北师大版数学八上学案案4.3 第1课时 正比例函数的图象和性质
- 格式:doc
- 大小:984.50 KB
- 文档页数:4
八年级数学上册4.3一次函数的图象第1课时正比例函数的图象和性质教学设计(新版北师大版)一. 教材分析《八年级数学上册4.3一次函数的图象》这一节,主要介绍了一次函数的图象和性质。
其中,正比例函数是特殊的一次函数,它的图象是一条通过原点的直线。
本节内容是学生学习一次函数的基础,对于学生理解和掌握一次函数的图象和性质,以及后续学习其他类型的函数具有重要意义。
二. 学情分析八年级的学生已经学习了代数基础知识,对于函数的概念有一定的理解。
但是,对于函数的图象和性质,特别是正比例函数的图象和性质,可能还比较陌生。
因此,在教学过程中,需要引导学生通过实际操作,观察和分析正比例函数的图象和性质,从而加深对一次函数的理解。
三. 教学目标1.理解正比例函数的图象是一条通过原点的直线。
2.掌握正比例函数的性质,即当x增大或减小时,y的值也按比例增大或减小。
3.能够通过观察图象,分析正比例函数的性质。
四. 教学重难点1.重难点:正比例函数的图象和性质。
2.难点:如何引导学生通过观察图象,分析正比例函数的性质。
五. 教学方法采用问题驱动的教学方法,引导学生通过观察和操作,发现正比例函数的图象和性质。
同时,结合小组合作学习,让学生在讨论中加深对一次函数的理解。
六. 教学准备1.准备正比例函数的图象和性质的相关教学材料。
2.准备计算机和投影仪,用于展示图象和讲解。
七. 教学过程1.导入(5分钟)通过一个实际问题,引出正比例函数的概念,并提出问题:“正比例函数的图象是什么样的?”2.呈现(10分钟)利用计算机和投影仪,展示正比例函数的图象,并引导学生观察和分析。
3.操练(10分钟)让学生分组进行实际操作,通过改变x的值,观察y的变化,从而深入理解正比例函数的性质。
4.巩固(5分钟)通过一些练习题,让学生巩固对正比例函数图象和性质的理解。
5.拓展(5分钟)引导学生思考:除了正比例函数,还有其他类型的函数图象和性质是什么?6.小结(5分钟)对本节课的内容进行小结,强调正比例函数的图象是一条通过原点的直线,性质是当x增大或减小时,y的值也按比例增大或减小。
八年级数学上册4.3一次函数的图象第1课时正比例函数的图象和性质说课稿(新版北师大版)一. 教材分析本次说课的课题是北师大版八年级数学上册4.3一次函数的图象第1课时——正比例函数的图象和性质。
这部分内容是在学生已经掌握了正比例函数的定义和一些基本知识的基础上进行讲授的。
教材通过正比例函数的图象和性质,让学生更好地理解正比例函数的特点和规律,为后续学习一次函数和其他类型的函数打下基础。
二. 学情分析八年级的学生已经具备了一定的数学基础,对正比例函数的概念和性质有一定的了解。
但是,对于如何通过图象来分析函数的性质,以及如何运用这些性质解决实际问题,学生可能还存在一定的困难。
因此,在教学过程中,需要关注学生的认知水平,通过实例和练习,让学生深化对正比例函数图象和性质的理解。
三. 说教学目标1.知识与技能目标:使学生掌握正比例函数的图象特征,能够通过图象分析函数的性质。
2.过程与方法目标:通过观察、分析、归纳等方法,让学生学会如何从图象中获取函数信息,培养学生的数形结合思想。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的观察能力和逻辑思维能力。
四. 说教学重难点1.教学重点:正比例函数的图象特征和性质。
2.教学难点:如何通过图象来分析函数的性质,以及如何运用这些性质解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组讨论法等,引导学生主动探究、合作交流。
2.教学手段:利用多媒体课件、实物模型、练习题等,辅助教学,提高教学效果。
六. 说教学过程1.导入:通过展示一些实际问题,引导学生思考如何通过图象来解决这些问题,从而引入正比例函数的图象和性质。
2.新课讲解:讲解正比例函数的图象特征和性质,通过实例让学生理解并掌握这些概念。
3.练习与讨论:布置一些练习题,让学生通过图象来分析函数的性质,并进行小组讨论,分享解题心得。
4.课堂小结:总结本节课的主要内容和知识点,强调正比例函数图象和性质的重要性。
八年级数学上册4.3一次函数的图象第1课时正比例函数的图象和性质教案新版北师大版一. 教材分析《新版北师大版八年级数学上册》第四章第三节主要讲述了一次函数的图象,其中第一课时为正比例函数的图象和性质。
本节课内容是学生在学习了直线方程、函数概念等基础知识后的进一步拓展,是对一次函数图象和性质的系统学习。
通过本节课的学习,使学生能够掌握正比例函数的图象特征,理解正比例函数的性质,并能运用其解决实际问题。
二. 学情分析八年级的学生已经具备了一定的数学基础,对直线方程、函数概念等知识有了初步的了解。
但学生在学习过程中,对于函数图象和性质的理解还有一定的困难,需要通过具体的实例和操作来加深理解。
此外,学生对于解决实际问题的能力还需加强,需要通过课堂练习和拓展环节来提高。
三. 教学目标1.知识与技能目标:使学生能够掌握正比例函数的图象特征,理解正比例函数的性质。
2.过程与方法目标:通过观察、操作、思考、交流等过程,培养学生分析问题、解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。
四. 教学重难点1.重点:正比例函数的图象特征,正比例函数的性质。
2.难点:正比例函数性质的理解和应用。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等多种教学方法,引导学生观察、操作、思考、交流,从而达到对正比例函数图象和性质的理解。
六. 教学准备1.准备相关的一次函数图象和性质的案例。
2.准备多媒体教学设备,如投影仪、电脑等。
3.准备练习题和拓展题。
七. 教学过程1.导入(5分钟)通过展示一些实际问题,引导学生对正比例函数的图象和性质产生兴趣,激发学生的学习欲望。
2.呈现(10分钟)用多媒体展示正比例函数的图象,引导学生观察、分析,从而总结出正比例函数的图象特征。
然后,通过具体案例,讲解正比例函数的性质。
3.操练(10分钟)让学生分组进行讨论,每组选择一个案例,分析其图象和性质。
正比例函数的图象与性质教学设计一、学情分析学生已在七年级学习了“变量之间的关系”,对利用图象表示变量之间的关系已有所认识,并能从图象中获取相关的信息,对函数与图象的联系还比较陌生,需要教师在教学中引导学生重点突破函数与图象的对应关系。
掌握一次函数及其图象的简单性质,初步了解画函数的一般步骤,为后续学习其他函数(如反比例函数、二次函数)的图象做好必要的知识储备。
因此,本节起着承上启下的作用。
八年级的学生思维正从经验型向理论性发展,观察能力、思维能力逐渐增强。
因此,在本节的教学中,通过对表象的观察分析,引导学生归纳概括知识的本质。
二、教学目标知识与技能:1、经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线。
2、了解正比例函数的图象是一条直线,并熟练地画出正比例函数的图象。
3、理解正比例函数的代数表达式与图象之间的一一对应关系。
4、掌握正比例函数及其图象的简单性质。
过程与方法:经历探索画正比例函数图象的过程,发展学生观察、分析、比较、抽象及概括的能力。
情感态度与价值观:通过画正比例函数图象的过程,激发学生探索的兴趣,体验获得探索结果的喜悦,体会数形结合的思想方法。
三、重难点分析重点:初步了解作函数图象的一般步骤:列表、描点、连线。
难点:理解正比例函数的代数表达式与图象之间的一一对应关系;掌握正比例函数及其图象的简单性质。
四、教学过程1、温故知新,导入新课(1)前面我们已经学习了函数,那么表示函数的方法有哪些?【学生预设】列表法,关系式法,图象法(2)什么是一次函数?什么是正比例函数?除了用函数的表达式外,我们还可以用哪些形式来表示一次函数和正比例函数?【学生预设】若两变量,x y间的对应关系可以表示成y kx b=+(,k b为常数,0k≠)的形式,则称y是x的一次函数。
特别的,当0b=时,称y是x的的正比例函数。
还可以用列表法和图象法来表示一次函数和正比例函数。
(3)展示惠来某一天的气温变化图,并提问,图中温度T是时间t的函数吗?自变量是什么?这种表示函数的方法是什么?【学生预设】是函数,自变量是时间t,这种表示函数的方法是图象法。
4.3 一次函数的图象第 1 课时正比率函数的图象和性质教课目标1.理解函数象的看法,掌握作函数象的一般步;( 要点 )2.掌握正比率函数的象与性,并能灵巧运用解答有关.( 点 )教课重难点【教课要点】初步认识作函数象的一般步:列表、描点、.【教课点】理解一次函数的代数表达式与象之的一一关系.教课过程第一:情境引入内容:一天,小明以 80 米 / 分的速度去上学,小明离家的距离S(米)与小明出的t(分)之的函数关系式是怎的?它是一次函数?它是正比率函数?S=80t (t ≥ 0)右边的象能表示上边中的S 与 t 的关系?80 S(米)我,右边的象是函数S=80t( t ≥ 0)的象 , 就是我今天要学的主要内容:一次函数的象的特别状况正比率函数的象.目的:通学生比熟习的生活情形,学生在写函数关系式和O t (分)象的程中,初步感觉函数与象的系,激其学的欲念.1成效:学生通上述情形的分析,初步感觉到函数与象的系,激了学生的学欲念.第二:画正比率函数的象内容:第一我来学什么是函数的象?把一个函数的自量x 与的因量 y 的分作点的横坐和坐,在直角坐系内描出它的点,全部些点成的形叫做函数的象(graph ).例 1 作出正比率函数 y=2x 的象.解:列表:x⋯-2-1012⋯y=2x ⋯-4-2024⋯描点:以表中各作点的坐,在直角坐系内描出相的点.:把些点挨次起来,获取y=2x 的象.由例 1 我:作一个函数的象需要三个步:列表,描点,.目的:通本的学,学生明确作一个函数象的一般步,能做出一个函数的象,同感悟正比率函数象是一条直.成效:学生通学,掌握了作一个函数象的一般方法,能作出一个函数的象,同时感悟到正比率函数图象是一条直线.第三环节:着手操作,深入研究内容:做一做( 1)作出正比率函数 y= 3x 的图象.( 2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并考据它们能否都满足关系 y= 3x .请同学们以小组为单位,谈论下边的问题,把得出的结论写出来. ( 1)满足关系式 y= 3x 的 x ,y 所对应的点( x ,y )都在正比率函数y= 3x 的图象上吗?( 2)正比率函数 y= 3x 的图象上的点( x , y )都满足关系式 y= 3x 吗?( 3)正比率函数 y=kx 的图象有什么特色?清楚由上边的谈论我们知道: 正比率函数的代数表达式与图象是一一对应的,即满足正比率函数的代数表达式的 x , y 所对应的点( x ,y )都在正比率函数的图象上;正比率函数的图象上的点( x , y )都满足正比率函数的代数表达式.正比率函数 y=kx 的图象是一条直线,今后可以称正比率函数y=kx 的图象为直线 y=kx .议一议既然我们得出正比率函数y=kx 的图象是一条直线.那么在画正比率函数图象时有没有 什么简单的方法呢?由于“两点确定一条直线”,所以画正比率函数 y=kx 的图象时可以只描出两个点即可以了.由于正比率函数的图象是一条过原点(0,0) 的直线 , 所以只需再确定一个点就可以了,平时过 (0,0),(1,k)作直线 .例 2 在同向来角坐标系内作出y=x,y=3x,y=-1x,y=-4x的图象.2解: 列表x 0 1y=x1y=3x 0 3y=- 1 x-122y= 4x-4过点( 0, 0)和( 1, 1)作直线,则这条直线就是 y=x 的图象. 过点( 0, 0)和( 1, 3)作直线,则这条直线就是 y=3x 的图象.过点( 0, 0)和( 1, - 1 )作直线,则这条直线就是y=- 1x 的图象.2 2过点( 0, 0)和( 1, -4 )作直线,则这条直线就是y=-4x 的图象.目的:做一做“作出这几个正比率函数的图象”,意在让学生进一步熟习如何作一个正比率函数的图象,同时要修业生经过这几个函数的图象,分析正比率函数图象的性质, 以及k 的绝对值大小与直线倾斜程度的关系.成效:学生经过作出正比率函数的图象,明确了作函数图象的一般方法.在研究函数与图象的对应关系中加深了理解,并能很快地作出正比率函数的图象.议一议上述四个函数中,跟着 x的增大 ,y的值分别如何变化?在正比率函数y=kx 中 ,当 k> 0时, 图象在第一、三象限,y的值跟着 x值的增大而增大( 即从左向右观察图象时,直线是向上倾斜的); 当k< 0时 ,图象在第二、四象限,y 的值跟着 x值的增大而减小( 即从左向右观察图象时,直线是向下倾斜的).请你进一步思虑:(1)正比率函数 y=x和 y=3x 中,跟着 x值的增大 y的值都增添了,此中哪一个增添得更快?你能说明此中的道理吗?(2)正比率函数 y=- 1x和 y=-4x 中,跟着 x值的增大 y的值都减小了,此中哪一个减小2得更快?你是如何判断的?我们发现:k越大,直线越凑近y轴 .第四环节:牢固练习,深入理解内容:练习1:在同向来角坐标系中分别作出y= 1x 与y=-1x 的图象.23练习2:当x0 时,y 与x的函数分析式为y2x ,当x0 时,y 与x 的函数分析式为 y2x ,则在同向来角坐标系中的图象大体为( )yy y yx x x O x O O OA B C D练习 3:对于函数y3x 的两个确定的值x1、 x2来说,当 x1x2时,对应的函数值y1与 y2的关系是 ()A. y1y2B. y1y2C. y1y2D.没法确定目的:这里的三个练习题,一是让学生熟练正比率函数图象的作法,二是明确正比率函数图象的性质,要注意自变量的取值范围.成效:学生经过练习,进一步熟练了正比率函数图象的作法,对正比率函数和正比率函数图象的一般特色有了清楚的认识.第五环节:课时小结内容:本节课我们经过对正比率函数图象的研究,掌握了以下内容:(1)函数与图象之间是一一对应的关系;(2)正比率函数的图象是一条经过原点的直线.(3)作正比率函数图象时,只取原点外的另一个点,就能很快作出.目的:让学生在回忆的过程中,进一步加深对正比率函数图象的理解,同时对本节所学知识有一个总结性的认识.成效:学生经过对本节学习的回顾和小结,对所学知识更清楚,抓住了要点,明确了关键.第六环节:拓展研究内容:以以下图,你以为以下结论中正确的选项是()A.k1k2k3B.k2k1k3C.k3k1k2D.k1k3k2目的:对学有余力的学生,能进一步提升,让他们的学习活动深入下去,同时为今后学习正比率函数图象的应用确定基础.成效:学生经过对上边问题的研究,对正比率函数图象的认识更深入.第七环节:作业部署习题 4.3 1、2、3、4题,5题选做.教课方案反思这节内容是学生利用数形结合的思想去研究正比率函数的图象,对函数与图象的对应关系有点陌生.在教课过程中教师应经过情境创建激发学生的学习兴趣,对函数与图象的对应关系应让学生着手去实践,去发现,对正比率函数的图象是一条直线应让学生自己得出.在得出结论以后,让学生能运用“两点确定一条直线”,很快作出正比率函数的图象.在牢固练习活动中,鼓舞学生踊跃思虑,提升学生解决实质问题的能力.自然,依据学生状况,教课方案也应做出相应的调整. 如第一环节:创建情境引入课题,诚然可以激发学生兴趣,但也可能简单让学生关注代数表达式的追求,甚至对部分学生形成必定的认知阻碍,所以该环节也可以直接斩钉截铁,直入主题,如提出问题:正比率函数的代数形式是y=kx ,那么,一个正比率函数对应的图形拥有什么特色呢?。
北师大版数学八年级上册《正比例函数的图象与性质》教学设计2一. 教材分析《正比例函数的图象与性质》是北师大版数学八年级上册第6章第1节的内容。
本节内容是在学生已经掌握了正比例函数的定义和基本性质的基础上进行教学的。
教材通过实例引入正比例函数的图象与性质,让学生通过观察、分析、归纳等过程,掌握正比例函数的图象特点和性质,培养学生的数形结合思想,提高学生解决问题的能力。
二. 学情分析学生在学习本节内容之前,已经掌握了正比例函数的基本知识,具备了一定的观察、分析、归纳能力。
但部分学生对正比例函数的图象与性质的理解还不够深入,容易与一次函数混淆。
因此,在教学过程中,教师需要关注学生的学习情况,针对性地进行引导和讲解,帮助学生巩固知识,提高解题能力。
三. 教学目标1.知识与技能:使学生掌握正比例函数的图象特点和性质,能够运用这些性质解决实际问题。
2.过程与方法:通过观察、分析、归纳等方法,培养学生数形结合的思想,提高学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用。
四. 教学重难点1.重点:正比例函数的图象特点和性质。
2.难点:如何运用正比例函数的性质解决实际问题。
五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,帮助学生掌握正比例函数的图象与性质。
2.实例分析法:教师通过列举实例,让学生观察、分析,从而归纳出正比例函数的性质。
3.小组讨论法:学生分组讨论,共同解决问题,培养学生的团队合作精神。
六. 教学准备1.教学课件:制作正比例函数的图象与性质的课件,以便于学生直观地了解正比例函数的性质。
2.实例:准备一些与正比例函数相关的实例,以便于学生分析。
3.练习题:准备一些练习题,以便于学生在课后巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾正比例函数的基本知识,为新课的学习做好铺垫。
2.呈现(10分钟)教师利用课件展示正比例函数的图象,让学生观察并描述正比例函数的图象特点。
全新修订版教学设计
(教案)
八年级数学上册
老师的必备资料
家长的帮教助手
学生的课堂再现
北师大版
4.3 一次函数的图象
第1课时正比例函数的图象和性质
一、学生起点分析
八年级学生已在七年级学习了“变量之间的关系”,对利用图象表示变量之间的关系已有所认识,并能从图象中获取相关的信息,对函数与图象的联系还比较陌生,需要教师在教学中引导学生重点突破函数与图象的对应关系.
二、教学任务分析
《一次函数的图象》是义务教育课程标准北师大实验教科书八年级(上)第六章《一次函数》的第三节.本节内容安排了2个课时,第1课时是让学生了解函数与对象的对应关系和作函数图象的步骤和方法,明确一次函数的图象是一条直线,
能熟练地作出一次函数的图象。
第2课时是通过对一次函数图象的比较与归类,探索一次函数及其图象的简单性质.本课时是第一课时,教材注重学生在探索过程的体验,注重对函数与图象对应关系的认识.
为此本节课的教学目标是:
1.了解一次函数的图象是一条直线,能熟练作出一次函数的图象.
2.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线.
3.已知函数的代数表达式作函数的图象,培养学生数形结合的意识和能力.4.理解一次函数的代数表达式与图象之间的一一对应关系.
教学重点是:
初步了解作函数图象的一般步骤:列表、描点、连线.。
4.3 一次函数的图象第1课时 正比例函数的图象和性质1.理解函数图象的概念,掌握作函数图象的一般步骤;(重点)2.掌握正比例函数的图象与性质,并能灵活运用解答有关问题.(难点)一、情境导入 一天,小明以80米/分的速度去学校,请问小明离家的距离s(米)与小明出发的时间t(分)之间的函数关系式是怎样的?它是一次函数吗?它是正比例函数吗? 图中的图象能表示上面问题中的s 与t 的关系吗?二、合作探究 探究点一:正比例函数的图象 【类型一】正比例函数的图象的画法 画出函数y =-2x 的图象. 解析:当x =0时,y =0;当x =1时,y =-2.经过原点O(0,0)和点A(1,-2)作直线,则这条直线就是函数y =-2x 的图象.解:如图:方法总结:作函数图象的一般步骤:列表,描点,连线,正比例函数的图象是经过原点的直线,只需再另外找一点就可作出图象. 【类型二】正比例函数的图象 已知正比例函数y =kx(k≠0),当x =-1时,y =-2,则它的图象大致是( )解析:将x =-1,y =-2代入正比例函数y =kx(k≠0)中,求出k 的值为2,即可根据正比例函数的性质判断出函数的大致图象,故选C.方法总结:本题考查了正比例函数的图象,知道正比例函数的图象是过原点的直线,且当k>0时,图象过一、三象限;当k<0时,图象过二、四象限.探究点三:正比例函数的性质已知正比例函数y =-kx 的图象经过一、三象限,P 1(x 1,y 1)、P 2(x 2,y 2)、P 3(x 3,y 3)三点在函数y=(k -2)x 的图象上,且x 1>x 3>x 2,则y 1,y 2,y 3的大小关系为( ) A .y 1>y 3>y 2 B .y 1>y 2>y 3C .y 1<y 3<y 2D .y 3>y 2>y 1解析:由y =-kx 的图象经过一、三象限,可知-k>0即k<0,∴k -2<0.由正比例函数的性质可知,y =(k -2)x 的函数值y 随x 的增大而减小,则由x 1>x 3>x 2得y 1<y 3<y 2.故选C.方法总结:正比例函数y =kx(k≠0)的函数值y 随x 的变化情况由k 的符号决定.k>0时,y 随x 的增大而增大;k<0时,y 随x 的增大而减小.三、板书设计 1.函数与图象之间是一一对应的关系; 2.作一个函数的图象的一般步骤:列表,描点,连线;3.正比例函数的图象的性质:正比例函数的图象是一条经过原点的直线.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线.已知函数的表达式作函数的图象,培养学生数形结合的意识和能力.理解一次函数的表达式与图象之间的一一对应关系.。
4.3 一次函数的图象第1课时正比例函数的图象和性质一、学习目标1、理解函数图象的概念。
2、经历作图过程,初步了解作函数图象的一般步骤。
3、理解一次函数的代数表达式与图象之间的对应关系。
4、能较熟练作出一次函数的图象。
二、能力目标1、已知解析式作函数的图象,培养学生数形结合的意识和能力。
2、在探究活动中发展学生的合作意识和能力。
三、情感目标1、经历作图过程,归纳总结作函数图象的一般步骤,发展学生的总结概括能力。
2、加强新旧知识的联系,促进学生新的认知结构的建构。
四、学习重点1、能熟练地作出一次函数的图象。
2、归纳作函数图象的一般步骤。
3、理解一次函数的代数表达式与图象之间的对应关系。
五、学习过程1、新课导入上节课我们学习了一次函数及正比例函数的概念,正比例函数与一次函数的关系,并能根据已知信息列出x与y的函数关系式,本节课我们研究一下一次函数的图象及性质。
2、讲授新课(1)函数图象的概念把一个函数的自变量x与对应的因变量y的值作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。
假设在代数表达式y=2x中,自变量x取1时,对应的因变量y=2,则我们可在直角坐标系内描出表示(1,2)的点,再给x的另一个值,对应又一个y,又可知道直角坐标系内描出另一个点,所有这些点组成的图形叫该函数y=2x的图象,由此看来,函数图象是满足函数表达式的所有点的集合。
(2)作一次函数的图象例1:作出一次函数y=2x+1的图象解:列表:描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点。
连线:把这些点依次连接起来,得到y=2x+1的图象(如图6-4),它是一条直线。
小结:从刚才作图的情况来总结一下作一次函数图象有哪些步骤:(1)列表;(2)描点;(3)连线。
做一做(1)作出一次函数y=-2x+5的图象,(2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否满足关系式y=-2x+5。
4.3 一次函数的图象第1课时正比例函数的图象和性质1.理解函数图象的概念,掌握作函数图象的一般步骤;(重点)2.掌握正比例函数的图象与性质,并能灵活运用解答有关问题.(难点)一、情境导入一天,小明以80米/分的速度去学校,请问小明离家的距离s(米)与小明出发的时间t(分)之间的函数关系式是怎样的?它是一次函数吗?它是正比例函数吗?图中的图象能表示上面问题中的s与t的关系吗?二、合作探究探究点一:正比例函数的图象【类型一】正比例函数的图象的画法画出函数y=-2x的图象.解析:当x=0时,y=0;当x=1时,y=-2.经过原点O(0,0)和点A(1,-2)作直线,则这条直线就是函数y=-2x的图象.解:如图:方法总结:作函数图象的一般步骤:列表,描点,连线,正比例函数的图象是经过原点的直线,只需再另外找一点就可作出图象.【类型二】正比例函数的图象已知正比例函数y=kx (k≠0),当x=-1时,y=-2,则它的图象大致是( )解析:将x=-1,y=-2代入正比例函数y=kx(k≠0)中,求出k的值为2,即可根据正比例函数的性质判断出函数的大致图象,故选C。
方法总结:本题考查了正比例函数的图象,知道正比例函数的图象是过原点的直线,且当k>0时,图象过一、三象限;当k<0时,图象过二、四象限.探究点三:正比例函数的性质已知正比例函数y=-kx 的图象经过一、三象限,P1(x1,y1)、P2(x2,y2)、P3(x3,y3)三点在函数y=(k-2)x的图象上,且x1>x3>x2,则y1,y2,y3的大小关系为()A.y1〉y3>y2 B.y1〉y2>y3C.y1〈y3<y2 D.y3>y2>y1解析:由y=-kx的图象经过一、三象限,可知-k〉0即k<0,∴k-2<0.由正比例函数的性质可知,y=(k-2)x的函数值y随x的增大而减小,则由x1〉x3〉x2得y1〈y3〈y2。
北师版数学八年级上册
4.3 一次函数的图象
第1课时正比例函数的图象和性质
一、学习目标
1、理解函数图象的概念。
2、经历作图过程,初步了解作函数图象的一般步骤。
3、理解一次函数的代数表达式与图象之间的对应关系。
4、能较熟练作出一次函数的图象。
二、能力目标
1、已知解析式作函数的图象,培养学生数形结合的意识和能力。
2、在探究活动中发展学生的合作意识和能力。
三、情感目标
1、经历作图过程,归纳总结作函数图象的一般步骤,发展学生的总结概括能力。
2、加强新旧知识的联系,促进学生新的认知结构的建构。
四、学习重点
1、能熟练地作出一次函数的图象。
2、归纳作函数图象的一般步骤。
3、理解一次函数的代数表达式与图象之间的对应关系。
五、学习过程
1、新课导入
上节课我们学习了一次函数及正比例函数的概念,正比例函数与一次函数的关系,并能根据已知信息列出x与y的函数关系式,本节课我们研究一下一次函数的图象及性质。
2、讲授新课
(1)函数图象的概念
把一个函数的自变量x与对应的因变量y的值作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。
假设在代数表达式y=2x中,自变量x取1时,对应的因变量y=2,则我们可在直角坐标系内描出表示(1,2)的点,再给x的另一个值,对应又一个y,又可知道直角坐标系内描出另一个点,所有这些点组成的图形叫该函数y=2x的图象,由此看来,函数图象是满足函数表达式的所有点的集合。
(2)作一次函数的图象
例1:作出一次函数y=2x+1的图象
解:列表:
描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点。
连线:把这些点依次连接起来,得到y=2x+1的图象(如图6-4),它是一条直线。
小结:从刚才作图的情况来总结一下作一次函数图象有哪些步骤:(1)列表;(2)描点;(3)连线。
做一做
(1)作出一次函数y=-2x+5的图象,
(2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否满足关系式y=-2x+5。
列表:
描点:以表中各组对应值作为点的坐标,在直角坐标第内描出相应的点。
连线:把这些点依次连接起来,得到y=-2x+5的图象,它是一条直线。
图象如下:
在图象上找点A (3,-1)B (4,-3),当x=3时,y=-2×3+5=-1;当x=4时,y=-2×4+5=-3。
(3,-1),(4,-3)满足关系式y=-2x+5。
3、议一议
(1)满足关系式y=-2x+5的x 、y 所对应的点(x,y )都在一次函数y=-2x+5的图象上吗?
(2)一次函数y=-2x+5的图象上的点(x,y )都满足关系式y=-2x+5吗? (3)一次函数y=kx+b 的图象有什么特点? 请大家分组讨论,然后回答。
(1)满足关系式y=-2x+5的x ,y 所对应的点(x ,y )都在一次函数y=-2x+5的图象上。
(2)一次函数y=-2x+5的图象上的点(x,y )都满足关系式y=-2x+5。
由此看来,满足函数关系式y=-2x+5的x,y 所对应的点(x,y )都在一次函数y=-2x+5的图象上;反过来,一次函数y=-2x+5的图象上的点(x,y)都满足关系式y=-2x+5。
所以,一次函数的代数表达式与图象是一一对应的,即满足一次函数的代数表达式的点在图象上,图象上的每一点的横坐标x ,纵坐标y 都满足一次函数的代数表达式。
小结:一次函数的图象是一条直线,由直线的公理可知:两点确定一条直线,所以作一次函数的图象时,只要确定两个点,再过这两个点作直线就可以了,一次函数y=kx+b 的图象也称为直线y-kx+b 。
4、课堂练习 分别作出一次函数y=3
1
x 与y=-3x+9的图象。
六、课后小结
1、函数图象的概念。
2、作一次函数的步骤。
3、明确一次函数的图象是一条直线,因此在作图时,不需要列表,只要确定两点就可
以了。
七、课后作业
习题4.3。