古典概型与几何概型文科修改
- 格式:doc
- 大小:325.00 KB
- 文档页数:4
专题三概率与统计建知识网络明内在联系扫一扫,各专题近五年全国考点分布高考点拨]本专题涉及面广,往往以生活中的热点问题为依托,在高考中的考查方式十分灵活,考查内容强化“用数据说话,用事实说话”,背景容易创新.基于上述分析,本专题按照“用样本估计总体”“古典概型与几何概型”“独立性检验与回归分析”三个方面分类进行引导,强化突破.突破点古典概型与几何概型提炼古典概型问题的求解技巧()直接列举:涉及一些常见的古典概型问题时,往往把事件发生的所有结果逐一列举出来,然后进行求解.()画树状图:涉及一些特殊古典概型问题时,直接列举容易出错,通过画树状图,列举过程更具有直观性、条理性,使列举结果不重、不漏.()逆向思维:对于较复杂的古典概型问题,若直接求解比较困难,可利用逆向思维,先求其对立事件的概率,进而可得所求事件的概率.()活用对称:对于一些具有一定对称性的古典概型问题,通过列举基本事件个数结合古典概型的概率公式来处理反而比较复杂,利用对称思维,可以快速解决.提炼几何度量法求解几何概型准确确定度量方式和度量公式是求解几何概型的关键,常见的几何度量涉及的测度主要包括长度、面积、体积、角度等.提炼求概率的两种常用方法()将所求事件转化成几个彼此互斥的事件的和事件,利用概率加法公式求解概率.()若一个较复杂的事件的对立面的分类较少,可考虑利用对立事件的概率公式,即“正难则反”.它常用来求“至少”或“至多”型事件的概率.回访古典概型.(·全国卷Ⅰ)为美化环境,从红、黄、白、紫种颜色的花中任选种花种在一个花坛中,余下的种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )从种颜色的花中任选种颜色的花种在一个花坛中,余下种颜色的花种在另一个花坛的种数有:红黄—白紫、红白—黄紫、红紫—白黄、黄白—红紫、黄紫—红白、白紫—红黄,共种,其中红色和紫色的花不在同一花坛的种数有:红黄—白紫、红白—黄紫、黄紫—红白、白紫—红黄,共种,故所求概率为==,故选.] .(·全国卷Ⅰ)如果个正整数可作为一个直角三角形三条边的边长,则称这个数为一组勾股数,从中任取个不同的数,则这个数构成一组勾股数的概率为( )从中任取个不同的数共有如下个不同的结果:(),(),(),(),(),(),(),(),( ),(),其中勾股数只有(),所以概率为.故选.].(·全国卷Ⅰ)从中任取个不同的数,则取出的个数之差的绝对值为的概率是( )。
高中数学必修三古典概型与几何概型(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学必修三古典概型与几何概型(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学必修三古典概型与几何概型(word版可编辑修改)的全部内容。
古典概型与几何概型1.1基本事件的特点①任何两个基本事件都是互斥的;②任何事件(除不可能事件)都可以表示成基本事件的和. 1。
2古典概型1.2.1古典概型的概念我们把具有:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等,两个特点的概率模型称为古典概率模型,简称为古典概型。
1。
2。
2古典概型的概率公式:如果一次试验中可能出现的结果有n 个,即此试验由n 个基本事件组成,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是n1,如果某个事件A 包含的结果有m 个基本事件,那么事件A 的概率()nm A P =. 1。
3几何概型1。
3.1几何概型的概率公式:在几何概型中,事件A 的概率的计算公式如下:()积)的区域长度(面积或体实验的全部结果所构成积)的区域长度(面积或体构成事件A =A P1.从长度为1,3,5,7,9五条线段中任取三条能构成三角形的概率是( )A .21B .103C .51D .522.甲、乙、丙三人随意坐下一排座位,乙正好坐中间的概率为( )A .12B .13C .14D .163.袋中有白球5只,黑球6只,连续取出3只球,则顺序为“黑白黑”的概率为( )A .111 B .332 C .334 D .3354.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1,2,3,4,5,6),骰子朝987321754321上的面的点数分别为X ,Y,则1log 2=Y X 的概率为( )A .61B .365 C .121 D .21 5.在正四面体的6条棱中随机抽取2条,则其2条棱互相垂直的概率为( )A .错误!B .错误!C .错误!D .错误!6.将8个参赛队伍通过抽签分成A 、B 两组,每组4队,其中甲、乙两队恰好不在同组的概率为( )A .74B .21C .72D .537.将4名队员随机分入3个队中,对于每个队来说,所分进的队员数k 满足0≤k ≤4,假设各种方法是等可能的,则第一个队恰有3个队员分入的概率是( )A .8116 B .8121 C .818 D .8124 8.取一个正方形及其它的外接圆,随机向圆内抛一粒豆子,则豆子落入正方形外的概率 为( )A .2πB .2ππ- C .2D .4π 9.如图所示,在两个圆盘中,指针在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是( )A .49B .29C .23D .1310.在腰长为2的等腰直角三角形内任取一点,使得该点到此三角形的直角顶点的距离不大于1的概率是( )A .π16B .π8C .π4D .π211.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆。
教学内容古_典_概_型1.基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件都可以表示成基本事件的和(除不可能事件). 2.古典概型 (1)特点:①试验中所有可能出现的基本事件只有有限个,即有限性. ②每个基本事件发生的可能性相等,即等可能性. (2)概率公式:P (A )=A 包含的基本事件的个数基本事件的总数.1.在计算古典概型中基本事件数和事件发生数时,易忽视他们是否是等可能的.2.概率的一般加法公式P (A +B )=P (A )+P (B )-P (A ∩B )中,易忽视只有当A ∩B =∅,即A ,B 互斥时,P (A +B )=P (A )+P (B ),此时P (A ∩B )=0. [试一试]1.从3台甲型彩电和2台乙型彩电中任选两台,其中两种品牌的彩电齐全的概率是________.2.从1,2,3,4,5,6六个数中任取3个数,则取出的3个数是连续自然数的概率是________.古典概型中基本事件的探求方法1.枚举法:适合给定的基本事件个数较少且易一一列举出的.2.树状图法:适合于较为复杂的问题中的基本事件的探求,注意在确定基本事件时(x ,y )可以看成是有序的,如(1,2)与(2,1)不同.有时也可以看成是无序的,如(1,2)(2,1)相同. [练一练]从集合A ={2,3,-4}中随机选取一个数记为k ,从集合B ={-2,-3,4}中随机选取一个数记为b ,则直线y =kx +b 不经过第二象限的概率为________.考点一古典概型1.一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号和不小于15的概率为________.2.(2014·温州调研)一个袋子中有5个大小相同的球,其中有3个黑球与2个红球,如果从中任取两个球,则恰好取到两个同色球的概率是________.3.(2014·深圳第一次调研)一个袋中有4个大小相同的小球,其中红球1个,白球2个,黑球1个,现从袋中有放回地取球,每次随机取一个.(1)求连续取两次都是白球的概率;(2)假设取一个红球记2分,取一个白球记1分,取一个黑球记0分,若连续取三次,则分数之和为4分的概率是多少?[类题通法]计算古典概型事件的概率可分三步(1)算出基本事件的总个数n;(2)求出事件A所包含的基本事件个数m;(3)代入公式求出概率P.考点二古典概型的交汇命题问题古典概型在高考中常与平面向量、集合、函数、解析几何、统计等知识交汇命题,命题的角度新颖,考查知识面全,能力要求较高,归纳起来常见的交汇命题角度有: (1)古典概型与平面向量相结合; (2)古典概型与直线、圆相结合; (3)古典概型与函数相结合. 角度一 古典概型与平面向量相结合1.(2014·济南模拟)设连续掷两次骰子得到的点数分别为m ,n ,令平面向量a =(m ,n ),b =(1,-3). (1)求使得事件“a ⊥b ”发生的概率; (2)求使得事件“|a |≤|b |”发生的概率.角度二 古典概型与直线、圆相结合2.连掷骰子两次得到的点数分别记为a 和b ,则使直线3x -4y =0与圆(x -a )2-(y -b )2=4相切的概率为________.角度三 古典概型与函数相结合3.(2014·安徽省级示范高中一模)设a ∈{2,4},b ∈{1,3},函数f (x )=12ax 2+bx +1.(1)求f (x )在区间(-∞,-1]上是减函数的概率;(2)从f (x )中随机抽取两个,求它们在(1,f (1))处的切线互相平行的概率.[类题通法]解决与古典概型交汇命题的问题时,把相关的知识转化为事件,列举基本事件,求出基本事件和随机事件的个数,然后利用古典概型的概率计算公式进行计算.[课堂练通考点]1.(2014·江南十校联考)第16届亚运会于2010年11月12日在中国广州举行,运动会期间从来自A 大学的2名志愿者和来自B 大学的4名志愿者中随机抽取2人到体操比赛场馆服务,至少有一名A 大学志愿几_何_概_型1.几何概型如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.几何概型的概率公式P(A)=构成事件A的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)易混淆几何概型与古典概型,两者共同点是基本事件的发生是等可能的,不同之处是几何概型的基本事件的个数是无限的,古典概型中基本事件的个数是有限的.[试一试]1.在长为6 m的木棒AB上任取一点P,使点P到木棒两端点的距离都大于2 m的概率是________.2.四边形ABCD为长方形,AB=2,BC=1,O为AB的中点,在长方形ABCD内随机取一点,取到的点到O的距离大于1的概率为________.几何概型的常见类型的判断方法1.与长度有关的几何概型,其基本事件只与一个连续的变量有关;2.与面积有关的几何概型,其基本事件与两个连续的变量有关,若已知图形不明确,可将两个变量分别作为一个点的横坐标和纵坐标,这样基本事件就构成了平面上的一个区域,即可借助平面区域解决问题;3.与体积有关的几何概型.(方法参见考点二“类题通法”) [练一练]1.如图所示,边长为2的正方形中有一封闭曲线围成的阴影区域,在正方形中随机撒一粒豆子,它落在阴影区域内的概率为23,则阴影区域的面积为________.2.若不等式组⎩⎪⎨⎪⎧x 2-4x ≤0,-1≤y ≤2,x -y -1≥0,表示的平面区域为M ,(x -4)2+y 2≤1表示的平面区域为N ,现随机向区域内抛一粒豆子,则该豆子落在平面区域N 内的概率是________.考点一与长度、角度有关的几何概型1.(2014·石家庄模拟)在圆的一条直径上,任取一点作与该直径垂直的弦,则其弦长超过该圆的内接等边三角形的边长的概率为________.2.(2014·北京西城模拟)如图所示,在直角坐标系内,射线OT 落在30°角的终边上,任作一条射线OA ,则射线OA 落在∠yOT 内的概率为________.3.(2013·福建高考)利用计算机产生0~1之间的均匀随机数a ,则事件“3a -1>0”发生的概率为________.[类题通法]求与长度(角度)有关的几何概型的概率的方法是把题中所表示的几何模型转化为长度(角度).然后求解,要特别注意“长度型”与“角度型”的不同.解题的关键是构建事件的区域(长度、角度).考点二与体积有关的几何概型[典例](2013·深圳二模)一只小蜜蜂在一个棱长为4的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为________.[类题通法]对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件去求.[针对训练]在棱长为2的正方体ABCD-A1B1C1D1中,点O为底面ABCD的中心,在正方体ABCD-A1B1C1D1内随机取一点P,则点P到点O的距离大于1的概率为________.考点三与面积有关的几何概型与面积有关的几何概型是近几年高考的热点之一,归纳起来常见的命题角度有:(1)与三角形、矩形、圆等平面图形面积的有关问题;(2)与线性规划知识交汇命题的问题;(3)与平面向量的线性运算交汇命题的问题.角度一与三角形、矩形、圆等平面图形面积的有关问题1.(2013·陕西高考改编)如图,在矩形区域ABCD的A,C两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无信号的概率是________.角度二与线性规划交汇命题的问题2.(2013·四川高考改编)节日前夕,小李在家门前的树上挂了两串彩灯.这两串彩灯的第一次闪亮相互独立,若都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮.那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是________.角度三与平面向量的线性运算交汇命题的问题3.已知P是△ABC所在平面内一点,PB+PC+2PA=0,现将一粒黄豆随机撒在△ABC内,则黄豆落在△PBC内的概率是________.[类题通法]求解与面积有关的几何概型时,关键是弄清某事件对应的面积,以求面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.[课堂练通考点]1.已知△ABC中,∠ABC=60°,AB=2,BC=6,在BC上任取一点D,则使△ABD为钝角三角形的概率为________.2.在区间[-5,5]内随机地取出一个数a,则恰好使1是关于x的不等式2x2+ax-a2<0的一个解的概率为________.3.(2014·淄博模拟)在长为12 cm的线段AB上任取一点M,并以线段AM为边作正方形,则这个正方形1.用一平面截一半径为5的球得到一个圆面,则此圆面积小于9π的概率是________.2.函数f (x )=x 2-x -2,x ∈[-5,5],那么任取一点x 0∈[-5,5],使f (x 0)≤0的概率是________.3.如图,M 是半径为R 的圆周上一个定点,在圆周上等可能的任取一点N ,连结MN ,则弦MN 的长度超过2R 的概率是________.4.如图,圆的直径是正方形边长的一半,圆位于正方形的内部.现随意地将飞镖掷向正方形内,则飞镖击中圆面部分的概率是________.5.(2014·惠州调研)在区间[1,5]和[2,4]上分别取一个数,记为a ,b ,则方程x 2a 2+y 2b2=1表示焦点在x 轴上且离心率小于32的椭圆的概率为________.6.(2014·昆明质检)在区间[0,10]上任取一个实数a ,使得不等式2x 2-ax +8≥0在(0,+∞)上恒成立的概率为________.7.(2014·苏锡常镇四市一调)如图,边长为2的正方形内有一个半径为1的半圆.向正方形内任投一点(假设该点落在正方形内的每一点都是等可能的),则该点落在半圆内的概率为________.8.如图所示,图2中实线围成的部分是长方体(图1)的平面展开图,其中四边形ABCD 是边长为1的正方形.若向虚线围成的矩形内任意抛掷一质点,它落在长方体的平面展开图内的概率是14,则此长方体的体。
一、 古典概型1)基本事件:一次试验中所有可能的结果都是随机事件,这类随机事件称为基本事件. 2)基本事件的特点:① 任何两个基本事件是互斥的;② 任何事件(除不可能事件)都可以表示成基本事件的和. 3)我们将具有这两个特点的概率模型称为古典概率模型,其特征是: ① 有限性:即在一次试验中所有可能出现的基本事件只有有限个.② 等可能性:每个基本事件发生的可能性是均等的;称这样的试验为古典概型. 4)基本事件的探索方法:① 列举法:此法适用于较简单的实验.② 树状图法:这是一种常用的方法,适用于较为复杂问题中的基本事件探索.5)在古典概型中涉及两种不通的抽取放方法,下列举例来说明:设袋中有n 个不同的球,现从中一次模球,每次摸一只,则有两种摸球的方法: ① 有放回的抽样每次摸出一只后,任放回袋中,然后再摸一只,这种模球的方法称为有放回的抽样,显然对于有放回的抽样,依次抽得球可以重复,且摸球可以无限地进行下去. ② 无放回的抽样每次摸球后,不放回原袋中,在剩下的球中再摸一只,这种模球方法称为五放回抽样,每次摸的球不会重复出现,且摸球只能进行有限次. 二、 古典概型计算公式1)如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是1n; 2)如果某个事件A 包括的结果有m 个,那么事件A 的概率()m P A n=. 3)事件A 与事件B 是互斥事件()()()P AB P A P B =+4)事件A 与事件B 可以是互斥事件,也可以不是互斥事件()()()()P A B P A P B P A B =+-.古典概型注意:① 列举法:适合于较简单的试验.② 树状图法:适合于较为复杂的问题中的基本事件的探求.另外在确定基本事件时,(),x y 可以看成是有序的,如()1,2与()2,1不同;有时也可以看成是无序的,如()1,2与()2,1相同.三、几何概型事件A 理解为区域Ω的某一子区域A ,A 的概率只与子区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关,满足此条件的试验称为几何概型. 四、几何概型的计算1)几何概型中,事件A 的概率定义为()AP A μμΩ=,其中μΩ表示区域Ω的几何度量,A μ表示区域A 的几何度量. 2)两种类型线型几何概型:当基本事件只受一个连续的变量控制时.面型几何概型:当基本事件受两个连续的变量控制时,一般是把两个变量分别作为一个点的横坐标和纵坐标,这样基本事件就构成了平面上的一个区域,即可借助平面区域解决. 五、几何概型具备以下两个特征:1)无限性:即每次试验的结果(基本事件)有无限多个,且全体结果可用一个有度量的几何区域来表示;2)等可能性:即每次试验的各种结果(基本事件)发生的概率都相等.一、古典概型古典概型是基本事件个数有限,每个基本事件发生的概率相等的一种概率模型,其概率等于随机事件所包含的基本事件的个数与基本事件的总个数的比值.【题干】甲、乙、丙、丁4个足球队参加比赛,假设每场比赛各队取胜的概率相等,现任意将这4个队分成两个组(每组两个队)进行比赛,胜者再赛,则甲、乙相遇的概率为( ) A .16B .14C .13D .12【答案】D.【解析】甲、乙在同一组:113P =.甲、乙不在同一组,但相遇的概率:2111362P =+=.【点评】【题干】有十张卡片,分别写有A 、B 、C 、D 、E 和a 、b 、c 、d 、,(1)从中任意抽取一张,①求抽出的一张是大写字母的概率;②求抽出的一张是或的概率;e A a(2)若从中抽出两张,③求抽出的两张都是大写字母的概率;④求抽出的两张不是同一个字母的概率; 【答案】 【解析】 【点评】【题干】袋子中装有编号为,a b 的2个黑球和编号为,,c d e 的3个红球,从中任意摸出2个球.(1)写出所有不同的结果;(2)求恰好摸出1个黑球和1个红球的概率; (3)求至少摸出1个黑球的概率.【答案】(1),,,,,,,,,ab ac ad ae bc bd be cd ce de ;(2)0.6;(3)0.7. 【解析】(1),,,,,,,,,ab ac ad ae bc bd be cd ce de .(2)由题意知本题是一个古典概型,试验发生包含了上一问列举的所有结果,记“恰好摸出1个黑球和1红球”为事件A ,则事件A 包含的基本事件为,,,,,ac ad ae bc bd be ,共6个基本事件,所以()60.610P A ==. (3)试验发生包含的事件共有10个,记“至少摸出1个黑球”为事件B ,则B 包含的基本事件为,,,,,,ab ac ad ae bc bd be ,共7个基本事件,所以()70.710P B ==. 【点评】步骤:用列举法求出基本事件的总数n ,求出具体时间包含的基本事件数m ,根据古典概型求出概率.二、一维情形的几何概型(长度)将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点,这样的概率模型就可以用几何概型来求解. 【题干】在区间,22ππ⎡⎤-⎢⎥⎣⎦上随机取一个数x ,cos x 的值介于0到12之间的概率为( ) A .13 B . 2πC . 12D . 23 【答案】A【解析】∵0cos x <<12,∴52,233x k k ππππ⎛⎫∈++ ⎪⎝⎭.当,22x ππ⎡⎤∈-⎢⎥⎣⎦时,,,2332x ππππ⎛⎫⎛⎫∈-- ⎪ ⎪⎝⎭⎝⎭ .在区间,22ππ⎡⎤-⎢⎥⎣⎦上随机取一个数x ,cos x 的值介于0到12之间的概率133P ππ==.【点评】【题干】平面上有一组平行线,且相邻平行线间的距离为3cm ,把一枚半径为1cm 的硬币任意投掷在这个平面上,则硬币不与任何一条平行线相碰的概率是( ) A.14B .13 C . 12D .23【答案】B【解析】为了确定硬币的位置,由硬币中心O 向靠的最近的平行线引垂线OM ,垂足为M ;线段OM 长度的取值范围就是30,2⎡⎤⎢⎥⎣⎦,只有当132OM <≤时,硬币不与平行线相碰,所以所求事件的概率33110223P ⎛⎫⎛⎫=-÷-= ⎪ ⎪⎝⎭⎝⎭. 【点评】【题干】在区间[010],中任意取一个数,则它与4之和大于10的概率是______. 【答案】25【解析】在区间[010],中,任意取一个数x ,则它与4之和大于10的x 满足4x +>10, 解得610x <≤,所以,概率为1062105-=. 【点评】【题干】在长为18cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形的面积介于362cm 与812cm 之间的概率为( ) A .56B .12C .13D .16【答案】D.【解析】由题意可得此概率是几何概率模型.因为正方形的面积介于362m 与812m 之间,座椅正方形的边长介于6cm 到9cm 之间,即线段AM 介于6cm 到9cm 之间,所以AM 的活动范围长度为:3.由几何概型的概率公式可得31186=.【点评】【题干】某人向一个半径为6的圆形标靶射击,假设他每次射击必定会中靶,且射中靶内各点是随机的,则此人射击中靶点与靶心的距离小于2的概率为( ) A .113 B. 19 C . 14 D . 12【答案】B【解析】整个靶子是如图所示的大圆,而距离靶心距离小于2用图中的小圆所示:故此人射击中靶点与靶心的距离小于2的概率226129P ππ==.【点评】【题干】两根相距3m 的木杆上系一根拉直的绳子,并在绳子上挂一彩珠,则彩珠与两端距离都大于1m 的概率为( ) A.12B .13C .14D .23【答案】13. 【解析】设事件A 为“灯与两端距离都大于2m ”,根据题意,事件A 对应的长度为2m 的部分,因此,事件A 发生的概率()2163P A ==. 【点评】三、二维情形的几何概型(面积)数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A 满足的不等式,在图形中画出事件A 发生的区域,利用公式可求.【题干】如图,60AOB ∠=°,2OA =,5OB =,在线段OB 上任取一点C ,试求: (1)AOC ∆为钝角三角形的概率;(2)AOC ∆为锐角三角形的概率.【答案】(1)0.4(2)0.6【解析】如图,由平面几何知识:当AD OB ⊥时,1OD =;当OA AE ⊥时,4OE =,1BE =.(1)当且仅当点C 在线段OD 或BE 上时,AOC ∆为钝角三角形,记“AOC ∆为钝角三角形”为事件M ,则()110.45OD EB P M OB ++===,即AOC ∆为钝角三角形的概率为0.4.(2)当且仅当点C 在线段DE 上时,AOC ∆为锐角三角形,记“AOC ∆为锐角三角形”为事件N ,则()30.65DE P N OB ===,即AOC ∆为锐角三角形的概率为0.6. 【点评】AOC ∆为直角三角形的概率等于0,但直角三角形AOC ∆是存在的,因此概率为0的事件不一定是不可能事件.【题干】已知如图所示的矩形,长为12,宽为5,在矩形内随机地投掷1000粒黄豆,数得落在阴影部分的黄豆数为600粒,则可以估计出阴影部分的面积约为________.【答案】36【解析】设图中阴影部分的面积为S ,由题意可得6001251000S =⨯,解得36S =. 【点评】【题干】小明的爸爸下班驾车经过小明学校门口,时间是下午6:00到6:30,小明放学后到学校门口的候车点候车,能乘上公交车的时间为5:50到6:10,如果小明的爸爸到学校门口时,小明还没乘上车,就正好坐他爸爸的车回家,问小明能乘到他爸的车的概率. 【答案】 【解析】 【点评】CE DBOA【题干】在平面直角坐标系xOy 中,平面区域W 中的点的坐标(),x y 满足225x y +≤,从区域W 中随机取点(),M x y .(1)若x ∈Z ,y ∈Z ,求点M 位于第四象限的概率;(2)已知直线():0l y x b b =-+>与圆22:5O x y +=求y x b ≥-+的概率. 【答案】(1)17;(2.【解析】(1)若x Z ∈,y Z ∈,则点M 的个数共有21个,列举如下:()2,1--,()2,0-,()2,1-,()1,2--,()1,1--,()1,0-,()1,1-,()1,2-,()0,2-,()0,1-,()0,0,()0,1,()0,2,()1,2-,()1,1-,()1,0,()1,1,()1,2,()2,1-,()2,0,()2,1时,点M 位于第四象限.当点M 的坐标为()1,2-,()1,1-,()2,1-时,点M 位于第四象限.故点M 位于第四象限的概率为17. (2)由已知可知区域W 的面积是5π.因为直线:l y x b =-+与圆22:5O x y +=的弦长为,如图,可求得扇形的圆心角为23π,所以扇形的面积为125233S ππ=⨯=,则满足y x b≥-+的点构成的区域的面积为122sin 233S ππ=⨯=,所以y x b≥-+的概率为20125ππ- .【点评】【题干】如图,60AOB ︒∠=,2OA =,5OB =,在线段OB 上任取一点C ,试求:(1)AOC ∆为钝角三角形的概率; (2)AOC ∆为锐角三角形的概率. 【答案】(1)0.4 ;(2)0.6 .【解析】如图,由平面几何知识:当AD OB ⊥时,1OD =;当OA AE ⊥时,4OE =,1BE =.(1)当且仅当点C 在线段OD 或BE 上时,AOC ∆为钝角三角形,记“AOC∆为钝角三角形”为事件M ,则()110.45OD EB P M OB ++===.(2)当且仅当点C 在线段DE 上时,AOC ∆为锐角三角形,记“AOC ∆为锐角三角形”为事件N ,则()30.65DE P N OB ===. 【点评】【题干】在区间[]1,1-上任取两实数,a b ,求二次方程2220x ax b ++=的两根都为实数的概率. 【答案】()12P A =【解析】方程有实根的条件为22440a b ∆=-≥,即||||a b ≥.在平面直角坐标系中,点(),a b 的取值范围为如图所示,的正方形的区域,随机事件A “方程有实根”的所围成的区域如图所示的阴影部分.易求得()12P A =.【点评】四、三维情形的几何概型(体积)【题干】在Rt ABC ∆中,30A ∠=,过直角顶点C 作射线CM 交线段AB 于M,求使CE DBOAAM AC >的概率.【答案】16. 【解析】设事件D 为“作射线CM ,使AM AC >”.在AB 上取点1C 使1AC AC =,因为1A C C ∆是等腰三角形,所以118030752ACC -∠==,907515A μ=-=,90μΩ=,所以()151906P D ==. 【点评】几何概型的关键是选择“测度”,如本例以角度为“测度”.因为射线CM 落在ACB ∠内的任意位置是等可能的.若以长度为“测度”,就是错误的,因M 在AB 上的落点不是等可能的.【题干】设正四面体ABCD 的体积为V ,P 是正四面体ABCD 的内部的点. (1)设“14P ABC V V -≥”的事件为X ,求概率()P X ; (2)设“14P ABC V V -≥且14P BCD V V -≥”的事件为Y ,求概率()P Y . 【答案】 【解析】 【点评】【题干】一只小蜜蜂在一个棱长为30的正方体玻璃容器内随机飞行.若蜜蜂在飞行过程中与正方体玻璃容器6个表面中至少有一个的距离不大于10,则就有可能撞到玻璃上而不安全;若始终保持与正方体玻璃容器6个表面的距离均大于10,则飞行是安全的,假设蜜蜂在正方体玻璃容器内飞行到每一位置可能性相同,那么蜜蜂飞行是安全的概率是( ) A .18 B .116 C .127 D .38【答案】C ;【解析】容易知道,当蜜蜂在边长为10,各棱平行于玻璃容器的棱的正方体内飞行时是安全的.于是安全飞行的概率为331013027=.【点评】【题干】在棱长为2的正方体1111ABCD A B C D -中,点O 为底面ABCD 的中心,在正方体1111ABCD A B C D -内随机取一点P ,则点P 到点O 的距离大于1的概率为________. 【答案】112π-【解析】点P 到点O 的距离大于1的点位于以O 为球心,以1为半径的半球外.记点P 到点O 的距离大于1为事件A ,则()3331421231212P A ππ-⨯⨯==-. 【点评】【题干】在棱长为a 的正方体1111ABCD A B C D -内任取一点P ,则点P 到点A 的距离小于等于a 的概率为( )A.2 B .2 C. 16D . 16π【答案】C【解析】本题是几何概型问题,与点A 距离等于a 的点的轨迹是一个八分之一个球面, 其体积为:33114836a a V ππ=⨯⨯=,“点P 与点O 距离大于1的概率”事件对应的区域体积为:3314836a a ππ⨯⨯=,则点P 到点A 的距离小于等于a 的概率为:33166a a ππ=.【点评】【题干】设正四面体ABCD 的体积为V ,P 是正四面体ABCD 的内部的点. ①设“14P ABC V V -≥”的事件为X ,求概率()P X ; ②设“14P ABC V V -≥且14P BCD V V -≥”的事件为Y ,求概率()P Y . 【答案】①()2764P X =②18【解析】①分别取,,DA DB DC上的点,,E F G,并3,3,3DE EA DF FB DG GC ===,连结,,EF FG GE ,则平面EFG 平面ABC .当P 在正四面体DEFG 内部运动时(如图),满足14P ABC V V -≥,故()33327464D EFG D ABC V DE P X V DA --⎛⎫⎛⎫====⎪ ⎪⎝⎭⎝⎭.②在AB 上取点H ,使3AH HB =,在AC 上取点I ,使3AI IC =,在AD 上取点J ,使3AJ JD =,P 在正四面体AHIJ 内部运动时,满足14P BCD V V -≥.结合①,当P 在正四面体DEFG 的内部及正四面体AHIJ 的内部运动时,亦即P 在正四面体EMNJ 内部运动时(M 是EG 与IJ 的交点,N 是EF 与HJ 的交点),同时满足14P ABC V V -≥且14P BCD V V -≥,于是()331281J EMN D ABC JE D Y V A V P --⎛⎫⎛⎫=== ⎪ ⎪⎝⎭=⎭⎝.【点评】五、高考汇编【题干】(2010年江苏理科 3)盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率________.【答案】【解析】【点评】【题干】(2010年江苏理科4)某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[]5,40 中,其频率分布直方图如图所示,则其抽样的100根中,有________根在棉花纤维的长度小于20mm .【答案】【解析】【点评】【题干】(2011江苏5)从1,2,3,4这四个数中一次随机取两个数,则其中一个数是BAB A另一个的两倍的概率是________. 【答案】13【解析】【点评】【题干】(2011江苏6)某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差2s =________. 【答案】165【解析】可以先把这组数都减去6再求方差,【点评】【题干】(2012年江苏省5分)某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.【答案】15.【解析】分层抽样又称分类抽样或类型抽样.将总体划分为若干个同质层,再在各层内随机抽样或机械抽样,分层抽样的特点是将科学分组法与抽样法结合在一起,分组减小了各抽样层变异性的影响,抽样保证了所抽取的样本具有足够的代表性.因此,由35015334⨯=++知应从高二年级抽取15名学生. 【点评】【题干】(2012年江苏省5分)现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是________. 【答案】35. 【解析】∵以1为首项,3-为公比的等比数列的10个数为1,3-,9,27-,···其中有5个负数,1个正数1计6个数小于8, ∴从这10个数中随机抽取一个数,它小于8的概率是63105=. 【点评】。
高考数学最新真题专题解析—古典概型与几何概型(文科)考向一古典概型【母题来源】2022年高考全国甲卷(文科)【母题题文】从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为()A. 15B.13C.25D. 23【答案】C【试题解析】从6张卡片中无放回抽取2张,共有()()()()()()()()()()()()()()() 1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6,3,4,3,5,3,6,4,5,4,6,5,6 15种情况,其中数字之积为4的倍数的有()()()()()()1,4,2,4,2,6,3,4,4,5,4,66种情况,故概率为62 155=.故选:C.【命题意图】本题主要考查古典概型的的概率计算公式,属于基础题.【命题方向】这类试题在考查题型上主要以选择填空形式出现,试题难度不大,多为抵挡题目,是历年高考的热点.常见的命题角度有:(1)列举法求古典概型的概率;(2)树状图法求古典概型的概率.【得分要点】(1)理解古典概型及其概率计算公式.(2)会计算一些随机事件所含的基本事件数及事件发生的概率. 考向二 几何概型【母题来源】2021年高考全国卷(理科)【母题题文】在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于74的概率为( ) A .79B .2332C .932D .29【答案】B【试题解析】设从区间()()0,1,1,2中随机取出的数分别为,x y ,则实验的所有结果构成区域为(){},01,12x y x y Ω=<<<<,设事件A 表示两数之和大于74,则构成的区域为()7,01,12,4A x y x y x y⎧⎫=<<<+⎨⎬⎩⎭,分别求出,A Ω对应的区域面积,根据几何概型的的概率公式即可解出. 【详解】 如图所示:设从区间()()0,1,1,2中随机取出的数分别为,x y ,则实验的所有结果构成区域为(){},01,12x y x y Ω=<<<<,其面积为111S Ω=⨯=.设事件A 表示两数之和大于74,则构成的区域为()7,01,12,4A x y x y x y ⎧⎫=<<<+⎨⎬⎩⎭,即图中的阴影部分,其面积为133********A S =-⨯⨯=,所以()2332A S P A S Ω== 【命题意图】本题主要考查几何概型的的概率计算公式,属于基础题.【命题方向】这类试题在考查题型上主要以选择填空形式出现,试题难度不大,多为抵挡题目,是历年高考的热点. 常见的命题角度有:(1)由长度比求几何概型的概率;(2)由面积比求几何概型的概率;(3)由体积比求几何概型的概率; (4)由角度比求几何概型的概率. 【得分要点】(1)能运用模拟方法估计概率. (2)了解几何概型的意义. 真题汇总及解析 一、单选题1.(河南省平顶山市2021-2022学年高一下学期期末数学试题)6把不同的钥匙中只有1把可以打开某个锁,从中任取2把能将该锁打开的概率为( ) A .23 B .12C .13D .16【答案】C 【解析】 【分析】将6把钥匙编号为a 、b 、c 、d 、e 、f ,不妨设能打开锁的为钥匙a ,列举出所有的基本事件,并确定所求事件所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.将6把钥匙编号为a、b、c、d、e、f,不妨设能打开锁的为钥匙a.从中任取2把,有:ab、ac、ad、ae、af、bc、bd、be、bf、cd、ce、cf、de、df、ef,共15种情况,能将锁打开的情况有5种,分别为ab、ac、ad、ae、af,故所求概率为51 153=.故选:C.2.(2022·广东茂名·二模)甲、乙、丙三人是某商场的安保人员,根据值班需要甲连续工作2天后休息一天,乙连续工作3天后休息一天,丙连续工作4天后休息一天,已知3月31日这一天三人均休息,则4月份三人在同一天工作的概率为()A.13B.25C.1130D.310【答案】B【解析】【分析】列举出三人所有工作日,由古典概型公式可得.【详解】解:甲工作的日期为1,2,4,5,7,8,10, (29)乙工作的日期为1,2,3,5,6,7,9,10, (30)丙工作的日期为1,2,3,4,6,7,8,9, (29)在同一天工作的日期为1,2,7,11,13,14,17,19,22,23,26,29∴三人同一天工作的概率为122305P==.3.(2022·安徽·合肥市第六中学模拟预测(文))“田忌赛马”的故事千古流传,故事大意是:在古代齐国,马匹按奔跑的速度分为上中下三等.一天,齐王找田忌赛马,两人都从上、中、下三等马中各派出一匹马,每匹马都各赛一局,采取三局两胜制.已知田忌每个等次的马,比齐王同等次的马慢,但比齐王较低等次的马快.若田忌不知道齐王三场比赛分别派哪匹马上场,则田忌获胜的概率为()A.12B.13C.14D.16【答案】D【解析】【分析】设齐王有上、中、下三等的三匹马A、B、C,田忌有上、中、下三等的三匹马a、b、c,列举出所有比赛的情况,以及齐王第一场比赛会派出上等马的比赛情况和田忌使自己获胜时比赛的情况,结合古典概型的概率公式可求得所求事件的概率.【详解】设齐王有上、中、下三等的三匹马A,B,C,田忌有上、中、下三等的三匹马a,b,c,所有比赛的方式有:Aa,Bb,Cc;Aa,Bc,Cb;Ab,Ba,Cc;Ab,Bc,Ca;Ac,Ba,Cb;Ac,Bb,Ca,一共6种.其中田忌能获胜的方式只有Ac,Ba,Cb1种,故此时田忌获胜的概率为16.故选:D.4.(2022·四川省泸县第二中学模拟预测(理))甲、乙两名同学均打算高中毕业后去A,B,C三个景区中的一个景区旅游,甲乙去A,B,C三个景区旅游的概率分别如表:则甲、乙去不同景区旅游的概率为( )去A 景区旅游 去B 景区旅游 去C 景区旅游 甲 0.4 0.2 乙 0.3 0.6D .0.52【答案】A 【解析】 【分析】由题可得甲、乙去同一景区旅游的概率,然后利用对立事件的概率公式即得. 【详解】由题可得甲乙去A ,B ,C 三个景区旅游的概率分别如表:去A 景区旅游 去B 景区旅游 去C 景区旅游 甲 0.4 0.2 0.4 乙 0.10.30.60.40.60.34+⨯=, 故甲、乙去不同景区旅游的概率为10.340.66-=. 故选:A.5.(2022·陕西·西北工业大学附属中学模拟预测(文))在区间[-2,12]中任取一个数x ,则[]8,13x ∈的概率为( )A .514B .27C .25D .13【答案】B 【解析】 【分析】根据几何概型的概率公式可求出结果. 【详解】根据几何概型的概率公式得[]8,13x ∈的概率为128212(2)7-=--. 故选:B.6.(2022·北京·北大附中三模)有一副去掉了大小王的扑克牌(每副扑克牌有4种花色,每种花色13张牌),充分洗牌后,从中随机抽取一张,则抽到的牌为“红桃”或“A ”的概率为( ) A .152B .827C .413D .1752【答案】C 【解析】 【分析】直接根据古典概型概率计算公式即可得结果. 【详解】依题意,样本空间包含样本点为52,抽到的牌为“红桃”或“A ”包含的样本点为16, 所以抽到的牌为“红桃”或“A ”的概率为1645213=,故选:C. 7.(2022·河北邯郸·二模)甲、乙两人玩一个传纸牌的游戏,每个回合,两人同时随机从自己的纸牌中选一张给对方.游戏开始时,甲手中的两张纸牌数字分别为1,3,乙手中的两张纸牌数字分别为2,4.则一个回合之后,甲手中的纸牌数字之和大于乙手中的纸牌数字之和的概率为( ) A .12 B .14C .34D .38【答案】B 【解析】 【分析】用列举法,结合古典概型计算公式进行求解即可. 【详解】甲手中的两张纸牌数字用{}1,3表示,乙手中的两张纸牌数字用{}2,4表示,一个回合之后,甲、乙两人手中的两张纸牌数字分别为:(1){}{}2,314、,; (2){}{}4,321、,;(3){}{}1,234、,:(4){}{}1,423、,共4种情况, 其中甲手中的纸牌数字之和大于乙手中的纸牌数字之和共有一种情况, 所以甲手中的纸牌数字之和大于乙手中的纸牌数字之和的概率为14,故选:B 8.(2022·河南省杞县高中模拟预测(理))在区间[]0,1上随机取两个数,则这两个数差的绝对值大于12的概率为( ) A .34B .12C .14D .18【答案】C 【解析】 【分析】设在[]0,1上取的两数为x ,y ,满足12x y ->,画出不等式表示的平面区域,结合面积比的几何概型,即可求解. 【详解】设在[]0,1上取的两数为x ,y ,则12x y ->,即12x y ->,或12x y -<-.画出可行域,如图所示,则12x y ->,或12x y -<-所表示的区域为图中阴影部分,易求阴影部分的面积为14,故所求概率11414P ==; 故选:C.9.(2022·全国·哈师大附中模拟预测(文))若在区间[]1,1-内随机取一个实数t ,则直线y tx =与双曲线2214xy -=的左、右两支各有一个交点的概率为( )A .14B .12C .18D .34【答案】B 【解析】 【分析】求出双曲线渐近线的斜率,根据已知条件可得出t 的取值范围,结合几何概型的概率公式可求得所求事件的概率. 【详解】双曲线的渐近线斜率为12±,则12t <,即1122t -<<,故所求概率为12P =, 故选:B.10.(2022·陕西·西北工业大学附属中学模拟预测(理))甲、乙两人约定某日上午在M 地见面,若甲是7点到8点开始随机到达,乙是7点30分到8点30分随机到达,约定,先到者没有见到对方时等候10分钟,则甲、乙两人能见面的概率为( ). A .13B .16C .59D .38【答案】B 【解析】 【分析】从早上7点开始计时,设甲经过x 十分钟到达,乙经过y 十分钟到达,可得x 、y 满足的不等式线组对应的平面区域为如图的正方形ABCD ,而甲乙能够见面,x 、y 满足的平面区域是图中的四边形EFGH .分别算出图中正方形和四边形的面积,根据面积型几何概型的概率公式计算可得. 【详解】解:从早上7点开始计时,设甲经过x 十分钟到达,乙经过y 十分钟到达, 则x 、y 满足0639x y ≤≤⎧⎨≤≤⎩,作出不等式组对应的平面区域,得到图中的正方形ABCD ,若甲乙能够见面,则x 、y 满足||1x y -≤, 该不等式对应的平面区域是图中的四边形EFGH ,6636ABCD S =⨯=,114422622EFGH BEHBFGS SS=-=⨯⨯-⨯⨯= 因此,甲乙能见面的概率61366EFGH ABCD S P S ===故选:B.二、填空题11.【2020·天津市红桥区高考二模】一颗质地均匀的正方体骰子,其六个面上的点数分别为1,2,3,4,5,6,将这一颗骰子连续抛掷三次,观察向上的点数,则三次点数依次构成等差数列的概率为________.【答案】1 12【解析】基本事件总数为6×6×6,事件“三次点数依次成等差数列”包含的基本事件有(1,1,1),(1,2,3),(3,2,1),(2,2,2),(1,3,5),(5,3,1),(2,3,4),(4,3,2),(3,3,3),(2,4,6),(6,4,2),(3,4,5),(5,4,3),(4,4,4),(4,5,6),(6,5,4),(5,5,5),(6,6,6)共18个,所求事件的概率P=186×6×6=112.12.(2022·黑龙江·哈尔滨三中一模(理))关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请120名同学,每人随机写下一个x、y 都小于1的正实数对(),x y,再统计x、y两数能与1构成钝角三角形时的数对(),x y 的个数m,最后再根据m来估计π的值.假如统计结果是36m=,那么π的估计值为______.【答案】3.2【解析】【分析】(,)x y 表示的点构成一个正方形区域,x 、y 两数能与1构成钝角三角形时的数对(),x y 表示的点构成图中阴影部分,分别求出其面积,由几何概型概率公式求得其概率后可得.【详解】(,)x y 表示的点构成一个正方形区域,如图正方形OABC (不含边界),x 、y 两数能与1构成钝角三角形满足条件2211x y x y +>⎧⎨+<⎩,(,)x y 表示的点构成的区域是图中阴影部分(不含边界), 因此所求概率为113642142120P ππ-==-=,估计 3.2π≈.故答案为:3.213.(2022·河南·模拟预测)现有四张正面分别标有数字-1,0,-2,3的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张记作m 不放回,再从余下的卡片中取一张记作n .则点(),P m n 在第二象限的概率为______. 【答案】16【解析】【分析】列出所有可能的情况,根据古典概型的方法求解即可【详解】由题,点(),P m n 所有可能的情况为()1,0-,()1,2--,()1,3-,()0,1-,()0,2-,()0,3,()2,1--,()2,0-,()2,3-,()3,1-,()3,0,()3,2-共12种情况,其中在第二象限的为()2,3-,()1,3-,故点(),P m n 在第二象限的概率为21126= 故答案为:1614.(2021·江西·新余市第一中学模拟预测(理))寒假即将来临,小明和小强计划去图书馆看书,约定上午8:00~8:30之间的任何一个时间在图书馆门口会合.两人商量好提前到达图书馆的人最多等待对方10分钟,如果对方10分钟内没到,那么等待的人先进去.则两人能够在图书馆门口会合的概率是_________.【答案】59【解析】先把两人能够会合转化为几何概型,利用几何概型的概率公式直接求解.【详解】设小明到达的时刻为8时x 分,小强到达的时刻为8时y 分,其中030,030x y ≤≤≤≤,则当|x-y |≤10时,两人能够在图书馆门口会合.如图示:两人到达时刻(x ,y )构成正方形区域,记面积为S ,而事件A :两人能够在图书馆门口会合构成阴影区域,记其面积为S 1 所以1900-22005()=9009S P A S ⨯==. 故答案为:59.【点睛】(1)几何概型的两个特征——无限性和等可能性,只有同时具备这两个特点的概型才是几何概型;(2)几何概型通常转化为长度比、面积比、体积比.三、解答题15.(2022·安徽·合肥市第八中学模拟预测(文))2022年2月20日,北京冬奥会在鸟巢落下帷幕,中国队创历史最佳战绩,北京冬奥会的成功举办推动了我国冰雪运动的及,让越来越多的青少年爱上了冰雪运动.某校体育组组织了一次冰雪运动趣味知识竞赛,并对成绩前15名的参赛学生进行奖励,奖品为冬奥吉祥物冰墩墩玩偶,现将100名喜爱冰雪运动的学生参赛成绩制成如下频率分布表,若第三组与第五组的频之和是第一组的6倍,试回答以下问题; 成绩分组 (50,60] (60,70] (70,80] (80,90] (90,100] 频率 b 0.26 a 0.18 0.06(2)如果规定竞赛成绩在(80,90]为“良好”,竟赛成绩在(90,100]为“优秀”,从受奖励的15名学生中利用分层抽样抽取5人,现从这5人中抽取2人,试求这2人成绩恰有一个“优秀”的概率.【答案】(1)0.08,0.42b a ==,估计值为85 (2)35【解析】【分析】(1)由题意结合频率之和等于1得出,a b ,再由频率、频数的关系得出受奖励的分数线的估计值;(2)分别求出良好、优秀的人数,再由分层抽样的性质结合列举法得出所求概率.(1)0.06610.260.18a b a b +=⎧⎨+=--⎩,∴0.08,0.42b a == 竞赛成绩在[90,100]分的人数为0.061006⨯=,竞赛成绩在[80,90)的人数为0.1810018⨯=,故受奖励分数线在[80,90)之间,设受奖励分数线为x ,则900.180.060.1510x -⨯+= 解得85x =,故受奖励分数线的估计值为85.(2)由(1)知,受奖励的15人中,分数在[85,90]的人数为9,分数在(90,100]的人数为6,利用分层抽样,可知分数在[85,90]的抽取3人,分数在(90,100]的抽取2人,设分数在(90,100]的2人分别为1A ,2A ,分数在[85,90]的3人分别为1B ,2B ,3B ,所有的可能情况有(1A ,2A ),(1A ,1B ),(1A ,2B ),(1A ,3B ),(2A ,1B ),(2A ,2B ),(2A ,3B ),(1B ,2B ),(1B ,2B ),(2B ,3B ),共10种, 满足条件的情况有(1A ,1B ),(1A ,2B ),(1A ,3B ),(2A ,1B ),(2A ,2B ),(2A ,3B )共6种,故所求的概率为63105P ==.16.(2020·江苏·一模)2021年江苏省高考实行“312++”模式,“312++”模式是指“3”为全国统考科目语文、数学、外语,所有考生必考;“1”为首选科目,考生须在高中学业水平考试的物理、历史2个科目中选择1科;“2”为再选科目,考生可在化学、生物、政治、地理4个科目中选择2科,共计6个考试科目.(1)若学生甲在“1”中选物理,在“2”中任选2科,求学生甲选化学和生物的概率;(2)设2220x ax b ++=是关于x 的一元二次方程,若[]0,3a ∈,[]0,2b ∈,求方程有实数根的概率.【答案】(1)16;(2)23【解析】【分析】(1)记学生甲选化学和生物为事件A ,求事件A 包含的基本事件的个数和总的基本事件的个数,由古典概型计算公式即可求解;(2)记方程有实根为事件B ,由几何概型概率公式计算即可求解.【详解】(1)记学生甲选化学和生物为事件A ,学生甲在“1”中选物理,在“2”中任选2科,包含的基本事件有:(化,生),(化,政),(化,地),(生,政)(生,地),(政,地)共有6个, 事件A 包含的基本事件为(化,生),共1个,所以()16P A =.(2)记方程2220x ax b ++=有实根为事件B ,总的基本事件区域为(){},|03,02a b a b ≤≤≤≤的面积,若方程2220x ax b ++=有实根,则22440a b ∆=-≥,即220a b -≥, 可得()()0a b a b +-≥,所以a b ≥,事件B 发生包含的区域为(){},|,03,02a b a b a b ≥≤≤≤≤的面积, 作图如下:所以事件B 发生的概率为()1322222323P B ⨯-⨯⨯==⨯,所以方程有实数根的概率为23.。
高考总复习:古典概型与几何概型【考纲要求】1、理解古典概型及其概率计算公式;了解随机数的意义,能运用模拟方法估计概率;2、会计算一些随机事件所含的基本事件数及事件发生的概率;了解几何概型的意义。
【知识网络】【考点梳理】知识点一、古典概型1. 定义 具有如下两个特点的概率模型称为古典概型:(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等。
2. 古典概型的基本特征(1)有限性:即在一次试验中,可能出现的结果,只有有限个,也就是说,只有有限个不同的基本事件。
(2)等可能性:每个基本事件发生的可能性是均等的。
3.古典概型的概率计算公式由于古典概型中基本事件发生是等可能的,如果一次试验中共有n 种等可能的结果,那么每一个基本事件的概率都是1n。
如果某个事件A 包含m 个基本事件,由于基本事件是互斥的,则事件A 发生的概率为其所含m 个基本事件的概率之和,即n m A P )(。
所以古典概型计算事件A 的概率计算公式为: 随机事件的概率古典概型 几何概型 应用试验的基本事件总数包含的基本事件数事件A A P =)( 4.求古典概型的概率的一般步骤:(1)算出基本事件的总个数n ;(2)计算事件A 包含的基本事件的个数m ;(3)应用公式()m P A n=求值。
5.古典概型中求基本事件数的方法:(1)穷举法;(2)树形图;(3)排列组合法。
利用排列组合知识中的分类计数原理和分步计数原理,必须做到不重复不遗漏。
知识点二、几何概型1. 定义:事件A 理解为区域Ω的某一子区域A ,A 的概率只与子区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关。
满足以上条件的试验称为几何概型。
2.几何概型的两个特点:(1)无限性,即在一次试验中基本事件的个数是无限的;(2)等可能性,即每一个基本事件发生的可能性是均等的。
3.几何概型的概率计算公式:随机事件A 的概率可以用“事件A 包含的基本事件所占的图形面积(体积、长度)”与“试验的基本事件所占总面积(体积、长度)”之比来表示。
古典概型与几何概型1.【 2018 年理新课标 I 卷】下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形的三边所围成的区域记为I ,黑色部分记为IIABC的斜边,其余部分记为BC,直角边AB, AC.△ ABCIII.在整个图形中随机取一点,此点取自I , II, III的概率分别记为p1, p2, p3,则A. p 1=p2B. p1=p3C. p 2=p3D. p1=p2+p3【答案】 A【解析】分析:首先设出直角三角形三条边的长度,根据其为直角三角形,从而得到三边的关系,之后应用相应的面积公式求得各个区域的面积,根据其数值大小,确定其关系,再利用面积型几何概型的概率公式确定出p1,p2, p3的关系,从而求得结果 .详解:设,则有,从而可以求得的面积为,黑色部分的面积为,其余部分的面积为,所以有,根据面积型几何概型的概率公式,可以得到,故选 A.点睛:该题考查的是面积型几何概型的有关问题,题中需要解决的是概率的大小,根据面积型几何概型的概率公式,将比较概率的大小问题转化为比较区域的面积的大小,利用相关图形的面积公式求得结果 .2.【 2018 年理新课标 I卷】某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【答案】 A详解:设新农村建设前的收入为M,而新农村建设后的收入为2M,则新农村建设前种植收入为 0.6M,而新农村建设后的种植收入为0.74M,所以种植收入增加了,所以 A 项不正确;新农村建设前其他收入我0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以 B 项正确;新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,所以增加了一倍,所以C项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的,所以超过了经济收入的一半,所以D正确;故选 A.3.【 2018 年理数全国卷II 】我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过 30 的素数中,随机选取两个不同的数,其和等于30 的概率是A. B. C. D.【答案】C【解析】分析:先确定不超过30 的素数,再确定两个不同的数的和等于30 的取法,最后根据古典概型概率公式求概率.详解:不超过30 的素数有2,3, 5, 7, 11, 13, 17, 19, 23, 29,共10 个,随机选取两个不同的数,共有种方法,因为 ,所以随机选取两个不同的数,其和等于 30 的有 3 种方法,故概率为 ,选 C.4.【2017 课标 1,理】 如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称 .在正方形内随机取一点, 则此点取自黑色部分的概率是1π A .B .48 C .1π D .24【答案】 B【解析】【考点】几何概型5. 【 2017 山东,理8】从分别标有 1, 2 , , 9 的 9 张卡片中不放回地随机抽取2 次,每次抽取 1 张.则抽到的 2 张卡片上的数奇偶性不同 的概率是(A )5( B )4(C )5(D )18997 9【答案】 C【考点】古典概型6.【2017 江, 7】函数 f ( x)6 x x2的定域 D .在区[ 4,5]上随机取一个数x ,x D 的概率是▲.【答案】59【考点】几何概型概率7.( 2016 年全国 I 高考)某公司的班在7:30, 8:00, 8:30 ,小明在7:50至 8:30 之到达站乘坐班,且到达站的刻是随机的,他等不超10 分的概率是( A )1123 3(B)2( C)3( D)4【答案】 B8、( 2016 年全国 II 高考)从区0,1随机抽取2n 个数x1,x2,⋯,x n,y1,y2,⋯,y n,构成 n 个数x1 , y1, x2 , y2,⋯, x n , y n,其中两数的平方和小于 1 的数共有m个,用随机模的方法得到的周率的近似( A)4n( B)2n(C)4m( D)2m m m n n【答案】 C9.( 2016 年山高考)在[-1,1]上随机的取一个数k,事件“直y = kx 与( x-5)2 + y2 = 9 相交” 生的概率3【答案】.410.【2015 高考广东,理 4】袋中共有 15 个除了颜色外完全相同的球,其中有 10 个白球, 5个红球。
一. 教学内容:高三复习专题:事件与概率、古典概型、几何概型【要点解析】1、频率与概率有本质的区别,不可混为一谈,频率随着试验次数的改变而变化,概率却是一个常数,它是频率的科学抽象,当试验次数越来越多时频率向概率靠近.只要次数足够多,所得频率就近似地当作随机事件的概率.2、任何事件的概率是0到1之间的一个数,它度量该事件发生的可能性.小概率(接近0)事件很少发生,而大概率(接近1)事件则经常发生.但是,概率是用来度量随机事件发生的可能性大小的一个量,而实际结果是指事件A发生或不发生,因此实际结果与计算出的结果并不一定相同.3、对互斥事件的理解,可以从集合的角度去加以认识:如果A、B是两个互斥事件,反映在集合上,是表示A、B这两个事件所含结果组成的集合的交集为空集.4、要注意互斥事件与对立事件的区别与联系互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生。
因此,对立事件是互斥事件的特殊情况或而互斥事件未必是对立事件.5、应用互斥事件的概率加法公式,一定要注意首先确定各个事件是否彼此互斥,然后求出各事件分别发生的概率,再求和。
求复杂事件的概率通常有两种方法:一是将所求事件转化成彼此互斥的事件的和;二是先求其对立事件的概率,然后再应用公式求解。
6、一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特征?D?D有限性和等可能性,只有同时具备这两个特点的概型才是古典概型.例如:抛掷两枚质地均匀的硬币,一共出现四个等可能的结果,即:正正、正反、反正、反反.每一种结果出现的可能性都是,其基本事件只有4个,为可数的,故为古典概型.而不能把“一正一反”看作一个基本事件(因为这一事件包括“正反”、“反正”两种结果),否则基本事件就不等可能了,相应的该试验所对应的概率就不再是古典概型了.7、求古典概型的概率的基本步骤为:(1)算出所有基本事件的个数n;(2)求出事件A包含的所有基本事件数m;(3)代入公式,求出P(A).8、用集合的观点考察事件A的概率,有助于理解事件A与基本事件的关系,有利于理解公式。
3.2-3.3 古典概型与几何概型一、古典概型(一)基本事件:1、定义:一次试验中可能出现的每一个结果称为一个基本事件。
说明:(1)基本事件是试验中不能再分的最简单的随机事件,其他事件可以用它们来表示;(2)所有的基本事件都有有限个;(3)每个基本事件的发生都是等可能的。
2、特点:任何两个基本事件是互斥的,一次实验中,只可能出现一种结果;任何事件都可以表示成基本事件的和。
(二)古典概型1、古典概型的定义:(1)试验中所有可能出现的基本事件只有有限..个;(2)每个基本事件出现的可能性相等.....。
2、古典概型的概率公式:P(A)=mn=试验的基本事件总数包含的基本事件数事件A例1:分别从写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡处上的数大于第二张卡片上的数的概率( ) A :101 B :51 C :103 D :52【解析】:D变式练习1:同时掷两个质地均匀的骰子,向上点数之积为12的概率是( )A :31B :91C :181D :361【解析】B变式练习2:从4,5,6,7,8这5个数中任取两个数,则所取两个数之积能被3整除的概率是( )A :52B :103C :53D :54【解析】A变式练习3:从分别标有1,2,3,……9的9张卡片中不放回地随机抽取两次,每次抽取1张,则抽到2张卡片上的数奇偶不同的概率是( ) A :185 B :94 C :95 D :97【解析】:C例2:住在狗熊岭的7只动物,它们分别是熊大、熊二、吉吉、毛毛、蹦蹦、萝卜头,图图。
为了更好的保护森林,它们要选出2只动物作为组长,则熊大、熊二至少一个被选为组长的概率( ) A :4211 B :21 C :2111 D :2110 【解析】C变式练习1:有5件不同的商品,其中有2件是次品,3件是正品,从中取出2件,至少有1件是次品的概率为( ) A :54 B :107 C :53 D :21【解析】:B变式练习2:一个袋中有红球1个,白球2个和黑球2个,这5个球除颜色外其它都相同,现从袋中任取2个球,则至少取到1个白球的概率为________。
概率事件与概率 随机事件的概率A 随机事件的运算B 两个互斥事件的概率加法公式C 古典概型 古典概型 B 几何概型几何概型B⑴事件与概率①了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别. ②了解两个互斥事件的概率加法公式. ⑵古典概型①理解古典概型及其概率计算公式.②会计算一些随机事件所含的基本事件数及事件发生的概率. ⑶随机数与几何概型①了解随机数的意义,能运用模拟方法估计概率. ②了解几何概型的意义.板块一:古典概型(一)知识内容1.古典概型:如果一个试验有以下两个特征:⑴有限性:一次试验出现的结果只有有限个,即只有有限个不同的基本事件; ⑵等可能性:每个基本事件发生的可能性是均等的. 称这样的试验为古典概型. 2.概率的古典定义:随机事件A 的概率定义为()P A A 事件包含的基本事件数试验的基本事件总数.知识精讲高考要求第4讲古典概型与几何概型(二)典例分析【例1】已知ABC∆是锐角三角形的概率.∆的三边是10以内(不包含10)的三个连续的正整数,求ABC【例2】一个各面都涂有色彩的正方体,被锯成1000个同样大小的小正方体,将这些正方体混合后,从中任取一个小正方体,求:⑴有一面涂有色彩的概率;⑵有两面涂有色彩的概率;⑶有三面涂有色彩的概率.【例3】任取一正整数,求该数的平方的末位数是1的概率.【例4】某学生做两道选择题,已知每道题均有4个选项,其中有且只有一个正确答案,该学生随意填写两个答案,则两个答案都选错的概率为.【例5】某招呼站,每天均有3辆开往首都北京的分为上、中、下等级的客车.某天小曹准备在该招呼站乘车前往北京办事,但他不知道客车的车况,也不知道发车顺序.为了尽可能乘上上等车,他将采取如下决策:先放过第一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆.⑴共有多少个基本事件?⑵小曹能乘上上等车的概率为多少?【例6】张三和李四玩“棒子、老虎、鸡、虫子”的游戏(棒子打老虎,老虎吃鸡,鸡吃虫子,虫蛀棒子),他们同时报其中一个的名字,如果出现的不是以上相邻的两个(比如出现老虎与虫子),则算平局,求⑴出现平局的概率;⑵张三赢的概率.【例7】同时抛掷两枚骰子,⑴求得到的两个点数成两倍关系的概率;⑵求点数之和为8的概率;⑶求至少出现一个5点或6点的概率.【例8】今后三天每一天下雨的概率都为50%,这三天恰有两天下雨的概率为多少?【例9】有十张卡片,分别写有A、B、C、D、E和a、b、c、d、e,⑴从中任意抽取一张,①求抽出的一张是大写字母的概率;②求抽出的一张是A 或a 的概率; ⑵若从中抽出两张,③求抽出的两张都是大写字母的概率; ④求抽出的两张不是同一个字母的概率;【例10】 (04全国)从数字12345,,,,中,随机抽取3个数字(允许重复),组成一个三位数,其各位数字之和等于9的概率为( )A .13125B .16125C .18125D .19125【例11】 (05广东)先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数123456,,,,,),骰子朝上的面的点数分别为X Y ,,则2log 1X Y 的概率为( ) A .16 B .536C .112D .12【例12】 某中学高一年级有12个班,要从中选两个班代表学校参加某项活动,由于某种原因,一班必须参加,另外再从二到十二班中选一个班.有人提议用如下的方法:掷两个骰子得到的点数和是几,就选几班,你认为这种方法公平吗?并说明理由.【例13】 甲盒中有红、黑、白三种颜色的球各3个,乙盒子中有黄、黑、白三种颜色的球各2个,从两个盒子中各取1个球,求取出的两个球是不同颜色的概率.【例14】 李明手中有五把钥匙,但忘记了开门的是哪一把,只好逐把试开,⑴李明恰在第三次打开房门的概率是多大? ⑵李明三次内打开房门的概率是多大?【例15】 盒中有6只灯泡,其中有2只是次品,4只是正品.从中任取2只,试求下列事件的概率.⑴取到的2只都是次品;⑵取到的2只中恰有一只次品.【例16】 (2009四川文)为振兴旅游业,四川省2009年面向国内发行总量为2000万张的熊猫优惠卡,向省外人士发行的是熊猫金卡(简称金卡),向省内人士发行的是熊猫银卡(简称银卡),某旅游公司组织了一个有36名游客的旅游团到四川名胜旅游,其中34是省外游客,其余是省内游客,在省外游客中有13持金卡,在省内游客中有23持银卡.⑴ 在该团中随即采访2名游客,求恰有1人持银卡的概率;⑵ 在该团中随机采访2名游客,求其中持金卡与持银卡人数相等的概率.【例17】 若以连续掷两次骰子分别得到的点数m ,n 作为点P 的坐标,则点P 落在圆2216x y +=内的概率是 .PEDA【例18】 (2009江西文)甲、乙、丙、丁4个足球队参加比赛,假设每场比赛各队取胜的概率相等,现任意将这4个队分成两个组(每组两个队)进行比赛,胜者再赛,则甲、乙相遇的概率为( )A .16B .14C .13D .12板块二:几何概型(一)知识内容几何概型事件A 理解为区域Ω的某一子区域A ,A 的概率只与子区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关,满足此条件的试验称为几何概型. 几何概型中,事件A 的概率定义为()AP A μμΩ=,其中μΩ表示区域Ω的几何度量, A μ表示区域A 的几何度量.(二)典例分析【例19】 如图,在边长为25的正方形中挖去边长为23的两个等腰直角三角形,现有均匀的粒子散落在正方形,问粒子落在中间带形区域的概率是多少?【例20】 向面积为S 的ABC ∆内任投一点P ,则随机事件“PBC ∆的面积小于3S”的概率为多少?C ED B O A【例21】 设A 为圆周上一定点,在圆周上等可能的任取一点P 与A 连结,求弦长超过半径的3倍的概率.【例22】 如图,60AOB ∠=°,2OA =,5OB =,在线段OB 上任取一点C ,试求:⑴AOC ∆为钝角三角形的概率; ⑵AOC ∆为锐角三角形的概率.【例23】 设正四面体ABCD 的体积为V ,P 是正四面体ABCD 的内部的点.①设“14P ABC V V -≥”的事件为X ,求概率()P X ;②设“14P ABC V V -≥且14P BCD V V -≥”的事件为Y ,求概率()P Y .【例24】 小明的爸爸下班驾车经过小明学校门口,时间是下午6:00到6:30,小明放学后到学校门口的候车点候车,能乘上公交车的时间为5:50到6:10,如果小明的爸爸到学校门口时,小明还没乘上车,就正好坐他爸爸的车回家,问小明能乘到他爸的车的概率.【例25】 甲、乙两人约定在6时到7时之间在某处会面,并约定先到者应等候另一个人一刻钟,过时即离去,求两人能会面的概率.【例26】 如右下图,在一个长为π,宽为2的矩形OABC 内,曲线()sin 0πy x x =≤≤与x 轴围成如图所示的阴影部分,向矩形OABC 内随机投一点(该点落在矩形OABC 内任何一点是等可能的),则所投的点落在阴影部分的概率是( )y =sin x2πC BA Oy xA .1πB .2πC .3πD . π4【例27】 (2009福建文)点A 为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B ,则劣弧︵AB 的长度小于1的概率为 .B 'B 1A【例28】 在长度为10的线段内任取两点将线段分为三段,求这三段可以构成三角形的概率.【例29】 在圆心角为150°的扇形AOB 中,过圆心O 作射线交弧AB ︵于P ,则同时满足:45AOP ∠≥°且75BOP ∠≥°的概率为 .【例30】 在区间[11]-,上任取两实数a b ,,求二次方程2220x ax b ++=的两根都为实数的概率.【例31】 (08江苏)在平面直角坐标系xOy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则所投的点落入E 中的概率是 .习题1.将一枚硬币连续投掷三次,连续三次都得正面朝上的概率是多少?习题2.考虑一元二次方程20x mx n++=,其中m n,的取值分别等于将一枚骰子连掷两次先后出现的点数,试求方程有实根的概率.习题3.取一个正方形及其它的外接圆,随机向圆内抛一粒豆子,则豆子落入正方形外的概率为()A.2πB.π2π-C.2πD.π4习题4.在长为18cm的线段AB上任取一点M,并以线段AM为边作正方形,则这个正方形的面积介于36cm2与81cm2之间的概率为()A.56B.12C.13D.16家庭作业习题1. 先后抛掷两颗骰子,设出现的点数之和是121110,,的概率依次是123P P P ,,,则( ) A .123P P P =< B .123P P P << C .123P P P <= D .123P P P >=习题2. 将一枚硬币连续投掷三次,恰有两次正面朝上的概率是多少?习题3. 两根相距3m 的木杆上系一根拉直的绳子,并在绳子上挂一彩珠,则彩珠与两端距离都大于1m 的概率为( )A .12B .13C .14D .23月测备选。
人教课标A版《数学(3)》的古典概型与几何概型内容的修
改建议
黎伟初
【期刊名称】《数学教学通讯:教师阅读》
【年(卷),期】2007(000)012
【摘要】1古典概型内容的教学思考与修改建议对人教课标A版《数学3》的古
典概型的教与学来说,新课标的教学理念在于“列举”.古典概型题渗透在教材中的例题、、习题,透过现象,本质上有三种题型:“依次不放回取”、“依次放回取”与“同时取”,分别对应于旧课程中排列、分类(步)计数原理与组合等内容.列举的手段有:列“树枝图”,
【总页数】4页(P7-10)
【作者】黎伟初
【作者单位】广东省封开县江口中学,526500
【正文语种】中文
【中图分类】O211
【相关文献】
1.从教材的比较研究中认识“用教材教”——人教A版与苏教版教材“几何概型”微观比较研究 [J], 李保军;叶雪梅
2.人教课标A版《数学③》的古典概型与几何概型内容的修改建议 [J], 黎伟初
3.人教A版与苏教版教材“几何概型”微观比较研究 [J], 李保军;叶雪梅
4.善思广学解读教材,深究求通提升效率r——人教A版高中数学"几何概型"教材研读与教学思考 [J], 宫前长
5.从新旧教材例习题的变化感悟课程理念——以人教版数学(必修)与新课标人教A 版《函数》内容为例 [J], 李建明
因版权原因,仅展示原文概要,查看原文内容请购买。