学重点.活动三:开放训练体现应用【应用举例】例如图1-1-11,在菱形ABCD中,对角线AC与BD相交于点O,∠BAD=60°,BD=6,求菱形的边长AB和对角线AC的长.图1-1-11[变式题1] (交换条件与结论)如图1-1-12,菱形花坛ABCD的边长为20米,∠ABC=60°,沿着菱形的对角线修建了两条小路AC和BD,求两条小路的长.图1-1-12学生交流,教师讲解,提出不同思路:(1)利用直角三角形有关知识;(2)利用等边三角形有关知识.由于菱形ABCD中,AB=BC,又因为∠ABC=60°,所以△ABC是等边三角形,即AC=AB=20米,AO=10米,再应用勾股定理求BO,从而求出BD.讲评策略:先由学生提出方法,然后老师总结,最后板演.[变式题2] (模仿)如图1-1-13,菱形ABCD中,∠ADC=120°,AC=12 3 cm.(1)求BD的长;(2)写出点A,B,C,D的坐标.审题是解题的关键,通过运用菱形的性质,学会解决简单的实际问题,让学生认识到数学在现实世界中有着广泛的应用,培养了学生的应用意识.采取了启发式教学发挥学生的潜能,培养学生一题多解的思维习惯.图1-1-13【拓展提升】1.用定义判定菱形例1如图1-1-14,AD是△ABC的角平分线,DE∥AC,DF∥AB,求证:四边形AEDF是菱形.图1-1-142.运用菱形的性质计算或证明例2已知:如图1-1-15,菱形ABCD中,E,F分别是CB,CD上的点,且BE=DF.求证:∠AEF=∠AFE.图1-1-15例3如图1-1-16,菱形ABCD中,∠BAD=60°,E为AB边上一点,且AE=3,BE=5,在对角线AC上找一点P,使PE+PB的值最小,则最小值为________.图1-1-161.引导学生根据定义证四边形是菱形,要满足两个条件:(1)有一组邻边相等;(2)是平行四边形.让学生悟出证明的方法.2.知识的综合与拓展,提高应考能力.活动四:课堂总结反思【当堂训练】1.课本P4中的随堂练习2.课本P4习题1.1中的T1、T2、T4当堂检测,及时反馈学习效果.【知识网络】提纲挈领,重点突出.平行四边形――→一组邻边相等菱形⎩⎪⎨⎪⎧定义性质⎩⎪⎨⎪⎧定理1定理2对称性⎩⎪⎨⎪⎧轴对称图形中心对称图形【教学反思】①[授课流程反思]设置大量的菱形图片,体现数学来源于生活,通过平移平行四边形的一条边得到菱形,让学生感知菱形与平行四边形之间的特例关系,让学生在轻松愉快中自然、水到渠成地得到菱形的定义.②[讲授效果反思]通过折纸操作、观察、猜想,探索出菱形的性质,让学生切身感受到自己是学习的主人,为学生今后获取知识、探索发现和创造打下了良好的基础.这种方法符合学生认识图形的过程,培养了学生主动探索、敢于实践、善于发现的科学精神以及合作交流的学习习惯,最后升华到理论层次,利用平行四边形的性质、三角形全等以及等腰三角形的性质对菱形的性质加以证明.③[师生互动反思]______________________________________________________________________________________________ ④[习题反思]好题题号______________________________ __ 错题题号_______________________________________ 反思,更进一步提升. 、导学设计1.1 菱形的性质与判定(一)学习目标:①通过折、剪纸张的方法,探索菱形独特的性质。
第一章特殊平行四边形1.1菱形的性质与判定第1课时菱形的性质一、教学目的:1.掌握菱形概念,知道菱形与平行四边形的关系.2.理解并掌握菱形的定义及性质1、2;会用这些性质进行有关的论证和计算,会计算菱形的面积.3.通过运用菱形知识解决具体问题,提高分析能力和观察能力.4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.二、重点、难点1.教学重点:菱形的性质1、2.2.教学难点:菱形的性质及菱形知识的综合应用.三、例题的意图分析本节课安排了三个例题,例1是教材P3中的例2,例2是一道补充题,是为了巩固菱形的性质,例3一道用菱形知识与直角三角形知识来求菱形面积的实际应用问题.此题目,除用以巩固菱形性质外,还可以引导学生用不同的方法来计算菱形的面积,以促进学生熟练、灵活地运用知识.四、课堂引入1.(复习)什么叫做平行四边形?2.(引入)我们已经学习了平行四边形请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念.菱形定义:有一组邻边相等的平行四边形叫做菱形.【强调】菱形(1)是平行四边形;(2)一组邻边相等.让学生举一些日常生活中所见到过的菱形的例子.五、例题分析例1 (教材P3例1)略例2(补充)已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.求证:∠AFD=∠CBE.证明:∵四边形ABCD是菱形,∴CB=CD,CA平分∠BCD.∴∠BCE=∠DCE.又CE=CE,∴△BCE≌△COB(SAS).∴∠CBE=∠CDE.∵在菱形ABCD中,AB∥CD,∴∠AFD=∠FDC∴∠AFD=∠CBE.例3 (教材P8例3)略六、随堂练习1.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为.2.已知菱形的两条对角线分别是6cm和8cm ,求菱形的周长和面积.3.已知菱形ABCD的周长为20cm,且相邻两内角之比是1∶2,求菱形的对角线的长和面积.4.已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE.七、课后练习1.菱形ABCD中,∠D∶∠A=3∶1,菱形的周长为8cm,求菱形的高.2.如图,四边形ABCD是边长为13cm的菱形,其中对角线BD长10cm,求(1)对角线AC的长度;(2)菱形ABCD的面积.。
第一章特殊平行四边形1.1菱形的性质与判定第1课时菱形的性质初中数学公式大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12 两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180 °18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形21 平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形22 平行四边形判定定理 3 对角线互相平分的四边形是平行四边形23 平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形24 矩形性质定理 1 矩形的四个角都是直角25 矩形性质定理 2 矩形的对角线相等26 矩形判定定理 1 有三个角是直角的四边形是矩形27 矩形判定定理 2 对角线相等的平行四边形是矩形28 菱形性质定理 1 菱形的四条边都相等29 菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角30 菱形面积= 对角线乘积的一半,即S= (a×b )÷231 菱形判定定理1 四边都相等的四边形是菱形32 菱形判定定理2 对角线互相垂直的平行四边形是菱形33 正方形性质定理1 正方形的四个角都是直角,四条边都相等34 正方形性质定理2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角35 定理1 关于中心对称的两个图形是全等的36 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分37 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称38 等腰梯形性质定理等腰梯形在同一底上的两个角相等。
第一章特殊平行四边形1.1菱形的性质与判定第1课时菱形的性质教学目标1、会归纳菱形的特性并进行证明;2、能运用菱形的性质定理进行简单的计算与证明;3、在进行探索、猜想、证明过程中,进一步发展推理论证的能力,体会证明的必要性。
重点:菱形的性质定理证明难点:菱形的性质定理证明、运用,生活数学与理论数学的相互转化。
知识链接:平行四边形的性质与判定一、课前预习:1.复习平行四边形的性质。
边:角:对角线:对称性:2。
菱形的定义是什么?___ ____菱形是不是中心对称图形? ,对称中心是___ __ 3。
请动手制作一个菱形,折—折,观察并填空。
菱形是不是轴对称图形? ,对称轴有几条?_______,分别是 ___ ____二、探索活动:探索活动(一):菱形是一种特殊的平行四边形,具有平行四边形的所有性质.菱形特有的性质是(性质定理):菱形的四条边_______ ______;菱形的对角线____ _________。
探索活动(二):试证明上述定理已知:_____________________________________.求证:(1)__________________________;(2)__________________________。
探索活动(三):已知菱形ABCD的两条对角线AC、BD相交于点O,图中存在特殊的三角形吗?如果菱形的两条对角线长分别为6和8,由此你能获得有关这个菱形的哪些结论?(可得到边长为;周长为面积为 )你认为菱形的面积与菱形的两条对角线的长有关吗?如果有关,怎样根据菱形的对角线的计算它的面积?由此可得:菱形的面积__________________________________.由此得到菱形的两种面积计算方法:1. _____________________________________________2。
_____________________________________________你会计算菱形的周长吗?三、例题精讲例1.课本3页例1例2.已知:在菱形ABCD中,对角线AC、BD相交于点O,E、F、G、H 分别是菱形ABCD各边的中点,求证:OE=OF=OG=OH。
第一章特殊平行四边形
1.1菱形的性质与判定
第1课时菱形的性质
课题菱形的性质课型新授课
教学目标1.经历探索、猜想、证明的过程,进一步发展推理论证的能力。
2.能运用综合法证明菱形的性质定理。
3.体会证明过程中所运用的归纳概括以及转化等数学思想方法。
教学重点掌握菱形的性质。
教学难点运用菱形的性质解决与菱形有关的问题。
教学方法讲练结合法
教学后记
教学内容及过程备注
一、回顾交流,引出概念
1.提问:什么是平行四边形?学生回顾交流。
2.教师出示生活中菱形的例子,引出这类特殊的平行四边形——
菱形,并得出菱形的概念:
有一组邻边相等的平行四边形叫做菱形。
二、师生互动,探究新知
1.教师组织学生活动,通过折菱形纸片,得出以下结论:
(1)菱形是轴对称图形;
(2)菱形的四条边相等;
(3)菱形的对角线互相垂直。
2.如何证明上面的(2)和(3)呢?教师引导学生证明,进而得
出以下定理:
定理菱形的四条边都相等。
定理菱形的对角线互相垂直。
二、范例学习,实战演练
教师出示幻灯片:
例2 如图,在菱形ABCD中,
对角线AC与BD相交于点O,角BAD=
60度,BD=6,求菱形的边长AB和对
角线AC的长。
针对以上例题,学生先思考交流,
然后教师引导,并放映解答步骤,后教师总结思路。
三、随堂练习,巩固新知
课本随堂练习 P4
四、课堂总结
菱形具有平行四边形的所有性质,菱形的四边相等;对角线互相垂直。
五、布置作业
课本习题1.1 1、2、3
1.3 3。
第 1 页 共 3 页第一章 特殊平行四边形1.1 菱形的性质与判定第1课时 菱形的性质 学习目标: ①通过折、剪纸张的方法,探索菱形独特的性质。
②通过学生间的交流、计论、分析、类比、归纳、运用已学过的知识总结菱形的特征。
教学重点:菱形的概念和菱形的性质,菱形的面积公式的推导。
教学难点:菱形的性质的理解及菱形性质的灵活运用。
【预习案】学习过程: 活动一: 自学课本例题以上的内容,完成下列问题:1. 如何从一个平行四边形中剪出一个菱形来?的四边形叫做菱形,生活中的菱形有 。
【探究案】2. 按探究步骤剪下一个四边形。
①所得四边形为什么一定是菱形?②菱形为什么是轴对称图形?有 对称轴。
图中相等的线段有:图中相等的角有: ③你能从菱形的轴对称性中得到菱形所具有的特有的性质吗?自己完成证明。
性质:证明:平行四边形菱形 ?第 2 页 共 3 页活动二:对比菱形与平行四边形的对角线菱形的对角线:平行四边的对角线:活动三:菱形性质的应用1.菱形的两条对角线的长分别是6cm 和8c m ,求菱形的周长和面积。
【训练案】2.如图,菱形花坛ABCD 的边长为20cm ,∠ABC=60°沿菱形的两条对角线修建了两条小路AC 和BD ,求两条小路的长和花坛的面积。
课效检测:一、填空(1)菱形的两条对角线长分别是12cm ,16cm ,它的周长等于 ,面积等于 。
(2)菱形的一条边与它的两条对角线所夹的角比是3:2,菱形的四个内角是 。
(3)已知:菱形的周长是20cm ,两个相邻的角的度数比为1:2,则较短的对角线长是 。
(4)已知:菱形的周长是52 cm ,一条对角线长是24 cm ,则它的面积是 。
二、解答题已知:如图,在菱形ABCD 中,周长为8cm ,∠BAD=1200 对角线AC ,BD 交于点O ,求这个菱形的对角线长和面积。
A BC DO第 3 页共3 页。
逸夫中学电子备课本年级九年级学科数学姓名高丽2017-2018 学年第一学期九年级数学科教学设计课题 1.1菱形的性质与判定课时三课时主备教师罗彩玲研讨时间9月1日执行教师高丽上课时间9月4日教学目标知识与技能:1、了解菱形的概念及其与平行四边形的关系;2、能够用综合法证明菱形的性质定理和判定定理。
过程与方法:经历探索、猜想、证明的过程,进一步发展推理论证能力。
情感态度价值观:体会证明过程中所运用的归纳、概括以及转化的数学思想方法,培养学生热爱数学,积极探索,勇于创新的精神。
教学重点菱形性质定理和判定定理的综合运用教学难点探索菱形的性质定理和判定定理教具使用三角板教法选择启发式教学教学过程教师活动学生活动个性思考第一环节设置情境,提出课题请同学们观察课本第2页的图片,你能从中发现你熟悉的图形吗?你认为它们有什么样的共同特征呢?(教师引导并总结)定义: 一组邻边相等的平行四边形叫做菱形. 学生认真观察,积极思考要让学生体会数学来源于生活,让学生去发现生活中因为有了数学而变得更精彩,从而提高学生学习数学的兴趣。
第二环节猜想、探究与证明探究一:菱形的性质活动一:想一想(1)菱形是特殊的平行四边形,它具有一般平行四边形的所有性质。
你能列举一些这样的性质吗?(2)你认为菱形还具有哪些特殊的性质?请你与同伴交流。
活动二:做一做请同学们用菱形纸片折一折,回答下列问题:(1)菱形是轴对称图形吗?如果是,它有几条对称轴?对称轴之间有什么位置关系?(2)菱形中有哪些相等的线段?师生总结:性质1:菱形既是中心对称图形,也是轴对称图形;性质2:菱形的四条边相等;性质3:两条对角线互相垂直平分,并且每一条对角线平分每一组对角。
活动三:证明菱形性质已知:在菱形ABCD中,AB=AD,对角线AC与BD相交于点O.求证:(1)AB=BC=CD=AD;(2)AC⊥BD. 学生独立思考后,让尽可能多的组员发言,并汇总结果。
分小组折纸探索教师的问题答案。
第2课时 菱形的判定1.理解并掌握菱形的判定方法;(重点) 2.灵活运用菱形的判定方法进行有关的证明和计算.(难点)一、情景导入 木工在做菱形的窗格时,总是保证四条边框一样长,你知道其中的道理吗?借助以下图形探索:如图,在四边形ABCD 中,AB =BC =CD =DA ,试说明四边形ABCD 是菱形.二、合作探究 探究点一:对角线互相垂直的平行四边形是菱形如图所示,ABCD 的对角线B D 的垂直平分线与边AB ,CD 分别交于点E ,F .求证:四边形DEBF 是菱形. 解析:本题首先应用到平行四边形的性质,其次应用到菱形的判定方法.要证四边形DEBF 是菱形,可以先证明其为平行四边形,再利用“对角线互相垂直”证明其为菱形.证明:∵四边形ABCD 是平行四边形, ∴AB ∥DC .∴∠FDO =∠EBO . 又∵EF 垂直平分BD , ∴OB =OD .在△DOF 和△BOE 中,⎩⎪⎨⎪⎧∠FDO =∠EBO ,OD =OB ,∠FOD =∠EOB ,∴△DOF ≌△BOE (ASA).∴OF =OE . ∴四边形DEBF 是平行四边形. 又∵EF ⊥BD ,∴四边形DEBF 是菱形.方法总结:用此方法也可以说是对角线互相垂直平分的四边形是菱形,但对角线互相垂直的四边形不一定是菱形,必须强调对角线是互相垂直且平分的. 探究点二:四边相等的四边形是菱形如图所示,在△ABC 中,∠B =90°,AB =6cm ,BC =8cm.将△ABC 沿射线BC 方向平移10cm ,得到△DEF ,A ,B ,C 的对应点分别是D ,E ,F ,连接AD .求证:四边形ACFD 是菱形.解析:根据平移的性质可得CF =AD =10cm ,DF =AC ,再在Rt△ABC 中利用勾股定理求出AC 的长为10cm ,就可以根据四边相等的四边形是菱形得到结论.证明:由平移变换的性质得CF =AD =10cm ,DF =AC . ∵∠B =90°,AB =6cm ,BC =8cm ,∴AC =AB 2+BC 2=62+82=10(cm),∴AC =DF =AD =CF =10cm , ∴四边形ACFD 是菱形. 方法总结:当四边形的条件中存在多个关于边的等量关系时,运用四条边都相等来判定一个四边形是菱形比较方便.探究点三:菱形的判定和性质的综合应用如图所示,在△ABC 中,D 、E 分别是AB 、AC 的中点,BE =2DE ,延长DE 到点F ,使得EF =BE ,连接CF .(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为23,∴菱形的面积为4×23=8 3.方法总结:判定一个四边形是菱形时,要结合条件灵活选择方法.如果可以证明四条边相等,可直接证出菱形;如果只能证出一组邻边相等或对角线互相垂直,可以尝试证出这个四边形是平行四边形,然后用定义法或判定定理1来证明菱形.三、板书设计菱形的判定错误!以及转化等数学方法.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.。
1.1菱形的性质与判定第1课时菱形的性质1.通过折、剪纸张的方法,探索菱形独特的性质,理解菱形与平行四边形之间的联系;2.通过学生间的交流、讨论、分析、类比、归纳,运用已学过的知识总结菱形的特征;3.掌握菱形的概念和菱形的性质以及菱形的面积公式的推导.(重点、难点)一、情景导入请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念.让学生举一些日常生活中所见到过的菱形的例子.总结:(1)菱形必须满足两个条件:一是平行四边形;二是有一组邻边相等.(2)菱形是特殊的平行四边形,即当一个平行四边形的一组邻边相等时,该平行四边形是菱形.不能忽略平行四边形这一前提,而错误地认为有一组邻边相等的四边形就是菱形.二、合作探究探究点一:菱形的性质【类型一】菱形的四条边相等如图所示,在菱形ABCD中,已知∠A=60°,AB=5,则△ABD的周长是()A.10B.12C.15D.20解析:根据菱形的性质可判断△ABD是等边三角形,继而根据AB=5求出△ABD 的周长.∵四边形ABCD是菱形,∴AB=AD.又∵∠A=60°,∴△ABD是等边三角形,∴△ABD的周长=3AB=15.故选C.方法总结:如果一个菱形的内角为60°或120°,则两边与较短对角线可构成等边三角形,这是非常有用的基本图形.【类型二】菱形的对角线互相垂直如图所示,在菱形ABCD中,对角线AC、BD相交于点O,BD=12cm,AC =6cm,求菱形的周长.解析:由于菱形的四条边都相等,所以要求其周长就要先求出其边长.由菱形性质可知,其对角线互相垂直平分,因此可以在直角三角形中利用勾股定理进行计算.解:因为四边形ABCD 是菱形, 所以AC ⊥BD , AO =12AC ,BO =12BD .因为AC =6cm ,BD =12cm , 所以AO =3cm ,BO =6cm.在Rt △ABO 中,由勾股定理,得 AB =AO 2+BO 2=32+62=35(cm).所以菱形的周长=4AB =4×35=125(cm).方法总结:因为菱形的对角线把菱形分成四个全等的直角三角形,所以菱形的有关计算问题常转化到直角三角形中求解. 【类型三】 菱形是轴对称图形如图,在菱形ABCD 中,CE ⊥AB于点E ,CF ⊥AD 于点F ,求证:AE =AF .解析:要证明AE =AF ,需要先证明△ACE ≌△ACF .证明:连接AC .∵四边形ABCD 是菱形, ∴AC 平分∠BAD , 即∠BAC =∠DAC . ∵CE ⊥AB ,CF ⊥AD , ∴∠AEC =∠AFC =90°. 在△ACE 和△ACF 中, ⎩⎪⎨⎪⎧∠AEC =∠AFC ,∠BAC =∠DAC ,AC =AC , ∴△ACE ≌△ACF .∴AE =AF .方法总结:菱形是轴对称图形,它的两条对角线所在的直线都是它的对称轴,每条对角线平分一组对角.探究点二:菱形的面积的计算方法如图所示,在菱形ABCD 中,点O 为对角线AC 与BD 的交点,且在△AOB 中,AB =13,OA =5,OB =12.求菱形ABCD 两对边的距离h .解析:先利用菱形的面积等于两条对角线长度乘积的一半求得菱形的面积,又因为菱形是特殊的平行四边形,其面积等于底乘高,也就是一边长与两边之间距离的乘积,从而求得两对边的距离.解:在Rt △AOB 中,AB =13,OA =5,OB =12,于是S △AOB =12OA ·OB =12×5×12=30,所以S 菱形ABCD =4S △AOB =4×30=120.又因为菱形两组对边的距离相等, 所以S 菱形ABCD =AB ·h =13h , 所以13h =120,得h =12013.方法总结:菱形的面积计算有如下方法:(1)一边长与两对边的距离(即菱形的高)的积;(2)四个小直角三角形的面积之和(或一个小直角三角形面积的4倍);(3)两条对角线长度乘积的一半.三、板书设计菱形错误!为学生提供动手实践、研究探讨的时间与空间,让学生经历知识发生、发展的全过程,培养学生自主学习、合作学习、主动获取知识的能力,使学生经历实践、推理、交流等数学活动过程,亲身体验数学思想方法及数学观念,培养学生能力,促进学生发展.。
第一章特殊平行四边形第1节菱形的性质与判定(二)第2课时菱形的判定【学习目标】1、理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;2、在菱形判定方法的探索与综合应用中,锻炼学生的观察能力、动手能力及逻辑思维能力。
【学习重点】菱形的两个判定方法。
【学习过程】模块一预习反馈一、知识回顾1、菱形的性质:①菱形具有的一切性质。
②菱形的四条边都。
③菱形的对角线,并且每条对角线都一组对角。
二、自主学习阅读教材后,解答下列问题:1、菱形的定义:有一组的平行四边形是菱形。
(定义是性质,也是判别。
)2、菱形的判定:(1)用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形。
转动木条,这个四边形什么时候变成菱形?通过探究,容易得到:对角线的平行四边形是菱形。
(2)李阳同学先画两条等长的线段AB、AD,然后分别以B、D为圆心,AB为半径画弧,得到两弧的交点C,连接BC、CD,就得到了一个四边形,猜一猜,这是什么四边形?请你画一画。
通过探究,容易得到:四边的四边形是菱形。
【我的疑惑】模块二合作探究1、如图,ABCD的两条对角线AC、BD相交于点O,AB= 5,AC=8,DB=6。
求证:四边形ABCD是菱形。
2、如图,两张等宽(即AE=AF)的纸条交叉重叠在一起,重叠的部分ABCD是菱形吗?求证:(1)四边形ABCD是平行四边形;(2)四边形ABCD是菱形。
模块三、小结反思讲一下你本节课学习了哪些新知识?用到了什么方法或数学思想?1.知识:2.方法:模块四、形成提升1、若要使平行四边形ABCD成为菱形.则需要添加的条件是()A、AB=CDB、AD=BCC、AB=BCD、AC=BD2、已知:如图ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F。
求证:(1)△AOE≌△COF;(2)四边形AFCE是菱形。
【拓展延伸】1、已知:如图,△ABC中,∠BAC的平分线交BC于点D,E是AB上一点,且AE=AC,EF∥BC交AD于点F ,求证:四边形CDEF 是菱形。