乐山市市中区2014年中考适应性考试数学模拟试卷及答案
- 格式:doc
- 大小:363.50 KB
- 文档页数:9
中考模拟数学试题满分:100分 考试时间:120分钟 2014.4友情提示:亲爱的同学,请你保持轻松的心态,认真审题,仔细作答,发挥自己正常的水平,相信你一定行。
预祝你取得满意的成绩!1. 代数式12+x 中x 的取值范围是( )A .x ≥-21B . x ≥21C . x >21D . x >-212.在下列图形中,即是轴对称图形,又是中心对称图形的是( )3.如图,以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A 处,则点A 表示的数是()A. 211B. 1.4C. 3D. 2 4.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为0.56s =2甲,0.60s =2乙,20.50s =丙,20.45s =丁,则成绩最稳定的是( )A .甲B .乙C .丙D .丁5.如图,是小明用八块小正方体搭的积木,该几何体的俯视图是 ( ).6.已知抛物线21y x x =--与x 轴的一个交点为(0)m ,,则代数式20132+-m m 的值为( ) A .2014 B .2013 C .2012 D .20117.在一个可以改变容积的密闭容器内,装有一定质量m 的某种气体,当改变容积V 时,气体的密度ρ也随之改变.ρ与V 在一定范围内满足V•m =ρ,它的图象如图2所示,则该气体的质量m 为( )A .1.4kgB .5kgC .7kg.D .0.28kg8.点A 、B 、C 在一次函数2y x m =-+的图象上,它们的横坐标依次为-1、1、2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积这和是 ( ) A .1 B .3 C .3(1)m - D .3(2)2m -轮物9.一个滑轮起重装置,如图4所示,滑轮的半径是10cm ,当重物上升10cm 时,滑轮的一条半径OA ,绕轴心O 按逆时针方向旋转的角度约为(假定设绳索与滑轮之间没有滑动,∏取3.14,结果精确到10)( )A. 1150B. 600C. 570D. 2910.为了求20123222221+++++ 的值,可令S =20123222221++++= ,则2S =201343222222+++++ ,因此2S-S =122013-,所以20123222221+++++ =122013-仿照以上推理计算出20123255551+++++ 的值是( )A.152012-B.152013- C.152012-D.4152013-第7题图 第8题图 第9题图3)A .B .C .D .班级: 姓名: 考号:二.填空题(细心填一填,试试自己的身手,每小题3分,共15分)11.分解因式:a a a 4423+-= .12.某校参加中学生足球校级联赛的队员的年龄如下(单位:岁):13,14,16,15,14,15,15,15,16,14,则这些队员年龄的众数是______. 13. 某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是______.14.如图,一块等腰直角的三角板ABC ,在水平桌面上绕点C 按顺时针方向旋转到A B C ''的位置,使A C B ',,三点共线,那么旋转角度的大小为 .15.已知:如图12,在直角坐标系中,O 为坐标原点,四边形OABCA (10,0),C (0,4),点D是OA 的中点,点P 在BC 上运动,当△ODP 是腰长为5的等腰三角形时,则P 点的坐标为 . 三、解答题(共55分,解答应写出文字说明、证明过程或推演步骤)16.(本题51012sin 45(2)3-⎛⎫+-π- ⎪⎝⎭.17.(本题5分)先化简式子(x x x -+21-122+-x x x )÷x 1,然后请选取一个你最喜欢的x 值代入求出这个式子的值.18. (本题8分)如图,在边长为1的小正方形组成的网格中,ABC △的三个顶点均在格点上,请按要求完成下列各题:(1) 用签字笔...画AD ∥BC (D 为格点),连接CD ; (2) 线段CD 的长为 ;(3) 请你在ACD △的三个内角中任选一个锐角..,若你所选的锐角是 ,则它所对应的正弦函数值是 。
2014年初中毕业生学业考试模拟试题数 学 试 卷 (一)说 明:本试卷共6页,23小题,满分120分.考试用时90分钟.注意事项:1.答题前,考生务必在密封线内相应的位置上用黑色字迹的钢笔或签字笔填写准考证号、姓名、试室号、座位号,不要遗漏。
2.考生必须保持试卷的整洁,请仔细审题,细心答题。
参考公式:二次函数c bx ax y ++=2的对称轴是直线x =a b 2-,顶点坐标是(a b 2-,a b ac 442-). 一、选择题:每小题3分,共15分.每小题给出四个答案,其中只有一个是正确的,把所选答案的编号填写在题目后面的括号内.1.-5的相反数是( )A .15B .15- C .5 D .-5 2.不等式组⎩⎨⎧+≥≤x 43513﹣,+x 的解集表示在数轴上正确的是( )3.如图,在菱形ABCD 中,AB =5,∠BCD =120°,则对角线AC 等于( )A .20B .15C .10D .54.分别由5个大小相同的正方体组成的甲、乙两个几何体如图所示,它们的三视图中完全一致的是( )A .主视图B .俯视图C .左视图D .三视图5.下面是按一定规律摆放的图案,按此规律,第2011个图案应该和第几个相同?( )第1个 第2个 第3个 第4个 第5个 第6个A .第1个B .第2个C .第3个D .第4个二、填空题:本大题共8小题,每小题3分,共24分,把答案填写在题中横线上6.函数2+=x y 中自变量x 的取值范围是 .7.2011年3月11日,日本大地震,举世关注,小明上网搜索“日本大地震”获得约7940000条结果,其中7940000用科学记数法表示应为 .8.如图,正方形ABCD 的边长为1,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D '处,连接AD ',则sin D '∠= .9.若分式41x x +-的值为0,则x 的值为 . 10.一组数据为3、1、2、3、3,则这组数据的众数和中位数的和是 .11.如图,PA ,PB 切⊙O 于A ,B 两点,若60APB =∠,⊙O 的半径为3,则阴影部分的面积为 .12.如图,A 为反比例函数x y 3-=的图象在第二象限上的任一点, AB ⊥x 轴于B ,AC ⊥y 轴于C .则矩形ABOC 的面积为 .13.如图是与杨辉三角有类似性质的三角形数垒,a 、b 、c 、d 是相邻两行的前四个数(如图所示),那么当a =8时,c = ,d = .三、解答下列各题:本题有10小题,共81分.解答应写出文字说明、推理过程或演算步骤.14.本题满分7分.计算:1sin 30π+32-+0°+().解方程:0222=-+x x16.本题满分7分. 先化简,再求值:42)122(2-÷-+-x x x x ,其中22-=x17.本题满分7分.一布袋中放有红、黄、白、黑四种颜色的球各一个,它们除颜色外其他都一样,小菲从布袋中摸出一球后放回去摇匀,再摸出一个球,请你利用列举法(列表或画树状图)分析并求出小菲两次都能摸到同色球的概率.18.本题满分8分. 如图,小山的顶部是一块平地,在这块平地上有一高压输电的铁架,小山的斜坡的坡度i =BD 的长是50米,在山坡的坡底B 处测得铁架顶端A 的仰角为45,在山坡的坡顶D 处测得铁架顶端A 的仰角为60.(1)求小山的高度;(2)求铁架的高度. 1.73≈,精确到0.1米)A BC D EO 某校课题研究小组对本校九年级全体同学体育测试情况进行调查,他们随机抽查部分同学体育测试成绩(由高到低分A B C D 、、、四个等级),根据调查的数据绘制成如下的条形统计图和扇形统计图.请根据以上不完整的统计图提供的信息,解答下列问题:(1)该课题研究小组共抽查了__________名同学的体育测试成绩,扇形统计图中B 级所占的百分比b =___________;(2)补全条形统计图;(3)若该校九年级共有400名同学,请估计该校九年级同学体育测试达标(测试成绩C 级以上,含C 级)约有___________名.20.本题满分8分.已知:如图,在Rt △ABC 中,∠ABC =90°,以AB 上的点O 为圆心,OB 的长为半径的圆与AB 交于点E ,与AC 切于点D .(1)求证:BC =CD ;(2)设AD =2,AE =1,求⊙O 直径的长.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上的结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?22.本题满分10分.已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB= 5 .(1)求证:△APD≌△AEB;(2)探究EB与ED的位置关系,并说明理由;(3)求正方形ABCD的面积.如图,抛物线交x 轴于点()20A -,,点()40B ,,交y 轴于点()04C -,.(1)求抛物线的解析式,并写出顶点D 的坐标;(2)若直线y x =-交抛物线于M ,N 两点,交抛物线的对称轴于点E ,连接BC EB EC ,,.试判断EBC △的形状,并加以证明;(3)设P 为直线MN 上的动点,过P 作PF ED ∥交直线MN 下方的抛物线于点F .问:在直线MN 上是否存在点P ,使得以P E D F 、、、为顶点的四边形是平行四边形?若存在,请求出点P 及相应的点F 的坐标;若不存在,请说明理由.。
招生综合素质测试(数学)所在县市: 学校: 姓名:一、选择题(每小题5分,共15分)1.已知AB 、CD 是⊙O 的两条互相垂直的(非直径的)弦,则四边形ADBC 可能是( ) A .等腰梯形 B .直角梯形 C .菱形 D .矩形2. 如图,将两张完全相同的正方形透明纸片完全重合地叠放在一起,中心是点O ,按住下面的纸片不动,将上面的纸片绕点O 逆时针旋转15°,所得重叠部分....的图形( ) A .既不是轴对称图形也不是中心对称图形. B .是轴对称图形但不是中心对称图形. C .是中心对称图形但不是轴对称图形. D .既是轴对称图形也是中心对称图形.3. 将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图6-1.在图6-2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图6-1所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是( )A .6B .5C .3D .2二、填空题(每小题5分,共20分)4.当21-=x 时,代数式()()2212232++++x x_________ 5.一元二次方程02=++c bx ax 两根之和为m ,那么有c bm an 2++的值是_________6后一个数的比相等,则x+y+z=AB7.等边三角形等边ABC ∆内接于⊙O ,P 是劣弧 AB ︵上一点(不与A 、B 重合),将PBC ∆绕C 点顺时针旋转60º,得D A C ∆,AB 交PC 于E .则下列结论正确的序号是 . ① P A +PB =PC ; ②CE PC BC ⋅=2;③ 四边形ABCD 有可能成为平行四边形; ④ PCD ∆的面积有最大值. 三、解答题8.(10分)小明有一副三角尺和一个量角器(如图所示).(1; (2)请用这三个图形中的两个..拼成一个轴对称图案,画出草图(须画出四种); (3)小红也有同样的一副三角尺和一个量角器.若他们分别从自己这三件文具中随机取出一件,则可以拼成一个轴对称图案的概率是多少?(请画树状图或列表计算)9.(14分)已知函数222-+=px x y ,当02≤≤-x 时的最小值为M , (1)求M 关于p 的函数解析式;(2)当3-=M 时,求函数222-+=px x y ,当02≤≤-x 时的最大值.10.(16分)如图,在平面直角坐标系中,Rt△ABO的顶点B在x轴上,点A坐标为(0,12),y 沿O→B→A方向进行平移,平移后的抛物线顶点为P.点B坐标为(6,0),抛物线2x(1)求线段AB所在直线的函数表达式;(2)如图1,当点P与点B重合时,抛物线与AB的另一交点为M,求线段BM(即PM)的长;(3)如图2,当点P在AB上时,抛物线与AB的另一交点为N,求以PN为直径的⊙I与y(A,A) (A,B参考答案一、ADB二、 4.2 5. 0 6. 1 7.②③④三、8.解:(1)B,C …………2分(2)如:等…………5分(3或…8分一共有9种结果,每种结果出现的可能性是相同的.而其中能恰好拼成轴对称图形的结果有五种,分别是(A,A) 、(B,B)、(C,C)、(B,C)、(C,B),所以两件文具可以拼成一个轴对称图案的概率是59.…………10分9.解:(1)2)(22222--+=-+=ppxpxxy当02≤≤-x时①当-p<-2,即p>2时,函数最小值M=2-4p …………2分②02≤≤p时,函数最小值M=22--p…………5分③p<0时,函数最小值M=-2 …………7分∴M关于p的函数解析式⎪⎩⎪⎨⎧<-≤≤-->-=,220,22,422pppppy…………9分(2)由M=-3知,⎩⎨⎧-=->3422pp或⎩⎨⎧-=--≤≤3222pp…………12分(A,A) ((C,C)CBA (A∴p=1, ∴y=3)1(2222-+=-+x x x∴当02≤≤-x 时函数最大值为-2. …………14分10. 解:(1)设直线AB 是y =kx +b∵点A 、B 的坐标是(0,12)、(6,0)⎩⎨⎧+==b6k 012b 解得:b =12,k =-2 ∴直线AB 的解析式是y =-2x +12 …………3分 (2)当点F 与点B 重合时,抛物线的顶点是(6,0)∴抛物线的解析式是y =(x -6)2,即y =x 2-12x +36 …………4分 ∵点M 是抛物线与直线AB 的交点由x 2-12x +36=-2x +12解得x 1=4,x 2=6(与点p 重合) 当x 1=4时,y =4∴M 的坐标是(4,4) …………6分作ME ⊥OB 于E ,得MF =4,BE =6-4=2 在Rt △MEB 中,根据勾股定理得BM =522422=+ …………8分 (3)当抛物线沿BA 方向平移时, ∵抛物线的顶点P 在直线AB 上, N 是抛物线与直线AB 的交点∴PN 是由(2)中的线段BM 沿BA 方向平移得到的 根据平移的性质得PN =BM =52 ………10分 已知PN 是⊙I 的直径,I 是PN 的中点当⊙I 与y 轴相切时,IC =PI =5 …………11分过点I 、P 分别作y 轴的垂线,垂足分别是C 、D∴511266sin 22=+=∠==OAB APPD AIIC∴55,55+=+===IP AI AP IC AI∴PD=155)55(5+==+∙AI APIC …………13分∵点P 在直线y =-2x +12,当x =15+时, ∴y =-2521012)15(-=++ …………15分 ∴当⊙I 与y 轴相切时,P 点坐标为(15+,10-25) (也可通过证明△ACI 、△ADP 、△AOB 相似求得) …………16分。
2014年中考数学模拟试卷 (五)(满分100分,考试时间120分钟 ) 班级 姓名 考号 等分 一、选择题(本题共10 小题,每小题3分,满分30分)每一个小题都给出代号为A 、B 、C 、D 的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号。
每一小题:选对得 4 分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分。
1.-3的绝对值是…………………………………………………………………………【 】 A.3B.-3C.13D. 13- 2. 下列多项式中,能用公式法分解因式的是………………………………………………【 】 A.x 2-xy B. x 2+xy C. x 2-y 2 D. x 2+y 23. 2007年我省为135万名农村中小学生免费提供教科书,减轻了农民的负担,135万用科学计数法可表示为……………………………………………【 】A.0.135×106B.1.35×106C.0.135×107D.1.35×1074.如图,在⊙O 中,∠ABC=50°,则∠AOC 等于………………………………………………【 】 A.50° B.80° C.90° D. 100°5. 分式方程112x x =+的解是………………………………………………………………【 】 A. x=1 B. x=-1 C. x=2 D. x=-26.如图是某几何体的三视图及相关数据,则判断正确的是…………………………………【 】 A. a >c B. b >c C. 4a 2+b 2=c 2 D. a 2+b 2=c 2第4题图OACB第6题图7.函数ky x=的图象经过点(1,-2),则k 的值为……………………………………………【 】 A. 12 B. 12- C. 2 D. -28. 某火车站的显示屏,每隔4分钟显示一次火车班次的信息,显示时间持续1分钟,某人到达该车站时,显示屏上正好显示火车班次信息的概率是……………………………………【 】A.16B.15C.14D. 139. 如图是我国2003~2007年粮食产量及其增长速度的统计图,下列说法不正确...的是…………【 】 A .这5 年中,我国粮食产量先增后减 B .后4年中,我国粮食产量逐年增加 C .这5 年中,我国粮食产量年增长率最大 D .这5 年中,我国粮食产量年增长率最小10.如图,在△ABC 中,AB=AC=5,BC=6,点M 为BC 中点,MN ⊥AC 于点N ,则MN 等于…………………【 】A.65B. 95C. 125D. 165二、填空题(本题共 4 小题,每小题 3分,满分 12分) 11.12.如图,已知a ∥b ,∠1=70°,∠2=40°,则∠3= __________。
乐山市市中区2014-2015学年度上期期中调研考试九年级数学试卷(2014.11)一、选择题(本大题共10小题,每小题3分,共30分)1.使二次根式2x 有意义的x的取值范围是(D)A.x≠2 B.x>2 C.x≤2 D.x≥2解:由题意得:x﹣2≥0,解得:x≥2.2.下列计算正确的是(C)A.B.C.D.解:A、和不是同类二次根式,不能进行合并,故本选项错误,B、原式=,故本选项错误,C、根据二次根式的乘法运算法则,原式=,故本选项正确,D、原式==2,故本选项错误,3.下列方程中,关于x的一元二次方程是(A)A.3(x+1)2=2(x+1)B.C.ax2+bx+c=0 D.x2+2x=x2﹣1 解:A、3(x+1)2=2(x+1)化简得3x2+4x﹣4=0,是一元二次方程,故正确;B、方程不是整式方程,故错误;C、若a=0,则就不是一元二次方程,故错误;D、是一元一次方程,故错误.4.方程x2= x的解为(C)A.x=1 B.x=0 C.x1=0,x2=1 D.x1=0,x2=-1解:x2= x,移项得:x2﹣x=0,分解因式得:x(x﹣1)=0,则x=0或x﹣1=0,解得:x1=0,x2=1,5.一元二次方程2x2﹣3x﹣5=0的根的情况是(B)A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.只有一个实数根解:△=b2﹣4ac=(﹣3)2﹣4×2×(﹣5)=49,∵49>0,∴原方程有两个不相等实数根.6.下列各组线段中,能成比例的是(D)A.1cm,3cm,4cm,6cm B.30cm,12cm,0.8cm,0.2cm C.0.1cm,0.2cm,0.3cm,0.4cm D.12cm,16cm,45cm,60cm 解:A、1×6≠3×4,故错误;B、30×0.2≠12×0.8,故错误;C、0.1×0.4≠0.2×0.3,故错误;D、12×60=16×45,故正确.7.如图,已知∠1=∠2,那么添加下列一个条件后,仍无法判定△ABC∽△ADE的是(D)A.∠C=∠E B.∠B=∠ADE C.D.解:∵∠1=∠2,∴∠DAE=∠BAC,A、添加∠C=∠E,可用两角法判定△ABC∽△ADE,故本选项错误;B、添加∠B=∠ADE,可用两角法判定△ABC∽△ADE,故本选项错误;C 、添加=,可用两边及其夹角法判定△ABC ∽△ADE ,故本选项错误;D 、添加=,不能判定△ABC ∽△ADE ,故本选项正确;8. 关于x 的方程有两个不相等的实数根,则k 的取值范围是( A ) A .k ≥0 B .k >0 C .k ≥﹣1 D .k >﹣1 解:∵方程有两个不相等的实数根,∴k ≥0,且△>0,即(2)2﹣4×1×(﹣1)>0,解得k >﹣1. ∴k 的取值范围是k ≥0.9. 已知CD 是Rt △ABC 斜边AB 上的高,AD 、BD 是方程x 2﹣6x +4=0的两根,则三角形ABC的面积为( D )A.12B.10C.8D.6解:根据题意得AB=AD +B D =6,AD •B D=4,由射影定理得CD 2=AD •B D=4,CD=2所以三角形ABC 的面积=1162622AB CD •=⨯⨯=10. 古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”,从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( C )A .13=3+10B .25=9+16C .36=15+21D .49=18+31解:这些三角形数的规律是1,3,6,10,15,21,28,36,45,…,且正方形数是这串数中相邻两数之和,很容易看到:恰有36=15+21.二、填空题:(本大题共6个小题,每小题3分,共18分)11. 比较大小:2 < ; 解:, ∵12<13,∴. 12. 某型号的手机连续两次降价,每个售价由原来的1185元降到了580元,设平均每次降价的百分率为x ,列出方程正确的是 1185(1﹣x )2=580 解:设平均每次降价的百分率为x ,由题意得出方程为:1185(1﹣x )2=580.13. 已知a ,b 在数轴上的位置如图所示,化简:()()()22221a b a b +++--的值是 -1解:如图:∵-3<a <﹣2,1<b <2,∴a +2<0,b +1>0,a ﹣b <0,∴原式=|a +2|+|b +1|﹣|a ﹣b |=﹣(a +2)+(b +1)+(a ﹣b )=﹣a ﹣2+b +1+a ﹣b=-114. 已知方程x 2﹣5x +5=0的一个根是m ,则的值为 5 .解:∵方程x 2﹣5x +5=0的一个根是m ,∴x=m 满足该方程,∴m 2﹣5m +5=0;∴m 2+5=5m ,∴===5. 15. △ABC 的三边长均满足方程x 2﹣6x +8=0,则△ABC 的周长是 10或6或 12解:解方程x2﹣6x+8=0得:x1=2,x2=4,∵△ABC的三边均满足方程x2﹣6x+8=0,∴△ABC的三边长为:①4,4,2;②2,2,2;③4,4,4;∴它的周长为:①4+4+2=10,②2+2+2=6,③4+4+4=12,16.在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1…按这样的规律进行下去,第n个正方形的面积为(用含n的代数式表示).解:设正方形的面积分别为S1,S2…,S n,根据题意,得:AD∥BC∥C1A2∥C2B2,∴∠BAA1=∠B1A1A2=∠B2A2x(同位角相等).∵∠ABA1=∠A1B1A2=∠A2B2x=90°,∴△BAA1∽△B1A1A2,在直角△ADO中,根据勾股定理,得:AD=,tan∠ADO==,∵tan∠BAA1==tan∠ADO,∴BA1=AB=,∴CA 1=+,同理,得:C1A2=(+)×(1+)由正方形的面积公式,得:S1=()2,S 2=()2×(1+)2,S 3=()2×(1+)4=5×()4,由此,可得S n=()2×(1+)2(n﹣1)=5×()2n﹣2.三、(本大题共3小题,每小题9分,共27分)17. 计算:()101228221π-⎛⎫--+--+ ⎪-⎝⎭ 解:()101228221212212222π-⎛⎫--+--+ ⎪-⎝⎭=-+--+= 18. 解方程:()3222x x x x --=- 解:方程两边同乘以x (x ﹣2)得,x 2﹣2x (x ﹣2)=3(x ﹣2)2解得x 1=1,x 2=319. 如图,四边形ABCD 是平行四边形,点F 在BA 的延长线上,且CF 交AD 于E 点.(1)求证:△CDE ∽△FAE ;(2)若DC=3,CE=4,EF=3,求FA 的长.(1)证明:∵四边形ABCD 是平行四边形,点F 在BA 的延长线上,且CF 交AD 于E , ∴AD ∥BC ,∴∠DCE=∠EFA ,∴△CDE ∽△FAE ;(2)解:由△CDE ∽△FAE 得,即=, 解得FA=2.25四、(本大题共3小题,每小题10分,共30分)20. 某商场试销一种成本为60元/件的T 恤,规定试销期间单价不低于成本单价,又获利不得高于40%,经试销发现,销售量y(件)与销售单价x(元/件)符合一次函数y=kx+b,且x=70时,y=50;x=80时,y=40;(1)求出一次函数y=kx+b的解析式(2)若该商场获得利润为w元,试写出利润w与销售单价x之间的关系式,销售单价定为多少时,商场可获得最大利润,最大利润是多少?解:(1)由题意得:,∴.∴一次函数的解析式为:y=﹣x+120;(2)w=(x﹣60)(﹣x+120)=﹣x2+180x﹣7200=﹣(x﹣90)2+900,∵抛物线开口向下,∴当x<90时,w随x的增大而增大,而60≤x≤84,∴当x=84时,w=(84﹣60)×(120﹣84)=864.答:当销售价定为84元/件时,商场可以获得最大利润,最大利润是864元.21.如图,△ABC为正三角形,D,E分别为AC,BC上的点(D,E不与顶点重合),∠BDE=60°.(1)求证:△DEC∽△BDA;(2)若正△ABC的边长为6,并设DC=x,BE=y.试求y与x之间的函数关系式.(1)证明:∵△ABC为正三角形,∴∠A=∠C=∠ABC=60°,∴∠3+∠1=120°,∵∠BDE=60°,∴∠3+∠2=120°,∴∠1=∠2,∴△DEC∽△BDA,(2)解:∵正△ABC的边长为6,∴AB=BC=AC=6,∵△DEC∽△BDA,∴,∵AD=AC﹣CD,EC=BC﹣BE,设CD=x,BE=y,∴,整理得:y=x2﹣x+6.22.选做题,从甲、乙两题中选做一题,如果两题都做,只以甲题计分. 题甲:已知关于x的方程(m+2)x2﹣mx+m﹣3=0.(1)求证方程有实数根;(2)若方程有两个实数根,且两根平方和等于3,求m的值.(1)证明:当m+2=0时,方程化为2x﹣5=0,解得x=;当m+2≠0时,△=(﹣m)2﹣4(m+2)(m﹣3)=(m+2)2+20,∵(m+2)2≥0,∴△>0,即m≠﹣2时,方程有两个不相等的实数根,∴方程有实数根;(2)解:设方程两实数根为a,b,则a+b=,ab=,∵a2+b2=3,∴(a+b)2﹣2ab=3,∴()2﹣2×=3,解得m=0.题乙:22.如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm,点P从点A开始沿AB边向点B以1厘米/秒的速度移动,点Q从点B开始沿BC边向点C以2厘米/秒的速度移动,如果P、Q分别从A、B同时出发,问:(1)几秒后△PBQ的面积等于8平方厘米?(2)几秒后PQ的长为3厘米?(3)几秒后△ABC与△BPQ相似?解:(1)设经过x秒钟,使△PBQ的面积为8cm2,BP=6﹣x,BQ=2x,∵∠B=90°,∴BP×BQ=8,∴×(6﹣x)×2x=8,∴x1=2,x2=4,答:经过2或4秒钟,使△PBQ的面积为8cm2.(2)设y秒后PQ的长为3厘米,则BP=6﹣y,BQ=2y,(6﹣y)2+(2y)2=(3)2,解得y1=3,y2=﹣(舍去),答:3秒后PQ的长为3厘米;(3)解:设经过a秒钟,使△PBQ与△ABC相似,∵∠B=∠B,第一种情况:当BP:AB=BQ:BC时,△PBQ∽△ABC,∴(6﹣a):6=2a:8,解得:a=2.4,第二种情况:当BP:BC=BQ:AB时,△PBQ∽△BCA相似,∴(6﹣a):8=2a:6,∴a=,答:如果点P、Q分别从A、B同时出发,经过2.4或秒钟,使△PBQ与△ABC相似.五、(本大题共2小题,每小题10分,共20分)23.如图所示:AH是△ABC的边上的高,M为AH上一点,且AM:MH=1:2,过M引DE∥BC分别交AB,AC于点D,E,若BC=16cm、AH=9cm.(1)求△ADE的面积;(2)AM:MH为何值时,S△ADE:S四边形BDEC=1:1?解:(1)∵DE∥BC,AH是△ABC的边上的高,∴AM⊥DE,∵AM:MH=1:2,∴AM:AH=1:3,∵DE∥BC,∴△ADE∽△ABC,∴=,∴=()2=,∵S△ABC=BC•AH==72,∴△ADE的面积=8;(2)∵S△ADE:S四边形BDEC=1:1,∴S△ADE:S△ABC=1:2,由(1)证得△ADE∽△ABC,∴=()2=()2=,∴AM:AH=:2,∴AM:MH=:(2﹣).∴当AM:MH=:(2﹣)时,S△ADE:S四边形BDEC=1:1.24.在Rt△ABC中,∠C=90°,斜边c=5,两直角边长a,b(a>b)是关于x的一元二次方程x2+x+4m=2mx+4的两个实数根,求△ABC 的面积解:x2+x+4m=2mx+4化简得: x2+(1-2m)x+4m-4=0∵a,b是方程x2+(1-2m)x+4m-4=0的解,∴a+b=2m-1,ab=4m﹣4,在Rt△ABC中,由勾股定理得,a2+b2=c2,而a2+b2=(a+b)2﹣2ab,c=5,∴a2+b2=(a+b)2﹣2ab=25,即:(2m-1)2﹣2(4m﹣4)=25解得,m1=4,m2=﹣1,∵a,b是Rt△ABC的两条直角边的长.∴a+b=2m-1>0,m=﹣1不合题意,舍去.∴m=4,当m=4时,原方程为x2﹣7x+12=0,解得,x1=3,x2=4,∵a>b,∴a=4,b=3.∴△ABC 的面积=1ab=62六、(本大题共2小题,第25题12分,第26题13分,共25分)25.小明、小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图,在同一时间,身高为1.6m的小明(AB)的影子BC长是3m,而小颖(EH)刚好在路灯灯泡的正下方H点,并测得HB=6m.(1)请在图中画出形成影子的光线,并确定路灯灯泡所在的位置G;(2)求路灯灯泡的垂直高度GH;(3)如果小明沿线段BH向小颖(点H)走去,①当小明走到BH中点B1处时,求其影子B1C1的长;②当小明继续走剩下路程的到B2处时,求其影子B2C2的长;当小明继续走剩下路程的到B3处,…按此规律继续走下去,当小明走剩下路程的到B n处时,其影子B nC n的长为m.(直接用n的代数式表示)解:(1)如图(2)∵AB⊥HC,GH⊥HC,∴AB∥GH,∴△ABC∽△GHC,∴,∵AB=1.6m,BC=3m,HB=6m∴,∴GH=4.8(m).(3)同理△A1B1C1∽△GHC1,∴,设B1C1长为x(m),则,解得:(m),即(m).同理,解得B2C2=1(m),∴=,解得:B n C n=.26.已知方程x2+3x+1=0,若两根为x1,x2,不解方程,根据一元二次方程根与系数关系,我们可以轻松得到:⑴x1+x2= -3 , x1x2= 1 .在此基础上,请完成下列各小题:⑵已知a2+3a=7,b2+3b=7,且a≠b,则a+b=﹣3.⑶实数a、b满足a2﹣7a+2=0,b2﹣7b+2=0,求b a+的值.a b⑷已知p2﹣2p﹣5=0,5q2+2q﹣1=0,其中p、q为实数,且p≠,求的值.⑵解:根据题意得:a,b就是方程x2+3x=7的两根则a+b=﹣3⑶解:当a=b,原式=2;当a≠b,则a、b可看作方程x2﹣7x+2=0的两根,所以a+b=7,ab=2,所以原式==,即b a+的值为2或.a b⑷解:由题意可知q≠0,则把5q2+2q﹣1=0两边同时除以q2,得:5+﹣=0,则﹣﹣5=0,∵p2﹣2p﹣5=0,且p≠∴p、是关于x的方程x2﹣2x﹣5=0的两个不相等的实数根,则p+=2,p•=﹣5,所以=﹣2p•=4﹣2×(﹣5)=14.。
2014中考数学模拟试卷及答案一、精心选一选,相信自己的判断!1.200粒大米重约4克,如果每人每天浪费1粒米,那么约458万人口的漳州市每天浪费大米约()克(用科学记数法表示)A.B.C.D.2.下列运算正确的是()A.B.C.D.3.经过折叠不能围成一个正方体的图形是()4.已知内接于,于,如果,那么的度数为()A.B.C.或D.或5.近一个月来漳州市遭受暴雨袭击,九龙江水位上涨.小明以警戒水位为点,用折线统计图表示某一天江水水位情况.请你结合折线统计图判断下列叙述不正确的是()A.8时水位最高B.这一天水位均高于警戒水位C.8时到16时水位都在下降D.点表示12时水位高于警戒水位0.6米6.哥哥身高1.68米,在地面上的影子长是2.1米,同一时间测得弟弟的影子长1.8米,则弟弟身高是()A.1.44米B.1.52米C.1.96米D.2.25米7.某超市购进了一批不同价格的运动鞋,根据近几年统计的平均数据,运动鞋单价为40元,35元,30元,25元的销售百分率分别为,,,.要使该超市销售运动鞋收入最大,该超市应多购单价为()的运动鞋.A.40元B.35元C.30元D.25元8.如图,是菱形的对角线的交点,分别是的中点.下列结论:①;②四边形是中心对称图形;③是轴对称图形;④.其中错误的结论有.A.1个B.2个C.3个D.4个二、认真填一填,试试自己的身手!9.平方根等于它本身的数是.10.若,则.11.不等式组的解集是.12.若方程无解,则.13.为了解家庭丢弃塑料袋对环境造成的影响,某班研究性学习小组的六位同学记录了自己家中一周内丢弃塑料袋的数量.结果如下(单位:个)30,28,23,18,20,31.若该班有50名学生,请你估算本周全班同学的家共丢弃塑料袋个.14.投一枚均匀的正方体骰子,面朝上的点数是5的概率是.15.如图,中,,,,则.16.某礼堂的座位排列呈圆弧形,横排座位按下列方式设置:根据提供的数据得出第排有个座位.三、用心做一做,显显你的能力!17.(本题满分8分,每小题4分,共8分)(1)计算:.(2)化简:.18.(本题满分7分)小敏有红色、白色、黄色三件上衣,又有米色、白色的两条裤子.如果她最喜欢的搭配是白色上衣配米色裤子,那么黑暗中,她随机拿出一件上衣和一条裤子,正是她最喜欢搭配的颜色.请你用列表或画树状图,求出这样的巧合发生的概率是多少?19.(本题满分7分)福林制衣厂现有24名制作服装工人,每天都制作某种品牌衬衫和裤子,每人每天可制作衬衫3件或裤子5条.(1)若该厂要求每天制作的衬衫和裤子数量相等,则应安排制作衬衫和裤子各多少人?(2)已知制作一件衬衫可获得利润30元,制作一条裤子可获得利润16元,若该厂要求每天获得利润不少于2100元,则至少需要安排多少名工人制作衬衫?20.(本题满分8分)表是某班学生年龄统计表.(1)请你把表中未填的项目补充完整;(2)从表中可以看出,众数是,中位数是,平均数是;(3)请你根据统计表,在图10中画出该班学生年龄统计直方图(要求标出数字).21.(本题满分9分)如图,已知是的直径,是弦,过点作于,连结.(1)求证:;(2)若,求的度数.22.(本题满分10分)已知:如图12,在直角梯形ABCD中,AD∥BC,BC=5cm,CD=6cm,∠DCB=60°,∠ABC=90°。
2014年中考数学模拟试题(一)(本试卷分A卷(100分)、B卷(60分),满分160分,考试时间120分钟)A卷(共100分)一、选择题(本大题共12小题,每小题3分,共36分)1.下列四个实数中,绝对值最小的数是【】A.-5 B.2-C.1 D.42.一个几何体的三视图如图所示,那么这个几何体是【】A.B.C.D.3.某公司开发一个新的项目,总投入约11500000000元,11500000000元用科学记数法表示为【】A.1.15×1010B.0.115×1011C.1.15×1011D.1.15×1094.把不等式组x>1x23-⎧⎨+≤⎩的解集表示在数轴上,下列选项正确的是【】A.B.C.D.5.今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是【】A.这1000名考生是总体的一个样本B.近4万名考生是总体C.每位考生的数学成绩是个体D.1000名学生是样本容量6.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为【】A .125°B .120°C .140°D .130°7.成渝路内江至成都段全长170千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过1小时10分钟相遇,小汽车比客车多行驶20千米.设小汽车和客车的平均速度为x 千米/小时和y 千米/小时,则下列方程组正确的是【 】A .x y 2077x y 17066+=⎧⎪⎨+=⎪⎩B .x y 2077x y 17066-=⎧⎪⎨+=⎪⎩C .x y 2077x y 17066+=⎧⎪⎨-=⎪⎩ D .77x y 1706677x y 2066⎧+=⎪⎪⎨⎪-=⎪⎩ 8.如图,在 ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,DEF ABF S S 425∆∆=::,则DE :EC=【 】A .2:5B .2:3C .3:5D .3:29.若抛物线2y x 2x c =-+与y 轴的交点为(0,﹣3),则下列说法不正确的是【 】 A .抛物线开口向上 B .抛物线的对称轴是x=1C .当x=1时,y 的最大值为﹣4D .抛物线与x 轴的交点为(-1,0),(3,0)10.同时抛掷A 、B 两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),设两立方体朝上的数字分别为x 、y ,并以此确定点P (x ,y ),那么点P 落在抛物线2y x 3x =-+上的概率为【 】A .118 B .112 C .19 D .1611.如图,反比例函数ky x=(x >0)的图象经过矩形OABC 对角线的交点M ,分别于AB 、BC 交于点D 、E ,若四边形ODBE 的面积为9,则k 的值为【 】A.1 B.2 C.3 D.412.如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为【】A.45cm B.35cm C.55cm D.4cm二、填空题(每小题5分,共20分)13、分解因式:ab3﹣4ab=_________。
2013—2014学年九年级数学(下)周末辅导资料(15)理想文化教育培训中心 学生姓名: 得分:一、选择题(本大题共10小题,每小题3分,满分30分)1、无理数-3的相反数是( ) A .- 3 B . 3 C .13 D .-132、下面的计算正确的是( ) A .326a a a ⋅= B .()235aa = C .()236a a -= D .55a a -=3、图1所示的几何体的右视图是( )4、据市旅游局统计,今年“五·一”小长假期间,我市旅游市场走势良好,假期旅游总收入达到8.55亿元,用科学记数法可以表示为( )A .8.55×106B .8.55×107C .8.55×108D .8.55×1095、下列长度的三条线段能构成三角形的是( )A .3、4、8B .5、6、11C .6、8、20D .5、6、106、如图,在边长为2的正方形ABCD 中,M 为边AD 的中点,延长MD 至点E ,使ME=MC ,以DE 为边作正方形DEFG ,点G 在边CD 上,则DG 的长为( )A 1 B。
3D 1 7、分式方程12x+2x 1x+1=-的解是( ) A .1 B .-1 C .3 D .无解 8、在平面直角坐标系中,点(3,-2)关于原点对称点的坐标是( ) A.(3,2)B.(3,-2)C.(-3,2)D.(-3,-2)9、如图2,∠1=30°,∠B=60°,AB ⊥AC ,则下列说法正确的是( ) A .AB ∥CDB .AD ∥BCC .AC ⊥CDD .∠DAB+∠D=180°10、某学校准备修建一个面积为200平方米的矩形花圃,它的长比宽多10米,设花圃的宽为x 米,则可列方程为( ) A .x(x -10)=200 B .2x +2(x -10)=200 C .x(x +10)=200 D .2x +2(x +10)=200 二、填空题(本大题6小题,每小题4分,共24分) 11、已知函数23y x =+,则函数自变量的取值范围为 ; 12、因式分解:xy y x 63322+--= ;13、一个扇形的弧长是20cm π,面积是2240cm π,则扇形的半径是 ;B1ACD图214、不等式组x 12x 4<≥-⎧⎨⎩的整数解是_________。
2014年中考数学模拟试卷二(时间120分钟,满分120分)一、选择题(每小题3分,共36分)1.-12的绝对值是( )A .12B .-12C .2D .-2 2.今年体育学业考试增加了跳绳测试项目,下面是测试时记录员记录的一组(10名)同学的测试成绩(单位:个/分).176 180 184 180 170 176 172 164 186 180 该组数据的众数、中位数、平均数分别为( )A .180,180,178B .180,178,178C .180,178,176.8D .178,180,176.8 3.如图,在下列条件中,不能证明△ABD ≌△ACD 的是( )A .BD =DC ,AB =AC B .∠ADB =∠ADC ,BD =DC C .∠B =∠C ,∠BAD =∠CAD D .∠B =∠C ,BD =DC 4.不等式组⎩⎪⎨⎪⎧2x +12>12x -4,32x -12≤x的解集在数轴上表示正确的是( )5.顺次连接菱形各边中点所得的四边形一定是( )A .等腰梯形B .正方形C .平行四边形D .矩形6.计算:1÷1+m 1-m ·(m 2-1)的结果是( )A .-m 2-2m -1B .-m 2+2m -1C .m 2-2m -1D .m 2-17.抛物线y =(x +2)2-3可以由抛物线y =x 2平移得到,则下列平移过程正确的是( ) A .先向左平移2个单位,再向上平移3个单位 B .先向左平移2个单位,再向下平移3个单位 C .先向右平移2个单位,再向下平移3个单位 D .先向右平移2个单位,再向上平移3个单位8.如图,在平面直角坐标系中,正方形ABCO 的顶点A ,C 分别在y 轴、x 轴上,以AB 为弦的⊙M 与x 轴相切.若点A 的坐标为(0,8),则圆心M 的坐标为( )A .(-4,5)B .(-5,4)C .(5,-4)D .(4,-5)9.如图,所有正方形的中心均在坐标原点,且各边均与x 轴或y 轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A 1,A 2,A 3,A 4,…表示,则顶点A 55的坐标是( )A .(13,13)B .(-13,-13)C .(14,14)D .(-14,-14)10.已知一元二次方程x 2+bx -3=0的一根为-3,在二次函数y =x 2+bx -3的图象上有三点⎝ ⎛⎭⎪⎫-45,y 1,⎝ ⎛⎭⎪⎫-54,y 2,⎝ ⎛⎭⎪⎫16,y 3,y 1,y 2,y 3的大小关系是( ) A .y 1<y 2<y 3 B .y 2<y 1<y 3 C .y 3<y 1<y 2 D .y 1<y 3<y 211.有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O 按逆时针方向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图②,…,则第10次旋转后得到的图形与图①~④中相同的是( )A .图①B .图②C .图③D .图④ 12.如图,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作;然后,将其中的一个正方形再剪成四个小正方形,共得到7个小正方形,称为第二次操作;再将其中的一个正方形剪成四个小正方形,共得到10个小正方形,称为第三次操作;……,根据以上操作,若要得到2 011个小正方形,则需要操作的次数是( )A .669B .670C .671D .672 二、填空题(每小题4分,共20分)13.若x =2是关于x 的方程x 2-x -a 2+5=0的一个根,则a 的值为__________. 14.如图,l ∥m ,矩形ABCD 的顶点B 在直线m 上,则∠α=__________度.15.对于任意不相等的两个实数a ,b ,定义运算*如下:a *b =a +ba -b,如32*==8*12=___________. 16.如图,在Rt △ABC 中,∠C =90°,AM 是BC 边上的中线,sin∠CAM =35,则tan B的值为__________.17.Rt△ABC 中,∠BAC =90°,AB =AC =2.以AC 为一边,在△ABC 外部作等腰直角△ACD ,则线段BD 的长为__________.三、解答题(共64分)18.(5分)已知:2x 2+6x -4=0,求代数式3-x 2x 2-4x ÷⎝ ⎛⎭⎪⎫5x -2-x -2的值. 19.(6分)我们约定,若一个三角形(记为△A 1)是由另一个三角形(记为△A )通过一次平移,或绕其任一边的中点旋转180°得到的,则称△A 1是由△A 复制的.以下的操作中每一个三角形只可以复制一次,复制过程可以一直进行下去.如图1,由△A 复制出△A 1,又由△A 1复制出△A 2,再由△A 2复制出△A 3,形成了一个大三角形,记作△B .以下各题中的复制均是由△A 开始的,通过复制形成的多边形中的任意相邻两个小三角形(指与△A 全等的三角形)之间既无缝隙也无重叠.(1)图1中标出的是一种可能的复制结果,小明发现△A ∽△B ,其相似比为__________.在图1的基础上继续复制下去得到△C ,若△C 的一条边上恰有11个小三角形(指有一条边在该边上的小三角形),则△C 中含有__________个小三角形;(2)若△A是正三角形,你认为通过复制能形成的正多边形是__________;(3)请你用两次旋转和一次平移复制形成一个四边形,在图2的方框内画出草图,并仿照图1作出标记.图1 图220.(7分)远洋电器城中,某品牌电视有A,B,C,D四种不同型号供顾客选择,它们每台的价格(单位:元)依次分别是2 500,4 000,6 000,10 000.为做好下阶段的销售工作,商场调查了一周内这四种不同型号电视的销售情况,并根据销售情况,将所得的数据制成统计图,现已知该品牌一周内四种型号电视共售出240台,每台的销售利润占其价格的百分比如下表:型号 A B C D利润10% 12% 15% 20%请根据以上信息,解答下列问题:(1)请补全统计图;(2)通过计算,说明商场这一周内该品牌哪种型号的电视总销售利润最大;(3)谈谈你的建议.21.(7分)七年级五班学生在课外活动时进行乒乓球练习,体育委员根据场地情况,将同学们分为三人一组,每组用一个球台.甲、乙、丙三位同学用“手心、手背”游戏(游戏时,“手心向上”简称手心;“手背向上”简称手背)来决定哪两个人先打球.游戏规则是:每人每次同时随机伸出一只手,出手心或手背.若出现“两同一异”(即两手心、一手背或两手背、一手心)的情况,则同出手心或手背的两个人先打球,另一人做裁判;否则继续进行,直到出现“两同一异”为止.(1)请你列出甲、乙、丙三位同学运用“手心、手背”游戏,出手一次出现的所有等可能情况(用A表示手心,用B表示手背);(2)求甲、乙、丙三位同学运用“手心、手背”游戏,出手一次出现“两同一异”的概率.22.(8分)某中学为落实市教育局提出的“全员育人,创办特色学校”的会议精神,决心打造“书香校园”,计划用不超过1 900本科技类书籍和1 620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)符合题意的组建方案有几种?请你帮学校设计出来.(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?23.(9分)如图,在△ABC中,∠A=90°,∠B=60°,AB=3,点D从点A以每秒1个单位长度的速度向点B运动(点D不与B重合),过点D作DE∥BC交AC于点E.以DE为直径作⊙O,并在⊙O内作内接矩形ADFE,设点D的运动时间为t秒.(1)用含t的代数式表示△DEF的面积S;(2)当t为何值时,⊙O与直线BC相切?24.(10分)如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E,F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.(1)求证:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的长.25.(12分)在平面直角坐标系xOy中,二次函数y=mx2+(m-3)x-3(m>0)的图象与x 轴交于A,B两点(点A在点B左侧),与y轴交于点C.(1)求点A的坐标;(2)当∠ABC=45°时,求m的值;(3)已知一次函数y=kx+b,点P(n,0)是x轴上的一个动点.在(2)的条件下,过点P 作垂直于x轴的直线交这个一次函数的图象于点M,交二次函数y=mx2+(m-3)x-3(m>0)的图象于点N.若只有当-2<n<2时,点M位于点N的上方,求这个一次函数的解析式.参考答案一、1.A2.176,180,因此中位数是176+1802=178;平均数为164+170+172+176×2+180×3+184+18610=176.8.3.D4.A 解不等式2x +12>12x -4,得x >-3;解不等式32x -12≤x ,得x ≤1,∴不等式组的解集为-3<x ≤1.故选A.5.D6.B 1÷1+m 1-m ·(m 2-1)=1-m 1+m·(m +1)(m -1)=-m 2+2m -1.7.B y =(x +2)2-3的顶点为(-2,-3),抛物线y =x 2的顶点为(0,0),所以平移的过程是先向左平移2个单位,再向下平移3个单位.8.A 设⊙M 与x 轴的切点为F ,连接FM ,并延长交AB 于E ,连接AM .∵⊙M 与x 轴相切,∴MF ⊥x 轴,ME ⊥AB .∵A 的坐标为(0,8),∴OA =AB =OC =BC =EF =8.∴AE =BE =4.设MF =AM =x ,∴ME =8-x .在Rt △AME 中,AE 2+ME 2=AM 2,即42+(8-x )2=x 2,解得x =5.即MF =5,∴M 的坐标为(-4,5),故选A.9.C ∵55÷4=1334,∴点应在第一象限,且坐标为(14,14).10.A 把x =-3代入方程,得9-3b -3=0,b =2,二次函数y =x 2+2x -3的对称轴为x =-1, ∵⎪⎪⎪⎪⎪⎪-45--=15,⎪⎪⎪⎪⎪⎪-54--=14, ⎪⎪⎪⎪⎪⎪16--=76,15<14<76,∴y 1<y 2<y 3. 11.B 12.B二、13.±7 把x =2代入方程,得22-2-a 2+5=0,解得a =±7.14.25 15.-5216.23设MC 为3x ,则AM 为5x ,∴AC 为4x .∴tan B =AC BC =AC 2MC =4x 6x =23.17.4或25或10 首先要结合题意,画出相应的图形.因为以AC 为一边在△ABC 外部作等腰Rt △ACD ,则AC 可以是直角边,也可以是斜边,所以有三种情况.如图(1),BD =4;如图(2),BD =22+42=25;如图(3),∠ADC =90°,BC =22,CD =2,BD =22+22=10.图(1) 图(2) 图(3)三、18.解:原式=-x -32x 2-4x ÷⎝ ⎛⎭⎪⎫5x -2-x +21=-x -32x 2-4x ÷⎝ ⎛⎭⎪⎫-x 2+9x -2=12x 2+6x. 当2x 2+6x -4=0时,2x 2+6x =4,原式=14.19.解:(1)1:2 121 (2)正三角形或正六边形 (3)如图.20.解:(1)补全统计图如右.(2)10%×2 500×50=12 500,12%×4 000×100=48 000,15%×6 000×70=63 000,20%×10 000×20=40 000,∴商场在这一周内该品牌C 型号的电视总销售利润最大.(3)从进货角度、宣传角度等方面答对即可.21.解:(1)共有8种等可能情况:AAA ,AAB ,ABA ,ABB ,BAA ,BAB ,BBA ,BBB. (2)由(1)知共有8种等可能情况,其中出现“两同一异”的情况有6种.∴P (两同一异)=68=34. 22.解:(1)设组建中型图书角x 个,则组建小型图书角为(30-x )个.由题意,得⎩⎪⎨⎪⎧80x +-x ,50x +-x ,解这个不等式组,得18≤x ≤20.由于x 只能取整数,∴x 的取值是18,19,20.当x =18时,30-x =12;当x =19时,30-x =11;当x =20时,30-x =10.故有三种组建方案.方案一:中型图书角18个,小型图书角12个;方案二:中型图书角19个,小型图书角11个;方案三:中型图书角20个,小型图书角10个.(2)方案一的费用是860×18+570×12=22 320(元); 方案二的费用是860×19+570×11=22 610(元); 方案三的费用是860×20+570×10=22 900(元). 故方案一的费用最低,最低费用是22 320元. 23.解:(1)∵DE ∥BC ,∴∠ADE =∠B =60°.在△ADE 中,∵∠A =90°,∴tan ∠ADE =AE AD= 3.∵AD =1×t =t ,∴AE =3t .又∵四边形ADFE 是矩形,∴S △DEF =S △ADE =12AD ×AE =12×t ×3t =32t 2(0<t <3).∴S =32t 2(0<t <3).(2)如图,过点O 作OG ⊥BC 于点G ,过点D 作DH ⊥BC 于点H ,∵DE ∥BC ,∴OG =DH ,∠DHB =90°.在△DBH 中,sin B =DH BD.∵∠B =60°,BD =AB -AD ,AD =t ,AB =3,∴DH =32(3-t ),∴OG =32(3-t ). 当OG =12DE 时,⊙O 与BC 相切,在△ADE 中,∵∠A =90°,∠ADE =60°,∴cos ∠ADE =AD DE =12.∵AD =t ,∴DE =2AD =2t .∴2t =32(3-t )×2.∴t =63-9<3. ∴当t =63-9时,⊙O 与直线BC 相切. 24.(1)证明:∵四边形ABCD 为矩形, ∴∠C =∠BAD =90°,AB =CD ,由图形的折叠性质,得CD =C ′D ,∠C =∠C ′=90°, ∴∠BAD =∠C ′,AB =C ′D .又∵∠AGB =∠C ′GD ,∴△ABG ≌△C ′DG .(2)解:设AG 为x .∵△ABG ≌△C ′DG ,AD =8,AG =x , ∴BG =DG =AD -AG =8-x .在Rt △ABG 中,有BG 2=AG 2+AB 2,∵AB =6,∴(8-x )2=x 2+62,解得x =74.∴tan ∠ABG=AG AB =724. (3)由图形的折叠性质,得∠EHD =90°,DH =AH =4, ∴AB ∥EF ,∴△DHF ∽△DAB , ∴HF AB =DH AD ,即HF 6=12,∴HF =3. 又∵△ABG ≌△C ′DG ,∴∠ABG =∠HDE ,∴tan ∠ABG =tan ∠HDE =EH HD ,即724=EH4,∴EH =76,∴EF =EH +HF =76+3=256.25.解:(1)∵点A ,B 是二次函数y =mx 2+(m -3)x -3(m >0)的图象与x 轴的交点,∴令y =0,得mx 2+(m -3)x -3=0.图①解得x 1=-1,x 2=3m.又∵点A 在点B 左侧且m >0, ∴点A 的坐标为(-1,0).(2)由(1)可知点B 的坐标为⎝ ⎛⎭⎪⎫3m ,0,∵二次函数的图象与y 轴交于点C ,∴点C 的坐标为(0,-3).∵∠ABC =45°(如图①), ∴3m=3.∴m =1.(3)由(2)得,二次函数解析式为y =x 2-2x -3.依题意并结合图象可知,一次函数的图象与二次函数的图象交点的横坐标分别为-2和2,由此可得交点坐标为(-2,5)和(2,-3).将交点坐标分别代入一次函数解析式y =kx +b 中,得⎩⎪⎨⎪⎧-2k +b =5,2k +b =-3,解得⎩⎪⎨⎪⎧k =-2,b =1.故一次函数的解析式为y =-2x +1.。
2014年初三中考模拟测试题数学试卷一、选择题〔此题共32分,每题4分〕 1.32-的相反数是 A .23- B .23 C .32-D .322.清明小长假本市150家景区接待游客约5245000人,数字5245000用科学记数法表示为 A .3105.245⨯B .6105.245⨯C .7100.5245⨯D .3105245⨯ 3.正五边形的每个角等于 A .72°B .108°C .54°D .36°4.为了解居民用水情况,晓娜在某小区随机抽查了10户家庭的月用水量,结果如下表:那么这10户家庭的月用水量的平均数和众数分别是 A .7.8,9B .7.8,3C .4.5,9D .4.5,35.将二次函数1822--=x x y 化成k h x a y +-=2)(的形式,结果为 A .1)2(22--=x y B . 32)4(22+-=x y C .9)2(22--=x y D .33)4(22--=x y6.如图,△ABC 接于⊙O ,BA =BC ,∠ACB =25°,AD 为⊙O 的直径,那么∠DAC 的度数是 A .25B .30°C .40D .50°7.转盘上有六个全等的区域,颜色分布如下图,假设指针固定不动,转动转盘, 当转盘停止后,那么指针对准红色区域的概率是 A .21 B .31 C .41 D .618.如图,边长为1的正方形ABCD 中有两个动点P ,Q ,点P 从点B 出发沿BD 作匀速运动,到达点D 后停止;同时点Q 从点B 出发,沿折线BC →CD 作匀速运动,P ,Q 两个点的速度都为每秒1个单位,如果其中一点停止运动,那么另一点也停止运动.设P ,Q 两点的运动时间为x 秒,两点之间的距离为y ,以下图象中,能表示y 与x 的函数关系的图象大致是月用水量〔吨〕5 6 7 8 9 10 户数112231第8题图QPC DAB第6题图 第7题图红 黄蓝 红蓝 蓝O DCBAxyAB Oy O x12 yO x12 yOx12 yO x12 A BC D二、填空题〔此题共16分,每题4分〕9.分解因式:ax ax 163-=_______________.10.如图,CD AB //,AC 与BD 相交于点O ,3=AB , 假设3:1:=BD BO ,那么CD 等于_____.11.如下图,小明同学在距离某建筑物6米的点A 处测得条幅两端B 点、C 点的仰角分别为60°和30°,那么条幅的高度BC 为米〔结果可以保存根号〕. 12.在平面直角坐标系xOy 中,直线l :x y =,作1A 〔1,0〕关于x y =的对称点1B ,将点1B 向右水平平移2个单位得到点2A ;再作2A 关于x y =的对称点2B ,将点2B 向右水平平移2个单位得到点3A ;….请继续操作并探究:点3A 的坐标是,点2014B 的坐标是.三、解答题〔此题共30分,每题5分〕13.02014130tan 3512)(-︒+--. 14.解方程:xx x -=+--53153. 15.如图,在△ABC 和△ADE 中,AC AB =,AE AD =,DAE BAC ∠=∠,点C 在DE 上. 求证:〔1〕△ABD ≌△ACE ;〔2〕ADC BDA ∠=∠. 16.:23=y x ,求代数式y x y x 3294+-的值.17.如图,一次函数21+=kx y 的图象与x 轴交于点B 〔0 2-,〕,与函数xmy =2(0>x )的图象交于点A 〔a 1,〕.〔1〕求k 和m 的值; 〔2〕将函数xmy =2〔0x >〕的图象沿y 轴向下平移3个单位后交x轴于点C .假设点D 是平移后函数图象上一点,且△BCD 的面积是3,直接写出点D 的坐标.ECBAD BDC第11题图OCD BA第10题图CB A D18.某公司决定从厂家购进甲、乙两种不同型号的显示器共50台,购进显示器的总金额不超过77000元,甲、乙型号的显示器价格分别为1000元/台、2000元/台. 〔1〕求该公司至少购置甲型显示器多少台?〔2〕假设要求甲型显示器的台数不超过乙型显示器的台数,问有哪些购置方案? 四、解答题〔此题共20分,每题5分〕19.如图,在四边形ABCD 中,2AB =,︒=∠=∠60C A ,DB AB ⊥于点B ,45DBC ∠=︒,求BC 的长.20.为响应推进中小学生素质教育的号召,某校决定在下午15点至16点开设以下选修课:音乐史、管乐、篮球、健美操、油画.为了解同学们的选课情况,某班数学兴趣小组从全校三个年级中各调查一个班级,根据相关数据,绘制如下统计图.〔1〕请根据以上信息,直接补全条形统计图和扇形统计图;〔2〕假设初一年级有180人,请估算初一年级中有多少学生选修音乐史? 〔3〕假设该校共有学生540人,请估算全校有多少学生选修篮球课? 21.如图,⊙O 是△ABC 的外接圆,AC AB =,连结CO 并延长交⊙O 的切线AP 于点P . 〔1〕求证:BCP APC ∠=∠; 〔2〕假设53sin =∠APC ,4=BC ,求AP 的长.POA三个班级参加选修课的 初二(5)班参加各类选修课的人数统计图 人数分布统计图 人数 音乐史 管乐 篮球 健美操 油画 课程 10 9 8 7 6 5 4 3 2 122.实验操作〔1〕如图1,在平面直角坐标系xOy 中,△ABC 的顶点的横、纵坐标都是整数,假设〔〔1〕求m 的值;〔2〕将抛物线1C :1)1(22-+-+=m x m mx y 向右平移a 个单位,再向上平移b 个单位得到抛物线2C ,假设抛物线2C 过点),(b A 2和点),(12 4+b B ,求抛物线2C 的表达式;〔3〕将抛物线2C 绕点(n n ,1+)旋转︒180得到抛物线3C ,假设抛物线3C 与直线121+=x y 有两个交点且交点在其对称轴两侧,求n 的取值围.24.在矩形ABCD 中,AD =12,AB =8,点F 是AD 边上一点,过点F 作∠AFE =∠DFC ,交射线AB 于点E ,交射线CB 于点G . (1) 假设82FG =_____CFG ∠=︒;(2) 当以F ,G ,C 为顶点的三角形是等边三角形时,画出图形并求GB 的长;〔3〕过点E 作EH//CF 交射线CB 于点H ,请探究:当GB 为何值时,以F ,H ,E ,C 为顶点的四边形是平行四边形.25.在平面直角坐标系xOy 中,对于任意三点A ,B ,C 的“矩面积〞,给出如下定义: “水平底〞a :任意两点横坐标差的最大值,“铅垂高〞h :任意两点纵坐标差的最大值,那么“矩面积〞=S ah .例如:三点坐标分别为)2,1(A ,)1,3(-B ,)2,2(-C ,那么“水平底〞5=a ,“铅垂高〞4=h ,“矩面积〞20==S ah . 〔1〕点)2,1(A ,)1,3(-B ,),0(t P .①假设A ,B ,P 三点的“矩面积〞为12,求点P 的坐标; ②直接写出A ,B ,P 三点的“矩面积〞的最小值. 〔2〕点)0,4(E ,)2,0(F ,)4,(m m M ,)16,(nn N ,其中0>m ,0>n . ①假设E ,F ,M 三点的“矩面积〞为8,求m 的取值围;②直接写出E ,F ,N 三点的“矩面积〞的最小值与对应n 的取值围.数学参考答案阅卷须知:1.一律用红钢笔或红圆珠笔批阅.2.为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.假设考生的解法与本解法不同,正确者可参照评分参考给分,解答右端所注分数,表示考生正确做到这一步应得的累加分数.一、选择题〔此题共8道小题,每题4分,共32分〕 题号 1 2 3 4 5 6 7 8 答案 D B B A CCBA二、填空题〔此题共4道小题,每题4分,共16分〕9.)4)(4(-+x x ax ;10.6;11.34;12.〔3,2〕,〔2013,2014〕. 三、解答题〔此题共30分,每题5分〕13.解:02014130tan 3512)(-︒+-- =1333532-⨯+-………………………………………4分 =6-33………………………………………5分14.解:方程两边同乘以)5(-x ,得………………………………………1分3)5(3-=-+-x x . ………………………………………2分解得25=x . ………………………………………3分 经检验:25=x 是原分式方程的解.………………………………4分所以25=x 是原方程的解.………………………………………5分15.证明:〔1〕DAE BAC ∠=∠ , DAC DAE DAC BAC ∠-∠=∠-∠∴.CAE BAD ∠=∠∴.…………………………1分 在△ABD 和△ACE 中,⎪⎩⎪⎨⎧=∠=∠=AE AD EAC BAD AC AB , ……………2分 ∴△ABD ≌△ACE .………………………3分〔2〕AEC ADB ∠=∠∴. AE AD = ,AEC ADC ∠=∠∴.…………………………4分 ADC BDA ∠=∠∴.…………………………5分16.解:由y x 32=, ………………………………………2分 ∴原式yy yy 3396+-=………………………………………4分21-=.………………………………………5分 17.解:〔1〕根据题意,将点B 〔0 2-,〕代入21+=kx y , ∴22-0+=k .………………………………………………………1分∴1=k .…………………………………………………2分∴A 〔3 1,〕.将其代入xmy =2,可得:3=m …………………3分 〔2〕〔2 53,〕或〔2 3-,〕.………………………………………5分 18.解:设该公司购进甲型显示器x 台,那么购进乙型显示器()50-x 台.〔1〕依题意可列不等式:77000)50(20001000≤-+x x ……………2分解得:23≥x …………………………………………………………3分∴该公司至少购进甲型显示器23台. 〔2〕依题意可列不等式:x x -≤50解得:25≤x ………………………………………………………4分 ∵23≥x∴x 为23,24,25. 答:购置方案有:①甲型显示器23台,乙型显示器27台; ②甲型显示器24台,乙型显示器26台;③甲型显示器25台,乙型显示器25台.…………5分四、解答题〔此题共20分,每题5分〕19.解:过点D 作BC DE ⊥于点E . ……………………1分︒=∠=⊥60 2,A AB AB DB ,,∴3260tan =︒⨯=AB BD . ………………2分 45DBC ∠=︒,BC DE ⊥,∴645sin =︒⨯==BD DE BE …………3分︒=∠︒=∠=∠9060DEC A C ,260tan =︒=∴DECE .……………………4分62+=∴BC .………………………………5分20.解:〔1〕条形统计图补充数据:6〔图略〕.………………………………………1分 扇形统计图补充数据:20.……………………………2分〔2〕180×308=48〔人〕.………………………………………………3分 〔3〕()1543030303020866=++÷⎪⎭⎫⎝⎛⨯++.……………4分144540154=⨯〔人〕.…………………………………………5分 21.〔1〕证明:连结AO 并延长交BC 于D 、⋂BC 于EAP 切⊙O 于点AAPBC BC EA AC AB ACAB PA EA //∴⊥∴=∴=⊥∴⋂⋂…………………1分 BCP APC ∠=∠∴…………………………2分〔2〕解:BC AE ⊥221==∴BC CD53sin ==∠PO AO APC ∴设k OP k OA 5,3==,那么k OA OC 3==………………3分AP BC //∴△PAO ∽△CDO …………………………4分CO POCD PA =∴ kkPA 352=∴∴310=PA …………………………5分22.解:〔1〕画出点P …………………..1分画出△DEF ………………..2分 〔2〕 °A'C'B'PCA B…………………………….4分x y–5–4–3–2–112345–5–4–3–2–112345P F E D C B A O BPCO E DEG DA B CF 34π=⋂AB ……………………………………………………5分 五、解答题〔此题共22分,第23题7分,第24题8分,第25题7分〕 23.解:〔1〕∵方程01)1(22=-+-+m x m mx有两个实数根,∴0≠m 且0≥∆, ……………………1分 那么有0)1(4-)1(42≥--m m m 且0≠m∴1≤m 且0≠m又∵m 为非负整数,∴1=m . ………………………………2分〔2〕抛物线1C :2x y =平移后,得到抛物线2C :b a x y +-=2)(,……3分 ∵抛物线2C 过),2(b A 点,b a b +-=2)2(,可得2=a ,同理:b a b +-=+2)4(12,可得3=b , …………………………4分∴2C :()322+-=x y )(或742+-=x x y . …………5分〔3〕将抛物线2C :3)2(2+-=x y 绕点(n n ,1+)旋转180°后得到的抛物线3C 顶点为〔322-n n ,〕, ………………6分当n x 2=时,11221+=+⨯=n n y , 由题意,132+>-n n ,即:4>n .……………………………7分24.解:〔1〕90°………………………………………………2分〔2〕正确画图 ………………………………………………3分四边形ABCD 是矩形, ∴∠D=90°.△FGC 是等边三角形,=60GFC ∴∠︒ . ∠DFC =∠AFE ,∴∠DFC =60°. …………4分 DC =8 ,∴331660sin =︒=DC FC .△FGC 是等边三角形, ∴GC =FC 163.BC=AD =12,∴GB=12163.………………………………5分 〔3〕过点F 作FK ⊥BC 于点K 四边形ABCD 是矩形∴∠ABC =90°,AD//BC∴∠DFC =∠KCF ,∠AFG =∠KGF ∠DFC =∠AFG ∴∠KCF =∠KGF∴FG =FC ……………………………………………………………6分∴GK =CK四边形FHEC 是平行四边形∴FG =EG ……………………………………………………………7分 ∠FGK =∠EGB,∠FKG =∠EBG=90°∴△FGK ≌△EGB∴BG =GK=KC=4312=……………………………………………8分25.解:〔1〕由题意:4=a . ①当2>t 时,1-=t h ,那么12)1(4=-t ,可得4=t,故点P 的坐标为(0,4);……………1分当1<t 时,t h -=2,那么12)2(4=-t ,可得1-=t ,故点P 的坐标为(0,1)-.…………2分②A ,B ,P 三点的“矩面积〞的最小值为4. ……………………3分 〔2〕①∵E ,F ,M 三点的“矩面积〞的最小值为8,∴⎩⎨⎧≤≤≤≤24040m m .∴210≤≤m .∵0>m ,∴210≤<m . ………………………………………………………4分②E ,F ,N 三点的“矩面积〞的最小值为16,…………………………5分 n 的取值围为84≤≤n ………………………………………………7分K H EGDAB CFFE. . . .11 / 11。
高中招生模拟考试数学试题一.仔细选一选 (本题有10个小题, 每小题3分, 共30分) 1.下列各数中,倒数为– 2的数是( )A. 2B. – 2C. 21D.21- 2.下列各式中,错误..的是( ) A. 3)3(2=-B.3=-C. 3)3(2=D. 3=-4. 图象经过点(2,1)的反比例函数是( )A. 2y x =-B. 2y x =C. 12y x= D. 2y x =5.将一块含60°角的三角板与一无刻度的直尺按如图所示摆放,如果三角板的斜边与直尺的长边平行,则图中1∠等于( )A .30°B .35°C .45°D .60°6. 心率即心脏在一定时间内跳动的次数. 某次九年级体检对5名同学的心率测试结果如下(次/分):76,72,74,76,77. 则下列说法错误..的是( ) A .这组测试结果的众数是76 B. 这组测试结果的平均数75 C. 这组测试结果的中位数是74 D. 这组测试结果的方差是2.3 7. 如图是某几何体的三视图,则该几何体的表面积为( )A. 31224+B. 31216+C. 3624+D. 3616+8. 不等式组⎪⎩⎪⎨⎧>+<--x x a x x 324)3(2无解,则a 的取值范围是( )A.2<aB.a ≤2C. 2>aD. a ≥2 9. 已知⊙O 半径为3cm ,下列与⊙O 不是..等圆的是( ) A. ⊙1O 中,120°圆心角所对弦长为 B. ⊙2O 中,45°圆周角所对弦长为 C. ⊙3O 中,90°圆周角所对弧长为32πcm D. ⊙4O 中,圆心角为60°的扇形面积为32π2cm 10.如图,射线AM 、BN 都垂直于线段AB ,点E 为AM 上一点,过点A 作BE 的垂线AC 分别交第7题第5题BE 、BN 于点F 、C ,过点C 作AM 的垂线CD ,垂足为D . 若CD =CF ,则=ADAE( ) A. 215- B. 412+ C. 21 D.413+二. 认真填一填 (本题有6个小题, 每小题4分, 共24分) 11.当3=x 时,分式bx ax +-没有意义,则=b . 12.如图,铁管CD 固定在墙角,BC =5米,∠BCD =55°,则顶端D 的高度为 .13. 函数b ax y +=的图象如图,则方程0=+b ax 的解为 ;不等式0<b ax +≤2的解集为 .14. 函数y = 2x 与函数y =x2的图象相交于A ,C 两点,AB 垂直于x 轴于点B ,则△ABC 的面积为 .15. 矩形纸片ABCD 中,AD =15cm ,AB =10cm ,点P 、Q 分别为AB 、CD 的中点. 如图,将这张纸片沿AE 折叠,使点B 与点G 重合,则AGE ∆的外接圆的面积为 .16. 如图,等腰梯形ABCD 的底边AD 在x 轴上,顶点C 在y 轴正半轴上,B(4,2),一次函数y =kx -1的图象平分它的面积.若关于x 的函数k m x k m mx y +++-=2)3(2的图象与坐标轴只有两个交点,则m 的值为 .三. 全面答一答 (本题有7个小题, 共66分)17. (本小题满分6分) 梯形ABCD 中,AD ∥BC ,请用尺规作图并解决问题. ⑴作AB 中点E ,连接DE 并延长交射线CB 于点F ,在DF 的 下方作FDG ∠=ADE ∠,边DG 交BC 于点G ,连接EG ; ⑵试判断EG 与DF 的位置关系,并说明理由.第13题第12题第15题第16题18.(本小题满分8分)一个数的算术平方根为62-m ,此数的平方根为)2(-±m ,求这个数.19. (本小题满分8分)甲、乙两人每次都从五个数–2,–1,0,1,2中任取一个,分别记作x 、y .在平面直角坐标系中有一圆心在原点、半径为2的圆. ⑴能得到多少个不同的数组(x ,y )?⑵若把⑴中得到的数组作为点P 的坐标 (x ,y ), 则点P 落在圆内的概率是多少?20. (本小题满分10分)如图,点A 的坐标为)0,1(-,点B 在直线42-=x y 上运动.⑴若点B 的坐标是)2,1(-,把直线AB 向上平移m 个单位后,与直线42-=x y 的交点在第一象限,求m 的取值范围;⑵当线段AB 最短时,求点B 的坐标.第20题21. (本小题满分10分)如图,AB =AC ,AE 是△ABC 中BC 边上的高线,点D 在直线AE 上一点(不与A 、E 重合).⑴ 证明:△ADB ≌△ADC ;⑵当△AEB ∽△BED 时,若cos ∠DBE =32,BC = 8,求线段AE 的长度.22. (本小题满分12分) 如图,抛物线与x 轴相交于B 、C 两点,与y 轴相交于点A ,P (a ,m a a ++-272)(a 为任意实数)在抛物线上,直线b kx y +=经过A 、B 两点,平行于y 轴的直线2=x 交直线AB 于点D ,交抛物线于点E . ⑴若2=m ,①求直线AB 的解析式;②直线x =t 0(≤t ≤)4与直线AB 相交于点F ,与抛物线相交于点G . 若FG ∶DE =3∶4,求t 的值;⑵当EO 平分AED ∠时,求m 的值.23. (本小题满分12分) 如图,已知正方形ABCD 的边长为4,点E 、F 分别从C 、A 两点同时出发,以相同的速度作直线运动. 已知点E 沿射线CB 运动,点F 沿边BA 的延长线运动,连结DF 、DE 、EF ,EF 与对角线AC 所在的直线交于点M ,DE 交AC 于点N .⑴求证:DE ⊥DF ;⑵设CE =x ,AMF ∆的面积为y ,求y 与x 之间的函数关系式,并写出自变量的取值范围;第21题第22题⑶随着点E 在射线CB 上运动,NA ·MC 的值是否会发生变化?若不变,请求出NA ·MC 的值;若变化,请说明理由.2014年中考数学一模答案一、 选择题1. D2. D3. B4. B5. A6. C7. A8. B9. B (解析:90°所对的弦长才为 10. A 解析:二、 填空题 11. -312. 5tan55° 13. x=3 14. 0≤x<3 15. 2 16. 0或-1或12-解析:第23题备用图222CD=CF CDE CFE ED=EF DEC=FEC=ECB BE=BC AE=ED=y EF=y BC=BE=x BF=x AEF CBF ,y 0,()()10AE =AD x y y y yx x x y x x xy x y x x x x y ∠∠∠∴∴=+-=+-=++=∴===+由易知≌,,,设x,,,+y,由∽,有可得则得2B BE x E BCOE y=(3m 1)x 2m 1=x 1)(21)mx m -+++---过点作⊥轴于点,知直线平分梯形必过矩形的中心(2,1)则求得k=1,函数为,mx (。
乐山市市中区2024年中考适应性考试数学2024.05本试题卷分第一部分(选择题)和第二部分(非选择题),共 6 页.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效.满分 150分.考试时间120分钟.考试结束后,将本试题卷和答题卡一并交回.考生作答时,不能使用任何型号的计算器.第一部分 (选择题 共30分)注意事项:1.选择题必须使用2B 铅笔将答案标号填涂在答题卡对应题目标号的位置上.2.在每小题给出的四个选项中,只有一个选项符合题目要求.一、选择题:本大题共10题,每题3分,共30分.1.-3的相反数是A. -3B. 3C. ±3D.−132.下列几何体中,是圆柱的是3. 2023年,乐山市经济发展良好,实现地区生产总值(GDP)2447.5亿元, 比上年增长6.5%.将数据244 750000000用科学记数法表示应为A.2.4475×10¹⁰B.2.4475×10¹¹C.2.4475×10¹²D. 24.475×10¹⁰4.一木工有两根长分别为30厘米和50厘米的木条,要另找一根木条,钉成一个三角木架,则第三根木条的长度x 厘米应在的范围是A. 30<x<50B. 50<x<80C. 20<x<50D. 20<x<805.不透明的袋子中装有红球2个、绿球3个,除颜色外红球和绿球无其他差别,从中随机摸出一个小球,那么摸到绿球的概率是A. 23 B. 25 C. 35 D. 32数学 第1页(共6页)6. 若一次函数y=-2x+b 的图象经过点(-1, m)和点(2, n), 则m 、n 的大小关系是 A. m>n B. m=n C. m<n D.不能确定7. 如图1, 菱形ABCD 的对角线AC 与BD 相交于点 O, OE⊥BC 于 E.若 AC=6cm,BD=8cm, 则OE =A. 52 B. 85C.125D.2458.《九章算术》中有这样一道题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”译文:“相同时间内,走路快的人走100步,走路慢的人只走60步.若走路慢的人先走 100步,走路快的人要走多少步才能追上?(注步为长度单位).设走路快的人要走x 步才能追上,则正确的是A.依题意 10060x =100−x B.依题意 x =100+60100xC.走路快的人要走 200步才能追上D.走路快的人要走 300 步才能追上9. 如图2, 在⊙O 中, 弦AB⊥弦CD, 垂足为E, 若AE=2, BE=6, DE=3, 则⊙O 的面积是A. 20πB. 13πC.654πD.114π10. 设b>0, 二次函数. y =ax²+bx +a²−1的图象为下列四种情形之一:九年级 (2)班数学兴趣小组在研究此题时,给出了四个结论:① a=-1; ② 二次函数y 的最小值为-2; ③ x<0时, y 随x 的增大而增大;④ 当m>-2时, 关于x 的方程 ax²+bx +a²−1−m =0有两个不相等的实数根.其中,正确的结论是A. ①③B. ②④C. ①③④D.②③④数学 第2页(共6页)第二部分 (非选择题共 120分)注意事项:1.考生使用0.5mm黑色墨汁签字笔在答题卡上题目所指示的答题区域内作答,答在试题卷上无效.2.作图时,可先用铅笔画线,确认后再用0.5mm黑色墨汁签字笔描清楚.3.解答题应写出文字说明、证明过程或推演步骤.4. 本部分共16个小题, 共120分.二、填空题:本大题共6个小题,每小题3分,共18分.11.实数a、b在数轴上的位置如图3所示,则实数a ▲b.(用“>”、“<”或“=”号填空)12. 因式分解:3x³−3x=.13. 如图4, 在Rt△ABC中, ∠ACB=90°,AB=13,AC=12, 则cosA= ▲ .14.已知关于x的一元二次方程x²+3x+k=0的两个实数根分别为x₁、x₂,且.x₁=2x₂,则常数k= ▲ .15. 如图5, 在边长为6的等边△ABC中, D是BC边上动点, ∠EDF=60°, E、F分别在AB、AC边上. 若BD=2, FC=3,则BE= ▲ .16.在平面直角坐标系xOy中,新定义一种变换:使平面内的点P (x,y)对应的像为P '(ax+by, bx-ay), 其中a、b为常数.已知点(1, -2) 经变换后的像为(8, 1).(1) 计算: a+b= ▲ ;(2)若线段OP=4, 则经变换后线段O'P'的长度为▲ .(其中 O'、P'分别是线段 O、P经变换后的像.点 O 为坐标原点).数学第3页 (共6页)三、解答题:本大题共 10个小题,共 102 分.解答应写出必要的文字说明,证明过程或演算步骤.17. (本小题满分9分)计算: (π−2)⁰+tan45°+|−3|.18. (本小题满分9分)解不等式组: {3+2x >8−3xx−22<x +34.19. (本小题满分9分)如图6, 在△ABC 中, D 是边BC 的中点, 过点C 画直线CE, 使CE∥AB, 交AD 的延长线于点 E.求证: AD=ED.20. (本小题满分 10分)先化简,再求值: (x−2x−1x )÷x−1x,其中x=sin30°.21. (本小题满分 10分)某校七、八年级各有200名学生,为了解该校七、八年级学生每年课外书籍阅读量,从七、八年级学生中各随机抽取 10 人进行课外书籍阅读量统计,相关数据统计、整理有如下信息:信息1:七年级抽取学生的阅读量 (单位:本):5,10, 10, 12, 12, 12, 13, 15, 18, 20;信息2:八年级抽取学生的阅读量不完整条形统计图(如图7)请根据以上信息,完成下列问题:(1)七年级抽取学生的阅读量的中位数是 ▲ ,众数是 ▲ ;(2)补全八年级抽取学生的阅读量条形统计图;(3)若每年课外书籍阅读量在15 本以上(含15本)为优秀读者,请估计八年级学生课外书籍阅读量为优秀读者的总人数;数学 第4页 (共6页)(4)从七、八年级各抽取课外书籍阅读量较多的2 人组成阅读小组 (共 4 人).现从阅读小组中随机抽取 2人参加学校组织的读书分享活动,请用列表或画树状图法,求出被选中的2人恰好是七、八年级各1人的概率.22. (本小题满分10分)如图8,在一次数学实践活动中,小强同学要测量一座与地面垂直的古塔AB的高度,他从古塔底部点 B 处前行 30米到达斜坡 CE的底部点 C 处,然后沿斜坡CE前行 20米到达最佳测量点D处,在点 D 处测得塔顶A 的仰角为30°,已知斜坡的斜面坡度i=1:3,且点A, B, C, D, E在同一平面内,求古塔AB的高度.(结果保留根号)23. (本小题满分10分)的图象交于A(3,4), B两点.如图9,正比例函数y=kx的图象与反比例函数y=mx(1) 填空: k= ▲ , m= ▲ ;(2)根据函数图象,直接写出不等式m>kx的解集;x(3) 若点C在y轴的正半轴上, 且AC⊥BC,垂足为点C, 求△ABC的面积.24. (本小题满分 10分)如图10, AB为⊙O的直径, PB⊥AB,点C是⊙O上一点, 直线PO垂直平分BC, 交BC于H, 延长PC交BA的延长线于点D.(1) 求证: PC是⊙O的切线;(2) 作∠ACB的平分线CE交⊙O于点 E.若AE=22,,求阴影部分的面积和AD 的长.tan∠AEC=12数学第5页 (共6页)25. (本小题满分 12分)已知:四边形ABCD 是正方形,点E是直线BC上的点,∠AEF=90°,且EF交正方形外角的平分线CF于点F, 过点 F作FG⊥BC于点 G, 连接AC.(1) 如图11-1, 当点E是BC边中点时, 下列结论错误的是 ( ▲ )A.∠BAE=∠GEFB.AC=22CEC.∠ACF=90°D. AE∥CF(2)如图11-2, 当点E是BC边上任意一点时, 线段AC、EC、FG有怎样的数量关系,请说明理由;(3) 如图11-3, 当点E在BC延长线上时, 请直接写出线段AC、EC、FG 的数量关系;(4)已知正方形ABCD 的面积是27, 连接AF, 当△ABE有一个内角为30°时, 则AF的长为▲.26. (本小题满分 13分)在平面直角坐标系xOy中, 点(1, m),(3, n)在抛物线y=ax²+bx+c(a⟩0)上,设抛物线的对称轴为x=t.(1)当c=3, m=n=0时,①求抛物线的解析式;②若直线y=x+k与二次函数y=ax²+bx+c(a⟩0)的图象在1≤x≤3内恰有两个交点,求常数k的取值范围;(2)若点(x₀, m)(x₀≠1)在抛物线上, 若m<n<c, 求t的取值范围及x₀的取值范围.数学第6页(共6页)乐山市市中区数学适应性考试数学参考答案及评分意见一、选择题(本大题共10题.每题3分,共30分)1—5 B C B D C 6—10 A C B C A 二、填空题(本大题共6题.每题3分,共18分)11. < 12. 3x (x +1)(x−1) 13.14. 2 15. 16. (1)−1; (2) 413三、(本大题共3题.每题9分,共27分)17.解:原式=1+1+3 ………………………………………………………………(6分)= 5 ……………………………………………………………(9分)18.解:{3+2x >8−3x ①x−22<x +34②解不等式①得: x >1; ………………………………………………………(3分) 解不等式②得:x <7. ………………………………………………………(6分)∴原不等式组的解集为1<x <7.………………………………………………………(9分)19.证明:∵CE ∥AB ,∴∠ABD =∠ECD ,∠BAD =∠CED . (4分) 又∵D 是边BC 中点,∴BD =CD . …………………………(6分) 在△ABD 与△ECD 中, {∠ABD =∠ECD ,∠BAD =∠CED ,BD =CD ,∴△ABD ≅△ECD . …………………………………………………………(8分) ∴AD =ED . …………………………………………………………………(9分)四、(本大题共3题.每题10分,共30分)20. 解:原式=x 2−2x +1x ×xx−1=(x−1)2x×x x−1=x−1. …………………………………………………………(5分)121383图8∵x =sin30º,∴x =12. ………………………………………………………………(7分)∴原式=x−1=12−1=−12. ……………………………………………………(10分)21. 解:(1)七年级抽取学生的阅读量的中位数是 12 ,众数是 12 ; ……(2分)(24分)(3)八年级学生课外书籍阅读量为优秀读者的总人数为:200×2+310=100 (人);…………………………………………………………………………………(6分)(4)解:设七、八年级课外书籍阅读量较多的4人分别为:七1,七2,八1,八2,所画树状图为:…………………………………………………………………………………………(8分)∴被选中的2人恰好是七、八年级各1人的概率为812=23. ………………(10分)22.解:过点D 作DF ⊥BC ,交BC 延长线于F ,过点D 作DG ⊥AB ,垂足为G .∵斜坡CE 的坡度i =1∴tan ∠DCF =DFCF=13.∴CF =3DF . …………………(1分)∵DF 2+CF 2=CD 2且CD =20,∴DF 2+(3DF )2=202.∴DF =10.GF图7(本)数量∴CF =3DF =103. …………………………………………………………(4分)∴DG =BF =BC +CF =30+103.…………………………………………(5分)∴AG =DG tan 30º=(30+103)×33=103+10. ……………………(7分)∵BG=DF =10,∴AB =AG +BG =103+10+10=103+20.∴古塔AB 的高度为(103+20)米. …………………………………………(10分)23. (1)解:正比例函数y =kx 的图象与反比例函数的图象交于A(3,4),∴4=3k ,4=m 3,∴k =43,m =12. ……………………(3分)(2)∵k =43,m =12,一次函数为y =43x ,反比例函数解析式为y =12x.解方程组{y =43xy =12x得:{x 1=3y 1=4,{x 2=−3y 2=−4. ∴B(−3,−4),A (3,4). ………………(5分) 【注:此处,可直接利用图形的对称性得到点B 的坐标.】不等式m x>kx 的解集为0<x <3或x <−3. ………………………………(7分)(3)由(2)知点B(−3,−4),∴AO =BO =5.又∵∠ACB =90º,∴CO =AO =BO =5. ∴点C 的坐标为(0,5).∴△ABC 的面积为12×5×(3+3)=15.…………………………………(10分)24.(1)证明:连接OC .∵PO 垂直平分BC ,∴PB =PC ,OB =OC . …………(1在△PBO 与△PCO 中,{PB =PCOB =OC PO =PO∴△PBO ≌△PCO .∴∠PCO =∠PBO .∵PB ⊥AB ,∴∠PCO =∠PBO =90º. 即PC ⊥OC .∴PC 是⊙O 的切线. my x=∴∴(2)解:连接OE.①∵AB为⊙O的直径,∴∠ACB=90º.∵CE平分∠ACB,∴∠ACE=∠BCE=45º.∴∠AOE=2∠ACE=90º.∵OA=OE,AE=22,∴OA=OE=OB=2.∴S扇形OBE=14π×22=π,S△OBE=12×2×2=2. …………………………(6分)∴S阴影=S扇形OBE−S△OBE=π−2. ………………………………………………(7分)②∵∠DCA+∠PCB=90º,∠DBC+∠PBC=90º且∠PCB=∠PBC,∴∠DCA=∠DBC.在△DAC与△DCB中,{∠DCA=∠DBC,∠D=∠D,∴△DAC∽△DCB. …………………………………………(8分)∴ADDC=ACBC.∵tan∠ABC=tan∠AEC=ACBC =1 2.∴ADDC=ACBC=12. ∴DC=2AD. ………………………………………(9分)∵△DAC∽△DCB,∴DC2=AD·DB.∵AB=2OA=4,∴DB=AD+AB=AD+4. ∴(2AD)2=AD×(AD+4).∴AD=43 .…………………………………………………………………………(10分)25.(1)D;……………………………………(3分)(2)数量关系为:AC=2(EC+FG).……(4分)证明:在边BA上截取BM=BE.∵BM=BE,AB=BC,∠ABC=90º,∴AM=EC,∠BME=45º.∴∠AME=135º.∵CF为外角平分线,∴∠FCG=45º,∠ECF=135º.MAB CDEFG∴∠AME =∠ECF .∵∠AEF =90º,∴∠BEA +∠CEF =90º.∵∠BEA +∠MAE =90º,∴∠CEF =∠MAE .在△MAE 与△CEF 中,{∠CEF =∠MAE ,AM =EC ,∠ECF =∠AME ,∴△MAE ≅△CEF .∴AE =EF . ………………………………………………………………(6分)在△ABE 与△EGF 中,{∠MAE =∠CEF ,∠ABE =∠EGF ,AE =EF ,∴△ABE ≅△EGF .∴BE =FG . ………………………………………………………………(7分)∵AC =2BC ,BC =BE +EC =FG +EC ,∴AC =2(EC +FG ). ……………………………………………………(8分)(3)AC =2(FG−CE ); ……………………………………………………(10分)(4)62或66. ………………………………………………………………(12分)26.(1)①解:∵c =3, ∴y =ax 2+bx +3.将(1,0),(3,0)代入y =ax 2+bx +3得 {a +b +3=0,9a +3b +3=0, 解之得{a =1,b =−4.∴y =x 2−4x +3.即抛物线的解析式为y =x 2−4x +3. ………………(3分)由{y =x +k ,y =x 2−4x +3, 得x 2−5x +3−k =0.当∆=b 2−4ac =25−4(3−k )=0时,k =−134. ……………………(8分)∴ k 的取值范围为−134<k ≤−3. …………………………………………(9分)(2)【法一】: 当x =0时,y =c . ∴抛物线与y 轴交点坐标为(0,c ).∴抛物线与y 轴交点关于对称轴的对称点坐标为(2t ,c ).∵,∴当时,y 随x 的增大而减小,当时,y 随x 的增大而增大,x t =0a >x t ≤x t >∵m<n<c,∴a+b+c<9a+3b+c<c.∴3a<−b<4a. ∴3a2a<−b2a<4a2a. ∴32<t<2. …………(11分)∵点(x0,m)(x0≠1)与点(1,m)关于对称轴x=t对称,∴x0的取值范围为2<x0<3. ………………………………………………(13分)。
2014年学业水平测试数学模拟试题一、选择题:(本大题共12个小题,每小题选对得3分,满分36分) 1.-2的倒数是A .2B .-2C .21D .21-2.2013年5月,温家宝总理在《政府工作报告》中提到,国家财政性教育经费支出五年累计7.79万亿元。
7.79万亿用科学记数法表示为 A .121079.7⨯ B . 111079.7⨯C .131079.7⨯D . 11109.77⨯3.已知点P (3,-2)与点Q 关于x 轴对称,则Q 点的坐标为A .(-3,2)B .(-3,-2)C .(3,2)D .(3,-2)4.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为 A .51B .31 C .85 D .835.如图,已知a ∥b ,∠1=40︒,则∠2= . A .140︒ B .120︒ C .40︒ D .50︒6.已知一个多边形的内角和等于900,则这个多边形的边数是( ) A .6B .7C .8D .97.如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是( ).(第5题) ba c218. 如果k x x ++82可运用完全平方公式进行因式分解,则k 的值是( ) A .8 B.16 C.32 D.649.在四川雅安抗震救灾中,某抢险地段需实行爆破.操作人员点燃导火线后,要在炸药爆炸前跑到400米以外的安全区域.已知导火线的燃烧速度是1.2厘米/秒,操作人员跑步的速度是5米/秒.为了保证操作人员的安全,导火线的长度要超过( ) A .66厘米B .76厘米C .86厘米D .96厘米10.二次函教225y x x =+-有( )A .最大值5-B .最小值5-C .最大值6-D .最小值6- 11.下列说法:①解分式方程一定会产生增根;②方程04422=+--x x x 的根为2; ③方程 42121-=x x 的最简公分母为2x (2x-4); ④11111-+=-+x x x 是分式方程. 其中正确的个数是( )A .1个B .2个C .3个D .4个12.如图,将边长为a 的正六边形A 1 A 2 A 3 A 4 A 5 A 6在直线上由图1的位置按顺时针方向向右作无滑动滚动,当A 1第一次滚动到图2位置时,顶点A 1所经过的路径的长为( ).A.a aa a二、填空题:(本大题共6个小题4分24分)13.4 的算术平方根是 ▲ .AE14.分解因式:x -x y = ▲ . 15.反比例函数 y=xk的图象经过点(2,1),则k 的值是 . 16.请写出一个解为x =2的一元一次方程: ▲ .17.如图,AB CD ⊥于点B BE ,是ABD ∠的平分线,则CBE ∠的度数为 ▲ . 18.观察下列等式: 1×2=×(1×2×3﹣0×1×2) 2×3=×(2×3×4﹣1×2×3) 3×4=×(3×4×5﹣2×3×4) …计算:3×[1×2+2×3+3×4+…+n (n+1)]= ___▲______ .一、选择答案 班级 姓名 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空答案13、 14、 15、 16、 17、 18、 三、解答(共60分)19.(1)(本小题5分)计算011)245-+-(2)(本小题满分5分)解不等式组:3625x x -<⎧⎨+<⎩20.(本题6分)如图,小红同学用仪器测量一棵大树AB的高度,在C处测得∠ADG=30°,在E处测得∠AFG=60°,CE=8米,仪器高度CD=1.5米,求这棵树AB的高度(结果保留两位有效数字,≈1.732).21.(本小题7分)某品牌瓶装饮料每箱价格26元.某商店对该瓶装饮料进行“买一送三”促销活动,若整箱购买,则买一箱送三瓶,这相当于每瓶比原价便宜了0.6元.问该品牌饮料一箱有多少瓶?22.(本题满分7分)“初中生骑电动车上学”的现象越来越受到社会的关注,某校利用“五一”假期,随机抽查了本校若干名学生和部分家长对“初中生骑电动车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题:(1)这次抽查的家长总人数为;(2)请补全条形统计图和扇形统计图;(3)从这次接受调查的学生中,随机抽查一个学生恰好抽到持“无所谓”态度的概率B是 .23.(本小题满分8分)如图7,在一方形ABCD 中.E 为对角线AC 上一点,连接EB 、ED. (1)求证:△BEC ≌△DEC :(2)延长BE 交AD 于点F ,若∠DEB=140°.求∠AFE 的度数.24.(本小题满分10分)己知:如图:△ABC 内接于⊙O ,AB 为直径,∠CBA 的平分线交AC 干点F ,交⊙O 于点D ,DF ⊥AB 于点E ,且交AC 于点P ,连结AD 。
2014年中考模拟测试数学试卷第I 卷选择题(共30分)一、选择题(每小题3分,共计30分) 1.2的相反数是( )(A)2 (B)-2 (C)-22 (D) 22 2.下列运算中,正确的是( )(A)2x+2y=2xy (B)(x 2y 3)2=x 4y 5 (C)(xy)2÷xy1=(xy)3 (D)2xy -3yx=xy 3.下面的图案中,是轴对称图形而不是中心对称图形的是( )(A ) (B ) (C ) (D ) 4.如图所示的由六个小正方体组成的几何体的俯视图是( )5.抛物线y=}(x+3)2+4的对称轴是( )(A)直线x=3 (B)直线x=-3 (C)直线x=31 (D)直线x=-31 6.在Rt △ABC 中,∠C=90°,若AB=2,AC=1,则tanA 的值为( )(A)21(B) 23 (C) 33 (D) 37.圆锥的底面半径是1,侧面积是2π,则这个圆锥的侧面展开图的圆心角的度数为( )(A)180° (B)150° (C)120° (D)60° 8.下列命题正确的是( )(A)若两个三角形相似,则它们的面积之比等于相似比(B)若三角形的两个内角互为余角,则这个三角形是直角三角形 (C)等腰三角形的角平分线既是高线也是中线 (D)矩形对角线的夹角是直角lo .小成从家出发,骑电动自行车到江北度假村办事,途中遇到从江北度假村步行锻炼回家的哥哥小军.小成在江北度假村办完事后,在返回家的途中又遇到哥哥小军,便用电动自行车载上哥哥小军,一同回到家中,结果小成比预计时间晚到1分钟.假设小成和哥哥小军都是沿直线行进的,且二人与家的距离S(千米)和小成从家出发后所用的时间t(分)之间的函数关系如图所示.有如下的结论:①小成出发时,哥哥小军已经离开江北度假村2千米; ②小成去江北度假村的速度比返回时的速度快了201千米/分; ③小成返回途中载着哥哥小军返回家的速度是41千米/分; ④哥哥小军比预计时间早到15分钟.其中正确的结论有( ) (A)1个 (B)2个 (C)3个 (D)4个第Ⅱ卷非选择题(共90分)二、填空题(每小题3分,共计30分)11.李克强总理在2014年政府工作报告中指出“今年要淘汰燃煤小锅炉5万台,推进燃煤电厂脱硫改造1500万千瓦、脱硝改造1.3亿千瓦、除尘改造180 000 000千瓦”.其中数字180 000 000用科学计数法可以表示为______________.12.把多项式3x 3﹣6x 2y+3xy 2分解因式的结果是________________. 13.计算:18-8=__________.14.把一副三角板如图甲放置,点E 在BC 上,其中 ∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边 AB=6,DC=7,把三角板DCE 绕着点C 顺时针旋转 15°得到△D 1CE 1(如图乙),此时AB 与CD 1交于 点O ,连接AD 1,则线段AD 1的长度为___________. 15.小红、小明在一起做游戏,需要确定做游戏的先后顺 序,他们约定用“剪刀、包袱、锤子”的方式确定.在一个回合当中两个人都出“包袱”的概率是__________.16.如图,在Rt △ABC 中,∠ACB=90°,AC=3,BC=4,以点C 为圆心,CA 为半径的圆与AB 交 于点D ,则AD 的长为___________.17.□ABCD 在平面直角坐标系中的位置如图所示,其中A(﹣4,O),B(2,0),C(3,m),反比例函数y=x9的图象经过点C .将□ABCD 沿x 轴翻折得到□AD′C′B′,则点D′的坐标为__________. 18.如图,△ABC 中,AB=AC ,AD 上BC 于点D ,点E 在AC 上,CE=2AE ,AD=9,BE=10,AD与BE 交于点F ,则△ABC 的面积是___________. 19.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、3、3,则原直角三角形纸片的斜边长是__________.(第17题图) (第18题图) (第19题图) (第20题图)三、解答题(其中21—24题各6分,25~26题各8分,27~28题各10分,共计60分)20.(本题6分)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(0,1),B(﹣2,1),C(﹣2,4).(1)画出△ABC沿着y轴向下平移5个单位得到的△A1B1C1,并直接写出点C的对应点C1的坐标;(2)画出△ABC关于y轴对称的△AB2C2,并直接写出点C的对应点C2的坐标;21.(本题6分)如图,点E是正方形ABCD边BC上的一点,连接DE,过点B作直线DE的垂线,垂足为G,连接GA.求证:GA平分∠BGD.(第23题图)22.(本题6分)某中学为了了解学校600名学生的时事政治的掌握情况,举行了一次“两会”时事政治知识测试,并随机抽取了部分学生的成绩(得分取正整数,满分为l00分)作为样本,绘制了下面尚未完成的频数分布表和频数分布直方图.频数分布表频数分布直方图(第24题图)请解答下列问题:(1)求出x 的值,并补全频数分布直方图;(2)若成绩在70分以上(不含70分)为学生时事政治掌握情况良好,请估计该校学生时 事政治掌握情况良好的人数. 23.(本题8分)如图,已知AB 是OD 的直径,AM 和BN 是⊙O 的两条切线,点E 是⊙O 上一点,点D 是 AM 上一点,连接DE 并延长交BN 于点C ,连接OD 、BE ,且OD ∥BE. (1)求证:DE 是⊙O 的切线;(2)若AD=l ,BC=4,求直径AB 的长.24.(本题8分)某超市销售甲、乙两种商品,五月份该超市同时购进甲、乙两种商品共80件,购进甲种商品用去400元,购进乙种商品用去1200元.(1)已知每件甲种商品的进价是每件乙种商品的进价的31,求甲、乙两种商品每件的进价; (2)由于甲、乙这两种商品受到市民欢迎,六月份超市决定再次购进甲、乙两种商品共80件,且保持(1)的进价不变,已知甲种商品每件的售价15元,乙种商品每件的售价40元.要使六月份购进的甲、乙两种商品共80件全部销售完的总利润不少于600元,那么该超市最多购进甲种商品多少件?(利润=售价一进价)25.(本题lO 分)如图,在平面直角坐标系中,点O 为坐标原点,直线y=﹣x+n 与x 轴、y 轴分别交于B 、C 两点,抛物线y=ax 2+bx+3(a ≠0)过C 、B 两点,交x 轴于另一点A ,连接AC ,且tan ∠CAO=3. (1)求抛物线的解析式;(2)若点P 是射线CB 上一点,过点P 作x 轴的垂线,垂足为H ,交抛物线于Q ,设P 点横坐标为t ,线段PQ 的长为d ,求出d 与t 之间的函数关系式,并写出相应的自变量t 的取值范围; (3)在(2)的条件下,当点P 在线段BC 上时,设PH=e ,已知d ,e 是以y 为未知数的一元二次方程:y 2一(m+3)y+ (5m 2—2m+13)=0 (m 为常数)的两个实数根,点M 在抛物线上,连接MQ 、MH 、PM ,且.MP 平分∠QMH ,求出t 值及点M 的坐标.(第27题图) (第27题备用图)26.(本题10分)在△ABC 与△ADE 中,点E 在BC 边上,AD=54AE ,AG 为△ADE 的中线,且∠EAC=∠ACB ,∠DAG=∠B(1)如图1,求证:AB=54AC ; (2)如图2,点F 是AC 中点,连接DF ,∠AFD=∠DAE ,连接CD 并延长交AB 于点K ,过点D 作DQ ∥BC 交BK 于点Q .①求证:点Q 为BK 的中点;②试探究线段BE 与DQ 的数量关系,并证明你的结论.2014年中考测试数学试卷参考答案与评分标准二、(每小题3分,共计30分)三、解答题(共计60分)20 解:(1)画图正确2....................' 1.....).........1,2(1'--C (2)画图正确1.....).........4,2(2....................2''C 21.证明:过点A 作BG AM ⊥交GB 的延长线于M , 作DG AN ⊥于N ︒=∠=∠=∠∴90AND ANG AMG DE BG ⊥ ︒=∠∴90BGD∴四边形AMGN 为矩形 ︒=∠∴90MAN '2....................................∵四边形ABCD 为正方形MAN BAD ∠=︒=∠∴90 AD AB =BAN BAD BAN MAN ∠-∠=∠-∠∴即DAN BAM ∠=∠....................................1' DAN BAM ∆∆∴≌....................................1'\AN AM =∴ ....................................1' ∴GA 平分BGD ∠ ....................................1'22. 解:(1)1410616450=----=x ,图形略3....................................' (2)70分以上的频率为:64.05010616=++, 由样本估计总体可知:)(38460064.0人=⨯∴估计该校学生时事政治掌握情况良好的人数约为384人. 3....................................'23.(1)证明:连接OE ,在⊙O 中,OB OE OA ==,2.........,//,'∠=∠=∠=∠∴∠=∠∴EOD OEB OBE AOD BE OD OEB OBE 1..................,,'∠=∠∴∆∆∴==OED OAD EOD AOD OD OD OE OA ≌又∵AM 是⊙O 的切线,切点为A , ∴AM ⊥BA , ∴DE OE OED OAD ⊥∴︒=∠=∠,90∵OE 是⊙O 的半径 是DE ∴⊙O 的切线.1................' (2)解:过点D 作BC 的垂线,垂足为H. ∵BN 切⊙O 于点B ,∴BHD BAD ABC ∠=∠=︒=∠90∴四边形ABHD是矩形,2........................................,1'===∴DH AB BH AD 314=-=-=∴BH BC CH AD 、CB 、CD 分别切⊙O 于点A 、B 、E ,1...............541,4,1'=+=+=∴====∴CE DE DC CE BC ED AD在 DHC Rt ∆中,1.....................435,22222'=-==∴+=DH AB CH DH DC 24. 解:(1)设甲种商品每件的进价是x 元,则乙种商品每件的进价为x 3元.依题意可得8031200400=+xx ,解得'2........................................10=x 经检验10=x 为原分式方程的解,∴301033=⨯=x '2.................................................答:甲、乙两种商品的进价分别为每件10元、30元.(2)设六月份再次购进甲种商品a 件,则购进乙种商品)80(a -件,依题意可得3.............................................600)80)(3040()1015('≥--+-a a 解得40≤a ,a 的最大值是40答:该超市六月份最多购进甲种商品40件....................................1' 25. 解:(1) 令0=x ,则33,02=++==+=+-=bx ax y n n n x y,3n OC ==∴令,0=y 则1....................................).........0,3(,3,03'∴===+-B OB x x在AOC ∆中, 1.........).........0,1(,1,33tan ,90'-∴=∴===∠︒=∠A OA OAOA CO CAO AOC 将A(-1,0),B(3,0)代入32++=bx ax y , 得⎩⎨⎧=+-=++030339b a b a 解得:⎩⎨⎧=-=21b a∴抛物线的解析式:'1 (322)++-=x x y (2) 如图1,∵P 点的横坐标为t 且PQ 垂直于x 轴 ∴P 点的坐标为(t ,-t+3),Q 点的坐标为(t ,-t 2+2t+3).∴PQ=|(-t+3)-(-t 2+2t+3)|=| t 2-3t | ∴ d=-t 2+3t (0<t<3)2.............................'d=t 2-3t (t>3) 1........................................' (3) ∵e d ,是y 2-(m+3)y+41(5m 2-2m+13)=0(m 为常数) 的两个实数根,∴△≥0,即△=(m+3)2-4×41(5m 2-2m+13)≥0 整理得:△=-4(m -1)2≥0,∵-4(m -1)2≤0,∴△=0,m=1,1.........................................'∴ PQ 与PH 是y 2-4y+4=0的两个实数根,解得y 1=y 2=2 ∴ PQ=PH=2, ∴-t+3=2,∴t=1 ,1.....................................' ∴此时Q 是抛物线的顶点,延长MP 至L ,使LP=MP ,连接LQ 、LH ,如图2, ∵LP=MP ,PQ=PH ,∴四边形LQMH 是平行四边形, ∴LH ∥QM ,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3, ∴LH=MH ,∴平行四边形LQMH 是菱形,∴PM ⊥QH ,∴点M 的纵坐标与P 点纵坐标相同,都是2,∴在y=-x 2+2x+3令y=2,得x 2-2x -1=0,∴x 1=1+2,x 2=1-2综上:t 值为1,M 点坐标为(1+2,2)和(1-2,2) 2...........................................' 26.(1)证明:如图1,延长AG 至M ,使得MG=AG ∵DG=EG ,∠AGD=∠EGM∴△ADG ≌△MEG .............................................................................1' ∴∠DAG=∠M ,AD=EM..................................................................1' ∵∠DAG=∠B ∴∠M=∠B...............................................................1' ∵∠EAG=∠C ,∴△AME ∽△CBA.................................................1'∴54===AE AD AE EM ACAB ∴AB=54AC.................................................................1' (2)○1∵∠EAG=∠ACB ,∠DAG=∠B,∴∠EAD+∠BAC=180°,又∵∠EAD=∠AFD ∴∠AFD+∠BAC=180°∴DF ∥AB..................1'∴△CDF ∽△CKA ∴CD:CK=CF:AC=1:2,∴LH(如图2)(图1)MDQ ∥BC ,∴△KDQ ∽△KCB,KCKDBC DQ KB KQ ==∴∵CD=DK,∴QK=BQ BC=2QD ∴点Q 为BK 的中点........................1'○2BE 与DQ 的数量关系为DQ BE 167= 延长BA 至R ,使AR=AB ,连接CR 、DR,∴AC ARAE AD = ∵∠EAD+∠BAC=180° ∠CAR+∠BAC=180° ∴∠EAD=∠CAR,∴∠EAD+∠CAD=∠CAD+∠CAR ,即∠EAC=∠DAR ∴△DAR ∽△EAC,∴∠DRA=∠ACB54==AE AD CE DR 即DR=54CE ∵DQ ∥BC ∴∠AQD=∠B,∴△ABC ∽△DQR54==∴AC AB DR DQ 即DR=45DQ.........................................1'∴54CE=45DQ ,∴CE=DQ 1625DQ BC 2= DQ DQ DQ CE BC BE 16716252=-=-=∴∴DQ BE 167=................1'(以上各解答题如有不同解法并且正确,请按相应步骤给分)(第26题图1) ﹙第26题图2)。
中考数学模拟试卷一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案填在答题纸相对应的位置上..2.(3分)(2011•烟台)如果△ABC中,sinA=cosB=,则下列最确切的结论是()2226.(3分)(2013•昭通)如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为().C D.22011•济宁)已知二次函数y=ax2+bx+c中,其函数y与自变量x之间的部分对应值如下表所示:9.(3分)在Rt△ABC中,∠C=90°,下列等式:(1)sin A=sin B;(2)a=c•sin B;(3)sin A=tan A•cos A;(4)sin2A+cos2A=1.其10.(3分)(2011•无锡)如图,抛物线y=x2+1与双曲线y=的交点A的横坐标是1,则关于x的不等式+x2+1<0的解集是()二、填空题:本大题共8小题,每小题3分,共24分,把答案直接填在答题纸相对应的位置上.11.(3分)cos30°=_________.12.(3分)二次函数y=﹣2(x﹣1)(x﹣3)的图象的对称轴是_________.13.(3分)已知x=1是方程x2+bx﹣2=0的一个根,则方程的另一个根是_________.14.(3分)关于x的一元二次方程x2+(m﹣2)x+m+1=0有两个相等的实数根,则m的值是_________.15.(3分)如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=6,BC=13,CD=5,则tan C等于_________.16.(3分)若二次函数y=ax2+bx+c的部分图象如图所示,则当x=1时,y的值为_________.17.(3分)(2011•宿迁)如图,邻边不等的矩形花圃ABCD,它的一边AD利用已有的围墙,另外三边所围的栅栏的总长度是6m.若矩形的面积为4m2,则AB的长度是_________m(可利用的围墙长度超过6m).18.(3分)已知抛物线y=x2﹣x与直线y=x+1的两个交点的横坐标分别为a、b,则代数式(a﹣b)(a+b﹣2)+ab 的值等于_________.三、解答题:本大题共11小题,共76分.解答时应写出必要的计算过程、推演步骤或文字说明.19.(5分)解方程:(x+1)(x﹣2)=x+1.20.(5分)如图,已知在Rt△ABC中,∠C=90°,BC=1,AC=2,求tanA和sinB的值.21.(5分)写出二次函数y=﹣x2﹣4x﹣6的图象的顶点坐标和对称轴的位置,并求出它的最大值或最小值.22.(6分)已知(a﹣2)2+=0,求方程ax+=7的解.23.(6分)已知α是锐角,且sin(α+15°)=.(1)求α的值;(2)计算的值.24.(6分)已知二次函数y=x2+bx+c的图象经过点(﹣1,0),(1,﹣2).(1)求该二次函数的解析式;(2)当y随x的增大而增大时,求x的取值范围.25.(8分)(2011•日照)为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2010年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2012年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,求到2012年底共建设了多少万平方米廉租房.26.(8分)(2011•孝感)已知关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1,x2.(1)求k的取值范围;(2)若|x1+x2|=x1x2﹣1,求k的值.27.(9分)如图,在直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0)、B(3,0)两点,抛物线交y轴于点C(0,3),点D为抛物线的顶点.直线y=x﹣1交抛物线于点M、N两点,过线段MN上一点P作y 轴的平行线交抛物线于点Q.(1)求此抛物线的解析式及顶点D的坐标;(2)问点P在何处时,线段PQ最长,最长为多少;(3)设E为线段OC上的三等分点,连接EP,EQ,若EP=EQ,求点P的坐标.28.(8分)(2011•兰州)通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角正对(sad),如图①,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sadA=底边/腰=.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:(1)sad60°=_________.(2)对于0°<A<180°,∠A的正对值sadA的取值范围是_________.(3)如图②,已知sinA=,其中∠A为锐角,试求sadA的值.29.(10分)(2011•泰州)已知二次函数y=x2+bx﹣3的图象经过点P(﹣2,5)(1)求b的值并写出当1<x≤3时y的取值范围;(2)设P1(m,y1)、P2(m+1,y2)、P3(m+2,y3)在这个二次函数的图象上,①当m=4时,y1、y2、y3能否作为同一个三角形三边的长?请说明理由;②当m取不小于5的任意实数时,y1、y2、y3一定能作为同一个三角形三边的长,请说明理由.中考数学模拟试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案填在答题纸相对应的位置上..2.(3分)(2011•烟台)如果△ABC中,sinA=cosB=,则下列最确切的结论是(),2226.(3分)(2013•昭通)如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为().C D.tanB=,.2=±,±±+2+22011•济宁)已知二次函数y=ax2+bx+c中,其函数y与自变量x之间的部分对应值如下表所示:9.(3分)在Rt△ABC中,∠C=90°,下列等式:(1)sin A=sin B;(2)a=c•sin B;(3)sin A=tan A•cos A;(4)sin2A+cos2A=1.其cos A=•,得到(sinA=,,cosA=,cosA=•=)),,cosA=,.10.(3分)(2011•无锡)如图,抛物线y=x2+1与双曲线y=的交点A的横坐标是1,则关于x的不等式+x2+1<0的解集是()y=与抛物线的不等式y=时,时,||∴的不等式+x二、填空题:本大题共8小题,每小题3分,共24分,把答案直接填在答题纸相对应的位置上.11.(3分)cos30°=..故答案为:12.(3分)二次函数y=﹣2(x﹣1)(x﹣3)的图象的对称轴是直线x=2.=213.(3分)已知x=1是方程x2+bx﹣2=0的一个根,则方程的另一个根是﹣2.=14.(3分)关于x的一元二次方程x2+(m﹣2)x+m+1=0有两个相等的实数根,则m的值是0或8.15.(3分)如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=6,BC=13,CD=5,则tan C等于.,且等于,且等于BDtan C==故答案为:16.(3分)若二次函数y=ax2+bx+c的部分图象如图所示,则当x=1时,y的值为﹣4.,17.(3分)(2011•宿迁)如图,邻边不等的矩形花圃ABCD,它的一边AD利用已有的围墙,另外三边所围的栅栏的总长度是6m.若矩形的面积为4m2,则AB的长度是1m(可利用的围墙长度超过6m).18.(3分)已知抛物线y=x2﹣x与直线y=x+1的两个交点的横坐标分别为a、b,则代数式(a﹣b)(a+b﹣2)+ab 的值等于﹣1.三、解答题:本大题共11小题,共76分.解答时应写出必要的计算过程、推演步骤或文字说明.19.(5分)解方程:(x+1)(x﹣2)=x+1.20.(5分)如图,已知在Rt△ABC中,∠C=90°,BC=1,AC=2,求tanA和sinB的值.AB=tanA==,==.=.21.(5分)写出二次函数y=﹣x2﹣4x﹣6的图象的顶点坐标和对称轴的位置,并求出它的最大值或最小值.22.(6分)已知(a﹣2)2+=0,求方程ax+=7的解.=02x+=7,或23.(6分)已知α是锐角,且sin(α+15°)=.(1)求α的值;(2)计算的值.计算即可;,×224.(6分)已知二次函数y=x2+bx+c的图象经过点(﹣1,0),(1,﹣2).(1)求该二次函数的解析式;(2)当y随x的增大而增大时,求x的取值范围.,),,时,25.(8分)(2011•日照)为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2010年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2012年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,求到2012年底共建设了多少万平方米廉租房.,÷26.(8分)(2011•孝感)已知关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1,x2.(1)求k的取值范围;(2)若|x1+x2|=x1x2﹣1,求k的值.≤,≤27.(9分)如图,在直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0)、B(3,0)两点,抛物线交y轴于点C(0,3),点D为抛物线的顶点.直线y=x﹣1交抛物线于点M、N两点,过线段MN上一点P作y 轴的平行线交抛物线于点Q.(1)求此抛物线的解析式及顶点D的坐标;(2)问点P在何处时,线段PQ最长,最长为多少;(3)设E为线段OC上的三等分点,连接EP,EQ,若EP=EQ,求点P的坐标.),时,线段,则,﹣)=,小于等于==,小于等于=)或(,28.(8分)(2011•兰州)通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角正对(sad),如图①,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sadA=底边/腰=.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:(1)sad60°=1.(2)对于0°<A<180°,∠A的正对值sadA的取值范围是0<sadA<2.(3)如图②,已知sinA=,其中∠A为锐角,试求sadA的值.A=AD=AC=.DH=ADsinA=AH==kk CD==sadA=.29.(10分)(2011•泰州)已知二次函数y=x2+bx﹣3的图象经过点P(﹣2,5)(1)求b的值并写出当1<x≤3时y的取值范围;(2)设P1(m,y1)、P2(m+1,y2)、P3(m+2,y3)在这个二次函数的图象上,①当m=4时,y1、y2、y3能否作为同一个三角形三边的长?请说明理由;②当m取不小于5的任意实数时,y1、y2、y3一定能作为同一个三角形三边的长,请说明理由.。
乐山市市中区2014年初中毕业会考暨高中阶段统一招生适应性考试 数 学
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第一部分1至2页,第二部分3至6页,共150分.考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回. 第一部分(选择题 共30分)
注意事项: 1.答第一部分前,考生务必将自己的姓名、报名号用0.5毫米的黑色签字笔填写在答题 卡上.并将条形码粘在答题卡的指定位置. 2.选择题用2B铅笔填涂在答题卡对应题目标号的位置上,其它试题用0.5毫米黑色签 字笔书写在答题卡对应框内,不得超越题框区域.在草稿纸、试卷上答题无效. 3.考试结束后,监考人员将本试题卷和答题卡分别收回并装袋. 一、选择题:本大题共10题,每题3分,共30分.在每题给出的四个选项中,只有一
个选项是符合题目要求的. 1.在实数2、0、2、3中,最小的实数是 (A)2 (B)0 (C)2 (D)3 2. 如图,直线a∥b,∠150,那么∠2的度数是 (A)50 (B)45 (C)40 (D)30 3. 化简:2aa (A)2 (B)a (C)a (D)3a 4. “辽宁号”航母是中国海军航空母舰的首舰,它的标准排水量57000吨,满载排水量 67500吨,其中数据67500用科学记数法表示为 (A)675×102 (B)67.5×102 (C)6.75×104 (D)6.75×105 5. 小华是9人队伍中的一员,他们随机排成一列队伍,从1开始按顺序报数,小华报到 偶数的概率是 (A)19 (B)49 (C)12 (D)23
6. 如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是 (A)ADAB (B)∠BOC2∠D (C)∠D∠B (D)∠D∠BOC90 7. 今年我区葡萄喜获丰收,有甲、乙两块面积相同的葡萄园,分别收获8600kg、9800kg, 甲葡萄园比乙葡萄园平均每亩少60kg,问甲葡萄园平均每亩收获荔枝多少kg? 设甲葡萄园平均每亩收获葡萄xkg,根据题意,可得方程
ba21
OD
CBA (A)8600980060xx (B)8600980060xx (C)8600980060xx (D)8600980060xx 8. 如图,P为平行四边形ABCD边AD上一点,E、F分别为PB、PC的中点,△PEF、 △PDC、△PAB的面积分别为S、S1、S2,若S2,则S1S2 (A)4 (B)6 (C)8 (D)不能确定 9. 图1所示矩形ABCD中,BCx,CDy,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是 (A)当x3时,EC<EM (B)当y9时,EC>EM (C)当x增大时,ECCF的值增大 (D)当y增大时,BEDF的值不变 10. 如图,抛物线2yaxbxc与x轴交于点A(1,0),顶点坐标为(1,n),与 y轴的交点在(0,2)、(0,3)之间(包含端点). 有下列结论:①当x>3时,y<0; ②3ab>0; ③213a; ④843n. 其中正确的是
(A)①② (B)③④ (C)①③ (D)①③④
乐山市市中区2014年初中毕业会考暨高中阶段统一招生适应性考试 数 学
第二部分(非选择题 共120分)
注意事项: 1.考生需用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答,作图题 可先用铅笔画线,确认后用0.5毫米黑色墨迹签字笔描清楚,答在试题卷上无效. 2.本部分共16小题,共120分.
二、填空题:(本大题共6题.每题3分,共18分)
11. 实数2的相反数是 . 12. 分解因式:228x .
FEPDC
BA
MFEDCBA图1图263963yxOAx=1Oy
x 13. 用大小相同的小三角形摆成如图所示的图案,按照这样的规律摆放,则第n个图案 中共有小三角形的个数是 .
14. 如右图,⊙O是△ABC的外接圆,AD是⊙O的直径, 若⊙O的半径为32,AC2,则sinB的值是 .
15. 已知、是关于x的一元二次方程22(23)0xmxm的两个不相等的实数根, 且满足(1),则m的值是 .
16. 如图,直线l:313yx交x轴于点A,交y轴于点B,点A1、A2、A3在x轴上, 点B1、B2、B3在直线l上.若△OB1A1,△A1B2A2, △A2B3A3均为等边三角形.
则:(1)∠BAO的度数是 ; (2)△A2B3A3的周长是 .
三、(本大题共3题.每题9分,共27分)
17. 计算:02(3)432014.
18. 先化简,再求值:244(2)xxx,其中x是不等式332xx的最大整数解. 19. 图1是由一些棱长都为1cm的小正方体组合成的简单几何体. (1)该几何体的表面积(含下底面)为 ; (2)该几何体的主视图如图所示,请在下面方格纸中 分别画出它的左视图和俯视图.
四、(本大题共3题.每题10分,共30分)
20. 一次函数ykxb的图象经过点(,2)和(3,2). (1)求常数k、b的值;
ODCB
A
lyxA3B3A2B2B1A1BAO
图1
…n=4n=3n=2n=1
俯视图左视图主视图 (2)若直线分别交坐标轴于A、B两点,O为坐标原点,求△AOB的面积. 21. 某校对九年级全体学生进行了一次学业水平测试,成绩评定分为A,B,C,D四个等 级(A,B,C,D分别代表优秀、良好、合格、不合格).该校从九年级学生中随机抽 取了一部分学生的成绩,绘制成以下不完 整的统计图.请你根据统计图提供的信息 解答下列问题: (1)本次调查一共抽取了 名学生的成绩; (2)将上面的条形统计图补充完整,写出扇 形统计图中等级C的百分比 ; (3)若等级D的5名学生的成绩(单位:分)分别是55、48、57、51、55.则这5个 数据的中位数是 分,众数是 分; (4)如果该校九年级共有300名学生,试估计在这次测试中成绩达到优秀的人数. 22. 选做题:从甲、乙两题中选做一题,如果两题都做,只以甲题计分. 题甲:一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费 用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付两组费用 共3480元,问: (1)甲、乙两组单独工作一天,商店各应付多少元? (2)单独请哪组,商店所付费用较少? (3)若装修完后,商店每天可赢利200元,你认为如何安排施工有利于商店经营?说说你 的理由.
题乙:如图,⊙O是△ACD的外接圆,AB是直径,过点D作直线DE∥AB,过点B作直线 BE∥AD,两直线交于点E,如果∠ACD45°,⊙O的半径是4cm. (1)请判断DE与⊙O的位置关系,并说明理由; (2)求图中阴影部分的面积(结果用π表示).
五、(本大题共2题.每题10分,共20分)
23. 如图,已知四边形ABDE是平行四边形,C为边B D延长线上一点,连结AC、CE,使 ABAC. (1)求证:△BAD≌△ACE; (2)若∠B30°,∠ADC45°,BD4, 求四边形ADCE的面积.(结果保留根号)
EDCBA
EODCBA
40%20%DC
BA
12
DCBAO23886
12108642
人数
等级女男 24. 已知:关于x的方程22(24)50xmxmm没有实数根. (1)求m的取值范围; (2)若关于x的一元二次方程2(2)30mxnxm有实数根,求证:该方程两根 的符号相同; (3)设(2)中方程的两根分别为、,若∶1∶2,且n为整数,求m的最小 整数值. 六、(本大题共2题.25题12分,26题13分,共25分)
25. 如图1,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为 公共顶点,∠BAC∠AGF90°,它们的斜边长为2,若△ABC固定不动,△AFG绕 点A旋转,AF、AG与边BC的交点分别为D、E(点D不 与点B重合,点E不与点C重合).设BEm,CDn. (1)求证:△ABE∽△DCA; (2)求m与n的函数关系式,直接写出自变量n的取 值范围; (3)以△ABC的斜边BC所在的直线为x轴,BC边上 的高所在的直线为y轴,建立平面直角坐标系(如 图2).在边BC上找一点D,使BDCE,求出 D点的坐标,并通过计算验证BDCEDE.
26. 如图,二次函数的图象与x轴相交于点A(3,0)、B(1,0),与y轴相交于 点C(0,3),点P是该图象上的动点.一次函数4ykxk(0k)的图象过点P 交x轴于点Q. (1)求该二次函数的解析式; (2)当点P的坐标为(4,m)时, ①求证:∠OPC∠AQC; ②点M,N分别在线段AQ、CQ上,点M 以每秒3个单位长度的速度从点A向点Q运动,同时,点N以每秒1个单位长度 的速度从点C向点Q运动,当点M,N中有一点到达Q点时,两点同时停止运动, 设运动时间为t秒,连接AN. (i)当△AMN的面积最大时,求t的值; (ii)直线PQ能否垂直平分线段MN?若能,请求出此时点P的坐标;若不能,请说
OABCDEFG
图2
图1GF
EDCB
A
yxQPNMOCBA