考研定积分详解
- 格式:ppt
- 大小:2.44 MB
- 文档页数:48
一、定积分的定义和性质1. 定积分的概念定积分是微积分学中的重要概念,它是对函数在一个区间上的积分值进行求解的操作。
具体来说,如果函数f(x)在区间[a,b]上是连续的,则我们可以通过定积分的形式来求解函数f(x)在区间[a,b]上的积分值,即∫(a to b) f(x)dx。
这里,∫表示积分符号,a和b分别表示区间的起点和终点,f(x)表示要求解的函数,dx表示积分变量,并代表着在区间[a,b]上x的变化范围。
因此,定积分的求解可以看做是对函数在一个区间上的积分值进行求解的过程。
2. 定积分的性质定积分具有一系列的性质,这些性质在定积分的求解中起着重要的作用。
主要的性质包括线性性、可加性、积性、保号性、保序性等。
具体来说,线性性指的是定积分的线性组合仍然可以进行积分求解;可加性指的是如果一个区间可以分解成若干个子区间,那么对应的积分值也可以进行求和;积性指的是如果一个函数是另一个函数的乘积,那么对应的积分值也可以进行相乘;保号性指的是如果函数在区间上恒大于等于零(小于等于零),那么对应的积分值也恒大于等于零(小于等于零);保序性指的是如果函数在区间上恒大于等于另一个函数(小于等于另一个函数),那么对应的积分值也恒大于等于(小于等于)另一个函数在相同区间上的积分值。
这些性质在定积分的具体求解中是非常有用的,可以帮助我们简化求解的过程,提高计算的效率。
二、定积分的计算1. 定积分的计算方法定积分的计算方法主要包括定积分的定义法、不定积分法、分部积分法、换元积分法和定积分的几何意义。
其中,定积分的定义法是直接根据定积分的定义进行求解;不定积分法是将定积分转化成不定积分,通过求解不定积分再将得到的结果代入原来的定积分式中,从而得到最终的定积分值;分部积分法是将被积函数进行分解,然后利用分部积分公式对各项进行积分求解;换元积分法是通过变量代换的方法将被积函数进行转化,然后再进行积分求解;定积分的几何意义则是利用定积分代表曲线下面积的特性来进行求解。
考研数学定积分的应用一、引言数学定积分是高等数学中的重要概念之一,它在实际生活中有着广泛的应用。
本文将从几个具体的应用案例入手,探讨考研数学定积分的应用。
二、面积计算数学定积分最基本的应用之一就是计算曲线与坐标轴所围成的面积。
例如,在工程测量中,我们经常需要计算某个区域的面积,如果该区域的边界曲线可以用函数表示,那么可以通过定积分来求解。
通过将曲线分割成无穷多个微小的矩形,计算每个矩形的面积并进行累加,最终得到所需的面积。
三、物体体积计算除了计算面积,数学定积分还可以用于计算物体的体积。
在工程设计中,经常需要计算复杂形状物体的体积,例如水库的容量、建筑物的体积等。
如果物体的截面可以用函数表示,那么可以通过定积分来求解。
同样地,将截面分割成无穷多个微小的面元,计算每个面元的体积并进行累加,最终得到所需的体积。
四、质心计算质心是物体在空间中的重心,对于复杂形状的物体,质心的计算可以通过数学定积分来实现。
首先,将物体分割成无穷多个微小的体积元,计算每个体积元的质量并与其质心坐标乘积,然后进行累加,最后将总质量除以总体积,即可得到质心的坐标。
五、弯曲杆件的弯矩计算在工程力学中,常常需要计算弯曲杆件的弯矩分布,以确定结构的稳定性和安全性。
通过数学定积分,可以将杆件分割成无穷多个微小的弯曲段,计算每个弯曲段的弯矩,并进行累加,最终得到整个杆件的弯矩分布。
六、概率密度函数计算概率密度函数是概率论与数理统计中的重要概念,用于描述随机变量的概率分布。
数学定积分可以用于计算概率密度函数的各种性质,例如求解期望值、方差以及其他统计指标。
通过对概率密度函数进行定积分,可以得到具体的数值,从而进行概率分析和决策。
七、总结本文简要介绍了考研数学定积分的几个应用,包括面积计算、物体体积计算、质心计算、弯曲杆件的弯矩计算以及概率密度函数的计算。
这些应用充分展示了数学定积分在实际生活和工程领域中的重要性和广泛应用。
通过学习和掌握数学定积分的应用技巧,可以更好地理解和应用数学知识,提高问题解决能力。
第六讲 定积分的应用一、基础知识几何应用(一)平面图形的面积 1.直角坐标情形由曲线)0)(()(≥=x f x f y 及直线 x a =与 x b = ( a b < ) 与 x 轴所围成的曲边梯形面积A 。
()baA f x dx =⎰ 其中:f x dx ()为面积元素。
由曲线y f x =()与y g x =()及直线x a =,x b =(a b <)且f x g x ()()≥所围成的图形面积A 。
()()[()()]=-=-⎰⎰⎰b b baaaA f x dx g x dx f x g x dx2.极坐标情形设平面图形是由曲线 )(θϕ=r 及射线αθ=,βθ=所围成的曲边扇形。
取极角θ为积分变量,则 βθα≤≤,在平面图形中任意截取一典型的面积元素A ∆,它是极角变化区间为],[θθθd +的窄曲边扇形。
曲边梯形的面积元素 θθϕd dA 2])([21= ⎰=βαθθϕd A )(212(二)旋转体的体积计算由曲线y f x =()直线x a =,x b =及x 轴所围成的曲边梯形,绕x 轴旋转一周而生成的立体的体积。
取x 为积分变量,则],[b a x ∈,对于区间],[b a 上的任一区间],[dx x x +,它所对应的窄曲边梯形绕x 轴旋转而生成的薄片似的立体的体积近似等于以)(x f 为底半径,dx 为高的圆柱体体积。
即:体积元素为 []dx x f dV 2)(π=所求的旋转体的体积为 []dx x f V ba⎰=2)(π(三)平面曲线的弧长 1.直角坐标情形设函数)(x f 在区间],[b a 上具有一阶连续的导数,计算曲线)(x f y =的长度s 。
取x 为积分变量,则],[b a x ∈,在],[b a 上任取一小区间],[dx x x +,弧长元素为[]dx x f ds 2)(1'+= 弧长为 []⎰'+=badx x f s 2)(12.参数方程的情形若曲线由参数方程)()()(βαφϕ≤≤⎩⎨⎧==t t y t x 给出,弧微分[][]dt t t dy dx ds 2222)()()()(φϕ'+'=+=则 [][]⎰'+'=βαφϕdt t t s 22)()(3.极坐标情形若曲线由极坐标方程)()(βθαθ≤≤=r r 给出,将极坐标方程化成参数方程,曲线的参数方程为x r y r ==⎧⎨⎩≤≤()cos ()sin ()θθθθαθβ,弧长元素为θθθθθθθd r r d r r d r r dy dx ds 22222222)()cos sin ()()sin cos ()()('+=+'+-'=+= 从而有 ⎰'+=βαθd r r s 22(四).曲率与曲率半径 曲率记作,k 0lims d k s dsαα∆→∆==∆, 222''''tan '''sec sec 1'd d y y y y dx dx y ααααα=⇒=⋅⇒==+, 2''1'y d dx y α=+,又,ds =故322''(1')y d k dsy α==+.曲率半径 3221(1')''y k y ρ+==. 曲率圆二、例题1.平面图形的面积与旋转体的体积例 1. 已知抛物线2,y px qx =+(其中0,0p q <>)在第一象限内与直线5x y +=相切,且抛物线与x 轴所围成的平面图形的面积为s .问: (1)p q 和为何值时,s 达到最大值? (2)求出此最大值.【答案】,3p q =4=-5,22532s =例2.设⎪⎩⎪⎨⎧>≤=-0,0,)(22x ex e x F x x ,S 表示夹在x 轴与曲线()y F x =之间的面积. 对任何)(x f0t >,)(1t S 表示矩形t x t -≤≤,0()y F t ≤≤的面积. 求(I) 1()()S t S S t =-的表达式; (II) ()S t 的最小值.【答案】(I) t te t S 221)(--=,t ∈ (0 , +∞).(II) eS 11)21(-=. 例3.设曲线的极坐标方程为(0)a e a θρ=>,则该曲线上相应于θ从0到2π的一段弧与极轴所围成的图形的面积为41(1)4a e aπ-. 例 4.设1D 是由抛物线22y x =和直线x a =, 2x =及0y =所围成的平面区域; 2D 是由抛物线22y x =和直线x a =,0y =所围成的平面区域,其中02a <<.(1)试求1D 绕x 轴旋转而成的旋转体体积1V ;2D 绕y 轴旋转而成的旋转体体积2V . (2)问当a 为何值时,12V V +取得最大值?试求此最大值. 【答案】54(32)5a π- 4a π 1295π 例5.设曲线2(0,0)y ax a x =>≥与21y x =-交于点A ,过坐标原点O 和点A 的直线与曲线2y ax =围成一平面图形.问a 为何值时,该图形绕x 轴旋转一周所得的旋转体体积最大?最大体积是多少?【答案】4a =是体积最大,其最大体积为:522161518755V π=⋅= 例6.过坐标原点作曲线ln y x =的切线,该切线与曲线ln y x =及x 轴围成平面图形D . (1).求D 的面积A ;(2).求D 绕直线x e =旋转一周所得旋转体的体积V . 【答案】(1)112A e =- (2)2(5123)6V e e π=-+ 例7.(15-2) 设A>0,D 是由曲线段sin (0)2y A x x π=≤≤及直线0y =,2x π=所围成的平面区域,1V ,2V 分别表示D 绕x 轴与绕y 轴旋转成旋转体的体积,若12V V =,求A 的值.【答案】8π例8.(09-3-10 分)设曲线()y f x =,其中()y f x =是可导函数,且()0f x >,已知曲线()y f x =与直线0,1y x ==及(1)x t t =>所围成的曲边梯形,绕x 轴旋转一周所得的立体体积值是曲边梯形面积值的t π倍,求该曲线方程。
凯程考研集训营,为学生引路,为学员服务!考研数学高数公式:定积分第五章:定积分学习要求:1.理解定积分的概念,掌握定积分的性质及定积分中值定理2.理解变上限定积分定义的函数,会求它的导数,掌握牛顿莱布尼茨公式。
3.掌握定积分的换元积分法与分部积分法。
4.了解广义积分的概念,并会计算广义积分。
5.掌握反常积分运算。
定积分的基本公式和定理1、定积分解决的典型问题(1)曲边梯形的面积(2)变速直线运动的路程2、函数可积的充分条件定理设f(x)在区间[a,b]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。
定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积。
3、定积分的若干重要性质性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0.推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx.推论|∫abf(x)dx|≤∫ab|f(x)|dx.性质设M及m分别是函数f(x)在区间[a,b]上的最大值和最小值,则m(b-a)≤∫abf(x)dx≤M(b-a),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。
性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在一个点ξ,使下式成立:∫abf(x)dx=f(ξ)(b-a)。
4、关于广义积分设函数f(x)在区间[a,b]上除点c(a小提示:目前本科生就业市场竞争激烈,就业主体是研究生,在如今考研竞争日渐激烈的情况下,我们想要不在考研大军中变成分母,我们需要:早开始+好计划+正确的复习思路+好的辅导班(如果经济条件允许的情况下)。
2017考研开始准备复习啦,早起的鸟儿有虫吃,一分耕耘一分收获。
加油!。
考研数学定积分物理应用公式?
答:考研数学定积分物理应用公式包括:
1. 变力做功:∫(从a到b) F(x) dx,其中F(x)是变力,a和b分别是初位置和末位置。
2. 质心公式:∫(从a到b) xρ(x) dx / ∫(从a到
b) ρ(x) dx,其中ρ(x)是线密度,用于求细棒的质量中心。
3. 引力公式:∫(从a到b) km1m2/r^2 dr,用于求两质点间的引力,其中k是引力常数,m1和m2是两质点的质量,r是两质点间的距离。
4. 压力公式:P = pA,其中p是压强,A是面积。
5. 液体静压力:∫(从h1到h2) ρgh dA,其中ρ是液体密度,g是重力加速度,h是液体深度,dA是水平面积微元。
6. 旋转体体积:∫(从a到b) π[f(x)]^2 dx,其中f(x)是旋转曲线的函数表达式。
7. 液体对侧壁的压力:∫(从a到b) 2πxlρg dx,其中l是液体高度,ρ是液体密度,g是重力加速度。
8. 物体在液体中所受的浮力:∫(从a到b) ρVg dx,其中ρ是液体密度,V是物体体积,g是重力加速度。
9. 物体绕定轴旋转的转动惯量:∫(从a到b) r^2 dm,其中r是物体上各点到转轴的距离,dm是物体上的质量微元。
10. 细棒对过端点且与棒垂直的轴的转动惯量:∫(从0到l) (1/3)ml^2 dx = (1/3)ml^2。
以上是考研数学定积分物理应用的一些常见公式。
希望这些信息对您有帮助,如果您还有其他问题,欢迎告诉我。
定积分考研真题定积分(Definite Integral)是微积分中的重要概念之一,其在数学研究和实际应用中都具有广泛的意义。
本文将围绕考研真题展开讨论,并重点介绍定积分的定义、性质及相关定理。
1. 定积分的定义考虑函数f(x)在闭区间[a, b]上的积分问题。
我们将[a, b]等分为n个小区间,长度为Δx。
则每个小区间上的函数值分别为f(xi),其中xi为该区间内的某一点。
将每个小区间上的函数值乘以小区间的长度Δx,得到面积的近似值。
当Δx趋近于0时,所得到的近似值逼近于曲线下的真实面积。
对于函数f(x)在闭区间[a, b]上的定积分,可以用极限的方式表示为:∫[a,b] f(x)dx = lim(n→∞) ∑[i=1,n] f(xi)Δx其中,∫代表积分符号,[a, b]表示积分区间,f(x)表示被积函数,dx表示x的微元素,分隔符号|用于表示积分区间的起点和终点。
2. 定积分的性质(1)线性性质:对于任意的函数f(x)和g(x),以及常数a、b,有以下性质成立:∫[a,b] (a·f(x) + b·g(x))dx = a · ∫[a,b] f(x)dx + b · ∫[a,b] g(x)dx(2)区间可加性:对于函数f(x)在区间[a, c]上的定积分,其中a ≤c ≤ b,有以下性质成立:∫[a,b] f(x)dx = ∫[a,c] f(x)dx + ∫[c,b] f(x)dx(3)保号性:若在闭区间[a, b]上,有f(x) ≤ g(x)成立,则有以下不等式成立:∫[a,b] f(x)dx ≤ ∫[a,b] g(x)dx3. 定积分的计算方法(1)换元法:当被积函数中存在复杂的乘积或复合函数形式时,可以通过变量代换的方法简化计算。
例如,将∫[a,b] f(g(x))g'(x)dx转化为∫[α,β] f(u)du,其中u=g(x),du=g'(x)dx。
考研高等数学重要知识点解析:定积分的应用考研在即,已剩不到50天,考研复习将进入冲刺阶段。
考生基本已经对高数的总体有了了解,也许对很多考点还只是大致的复习,没有深入,这个不要紧,太奇考研辅导老师在此帮助考生分析一下定积分的应用命题规律,针对定积分的应用进行一下深度解析。
定积分的应用主要是以微元法为基础,而微元法又是以定积分的定义为基础。
所以,分割、近似、求和、取极限是计算一些几何量和物理量的指导思想。
定积分及其应用这部分内容在历年真题的考察中形式多样,可以以客观题的形式出现,也可以在解答题中出现,并且经常与其它知识点综合起来考察,比如与极限、导数、微分中值定理、极值等知识点综合在一起出题。
在这部分需要重点掌握用微元法计算平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等。
而对于数三只要求会计算平面图形的面积和旋转体的体积就可以了。
其中求旋转体的体积以及微积分的几何应用与最值问题相结合构成的应用题是重点常考题型,广大考生应该予以充分的重视。
对于定积分的应用部分,首先需要对微元法熟练掌握。
在历年考研[微博]真题中,有大量的题是利用微元法来获得方程式的,微元法的熟练应用是倍受出题老师青睐的知识点之一;但是由于微元法这种方法本身有思维上的跳跃,对于这种灵活有效的方法必须通过足量的练习才能真正体会其思想。
在此结合函数图像与对应的微元法核心式来归纳微元法的三种常见类型:2.薄饼型通过以上三个例子谈了一下了对微元法特点的一点认识。
这种方法的灵活运用必须通过自己动手做题体会才能实现,因为其中一些逻辑表面上并不符合常规思维,但也许这正是研究生入学考试出题老师喜欢微元法的原因。
凯程考研:凯程考研成立于2005年,具有悠久的考研辅导历史,国内首家全日制集训机构考研,一直从事高端全日制辅导,由李海洋教授、X鑫教授、卢营教授、王洋教授、杨武金教授、X释然教授、索玉柱教授、方浩教授等一批高级考研教研队伍组成,为学员全程高质量授课、答疑、测试、督导、报考指导、方法指导、联系导师、复试等全方位的考研服务。
考研数学——定积分定义求极限众所周知,2021年考研数学大纲进行了很大的调整,很多知识点的要求也更加深刻,其中对于定积分定义求极限部分的要求也有了很大提高,如果同学们对定积分定义求极限的复习还停留在最基本的公式层面是远远无法满足考试的要求的,而且从调整后的真题也能反映出来,考试对这一内容的要求是更加灵活的,这就需要大家对定积分的定义有着深刻的理解。
1)用定积分定义求极限基本思路:再由分部积分求定积分,上述方法属于定积分定义求极限的基本方法,但这还远远不够,接下来我们介绍这一公式在目前考研中的变化方向。
2)两个变形方向①积分区间的变化:前文中我们说了,一般情况下积分区间是,但是考试这一块是可以灵活变化的。
针对这种情况,可以先用上述公司把定义写成原始积分,再对区间进行调整。
此时,我们发现选项中没有对应选项,区别是选项中的区间都是,此时我们就需要调整积分区间,即积分上下限,换元即可,令T=1+X 可得:【解析】由上述公式知此题取的算术平均值,故直接选出B选项。
此题划分方式的变化较简单,我们再来看其他形式。
【解析】(1)式,显然是原始公式,即右端点,正确。
(2)式,对应的是算术平均值,正确。
(3)式,对应的是左端点,正确。
(4)式,将区间划分成段2n段,仍然选取右端点,正确。
(5)式,对应几何平均值,正确。
(6)式,对应调和平均值,正确。
故选D。
根据以上的讲解,相信大家能够发现,定积分定义求极限的变化方向多,灵活度广,就需要大家在学习中,一方面能够深刻理解微元法的思想及定积分定义的内容,另一方面也要掌握其中变形的方向和技巧,且备综合应用能力。
以此类推其他考点,也希望大家在学习中能够全面的把握知识点并结合考试要求进行理解和学习。
2023考研数学高数重要知识点:定积分的计算技巧2023考研数学高数重要知识点:定积分的计算技巧数学高数是考研数学中的一个重要科目,而定积分是高数中的重要概念之一,掌握定积分的计算方法和技巧对于考研的成功至关重要。
一、定积分的概念定积分可以理解为在一个区间内,被函数$f(x)$和$x$轴所夹的曲边梯形的面积,即:$\int_{a}^{b}f(x)dx$其中,$a$和$b$表示积分区间的两个端点,$f(x)$表示被积函数。
二、基本的计算技巧1. 基本积分公式在进行定积分的计算时,首先需要掌握积分的基本公式,例如:$\int x^ndx=\frac{1}{n+1}x^{n+1}+C$,其中$C$为常数。
$\int e^{ax}dx=\frac{1}{a}e^{ax}+C$,其中$C$为常数。
$\int \frac{1}{x}dx=\ln|x|+C$,其中$C$为常数。
2. 变量代换法当被积函数形式较为复杂时,可以采用变量代换法进行计算。
例如,对于以下的函数:$\int \frac{1}{(1+x^2)^\frac{3}{2}}dx$可以通过变量代换$x=\tan\theta$,将被积函数转换为:$\int \cos^2\theta d\theta$这个积分可以通过利用基本积分公式进行计算。
3. 分部积分法当被积函数可以表示为两个函数的乘积时,可以采用分部积分法进行计算。
其中一种常用的分部积分公式为:$\int u(x)v'(x)dx=u(x)v(x)-\int v(x)u'(x)dx$例如,对于以下的积分:$\int xe^xdx$可以设$u(x)=x$,$v'(x)=e^x$,则有:$\int xe^xdx=x\cdot e^x-\int e^xdx=x\cdot e^x-e^x+C$其中,$C$为常数。
三、高级计算技巧1. 使用对称性当被积函数具有一些对称性质时,可以采用对称性来简化计算。
考研数学:用定积分定义计算极限的方法和技巧求极限是考研数学中的一个重要考点,每年都考,因此,各位考生应该学会如何熟练地求极限。
求极限的方法很多,包括:利用四则运算、两个准则、两个重要公式、变量代换、等价代换、恒等变形(指数化,有理化,三角变换等)、洛必达法则、泰勒公式、导数定义、定积分定义、中值定理和无穷级数。
为了帮助各位考生掌握好求极限的各种方法,文都考研辅导老师会向大家逐步地介绍这些方法,今天将向大家介绍如何用定积分定义求极限的方法,供各位考生参考。
用定积分定义求极限的基本思路:根据定积分的定义:若()f x 在[,]a b 上可积,则01lim()()nbiiak f x f x dx λξ→=∆=∑⎰,其中1max{}i i n x λ≤≤=∆,若取(),i i b a b a kx a n nξ--∆==+,则得1()lim []()nb a n k b a k b af a f x dx n n→∞=--+=∑⎰,特别是,当0,1a b ==时,1011lim ()=()n n k kf f x dx n n →∞=∑⎰。
如果所求极限可以转化为这些和式的极限形式,则可以运用定积分定义计算极限。
适用情形:利用定积分定义计算极限,主要用于n 项和式(或可以化为n 项和式)的极限计算,n 项和式中的每项须具有同样的表示形式(是某个函数()f x 的函数值),如果是分式,则分子的次数须相同,分母的次数须相同,且分母的次数须比分子的次数高1次。
一般求解步骤:1)先对和式进行恒等变形化简,使之符合11()n k k f n n =∑或1()[]nk b a k b af a n n =--+∑的表示形式;2)利用定积分的性质计算出积分值;3)由定积分值得出原和式的值(有时结合使用夹逼准则)。
典型例题:例1.求2lim+nn →∞+解:2lim+n In →∞=+111lim nn i n →∞==⎰,令tan x t =,则2444000sec sec ln sec tan ln(1sec tI dt tdt t ttπππ===+=+⎰⎰例2.求1lim()(1)nn k kn k n k →∞=+++∑ 解:先进行恒等变形化简,然后用定积分定义计算极限,具体过程如下:11()()(1)1nnk k k k kn k n k n k n k ===-=++++++∑∑ 112233()()()()1223341n nn n n n n n n n n n -+-+-++-=+++++++++1121nk n n kn =-++∑,1112122n n n=→++,1100111111lim lim ln(1)ln 211nn n n k k dx x k n k n x n→∞→∞===⋅==+=+++∑∑⎰,所以,原式=1ln 22- 例3. 求2sinsinsinlim (+++)1112n n n n n n n n n πππ→∞+++ 解:此题须结合夹逼准则求极限:112sinsinsin11sin +++sin 11112nn i i n i i n n n n n n n n n n n πππππ==≤≤++++∑∑,1011112lim sin lim sin sin 11n n n ni i i n i xdx n n n n n ππππ→∞→∞===⋅==++∑∑⎰,由夹逼准则得,所求极限为2π 例4. 求limn n→∞解:此题表达式是乘积的形式,通过指数化方法可以化为n 项和的形式:11011limlnln 12lim lim()nn i ixdxn n nn n nI e e n n nn→∞=→∞→∞∑⎰==⋅⋅⋅==,1111ln lim ln lim[(ln )]lim [ln 1+]=1xdx xdx x x dx εεεεεεεεε+++→→→==-=---⎰⎰⎰,故1I e -= 上面就是考研数学中如何用定积分定义求极限这类问题的解题方法,供考生们参考借鉴。
定积分常见问题一、关于含“变上限积分”的问题321(1)()x x F x =⎰例、求下列导数32(2)()x x F x =⎰220(3)()()xF x tf x t dt =-⎰2例、求下列极限2221(1)lim(1)x t xx t e dt x -→∞+⎰求 2204()(2)lim,()(0)0,(0)2xx tf x t dtf x f f x→-'==⎰求连续,3例1(1)()()()sin f x f tx dt f x x x =+⎰求连续函数,使之满足1ln 1(2)()0()()1xt f x dt x f x f t x =>++⎰、设,其中,求 ()()3213()0(),1()8,()3f x f x xg x g t dt x f x >=-⎰()设在可微。
其反函数为且求二、定积分计算的有关问题411(1)例、(常见形式积分)4(2)1cos 2xdx x π+⎰12(3). 24(4)(0)aadx a x >⎰ln 0(5)⎰0(6)a例2、(分段函数,绝对值函数)[(1)()b a xdx a b <⎰ 0,02(2)(),()(),2x l kx x f x x f t dt l c x l ⎧≤≤⎪⎪=Φ=⎨⎪≤≤⎪⎩⎰、设求 10(3)t t x dt -⎰sin ,02(4).()(),(0)0(),()0,2xx x f t g x t dt x x f x x g x x ππ⎧≤<⎪⎪-≥≥==⎨⎪≥⎪⎩⎰其中当时,而例3(对称区间上积分)11(1)(1sin )()x x x e e dx --++⎰(1212(2)sin ln x x x dx -⎡⎢⎣⎰ 244sin (3)1x xdx eππ--+⎰ ()4[]()()baf x dx f xg x +⎰例、形如的积分42(1)⎰sin 2sin cos 0(2)xx x e dxe e π+⎰ 2(3),1()dxtgx πλ+⎰例5、(由三角有理式与其他初等函数通过四则成复合而成的函数的积分)22022001.(sin )(cos ))2.(sin )(sin )21331,24223.sin cos ,1342,1253n nf x dx f x dx xf x dx f x dxn n n n n xdx xdx n n n n n ππππππππ==--⎧⋅⋅⋅⎪⎪-==⎨--⎪⋅⋅⎪-⎩⎰⎰⎰⎰⎰⎰常用结论,为正偶自然数为大于的正奇数,2(sin )(1)(sin )(cos )f x dx f x f x π+⎰2π⎰101020sin cos (2)4sin cos x x dx x x π---⎰、 2(3)ln sin xdx π⎰320sin (4)1cos x x dx x π+⎰ 2220sin (5),sin cos n n n n x x I dx n N x x π+=∈+⎰计算 640(6)sin cos x x xdxπ⎰[]2(7)(),,()()sin ,()1cos xf x f x f x xdx f x x ππππ--=++⎰设在上连续且满足求1210011(8)(1)x dx --⎰求(9)n π⎰2sin (10)()sin ,().x t xF x e tdt F x A B C D π+=⎰则是()正常数负常数恒为零不是常数例6 利用适当变量代换计算积分4(1)ln(1)tgx dx π+⎰ 120ln(1)(2)1x dx x ++⎰ 200(3)sin n x xdx π⎰ 20(4)(1)(1)dxx x α+∞++⎰求例7(其它)22(1)()[0,]()cos ()()2f x f x x x f t dt f x ππ=+⎰、设在上连续,且,求212(2)()()2()()f x x x f x dx f x dx f x =-+⎰⎰设,求120(3)()()arcsin(1),(01),()y y x y x x x y x dx '==-≤≤⎰设满足求22011(4)()(2)arctan ,(1)1,()2x f x tf x t dt x f f x dx -==⎰⎰、设连续,且满足求的值2200cos sin cos (5),,(2)1x x xdx A dx x x ππ=++⎰⎰已知:求220(6)()ln(12cos )(),()F a a x a dx F a F a π=-+-⎰设,求(2)(),()a xay a y f x edy f x dx --=⎰⎰(7)、设求1(8)(1)m n x x dx -⎰例8、计算下列广义积分(基本题)2(1),1dxx +∞-∞+⎰1(2),e 2ln (3),1xdx x+∞+⎰51(4) 1(5)cos(ln ),x dx ⎰例90(1)0)pt te dt p p +∞->⎰(是常数,且2(2).(1)xx xe dx e +∞--+⎰例10、计算下列广义积分(广义积分变量代换例)3(1)⎰23202ln(1)(2)(1)x x dx x +∞++⎰22200200.cos sin (1)(1)1sin sin (2),()2x x xdx A A dx x x x x dx dxx x π+∞+∞+∞+∞++=⎰⎰⎰⎰例11已知广义积分收敛于,试用表示广义积分的值已知求 经典例题例1求3321lim)n n n →∞++.解 将区间[0,1]n 等分,则每个小区间长为1i x n∆=,然后把2111n n n =⋅的一个因子1n 乘入和式中各项.于是将所求极限转化为求定积分.即3321lim)n n n →∞+=31lim )n n n n →∞+=34=⎰.例2 0⎰=_________.解法1 由定积分的几何意义知,0⎰等于上半圆周22(1)1x y -+= (0y ≥)与x 轴所围成的图形的面积.故0⎰=2π. 解法2 本题也可直接用换元法求解.令1x -=sin t (22t ππ-≤≤),则⎰=22tdt ππ-⎰=2tdt =2202cos tdt π⎰=2π 例3 比较12x e dx ⎰,212x e dx ⎰,12(1)x dx +⎰.解法1 在[1,2]上,有2x x e e ≤.而令()(1)x f x e x =-+,则()1x f x e '=-.当0x >时,()0f x '>,()f x 在(0,)+∞上单调递增,从而()(0)f x f >,可知在[1,2]上,有1x e x >+.又1221()()f x dx f x dx =-⎰⎰,从而有2111222(1)x x x dx e dx e dx +>>⎰⎰⎰.解法2 在[1,2]上,有2xx e e ≤.由泰勒中值定理212!xe e x x ξ=++得1x e x >+.注意到1221()()f x dx f x dx =-⎰⎰.因此2111222(1)x x x dx e dx e dx +>>⎰⎰⎰.例4 估计定积分22xxe dx -⎰的值.解 设 2()xxf x e -=, 因为 2()(21)xxf x e x -'=-, 令()0f x '=,求得驻点12x =, 而 0(0)1f e ==, 2(2)f e =, 141()2f e -=,故124(),[0,2]ef x e x -≤≤∈,从而2122422xxee dx e --≤≤⎰,所以21024222x xe edx e ---≤≤-⎰.例5 设()f x ,()g x 在[,]a b 上连续,且()0g x ≥,()0f x >.求lim (ban g x →∞⎰.解 由于()f x 在[,]a b 上连续,则()f x 在[,]a b 上有最大值M 和最小值m .由()0f x >知0M >,0m >.又()0g x ≥,则()b ag x dx (b ag x ≤⎰()bag x dx ≤.由于1n n ==,故lim (ban g x →∞⎰=()bag x dx ⎰.例6求sin lim n pnn xdx x+→∞⎰, ,p n 为自然数. 解法1 利用积分中值定理 设 sin ()xf x x=, 显然()f x 在[,]n n p +上连续, 由积分中值定理得 sin sin n p n x dx p x ξξ+=⋅⎰, [,]n n p ξ∈+, 当n →∞时, ξ→∞, 而sin 1ξ≤, 故sin sin lim lim 0n pnn x dx p xξξξ+→∞→∞=⋅=⎰.解法2 利用积分不等式 因为sin sin 1lnn pn p n p nn n x x n pdx dx dx x x x n++++≤≤=⎰⎰⎰, 而limln0n n pn→∞+=,所以 sin lim 0n pnn xdx x+→∞=⎰. 例7 求10lim 1nn x dx x→∞+⎰.解法1 由积分中值定理()()()()bbaaf xg x dx f g x dx ξ=⎰⎰可知101n x dx x +⎰=111n x dx ξ+⎰,01ξ≤≤.又11lim lim01n n n x dx n →∞→∞==+⎰且11121ξ≤≤+, 故10lim 01n n x dx x→∞=+⎰. 解法2 因为01x ≤≤,故有01nn x x x≤≤+.于是可得110001nn x dx x dx x ≤≤+⎰⎰.又由于110()1n x dx n n =→→∞+⎰. 因此10lim 1nn x dx x→∞+⎰=0. 例8 设函数()f x 在[0,1]上连续,在(0,1)内可导,且3414()(0)f x dx f =⎰.证明在(0,1)内存在一点c ,使()0f c '=.证明 由题设()f x 在[0,1]上连续,由积分中值定理,可得3413(0)4()4()(1)()4f f x dx f f ξξ==-=⎰,其中3[,1][0,1]4ξ∈⊂.于是由罗尔定理,存在(0,)(0,1)c ξ∈⊂,使得()0f c '=.证毕.例9 (1)若22()x t xf x e dt -=⎰,则()f x '=___;(2)若0()()xf x xf t dt =⎰,求()f x '=___.()()()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx''=-⎰. 解 (1)()f x '=422x x xe e ---;(2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()xf x x f t dt =⎰,则可得()f x '=0()()xf t dt xf x +⎰.例10 设()f x 连续,且31()x f t dt x -=⎰,则(26)f =_________.解 对等式310()x f t dt x -=⎰两边关于x 求导得32(1)31f x x -⋅=,故321(1)3f x x -=,令3126x -=得3x =,所以1(26)27f =. 例11 函数1()(3(0)x F x dt x =>⎰的单调递减开区间为_________.解 ()3F x'=()0F x '<3>,解之得109x <<,即1(0,)9为所求.例12 求0()(1)arctan xf x t tdt =-⎰的极值点.解''得1x =,0x =.列表如下:故1x =为()f x 的极大值点,0x =为极小值点.例13 已知两曲线()y f x =与()y g x =在点(0,0)处的切线相同,其中2arcsin 0()xt g x e dt -=⎰,[1,1]x ∈-,试求该切线的方程并求极限3lim ()n nf n→∞.解 由已知条件得2(0)(0)0t f g e dt -===⎰,且由两曲线在(0,0)处切线斜率相同知(0)(0)1f g =''===.故所求切线方程为y x =.而3()(0)3lim ()lim33(0)330n n f f n nf f n n →∞→∞-'=⋅==-. 例14 求 22000sin lim(sin )x x xtdtt t t dt→-⎰⎰;解 22000sin lim (sin )x x xtdtt t t dt→-⎰⎰=2202(sin )lim (1)(sin )x x x x x x →-⋅⋅-=220()(2)lim sin x x x x→-⋅-=304(2)lim 1cos x x x →-⋅-=2012(2)lim sin x x x→-⋅=0.注 此处利用等价无穷小替换和多次应用洛必达法则.例15 试求正数a 与b,使等式201lim1sin x x x b x →=-⎰成立. 解2001lim sin x x x b x →-⎰=20x →=20lim 1cos x x x b x →→-2011cos x x b x →==-,由此可知必有0lim(1cos )0x b x →-=,得1b =.又由2011cos x x x →==-, 得4a =.即4a =,1b =为所求. 例16 设sin 20()sin x f x t dt =⎰,34()g x x x =+,则当0x →时,()f x 是()g x 的( ).A .等价无穷小.B .同阶但非等价的无穷小.C .高阶无穷小.D .低阶无穷小.解法1 由于 22300()sin(sin )cos lim lim()34x x f x x xg x x x →→⋅=+ 2200cos sin(sin )lim lim34x x x x x x →→=⋅+ 22011lim 33x x x →==. 故()f x 是()g x 同阶但非等价的无穷小.选B . 解法2 将2sin t 展成t 的幂级数,再逐项积分,得到 sin 223370111()[()]sin sin 3!342x f x t t dt x x =-+=-+⎰,则344340001111sin (sin )sin ()1342342lim lim lim ()13x x x x x x f x g x x x x→→→-+-+===++. 例17 证明:若函数()f x 在区间[,]a b 上连续且单调增加,则有()baxf x dx ⎰()2baa b f x dx +≥⎰.证法1 令()F x =()()2xxaa a x tf t dt f t dt +-⎰⎰,当[,]t a x ∈时,()()f t f x ≤,则 ()F x '=1()()()22x a a x xf x f t dt f x +--⎰=1()()22xax a f x f t dt --⎰≥1()()22x a x a f x f x dt --⎰=()()22x a x a f x f x ---0=. 故()F x 单调增加.即 ()()F x F a ≥,又()0F a =,所以()0F x ≥,其中[,]x a b ∈. 从而()F b =()()2bba a ab xf x dx f x dx +-⎰⎰0≥.证毕. 证法2 由于()f x 单调增加,有()[()()]22a b a bx f x f ++--0≥,从而 ()[()()]22baa b a b x f x f dx ++--⎰0≥. 即()()2baa b x f x dx +-⎰()()22b a a b a b x f dx ++≥-⎰=()()22b a a b a bf x dx ++-⎰=0.故()baxf x dx ⎰()2baa b f x dx +≥⎰. 例18 计算21||x dx -⎰.分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分. 解 21||x dx -⎰=021()x dx xdx --+⎰⎰=220210[][]22x x --+=52.注 在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如 33222111[]6dx x x --=-=⎰,则是错误的.错误的原因则是由于被积函数21x在0x =处间断且在被积区间内无界.例19 计算220max{,}x x dx ⎰.分析 被积函数在积分区间上实际是分段函数212()01x x f x x x ⎧<≤=⎨≤≤⎩. 解 23212221201011717max{,}[][]23236x x x x dx xdx x dx =+=+=+=⎰⎰⎰例20 设()f x 是连续函数,且10()3()f x x f t dt =+⎰,则()________f x =. 解 因()f x 连续,()f x 必可积,从而1()f t dt ⎰是常数,记1()f t dt a =⎰,则()3f x x a =+,且11(3)()x a dx f t dt a +==⎰⎰.所以2101[3]2x ax a +=,即132a a +=, 从而14a =-,所以 3()4f x x =-.例21 设23, 01()52,12x x f x x x ⎧≤<=⎨-≤≤⎩,0()()x F x f t dt =⎰,02x ≤≤,求()F x , 并讨论()F x 的连续性.解 (1)求()F x 的表达式.()F x 的定义域为[0,2].当[0,1]x ∈时,[0,][0,1]x ⊂, 因此23300()()3[]xxxF x f t dt t dt t x ====⎰⎰.当(1,2]x ∈时,[0,][0,1][1,]x x =, 因此, 则1201()3(52)xF x t dt t dt =+-⎰⎰=31201[][5]x t t t +-=235x x -+-,故32, 01()35,12x x F x x x x ⎧≤<⎪=⎨-+-≤≤⎪⎩. (2) ()F x 在[0,1)及(1,2]上连续, 在1x =处,由于211lim ()lim(35)1x x F x x x ++→→=-+-=, 311lim ()lim 1x x F x x --→→==, (1)1F =. 因此, ()F x 在1x =处连续, 从而()F x 在[0,2]上连续.例22 计算21-⎰.由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性.解21-⎰=211--+⎰⎰.由于2是偶函数,而是奇函数,有10-=⎰, 于是21-⎰=214⎰=04⎰=1044dx-⎰⎰由定积分的几何意义可知4π=⎰, 故2114444dxππ-=-⋅=-⎰⎰.例23计算3412ee⎰.解3412ee⎰=34e3412ee⎰==3412ee=6π.例24计算4sin1sinxdxxπ+⎰.解4sin1sinxdxxπ+⎰=42sin(1sin)1sinx xdxxπ--⎰=244200sintancosxdx xdxxππ-⎰⎰=244200cos(sec1)cosd xx dxxππ---⎰⎰=44001[][tan]cosx xxππ--=24π-注此题为三角有理式积分的类型,也可用万能代换公式来求解,请读者不妨一试.例25计算2a⎰,其中0a>.解2a⎰=20a⎰,令sinx a a t-=,则2a⎰=3222(1sin)cosa t tdtππ-+⎰=3222cos0a tdtπ+⎰=32aπ.注 ,一般令sin x a t =或cos x a t =. 例26 计算a⎰,其中0a >.解法1 令sin x a t =,则a⎰2cos sin cos tdt t tπ=+⎰201(sin cos )(cos sin )2sin cos t t t t dt t t π++-=+⎰ 201(sin cos )[1]2sin cos t t dt t t π'+=++⎰[]201ln |sin cos |2t t t π=++=4π. 解法2 令sin x a t =,则a⎰=2cos sin cos tdt t tπ+⎰.又令2t u π=-,则有20cos sin cos t dt t t π+⎰=20sin sin cos u du u u π+⎰.所以,a⎰=22001sin cos []2sin cos sin cos t t dt dt t tt t ππ+++⎰⎰=2012dt π⎰=4π.注 如果先计算不定积分,再利用牛顿-莱布尼兹公式求解,则比较复杂,由此可看出定积分与不定积分的差别之一.例27 计算ln 0⎰.解 设u =2ln(1)x u =+,221udx du u =+,则ln 0⎰=22220(1)241u u u du u u +⋅=++⎰22222200442244u u du du u u +-=++⎰⎰2221284du du u =-=+⎰⎰4π-. 例28 计算220()xd tf x t dt dx -⎰,其中()f x 连续. 分析 要求积分上限函数的导数,但被积函数中含有x ,因此不能直接求导,必须先换元使被积函数中不含x ,然后再求导.解 由于220()xtf x t dt -⎰=2221()2x f x t dt-⎰. 故令22x t u -=,当0t =时2u x =;当t x =时0u =,而2dt du =-,所以220()x tf x t dt -⎰=201()()2x f u du -⎰=201()2x f u du ⎰,故220()x d tf x t dt dx -⎰=201[()]2x d f u du dx ⎰=21()22f x x⋅=2()xf x . 错误解答220()x d tf x t dt dx -⎰22()(0)xf x x xf =-=. 错解分析 这里错误地使用了变限函数的求导公式,公式()()()xad x f t dt f x dx 'Φ==⎰中要求被积函数()f t 中不含有变限函数的自变量x ,而22()f x t -含有x ,因此不能直接求导,而应先换元.例29 计算30sin x xdx π⎰.解30sin x xdx π⎰30(cos )xd x π=-⎰3300[(cos )](cos )x x x dx ππ=⋅---⎰30cos 6xdx ππ=-+⎰6π=-. 例30 计算120ln(1)(3)x dx x +-⎰.解120ln(1)(3)x dx x +-⎰=101ln(1)()3x d x +-⎰=1100111[ln(1)]3(3)(1)x dx x x x +-⋅--+⎰ =101111ln 2()2413dx x x -++-⎰11ln 2ln324=-. 例31 计算20sin x e xdx π⎰.解 由于2sin xe xdx π⎰20sin xxde π=⎰220[sin ]cos xx e x e xdx ππ=-⎰220cos x e e xdx ππ=-⎰, (1)而20cos xe xdx π⎰20cos xxde π=⎰220[cos ](sin )xx e x e x dx ππ=-⋅-⎰20sin 1x e xdx π=-⎰, (2)将(2)式代入(1)式可得20sin xe xdx π⎰220[sin 1]x e e xdx ππ=--⎰,故20sin xe xdx π⎰21(1)2e π=+.例32 计算10arcsin x xdx ⎰.解 10arcsin x xdx ⎰210arcsin ()2x xd =⎰221100[arcsin ](arcsin )22x x x d x =⋅-⎰210142π=-⎰. (1) 令sin x t =,则21⎰20sin t π=⎰220sin cos cos ttdt tπ=⋅⎰220sin tdt π=⎰ 201cos22t dt π-==⎰20sin 2[]24t t π-4π=. (2)将(2)式代入(1)式中得1arcsin x xdx =⎰8π. 例33 设()f x 在[0,]π上具有二阶连续导数,()3f π'=且0[()()]cos 2f x f x xdx π''+=⎰,求(0)f '.解 由于0[()()]cos f x f x xdx π''+⎰0()sin cos ()f x d x xdf x ππ'=+⎰⎰[]000{()sin ()sin }{[()cos ]()sin }f x x f x xdx f x x f x xdx ππππ'''=-++⎰⎰()(0)2f f π''=--=.故 (0)f '=2()235f π'--=--=-. 例34(97研) 设函数()f x 连续,1()()x f xt dt ϕ=⎰,且0()limx f x A x→=(A 为常数), 求()x ϕ'并讨论()x ϕ'在0x =处的连续性.分析 求()x ϕ'不能直接求,因为10()f xt dt ⎰中含有()x ϕ的自变量x ,需要通过换元将x从被积函数中分离出来,然后利用积分上限函数的求导法则,求出()x ϕ',最后用函数连续的定义来判定()x ϕ'在0x =处的连续性. 解 由0()limx f x A x→=知0lim ()0x f x →=,而()f x 连续,所以(0)0f =,(0)0ϕ=.当0x ≠时,令u xt =,0t =,0u =;1t =,u x =.1dt du x=,则()()xf u du x xϕ=⎰,从而02()()()(0)xxf x f u dux x xϕ-'=≠⎰.又因为02()()(0)()limlimlim22xx x x f u du x f x A x x x ϕϕ→→→-===-⎰,即(0)ϕ'=2A.所以 ()x ϕ'=02()(),0,02x xf x f u du x x Ax ⎧-⎪≠⎪⎨⎪=⎪⎩⎰. 由于22000()()()()lim ()limlim lim xxx x x x xf x f u duf u du f x x xx x ϕ→→→→-'==-⎰⎰=(0)2A ϕ'=. 从而知()x ϕ'在0x =处连续.注 这是一道综合考查定积分换元法、对积分上限函数求导、按定义求导数、讨论函数在一点的连续性等知识点的综合题.而有些读者在做题过程中常会犯如下两种错误: (1)直接求出2()()()xxf x f u dux xϕ-'=⎰,而没有利用定义去求(0)ϕ',就得到结论(0)ϕ'不存在或(0)ϕ'无定义,从而得出()x ϕ'在0x =处不连续的结论.(2)在求0lim ()x x ϕ→'时,不是去拆成两项求极限,而是立即用洛必达法则,从而导致()()()1lim ()lim ().22x x xf x f x f x x f x x ϕ→→'+-''==又由0()limx f x A x→=用洛必达法则得到0lim ()x f x →'=A ,出现该错误的原因是由于使用洛必达法则需要有条件:()f x 在0x =的邻域内可导.但题设中仅有()f x 连续的条件,因此上面出现的0lim ()x f x →'是否存在是不能确定的.例35(00研) 设函数()f x 在[0,]π上连续,且()0f x dx π=⎰,0()cos 0f x xdx π=⎰.试证在(0,)π内至少存在两个不同的点12,ξξ使得12()()0f f ξξ==.分析 本题有两种证法:一是运用罗尔定理,需要构造函数0()()xF x f t dt =⎰,找出()F x的三个零点,由已知条件易知(0)()0F F π==,0x =,x π=为()F x 的两个零点,第三个零点的存在性是本题的难点.另一种方法是利用函数的单调性,用反证法证明()f x 在(0,)π之间存在两个零点.证法1 令0()(),0xF x f t dt x π=≤≤⎰,则有(0)0,()0F F π==.又00()cos cos ()[cos ()]()sin f x xdx xdF x xF x F x xdx ππππ==+⎰⎰⎰()sin 0F x xdx π==⎰,由积分中值定理知,必有(0,)ξπ∈,使得()sin F x xdx π⎰=()sin (0)F ξξπ⋅-.故()sin 0F ξξ=.又当(0,),sin 0ξπξ∈≠,故必有()0F ξ=. 于是在区间[0,],[,]ξξπ上对()F x 分别应用罗尔定理,知至少存在1(0,)ξξ∈,2(,)ξξπ∈,使得12()()0F F ξξ''==,即12()()0f f ξξ==.证法2 由已知条件0()0f x dx π=⎰及积分中值定理知必有10()()(0)0f x dx f πξπ=-=⎰,1(0,)ξπ∈,则有1()0f ξ=.若在(0,)π内,()0f x =仅有一个根1x ξ=,由0()0f x dx π=⎰知()f x 在1(0,)ξ与1(,)ξπ内异号,不妨设在1(0,)ξ内()0f x >,在1(,)ξπ内()0f x <,由()cos 0f x xdx π=⎰,0()0f x dx π=⎰,以及cos x 在[0,]π内单调减,可知:100()(cos cos )f x x dx πξ=-⎰=11110()(cos cos )()(cos cos )f x x dx f x x dx ξπξξξ-+-⎰⎰0>.由此得出矛盾.故()0f x =至少还有另一个实根2ξ,12ξξ≠且2(0,)ξπ∈使得 12()()0.f f ξξ==例36 计算2043dxx x +∞++⎰.分析 该积分是无穷限的的反常积分,用定义来计算.解2043dx x x +∞++⎰=20lim 43t t dx x x →+∞++⎰=0111lim ()213t t dx x x →+∞-++⎰ =011lim [ln ]23t t x x →+∞++=111lim (ln ln )233t t t →+∞+-+ =ln 32. 例37计算3+∞⎰.解3+∞⎰2233sec tan sec tan d ππθθθθθ+∞=⎰⎰23cos 1d ππθθ==⎰ 例38计算42⎰.分析 该积分为无界函数的反常积分,且有两个瑕点,于是由定义,当且仅当32⎰43⎰均收敛时,原反常积分才是收敛的.解 由于32⎰32lim aa +→⎰32lim aa +→⎰=32lim[arcsin(3)]a a x +→-=2π.43⎰=34lim bb -→⎰34lim bb -→⎰=34lim[arcsin(3)]b b x -→-=2π. 所以42⎰22πππ=+=.例39计算0+∞⎰.分析 此题为混合型反常积分,积分上限为+∞,下限0为被积函数的瑕点. 解t =,则有+∞⎰=50222(1)tdt t t +∞+⎰=50222(1)dt t +∞+⎰,再令tan t θ=,于是可得5022(1)dt t +∞+⎰=25022tan (tan 1)d πθθ+⎰=2250sec sec d πθθθ⎰=230sec d πθθ⎰ =32cos d πθθ⎰=220(1sin )cos d πθθθ-⎰=220(1sin )sin d πθθ-⎰=3/21[sin sin ]3πθθ-=23. 例40计算21⎰. 解 由于221112111()d x x x +-==⎰⎰⎰,可令1t x x=-,则当x =t =;当0x -→时,t →+∞;当0x +→时,t →-∞;当1x =时,0t =;故有21010211()()12()d x d x x x x x--=++-⎰⎰⎰022dtt +∞-∞=+⎰⎰1arctan )2π=+ . 注 有些反常积分通过换元可以变成非反常积分,如例32、例37、例39;而有些非反常积分通过换元却会变成反常积分,如例40,因此在对积分换元时一定要注意此类情形.例41 求由曲线12y x =,3y x =,2y =,1y =所围成的图形的面积.分析 若选x 为积分变量,需将图形分割成三部分去求,如图5-1所示,此做法留给读者去完成.下面选取以y 为积分变量. 解 选取y 为积分变量,其变化范围为[1,2]y ∈,则面积元素为dA =1|2|3y y dy -=1(2)3y y dy -. 于是所求面积为211(2)3A y y dy =-⎰=52. 例42 抛物线22y x =把圆228x y +=分成两部分,求这两部分面积之比.解 抛物线22y x =与圆228x y +=的交点分别为(2,2)与(2,2)-,如图所示5-2所示,抛物线将圆分成两个部分1A ,2A ,记它们的面积分别为1S ,2S ,则有图5-21S =2222(8)2y y dy ---⎰=24488cos 3d ππθθ--⎰=423π+,218S A π=-=463π-,于是12S S =423463ππ+-=3292ππ+-. 例43 求心形线1cos ρθ=+与圆3cos ρθ=所围公共部分的面积.分析 心形线1cos ρθ=+与圆3cos ρθ=的图形如图5-3所示.由图形的对称性,只需计算上半部分的面积即可. 解 求得心形线1cos ρθ=+与圆3cos ρθ=的交点为(,)ρθ=3(,)23π±,由图形的对称性得心形线1cos ρθ=+与圆3cos ρθ=所围公共部分的面积为图5-3A =223203112[(1cos )(3cos )]22d d πππθθθθ++⎰⎰=54π. 3πθ=3cos ρθ=3211-xoy121-2A 1A 12(2,2)-oxy22y x=228x y +=2-1-121-2-2x y =1y =3y x =o 1-3-321211-2-xy2y =图5-1342-1cos ρθ=+例44 求曲线ln y x =在区间(2,6)内的一条切线,使得该切线与直线2x =,6x =和曲线ln y x =所围成平面图形的面积最小(如图5-4所示).分析 要求平面图形的面积的最小值,必须先求出面积的表达式.解 设所求切线与曲线ln y x =相切于点(,ln )c c ,则切线方程为1ln ()y c x c c-=-.又切线与直线2x =,6x =和曲线ln y x =所围成的平面图形的面积为图5-4A =621[()ln ln ]x c c x dx c -+-⎰=44(1)4ln 46ln 62ln 2c c-++-+.由于dA dc =2164c c-+=24(4)c c --,令0dA dc =,解得驻点4c =.当4c <时0dA dc<,而当4c >时0dAdc >.故当4c =时,A 取得极小值.由于驻点唯一.故当4c =时,A 取得最小值.此时切线方程为:11ln 44y x =-+. 例45 求圆域222()x y b a +-≤(其中b a >)绕x 轴旋转而成的立体的体积.解 如图5-5所示,选取x 为积分变量,得上半圆周的方程为222y b a x =+-,下半圆周的方程为221y b a x =--.图5-5则体积元素为dV =2221()y y dx ππ-=224b a x dx π-.于是所求旋转体的体积为 V =224aab a x dx π--⎰=228ab a x dx π-⎰=284a b ππ⋅=222a b π.注 可考虑选取y 为积分变量,请读者自行完成.例46(03研) 过坐标原点作曲线ln y x =的切线,该切线与曲线ln y x =及x 轴围成平面图形D .(1)求D 的面积A ;(2)求D 绕直线x e =旋转一周所得旋转体的体积V . 分析 先求出切点坐标及切线方程,再用定积分求面积A ,旋转体积可用大的立体体积减去小的立体体积进行图5-6计算,如图5-6所示.ln y x=ln y x=y xo12311y xe=(0,)b o222()(0)x y b a b a +-=>>xy1xo y23121-45673ln y x=2x =6x =(,ln )c c解 (1)设切点横坐标为0x ,则曲线ln y x =在点00(,ln )x x 处的切线方程是0001ln ()y x x x x =+-. 由该切线过原点知0ln 10x -=,从而0x e =,所以该切线的方程是1y x e=.从而D 的面积10()12y eA e ey dy =-=-⎰. (2)切线1y x e =与x 轴及直线x e =围成的三角形绕直线x e =旋转所得的旋转体积为2113V e π=,曲线ln y x =与x 轴及直线x e =围成的图形绕直线x e =旋转所得的旋转体积为1222011()(2)22y V e e dy e e ππ=-=-+-⎰.因此,所求体积为212(5123)6V V V e e π=-=-+.例47 有一立体以抛物线22y x =与直线2x =所围成的图形为底,而垂直于抛物线的轴的截面都是等边三角形,如图5-7所示.求其体积.解 选x 为积分变量且[0,2]x ∈.过x 轴上坐标为x 的点作垂直于x 轴的平面,与立体相截的截面为等边三角形,其底边长为得等边三角形的面积为图5-7()A x 2=. 于是所求体积为 V =2()A x dx ⎰=2⎰=例48(03研) 某建筑工程打地基时,需用汽锤将桩打进土层,汽锤每次击打,都将克服土层对桩的阻力而作功,设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为k ,0k >),汽锤第一次击打进地下a (m ),根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数r (01r <<).问: (1)汽锤打桩3次后,可将桩打进地下多深?(2)若击打次数不限,汽锤至多能将桩打进地下多深?(注:m 表示长度单位米) 分析 本题属于变力作功问题,可用定积分来求.解 (1)设第n 次击打后,桩被打进地下n x ,第n 次击打时,汽锤所作的功为n W (1n =,2,).由题设,当桩被打进地下的深度为x 时,土层对桩的阻力的大小为kx ,所以12211022x k k W kxdx x a ===⎰,2122222211()()22x x k kW kxdx x x x a ==-=-⎰.由21W rW =得22221x x ra -=,即 222(1)x r a =+,3222223323()[(1)]22x x k kW kxdx x x x r a ==-=-+⎰.由2321W rW r W == 得22223(1)x r a r a -+=,即 2223(1)x r r a =++.从而汽锤击打3次后,可将桩打进地下3x =m ). (2)问题是要求lim n n x →∞,为此先用归纳法证明:1n n x r +=++.假设1n n x r a -=++,则12211()2n nx n n n x k W kxdx x x +++==-⎰2121[(1...)]2n n kx r r a -+=-+++. 由2111...n n n n W rW r W r W +-====,得21221(1...)n n n x r r a r a -+-+++=.从而 1n n x r a +=++.于是1lim n n n x +→∞==. ()m .例49 有一等腰梯形水闸.上底为6米,下底为2米,高为10米.试求当水面与上底相接时闸门所受的水压力.解 建立如图5-8所示的坐标系,选取x 为积分变量.则过点(0,3)A ,(10,1)B 的直线方程为135y x =-+.于是闸门上对应小区间[,]x x dx +的窄条所承受的水压力为2dF xy gdx ρ=.故闸门所受水压力为F =10012(3)5g x x dx ρ-+⎰=5003g ρ,其中ρ为水密度,g 为重力加速度.图5-8。
定积分常见问题一、关于含“变上限积分”的问题321(1)()x x F x =⎰例、求下列导数32(2)()x x F x =⎰220(3)()()xF x tf x t dt =-⎰2例、求下列极限2221(1)lim(1)x t xx t e dt x -→∞+⎰求 2204()(2)lim,()(0)0,(0)2xx tf x t dtf x f f x→-'==⎰求连续,3例1(1)()()()sin f x f tx dt f x x x =+⎰求连续函数,使之满足1ln 1(2)()0()()1xt f x dt x f x f t x =>++⎰、设,其中,求 ()()3213()0(),1()8,()3f x f x xg x g t dt x f x >=-⎰()设在可微。
其反函数为且求二、定积分计算的有关问题411(1)例、(常见形式积分)4(2)1cos 2xdx x π+⎰(3).2(4)(0)aa >⎰0(5)⎰0(6)a例2、(分段函数,绝对值函数)[(1)()b a xdx a b <⎰0,02(2)(),()(),2x l kx x f x x f t dt l c x l ⎧≤≤⎪⎪=Φ=⎨⎪≤≤⎪⎩⎰、设求10(3)t t x dt -⎰sin ,02(4).()(),(0)0(),()0,2xx x f t g x t dt x x f x x g x x ππ⎧≤<⎪⎪-≥≥==⎨⎪≥⎪⎩⎰其中当时,而例3(对称区间上积分)11(1)(1sin )()x x x e e dx --++⎰(1212(2)sin ln x x x dx -⎡⎢⎣⎰244sin (3)1x x dx e ππ--+⎰()4[]()()baf x dx f xg x +⎰例、形如的积分42(1)dx sin 2sin cos 0(2)xx x e dxe e π+⎰2(3),1()dxtgx πλ+⎰例5、(由三角有理式与其他初等函数通过四则成复合而成的函数的积分)22022001.(sin )(cos ))2.(sin )(sin )21331,24223.sin cos ,1342,1253n n f x dx f x dx xf x dx f x dxn n n n n xdx xdx n n n n n ππππππππ==--⎧⋅⋅⋅⎪⎪-==⎨--⎪⋅⋅⎪-⎩⎰⎰⎰⎰⎰⎰ 常用结论,为正偶自然数为大于的正奇数,2(sin )(1)(sin )(cos )f x dxf x f x π+⎰2π⎰101020sin cos (2)4sin cos x x dx x x π---⎰、2(3)ln sin xdx π⎰ 320sin (4)1cos x xdx x π+⎰2220sin (5),sin cos n n n n x x I dx n N x x π+=∈+⎰计算 640(6)sin cos x x xdxπ⎰[]2(7)(),,()()sin ,()1cos xf x f x f x xdx f x x ππππ--=++⎰设在上连续且满足求1210011(8)(1)x dx--⎰求0(9)n π⎰2sin (10)()sin ,().x t xF x e tdt F x A B C D π+=⎰则是()正常数负常数恒为零不是常数例6 利用适当变量代换计算积分4(1)ln(1)tgx dx π+⎰120ln(1)(2)1x dx x ++⎰ 200(3)sin n x xdx π⎰20(4)(1)(1)dxx x α+∞++⎰求例7(其它)22(1)()[0,]()cos ()()2f x f x x x f t dt f x ππ=+⎰、设在上连续,且,求212(2)()()2()()f x x x f x dx f x dx f x =-+⎰⎰设,求120(3)()()arcsin(1),(01),()y y x y x x x y x dx '==-≤≤⎰设满足求22011(4)()(2)arctan ,(1)1,()2x f x tf x t dt x f f x dx -==⎰⎰、设连续,且满足求的值2200cos sin cos (5),,(2)1x x xdx A dx x x ππ=++⎰⎰已知:求220(6)()ln(12cos )(),()F a a x a dx F a F a π=-+-⎰设,求(2)(),()a xay a y f x edy f x dx --=⎰⎰(7)、设求1(8)(1)m n x x dx -⎰例8、计算下列广义积分(基本题)2(1),1dxx +∞-∞+⎰1(2),e 2ln (3),1xdx x+∞+⎰51(4)1(5)cos(ln ),x dx ⎰例9(1)0)pt te dt p p +∞->⎰(是常数,且2(2).(1)xx xe dx e +∞--+⎰例10、计算下列广义积分(广义积分变量代换例)3(1)23202ln(1)(2)(1)x x dx x +∞++⎰22200200.cos sin (1)(1)1sin sin (2),()2x x xdx A A dx x x x x dx dxx x π+∞+∞+∞+∞++=⎰⎰⎰⎰例11已知广义积分收敛于,试用表示广义积分的值已知求 经典例题例1求21limn n→∞ . 解将区间[0,1]n 等分,则每个小区间长为1i x n∆=,然后把2111n n n =⋅的一个因子1n 乘入和式中各项.于是将所求极限转化为求定积分.即21limn n →∞+ =1lim n n →∞+ =34=⎰.例20⎰=_________.解法1 由定积分的几何意义知,0⎰等于上半圆周22(1)1x y -+= (0y ≥)与x 轴所围成的图形的面积.故0⎰=2π. 解法2 本题也可直接用换元法求解.令1x -=sin t (22t ππ-≤≤),则⎰=22tdt ππ-⎰=2tdt =2202cos tdt π⎰=2π例3 比较12x e dx ⎰,212x e dx ⎰,12(1)x dx +⎰.解法1在[1,2]上,有2x x e e ≤.而令()(1)x f x e x =-+,则()1x f x e '=-.当0x >时,()0f x '>,()f x 在(0,)+∞上单调递增,从而()(0)f x f >,可知在[1,2]上,有1x e x >+.又1221()()f x dx f x dx =-⎰⎰,从而有2111222(1)x x x dx e dx e dx +>>⎰⎰⎰.解法2 在[1,2]上,有2xx e e ≤.由泰勒中值定理212!xe e x x ξ=++得1x e x >+.注意到1221()()f x dx f x dx =-⎰⎰.因此2111222(1)x x x dx e dx e dx +>>⎰⎰⎰.例4 估计定积分22xxe dx -⎰的值.解设 2()xxf x e -=, 因为 2()(21)xxf x e x -'=-, 令()0f x '=,求得驻点12x =, 而 0(0)1f e ==, 2(2)f e =, 141()2f e -=,故124(),[0,2]ef x e x -≤≤∈,从而21224022xxee dx e --≤≤⎰,所以21024222x xe edx e ---≤≤-⎰.例5设()f x ,()g x 在[,]a b 上连续,且()0g x ≥,()0f x >.求lim (ban g x →∞⎰.解 由于()f x 在[,]a b 上连续,则()f x 在[,]a b 上有最大值M 和最小值m .由()0f x >知0M >,0m >.又()0g x ≥,则()b ag x dx (b ag x ≤⎰()bag x dx ≤.由于1n n =,故lim (ban g x →∞⎰=()bag x dx ⎰.例6求sin lim n pnn xdx x+→∞⎰, ,p n 为自然数. 解法1 利用积分中值定理 设 sin ()xf x x=, 显然()f x 在[,]n n p +上连续, 由积分中值定理得 sin sin n p n x dx p x ξξ+=⋅⎰, [,]n n p ξ∈+, 当n →∞时, ξ→∞, 而sin 1ξ≤, 故sin sin lim lim 0n pnn x dx p xξξξ+→∞→∞=⋅=⎰.解法2 利用积分不等式 因为sin sin 1ln n pn p n p nn n x x n pdx dx dx x x x n++++≤≤=⎰⎰⎰, 而limln0n n pn→∞+=,所以 sin lim 0n pnn xdx x+→∞=⎰. 例7求10lim 1nn x dx x→∞+⎰.解法1 由积分中值定理 ()()()()bbaaf xg x dx f g x dx ξ=⎰⎰可知101nx dx x +⎰=111n x dx ξ+⎰,01ξ≤≤.又11lim lim01n n n x dx n →∞→∞==+⎰且11121ξ≤≤+, 故10lim 01n n x dx x→∞=+⎰. 解法2 因为01x ≤≤,故有01nn x x x≤≤+.于是可得110001nn x dx x dx x ≤≤+⎰⎰.又由于110()1n x dx n n =→→∞+⎰. 因此10lim 1nn x dx x→∞+⎰=0. 例8设函数()f x 在[0,1]上连续,在(0,1)内可导,且3414()(0)f x dx f =⎰.证明在(0,1)内存在一点c ,使()0f c '=.证明 由题设()f x 在[0,1]上连续,由积分中值定理,可得3413(0)4()4()(1)()4f f x dx f f ξξ==-=⎰,其中3[,1][0,1]4ξ∈⊂.于是由罗尔定理,存在(0,)(0,1)c ξ∈⊂,使得()0f c '=.证毕.例9(1)若22()x t x f x e dt -=⎰,则()f x '=___;(2)若0()()xf x xf t dt =⎰,求()f x '=___.()()()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-⎰.解 (1)()f x '=422x x xe e ---;(2)由于在被积函数中x 不是积分变量,故可提到积分号外即0()()xf x x f t dt =⎰,则可得()f x '=0()()xf t dt xf x +⎰.例10 设()f x 连续,且31()x f t dt x -=⎰,则(26)f =_________.解 对等式310()x f t dt x -=⎰两边关于x 求导得32(1)31f x x -⋅=,故321(1)3f x x -=,令3126x -=得3x =,所以1(26)27f =. 例11函数1()(3(0)x F x dt x =>⎰的单调递减开区间为_________.解()3F x'=,令()0F x '<3>,解之得109x <<,即1(0,)9为所求. 例12求0()(1)arctan xf x t tdt =-⎰的极值点.解()f x '(1)arctan x x -()f x '0得1x =,0x =.列表如下:故1x =为()f x 的极大值点,0x =为极小值点.例13已知两曲线()y f x =与()y g x =在点(0,0)处的切线相同,其中 2arcsin 0()x t g x e dt -=⎰,[1,1]x ∈-,试求该切线的方程并求极限3lim ()n nf n→∞.解由已知条件得20(0)(0)0t f g e dt -===⎰,且由两曲线在(0,0)处切线斜率相同知(0)(0)1f g =''===.故所求切线方程为y x =.而3()(0)3lim ()lim33(0)330n n f f n nf f n n →∞→∞-'=⋅==-. 例14 求 22000sin lim(sin )x x xtdtt t t dt→-⎰⎰;解22000sin lim (sin )x x xtdtt t t dt→-⎰⎰=2202(sin )lim (1)(sin )x x x x x x →-⋅⋅-=220()(2)lim sin x x x x →-⋅-=304(2)lim 1cos x x x →-⋅-=2012(2)lim sin x x x→-⋅=0.注 此处利用等价无穷小替换和多次应用洛必达法则.例15试求正数a 与b,使等式201lim1sin x x x b x →=-⎰成立.解2001lim sin x x x b x →-⎰=20x →=20lim 1cos x x x b x →→-2011cos x x b x →==-, 由此可知必有0lim(1cos )0x b x →-=,得1b =.又由2011cos x x x →==-, 得4a =.即4a =,1b =为所求. 例16设sin 20()sin x f x t dt =⎰,34()g x x x =+,则当0x →时,()f x 是()g x 的( ).A .等价无穷小.B .同阶但非等价的无穷小.C .高阶无穷小.D .低阶无穷小. 解法1由于 22300()sin(sin )cos lim lim ()34x x f x x xg x x x →→⋅=+2200cos sin(sin )lim lim34x x x x x x →→=⋅+ 22011lim 33x x x →==. 故()f x 是()g x 同阶但非等价的无穷小.选B . 解法2 将2sin t 展成t 的幂级数,再逐项积分,得到sin 223370111()[()]sin sin 3!342xf x t t dt x x =-+=-+⎰ , 则344340001111sin (sin )sin ()1342342lim lim lim ()13x x x x x x f x g x x x x →→→-+-+===++. 例17证明:若函数()f x 在区间[,]a b 上连续且单调增加,则有()baxf x dx ⎰()2baa b f x dx +≥⎰.证法1 令()F x =()()2xxa a a x tf t dt f t dt +-⎰⎰,当[,]t a x ∈时,()()f t f x ≤,则 ()F x '=1()()()22x a a x xf x f t dt f x +--⎰=1()()22xax a f x f t dt --⎰≥1()()22x a x a f x f x dt --⎰=()()22x a x a f x f x ---0=. 故()F x 单调增加.即 ()()F x F a ≥,又()0F a =,所以()0F x ≥,其中[,]x a b ∈. 从而()F b =()()2bba a ab xf x dx f x dx +-⎰⎰0≥.证毕. 证法2 由于()f x 单调增加,有()[()()]22a b a bx f x f ++--0≥,从而 ()[()()]22baa b a bx f x f dx ++--⎰0≥. 即()()2baa b x f x dx +-⎰()()22b a a b a b x f dx ++≥-⎰=()()22b a a b a bf x dx ++-⎰=0.故()baxf x dx ⎰()2baa b f x dx +≥⎰. 例18计算21||x dx -⎰.分析被积函数含有绝对值符号,应先去掉绝对值符号然后再积分. 解21||x dx -⎰=021()x dx xdx --+⎰⎰=220210[][]22x x --+=52.注在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如33222111[]6dx x x --=-=⎰,则是错误的.错误的原因则是由于被积函数21x在0x =处间断且在被积区间内无界.例19 计算220max{,}x x dx ⎰.分析 被积函数在积分区间上实际是分段函数212()01x x f x x x ⎧<≤=⎨≤≤⎩. 解23212221201011717max{,}[][]23236x x x x dx xdx x dx =+=+=+=⎰⎰⎰例20设()f x 是连续函数,且10()3()f x x f t dt =+⎰,则()________f x =. 解 因()f x 连续,()f x 必可积,从而1()f t dt ⎰是常数,记1()f t dt a =⎰,则()3f x x a =+,且11(3)()x a dx f t dt a +==⎰⎰.所以2101[3]2x ax a +=,即132a a +=, 从而14a =-,所以 3()4f x x =-.例21 设23, 01()52,12x x f x x x ⎧≤<=⎨-≤≤⎩,0()()x F x f t dt =⎰,02x ≤≤,求()F x , 并讨论()F x 的连续性.解 (1)求()F x 的表达式.()F x 的定义域为[0,2].当[0,1]x ∈时,[0,][0,1]x ⊂, 因此23300()()3[]xxxF x f t dt t dt t x ====⎰⎰.当(1,2]x ∈时,[0,][0,1][1,]x x = , 因此, 则1201()3(52)xF x t dt t dt =+-⎰⎰=31201[][5]xt t t +-=235x x -+-, 故32, 01()35,12x x F x x x x ⎧≤<⎪=⎨-+-≤≤⎪⎩. (2) ()F x 在[0,1)及(1,2]上连续, 在1x =处,由于211lim ()lim(35)1x x F x x x ++→→=-+-=, 311lim ()lim 1x x F x x --→→==, (1)1F =. 因此, ()F x 在1x =处连续, 从而()F x 在[0,2]上连续.例22 计算21-⎰.由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性.解21-⎰=211--+⎰⎰.由于2是偶函数,而是奇函数,有10-=⎰, 于是21-⎰=214⎰=04⎰=1044dx-⎰⎰由定积分的几何意义可知4π=⎰, 故2114444dxππ-=-⋅=-⎰⎰.例23计算3412ee⎰.解3412ee⎰=34e3412ee⎰=⎰=3412ee=6π.例24计算4sin1sinxdxxπ+⎰.解4sin1sinxdxxπ+⎰=42sin(1sin)1sinx xdxxπ--⎰=244200sintancosxdx xdxxππ-⎰⎰=244200cos(sec1)cosd xx dxxππ---⎰⎰=44001[][tan]cosx xxππ--=24π-注此题为三角有理式积分的类型,也可用万能代换公式来求解,请读者不妨一试.例25计算2a⎰,其中0a>.解2a⎰=20a⎰,令sinx a a t-=,则2a⎰=3222(1sin)cosa t tdtππ-+⎰=3222cos0a tdtπ+⎰=32aπ.注 ,一般令sin x a t =或cos x a t =. 例26 计算a⎰,其中0a >.解法1 令sin x a t =,则a⎰2cos sin cos tdt t tπ=+⎰201(sin cos )(cos sin )2sin cos t t t t dt t t π++-=+⎰ 201(sin cos )[1]2sin cos t t dt t tπ'+=++⎰ []201ln |sin cos |2t t t π=++=4π. 解法2 令sin x a t =,则a⎰=2cos sin cos tdt t tπ+⎰.又令2t u π=-,则有20cos sin cos t dt t t π+⎰=20sin sin cos u du u u π+⎰.所以,a⎰22001sin cos []2sin cos sin cos t t dt dt t tt t ππ+++⎰⎰=2012dt π⎰=4π. 注 如果先计算不定积分,再利用牛顿-莱布尼兹公式求解,则比较复杂,由此可看出定积分与不定积分的差别之一.例27计算ln 0⎰.解设u =2ln(1)x u =+,221udx du u =+,则ln 0⎰=22220(1)241u u u du u u +⋅=++⎰22222200442244u u du du u u +-=++⎰⎰ 222001284du du u =-=+⎰⎰4π-.例28 计算220()xd tf x t dt dx -⎰,其中()f x 连续.分析 要求积分上限函数的导数,但被积函数中含有x ,因此不能直接求导,必须先换元使被积函数中不含x ,然后再求导.解由于220()xtf x t dt -⎰=2221()2x f x t dt -⎰. 故令22x t u -=,当0t =时2u x =;当t x =时0u =,而2dt du =-,所以220()xtf x t dt -⎰=201()()2x f u du -⎰=201()2x f u du ⎰, 故220()x d tf x t dt dx -⎰=201[()]2x d f u du dx ⎰=21()22f x x ⋅=2()xf x . 错误解答220()xd tf x t dt dx -⎰22()(0)xf x x xf =-=. 错解分析这里错误地使用了变限函数的求导公式,公式()()()xad x f t dt f x dx 'Φ==⎰中要求被积函数()f t 中不含有变限函数的自变量x ,而22()f x t -含有x ,因此不能直接求导,而应先换元.例29 计算30sin x xdx π⎰.解30sin x xdx π⎰30(cos )xd x π=-⎰330[(cos )](cos )x x x dx ππ=⋅---⎰30cos 6xdx ππ=-+⎰6π=-.例30 计算120ln(1)(3)x dx x +-⎰. 解 120ln(1)(3)x dx x +-⎰=101ln(1)()3x d x+-⎰=1100111[ln(1)]3(3)(1)x dx x x x +-⋅--+⎰ =101111ln 2()2413dx x x -++-⎰11ln 2ln324=-. 例31计算20sin x e xdx π⎰.解由于2sin xe xdx π⎰20sin xxde π=⎰220[sin ]cos xx e x e xdx ππ=-⎰220cos x e e xdx ππ=-⎰, (1) 而20cos xe xdx π⎰20cos xxde π=⎰220[cos ](sin )xx e x e x dx ππ=-⋅-⎰20sin 1x e xdx π=-⎰, (2) 将(2)式代入(1)式可得20sin xe xdx π⎰220[sin 1]x e e xdx ππ=--⎰,故20sin xe xdx π⎰21(1)2e π=+.例32 计算10arcsin x xdx ⎰.解10arcsin x xdx ⎰210arcsin ()2x xd =⎰221100[arcsin ](arcsin )22x x x d x =⋅-⎰ 21142π=-⎰. (1) 令sin x t =,则21⎰220sin t π=⎰220sin cos cos ttdt tπ=⋅⎰220sin tdt π=⎰201cos 22t dt π-==⎰20sin 2[]24t t π-4π=. (2)将(2)式代入(1)式中得1arcsin x xdx =⎰8π. 例33设()f x 在[0,]π上具有二阶连续导数,()3f π'=且0[()()]cos 2f x f x xdx π''+=⎰,求(0)f '. 解 由于0[()()]cos f x f x xdx π''+⎰0()sin cos ()f x d x xdf x ππ'=+⎰⎰[]000{()sin ()sin }{[()cos ]()sin }f x x f x xdx f x x f x xdx ππππ'''=-++⎰⎰()(0)2f f π''=--=.故 (0)f '=2()235f π'--=--=-. 例34(97研)设函数()f x 连续,1()()x f xt dt ϕ=⎰,且0()limx f x A x→=(A 为常数), 求()x ϕ'并讨论()x ϕ'在0x =处的连续性.分析 求()x ϕ'不能直接求,因为10()f xt dt ⎰中含有()x ϕ的自变量x ,需要通过换元将x从被积函数中分离出来,然后利用积分上限函数的求导法则,求出()x ϕ',最后用函数连续的定义来判定()x ϕ'在0x =处的连续性.解 由0()limx f x A x→=知0lim ()0x f x →=,而()f x 连续,所以(0)0f =,(0)0ϕ=.当0x ≠时,令u xt =,0t =,0u =;1t =,u x =.1dt du x =,则()()xf u du x xϕ=⎰,从而02()()()(0)xxf x f u dux x xϕ-'=≠⎰.又因为02()()(0)()limlimlim22xx x x f u du x f x A x xx ϕϕ→→→-===-⎰,即(0)ϕ'=2A.所以 ()x ϕ'=02()(),0,02x xf x f u du x x Ax ⎧-⎪≠⎪⎨⎪=⎪⎩⎰. 由于22000()()()()lim ()limlim limxxx x x x xf x f u duf u du f x x xx x ϕ→→→→-'==-⎰⎰=(0)2A ϕ'=. 从而知()x ϕ'在0x =处连续.注 这是一道综合考查定积分换元法、对积分上限函数求导、按定义求导数、讨论函数在一点的连续性等知识点的综合题.而有些读者在做题过程中常会犯如下两种错误: (1)直接求出2()()()xxf x f u dux xϕ-'=⎰,而没有利用定义去求(0)ϕ',就得到结论(0)ϕ'不存在或(0)ϕ'无定义,从而得出()x ϕ'在0x =处不连续的结论.(2)在求0lim ()x x ϕ→'时,不是去拆成两项求极限,而是立即用洛必达法则,从而导致()()()1lim ()lim ().22x x xf x f x f x x f x x ϕ→→'+-''==又由0()limx f x A x→=用洛必达法则得到0lim ()x f x →'=A ,出现该错误的原因是由于使用洛必达法则需要有条件:()f x 在0x =的邻域内可导.但题设中仅有()f x 连续的条件,因此上面出现的0lim ()x f x →'是否存在是不能确定的.例35(00研)设函数()f x 在[0,]π上连续,且()0f x dx π=⎰,0()cos 0f x xdx π=⎰.试证在(0,)π内至少存在两个不同的点12,ξξ使得12()()0f f ξξ==.分析 本题有两种证法:一是运用罗尔定理,需要构造函数0()()xF x f t dt =⎰,找出()F x的三个零点,由已知条件易知(0)()0F F π==,0x =,x π=为()F x 的两个零点,第三个零点的存在性是本题的难点.另一种方法是利用函数的单调性,用反证法证明()f x 在(0,)π之间存在两个零点.证法1 令0()(),0xF x f t dt x π=≤≤⎰,则有(0)0,()0F F π==.又00()cos cos ()[cos ()]()sin f x xdx xdF x xF x F x xdx ππππ==+⎰⎰⎰()sin 0F x xdx π==⎰,由积分中值定理知,必有(0,)ξπ∈,使得()sin F x xdx π⎰=()sin (0)F ξξπ⋅-.故()sin 0F ξξ=.又当(0,),sin 0ξπξ∈≠,故必有()0F ξ=. 于是在区间[0,],[,]ξξπ上对()F x 分别应用罗尔定理,知至少存在1(0,)ξξ∈,2(,)ξξπ∈,使得12()()0F F ξξ''==,即12()()0f f ξξ==.证法2 由已知条件0()0f x dx π=⎰及积分中值定理知必有10()()(0)0f x dx f πξπ=-=⎰,1(0,)ξπ∈,则有1()0f ξ=.若在(0,)π内,()0f x =仅有一个根1x ξ=,由0()0f xd x π=⎰知()f x 在1(0,)ξ与1(,)ξπ内异号,不妨设在1(0,)ξ内()0f x >,在1(,)ξπ内()0f x <,由()cos 0f x xdx π=⎰,0()0f x dx π=⎰,以及cos x 在[0,]π内单调减,可知:100()(cos cos )f x x dx πξ=-⎰=11110()(cos cos )()(cos cos )f x x dx f x x dx ξπξξξ-+-⎰⎰0>.由此得出矛盾.故()0f x =至少还有另一个实根2ξ,12ξξ≠且2(0,)ξπ∈使得 12()()0.f f ξξ==例36计算243dxx x +∞++⎰.分析 该积分是无穷限的的反常积分,用定义来计算.解2043dx x x +∞++⎰=20lim 43t t dx x x →+∞++⎰=0111lim ()213t t dx x x →+∞-++⎰ =011lim [ln ]23t t x x →+∞++=111lim (ln ln )233t t t →+∞+-+ =ln 32. 例37计算3+∞⎰.解3+∞⎰2233sec tan sec tan d ππθθθθθ+∞=⎰⎰23cos 1d ππθθ==⎰ 例38计算42⎰分析 该积分为无界函数的反常积分,且有两个瑕点,于是由定义,当且仅当32)⎰43⎰解 由于32⎰32lim aa +→⎰32lim aa +→⎰=32lim[arcsin(3)]a a x +→-=2π.43⎰34lim bb -→⎰34lim bb -→⎰=34lim[arcsin(3)]b b x -→-=2π. 所以42⎰22πππ=+=.例39计算0+∞⎰.分析 此题为混合型反常积分,积分上限为+∞,下限0为被积函数的瑕点. 解t ,则有+∞⎰=50222(1)tdt t t +∞+⎰=50222(1)dt t +∞+⎰,再令tan t θ=,于是可得5022(1)dt t +∞+⎰=25022tan (tan 1)d πθθ+⎰=2250sec sec d πθθθ⎰=230sec d πθθ⎰ =320cos d πθθ⎰=220(1sin )cos d πθθθ-⎰=220(1sin )sin d πθθ-⎰=3/21[sin sin ]3πθθ-=23. 例40计算21⎰. 解 由于221112111())d x x x +-==⎰⎰⎰,可令1t x x=-,则当x =时,t =;当0x -→时,t →+∞;当0x +→时,t →-∞;当1x =时,0t =;故有21010211()()12()d x d x x x x x--=+-⎰⎰⎰022dt t +∞-∞=++⎰⎰1arctan )2π=+ . 注 有些反常积分通过换元可以变成非反常积分,如例32、例37、例39;而有些非反常积分通过换元却会变成反常积分,如例40,因此在对积分换元时一定要注意此类情形.例41求由曲线12y x =,3y x =,2y =,1y =所围成的图形的面积. 分析 若选x 为积分变量,需将图形分割成三部分去求,如图5-1所示,此做法留给读者去完成.下面选取以y 为积分变量. 解选取y 为积分变量,其变化范围为[1,2]y ∈,则面积元素为dA =1|2|3y y dy -=1(2)3y y dy -. 于是所求面积为211(2)3A y y dy =-⎰=52. 例42抛物线22y x =把圆228x y +=分成两部分,求这两部分面积之比.解 抛物线22y x =与圆228x y +=的交点分别为(2,2)与(2,2)-,如图所示5-2所示,抛物线将圆分成两个部分1A ,2A ,记它们的面积分别为1S ,2S ,则有图5-21S =222)2y dy -⎰=24488cos 3d ππθθ--⎰=423π+,218S A π=-=463π-,于是12S S =423463ππ+-=3292ππ+-.例43 求心形线1cos ρθ=+与圆3cos ρθ=所围公共部分的面积.分析 心形线1cos ρθ=+与圆3cos ρθ=的图形如图5-3所示.由图形的对称性,只需计算上半部分的面积即可. 解求得心形线1cos ρθ=+与圆3cos ρθ=的交点为(,)ρθ=3(,)23π±,由图形的对称性得心形线1cos ρθ=+与圆3cos ρθ=所围公共部分的面积为图5-3A =223203112[(1cos )(3cos )]22d d πππθθθθ++⎰⎰=54π. 3πθ=3cos ρθ=3211-o11-1cos θ+例44求曲线ln y x =在区间(2,6)内的一条切线,使得该切线与直线2x =,6x =和曲线ln y x =所围成平面图形的面积最小(如图5-4所示).分析 要求平面图形的面积的最小值,必须先求出面积的表达式.解 设所求切线与曲线ln y x =相切于点(,ln )c c ,则切线方程为1ln ()y c x c c-=-.又切线与直线2x =,6x =和曲线ln y x =所围成的平面图形的面积为图5-4A =621[()ln ln ]x c c x dx c -+-⎰=44(1)4ln 46ln62ln 2c c-++-+.由于dA dc =2164c c-+=24(4)c c --,令0dA dc =,解得驻点4c =.当4c <时0dA dc<,而当4c >时0dAdc >.故当4c =时,A 取得极小值.由于驻点唯一.故当4c =时,A 取得最小值.此时切线方程为: 11ln 44y x =-+. 例45求圆域222()x y b a +-≤(其中b a >)绕x 轴旋转而成的立体的体积.解 如图5-5所示,选取x 为积分变量,得上半圆周的方程为2y b =下半圆周的方程为1y b =图5-5则体积元素为dV =2221()y y dx ππ-=4π.于是所求旋转体的体积为V=4ab π-⎰=08b π⎰=284a b ππ⋅=222a b π.注 可考虑选取y 为积分变量,请读者自行完成.例46(03研)过坐标原点作曲线ln y x =的切线,该切线与曲线ln y x =及x 轴围成平面图形D .(1)求D 的面积A ;(2)求D 绕直线x e =旋转一周所得旋转体的体积V . 分析 先求出切点坐标及切线方程,再用定积分求面积A ,旋转体积可用大的立体体积减去小的立体体积进行图5-6计算,如图5-6所示.解(1)设切点横坐标为0x ,则曲线ln y x =在点00(,ln )x x 处的切线方程是0001ln ()y x x x x =+-. 由该切线过原点知0ln 10x -=,从而0x e =,所以该切线的方程是1y x e=.从而D 的面积10()12y eA e ey dy =-=-⎰. (2)切线1y x e =与x 轴及直线x e =围成的三角形绕直线x e =旋转所得的旋转体积为2113V e π=,曲线ln y x =与x 轴及直线x e =围成的图形绕直线x e =旋转所得的旋转体积为1222011()(2)22y V e e dy e e ππ=-=-+-⎰.因此,所求体积为212(5123)6V V V e e π=-=-+.例47有一立体以抛物线22y x =与直线2x =所围成的图形为底,而垂直于抛物线的轴的截面都是等边三角形,如图5-7所示.求其体积.解 选x 为积分变量且[0,2]x ∈.过x 轴上坐标为x 的点作垂直于x 轴的平面,与立体相截的截面为等边三角形,其底边长为得等边三角形的面积为图5-7()A x 2=. 于是所求体积为 V =2()A x dx ⎰=2⎰=.例48(03研)某建筑工程打地基时,需用汽锤将桩打进土层,汽锤每次击打,都将克服土层对桩的阻力而作功,设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为k ,0k >),汽锤第一次击打进地下a (m ),根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数r (01r <<).问: (1)汽锤打桩3次后,可将桩打进地下多深?(2)若击打次数不限,汽锤至多能将桩打进地下多深?(注:m 表示长度单位米) 分析 本题属于变力作功问题,可用定积分来求.解 (1)设第n 次击打后,桩被打进地下n x ,第n 次击打时,汽锤所作的功为n W (1n =,2,).由题设,当桩被打进地下的深度为x 时,土层对桩的阻力的大小为kx ,所以12211022x k k W kxdx x a ===⎰,2122222211()()22x x k kW kxdx x x x a ==-=-⎰.由21W rW =得22221x x ra -=,即 222(1)x r a =+,3222223323()[(1)]22x x k kW kxdx x x x r a ==-=-+⎰.由2321W rW r W == 得22223(1)x r a r a -+=,即 2223(1)x r r a =++.从而汽锤击打3次后,可将桩打进地下3x =m ).(2)问题是要求lim n n x →∞,为此先用归纳法证明:1n x +=.假设n x ,则12211()2n nx n n n x k W kxdx x x +++==-⎰2121[(1...)]2n n kx r r a -+=-+++.由2111...n n n n W rW r W r W +-====,得21221(1...)n n n x r r a r a -+-+++=.从而1n x +.于是1lim n n n x +→∞=.()m .例49有一等腰梯形水闸.上底为6米,下底为2米,高为10米.试求当水面与上底相接时闸门所受的水压力.解 建立如图5-8所示的坐标系,选取x 为积分变量.则过点(0,3)A ,(10,1)B 的直线方程为135y x =-+.于是闸门上对应小区间[,]x x dx +的窄条所承受的水压力为2dF xy gdx ρ=.故闸门所受水压力为F =10012(3)5g x x dx ρ-+⎰=5003g ρ,其中ρ为水密度,g 为重力加速度.图5-8。
定积分定义考研题库定积分定义考研题库定积分是高等数学中的一个重要概念,也是考研数学中的热门考点之一。
在考研数学中,定积分的定义题是经常出现的题型。
本文将从不同角度出发,对定积分的定义考研题库进行分析和解答。
一、基本概念定积分是微积分中的一个重要概念,它是反映函数在一定区间上面积的度量。
在数学上,我们通常将定积分表示为∫abf(x)dx,其中f(x)为被积函数,a和b 为积分的上下限。
二、定积分的几何意义定积分的几何意义是函数曲线与x轴所围成的面积。
当被积函数f(x)为非负函数时,定积分表示曲线上方的面积;当被积函数f(x)为负函数时,定积分表示曲线下方的面积。
三、定积分的定义定积分的定义可以从黎曼和的角度来理解。
对于一个函数f(x),我们可以将其在区间[a, b]上进行分割,得到若干个小区间。
在每个小区间上,我们可以选择一个代表点,然后计算出该点的函数值与小区间长度的乘积。
将所有小区间上的乘积相加,就得到了定积分的近似值。
当我们将小区间的长度趋近于零时,这个近似值就会趋近于定积分的准确值。
四、定积分的性质定积分具有一系列的性质,这些性质在解题过程中经常被用到。
其中包括定积分的线性性质、定积分的区间可加性、定积分的保号性等。
这些性质可以帮助我们简化计算,提高解题效率。
五、定积分的计算方法在实际计算定积分时,我们可以利用一些常用的计算方法。
其中包括换元法、分部积分法、瑕积分的计算等。
这些方法在解题过程中起到了重要的作用,可以帮助我们解决一些复杂的定积分计算问题。
六、定积分的应用定积分在实际生活中有着广泛的应用。
它可以用于计算曲线长度、曲线与x轴所围成的面积、物体的质量、质心等。
在物理学、经济学、工程学等领域中,定积分都有着重要的应用价值。
七、定积分的推广除了黎曼和,定积分还有其他的推广形式,如黎曼-斯蒂尔杰斯和、勒贝格积分等。
这些推广形式在理论研究和实际应用中都具有重要的地位,对于深入理解定积分的性质和应用有着重要的意义。