几何量微纳米级精密测量技术
- 格式:ppt
- 大小:18.10 MB
- 文档页数:28
精密水准测量技术的原理与方法讲解一、引言精密水准测量是一种用来测量地球表面高程差异的技术,广泛用于建筑、道路、桥梁等工程项目的设计和施工过程中。
本文将要讲解精密水准测量技术的原理与方法,帮助读者深入了解这一重要的测量技术。
二、基本原理精密水准测量的基本原理是利用重力的作用和水准仪的测量观测,得到不同位置之间的高程差。
其核心原理为水准仪的测量结果与水平面的判定相结合。
1. 重力的作用重力是地球吸引物体的力,使物体朝向地球的中心运动。
水准测量利用重力的作用,通过测量地球表面上的高度差,推断出不同位置之间的高程差。
2. 水准仪的测量水准仪是精密水准测量的主要工具,其基本原理是利用建立在自然水平面上的平衡气泡来测量高程差。
通过调整气泡使其处于中央位置,就可以确定所测点与水准仪基准点之间的高差。
三、测量方法精密水准测量主要有两种方法:几何水准测量和重力高程测量。
1. 几何水准测量几何水准测量是一种通过观测目标点与测站之间的水平线来测量高程差的方法。
它需要设置测站和观测目标点,并进行直接或间接的水准测量。
直接水准测量是利用水准仪直接观测目标点和测站之间的高程差,间接水准测量则通过测量测站与参考点之间的高程差来间接得到目标点与测站之间的高程差。
2. 重力高程测量重力高程测量是一种通过观测重力加速度变化来测量高程差的方法。
它利用重力加速度与地壳运动及大地水准面测量的相关性,通过测量重力加速度的变化来推算出不同位置之间的高程差。
四、精密水准测量的应用精密水准测量技术在建筑、道路、桥梁等工程项目的设计和施工过程中具有重要作用。
它可以帮助测量人员准确把握地势高低差异,为工程项目的规划、设计和施工提供基础数据。
1. 建筑项目中的应用在建筑项目中,精密水准测量用于确定建筑物的高程,保证建筑物的平坦度和水平度。
它可以帮助建筑师在设计过程中避免出现高低错位或不平衡的问题,提高建筑物的整体质量。
2. 道路和桥梁项目中的应用在道路和桥梁项目中,精密水准测量用于确定路面和桥梁的高程,保证道路和桥梁的平整度和水平度。
几何量精度设计与精密测量高端技能型人才培养分析几何量精度设计与精密测量是现代制造业中非常重要的技能,对于产品的质量和性能起着至关重要的作用。
培养具备这方面专业技能的高端人才显得尤为重要。
本文将从几何量精度设计与精密测量的重要性、人才培养现状和未来发展趋势等方面进行分析。
一、几何量精度设计与精密测量的重要性几何量精度设计与精密测量是指在产品设计、制造和检测过程中,对产品的几何形状和尺寸进行精确测量和分析的技术和方法。
这一领域的技能要求非常高,因为产品的几何量精度直接关系到产品的性能、稳定性和可靠性。
在制造业中,尤其是汽车、航空航天、船舶、轨道交通等领域,产品的几何量精度设计与精密测量是至关重要的。
随着科技的飞速发展,产品的设计和制造越来越复杂,对产品的几何量精度设计与精密测量的要求也越来越高。
只有具备这方面专业技能的高端人才,才能够胜任这一领域的工作,保证产品的质量和性能。
二、人才培养现状目前,我国在几何量精度设计与精密测量高端技能型人才培养方面还存在一些不足。
相关专业的培训机构和课程相对不足,很多大学和职业教育机构在这方面的教学资源和师资力量都比较匮乏。
学生对这一领域的了解和认识也比较模糊,很多学生并不知道几何量精度设计与精密测量的重要性和发展前景。
行业需求和学校培养之间的脱节也比较严重,毕业生的实际能力与企业的需求之间存在一定的差距。
也有一些积极的企业和学校开始意识到几何量精度设计与精密测量这一领域的重要性,一些高校和培训机构开始加强相关专业的建设和师资力量,以满足市场需求。
一些企业也开始与相关专业的学校合作,开展双向沟通和合作,帮助学生更好地了解行业需求,提高实际能力。
三、未来发展趋势未来,随着制造业的转型升级和科技的不断进步,几何量精度设计与精密测量这一领域的重要性将会更加凸显。
几何量精度设计与精密测量高端技能型人才的需求也将会持续增加。
相关专业的课程和培训资源也将会得到更多的关注和投资,以满足市场需求。
现代精密测量技术发展现状综述摘要:现代精密测量技术是一门集光学、电子、传感器、图像、制造及计算机技术为一体的综合性交叉学科,涉及广泛的学科领域,它的发展需要众多相关学科的支持。
在现代工业制造技术和科学研究中,测量仪器具有精密化、集成化、智能化的发展趋势。
关键词:现代精密测量,现状,发展趋势。
引言:在科学技术高度发展的今天,现代精密测量技术对一个国家的发展起着十分重要的作用。
如果没有先进的测量技术与测量手段,就很难设计和制造出综合性能和单相性能均优良的产品,更谈不发展现代高新尖端技术,因此世界各个工业发达国家都很重视和发展现代精密测量技术。
1.国内外形势:三坐标测量机:三坐标测量机即三次元,它是指在一个六面体的空间范围内,能够表现几何形状、长度及圆周分度等测量能力的仪器,又称为三坐标测量仪或三坐标量床。
三坐标测量仪可定义为“一种具有可作三个方向移动的探测器,可在三个相互垂直的导轨上移动,此探测器以接触或非接触等方式传送讯号,三个轴的位移测量系统(如光学尺)经数据处理器或计算机等计算出工件的各点坐标(X、Y、Z)及各项功能测量的仪器”。
三坐标测量仪的测量功能应包括尺寸精度、定位精度、几何精度及轮廓精度等。
三坐标测量机在机械、电子、仪表、塑胶等行业广泛使用。
三坐标测量机是测量和获得尺寸数据的最有效的方法之一,因为它可以代替多种表面测量工具及昂贵的组合量规,并把复杂的测量任务所需时间从小时减到分钟,这是其它仪器而达不到的效果。
组成结构:1、主机机械系统(X、Y、Z三轴或其它);2、测头系统;3、电气控制硬件系统;4、数据处理软件系统(测量软件);三坐标测量机在现代设计制造流程中的应用逆向工程定义:将实物转变为CAD模型相关的数字化技术,几何模型重建技术和产品制造技术的总称。
德国CarlZeiss公司最近开发的CNC小型坐标测量机采用热不灵敏陶瓷技术,使坐标测量机的测量精度在17.8~25.6℃范围不受温度变化的影响。
双频激光外差干涉的应用技术
微/纳米技术的发展,离不开微米级和纳米级的测量技术与设备。
具有微米及亚微米测量精度的几何量与表面形貌测量技术已经比较成熟,如双频激光干涉测量系统(精度10nm)、具有1nm精度的光学触针式轮廓扫描系统等。
因为扫描隧道显微镜、扫描探针显微镜和原子力显微镜用来直接观测原子尺度结构的实现,使得进行原子级的操作、装配和改形等加工处理成为近几年来的前沿技术。
而激光外差干涉测量是几何量精密测量的主要技术之一,属精密测量技术领域。
通过偏振方向正交的两个波长的激光器,实现双波长外差干涉的外差干涉仪,将外差信号进行光电转换的声光调制器以及外差信号的相位检测电路和数据处理单元。
精密机械加工中的测量与检测技术在当今高度工业化的时代,精密机械加工在各个领域都发挥着至关重要的作用。
从航空航天到汽车制造,从医疗设备到电子通讯,几乎所有的高科技产品都离不开精密机械加工的支持。
而在精密机械加工过程中,测量与检测技术则是保证产品质量和精度的关键环节。
测量与检测技术的重要性不言而喻。
它就像是一双“眼睛”,时刻监控着加工过程中的每一个细节,确保加工出来的零件符合设计要求。
如果没有精确的测量与检测,即使使用了最先进的加工设备和工艺,也无法保证产品的质量和性能。
因此,对于精密机械加工企业来说,掌握先进的测量与检测技术是提高竞争力的核心要素之一。
在精密机械加工中,常用的测量与检测技术包括尺寸测量、形状测量、位置测量、表面粗糙度测量等。
尺寸测量是最基本的测量项目之一,它主要用于测量零件的长度、宽度、高度、直径等尺寸参数。
常用的尺寸测量工具包括卡尺、千分尺、量规等。
这些工具操作简单,精度较高,能够满足大多数常规零件的尺寸测量需求。
然而,对于一些高精度、复杂形状的零件,传统的测量工具可能就无法胜任了,这时就需要使用更先进的测量设备,如三坐标测量机、激光干涉仪等。
三坐标测量机是一种高精度、高效率的测量设备,它可以对零件的三维尺寸进行精确测量。
通过将零件放置在测量机的工作台上,并使用探头对零件表面进行逐点测量,测量机可以快速获取零件的三维坐标数据,并通过软件分析计算出零件的尺寸、形状、位置等参数。
激光干涉仪则是一种基于激光干涉原理的测量设备,它可以用于测量零件的直线度、平面度、垂直度等几何精度。
激光干涉仪具有测量精度高、测量范围大等优点,在精密机械加工中得到了广泛的应用。
形状测量也是精密机械加工中非常重要的一个环节。
零件的形状精度直接影响着其装配性能和工作性能。
常见的形状测量项目包括圆度、圆柱度、平面度、线轮廓度、面轮廓度等。
圆度测量通常使用圆度仪进行,圆柱度测量可以使用圆柱度仪或三坐标测量机,平面度测量则可以使用平板和千分表、三坐标测量机等设备。
《精密测量技术》课程教学大纲Precision Measurement Technology课程代码:M106103总学时:54 学分:3一、课程的地位与任务本课程为测控技术与仪器专业光电检测与控制方向的专业必修课,通过该课程的学习,融会贯通各门专业基础课程,系统掌握各类几何量测量的基本原理和方法,了解现代计量测试新技术。
通过本课程学习,培养学生具有计量测试的基本知识,能够依据被测量的技术要求拟定合理的测量方案,实施测量并分析处理测量结果,完成一个测试的全过程,何参量精从而具有初步解决工程测量中几密测试问题的能力。
二、课程的基本内容第一章绪论4学时1、精密测量技术的发展概况2、公差基础知识3、测量的基本概念4、测量方法的选择12学时第二章长度尺寸的测量1、长度的基准与标准2、量块的检定3、线纹尺的检定4、光滑极限量规5、轴类零件测量6、孔类零件测量7、大尺寸测量及新技术发展6学时8、微小尺寸测量及纳米测量技术第三章角度测量1、角度的实用基准2、角度和锥度的测量心」6学时3、小角度测量技术4、新型角度传感器第四章表面粗糙度的测量1、表面粗糙度的评定参数2、表面粗糙度的测量方法3、微观形貌测量新技术的发展第五章形位误差测量12学时1、直线度误差测量及准直技术的新发展2、平面度误差测量3、圆度误差测量4、平行度位置误差测量5、垂直度位置误差测量6、同轴度位置误差测量7、误差分离技术8、形位公差与尺寸公差的关系第六章螺纹测量6学时1、螺纹测量基础2、普通螺纹的综合检验3、螺纹的单项测量4、丝杠的测量第七章圆柱齿轮测量8学时1、概述2、齿轮单项测量3、齿轮综合测量4、齿轮整体误差测量三、课程的基本要求1、了解精密计量与测试发展概况,熟悉量值传递系统,掌握长度计量检定基本内容。
2、理解几何量测量的基本原则,对拟定测试方案的全过程有一个全面的认识。
3、掌握工程测量中各种几何量参数的测量原理、数据分析及误差分析,了解各种常用仪器的技术指标。
浅析现代测绘技术的发展趋势随着全球经济的发展,人们对信息的需求越来越大,对自然的探索也越来越渴望,从而测绘工程在我国经济发展、环境保护等方面应用更加广泛。
它的出现,无疑给空间信息的获取提供了相当大的便利,这无论是在学科或科学方面的重要性都是毋庸置疑的。
本文简要分析现代测绘技术的现状及发展趋势。
标签:现代;测绘技术;发展趋势引言:测绘技术是研究地球和其他实体的与空间分布有关的信息的采集、测量、分析显示、管理和利用的科学技术。
集卫星通信技术、空间定位技术、遥感技术和地理信息系统技术为一体,强调了测量、遥感、地理信息等方面。
现代测绘技术主要在“GPS”和“遥感技术”两方面进行发展,已逐渐成为人类研究地球、自然环境甚至社会可持续发展等问题时必不可少的方法。
一、测绘技术主要内容测绘是将地面已有的特征点和界限通过测量获得反映地面现状的图形和位置信息,如自然地理要素、地表人工设施的形状、大小、空间位置、属性等。
它立足于对地球整体的观测以及信息的获取,通过这门技术,可有效对空间信息进行分析、存储、管理,从而掌握其变化规律。
现代测绘技术包括测量和制图两方面,在发展过程中逐渐形成大地测量学、普通测量学、摄影测量学、工程测量学、海洋测绘等分类,在现代经济和国防建设中有广泛应用。
如在进行城乡规划时,需为后期的规划管理绘制地形图;在地质勘探、矿产开发过程中,需绘制地形图供施工使用;在军事中,可以此提供精确的重力场等数据。
二、测绘技术的优缺点随着社会经济的发展,社会与自然的矛盾日益激化,环境保护已成为了国家发展的又一项重中之重。
能源稀少、水体污染等等环境问题都有待深入研究及解决。
在这种急需新兴科技的环境下,现代测绘技术在地里信息系统建设中起到了主导作用。
伴随着科技的进步,现代测绘技术无论在理论水平、精准程度还是应用方面都取得了极大地发展,为人类的自然开发、社会规划、经济建设等多方面提供了不可或缺的支持,同时也为国家经济建设和社会发展提供了各种专题性和综合性的基础信息。
浅谈精密测量技术现状及发展1. 引言1.1 精密测量技术的定义精密测量技术是一种能够对物体、信息或现象进行高精度测量的技术。
它通过各种精密的测量仪器和设备,可以对微小至纳米级别的尺寸、重量、速度、温度等参数进行准确测量。
精密测量技术的发展使得人类能够更深入地了解自然界的规律和现象,为科学研究、工业制造等领域提供了重要的支持和帮助。
在现代工业制造中,精密测量技术被广泛应用于汽车制造、航空航天、电子产品制造等领域,帮助提高产品质量和生产效率。
精密测量技术的重要性不言而喻,它不仅可以确保产品达到规定的标准,还可以帮助企业提升竞争力,赢得市场份额。
精密测量技术在现代社会中扮演着不可或缺的角色,其应用范围和影响力日益扩大,对于推动科技进步和经济发展具有重要的意义。
1.2 精密测量技术的重要性精密测量技术是保障产品质量的重要手段。
在工业制造领域,精密测量技术可以用来确保产品的精准度和稳定性,从而提高产品的可靠性和竞争力。
通过精密测量技术,生产过程中的各种参数和指标可以被准确地监测和控制,从而确保产品达到设计要求。
精密测量技术在科学研究中扮演着不可或缺的角色。
在物理、化学、生物等领域的科学研究中,精密测量技术可以帮助科学家们获取准确的实验数据,从而推动科学的进步。
精密测量技术的不断发展和应用也为科学研究提供了更多的可能性和机会。
精密测量技术还在社会生活中扮演着重要的角色。
在交通运输、医疗保健、环境监测等领域,精密测量技术可以帮助我们更好地了解和控制环境因素,保障人类的生活质量和安全。
精密测量技术的重要性不容忽视。
它不仅在工业制造和科学研究领域发挥着关键作用,也在社会生活中发挥着越来越重要的作用。
随着科技的不断进步和发展,精密测量技术的应用范围和重要性也将不断扩大和提升。
2. 正文2.1 精密测量技术的发展历史精密测量技术的发展历史可以追溯到古代,人类在实现精确测量方面已经取得了一定的成就。
公元前3世纪,古希腊科学家阿基米德发明了用于测量物体密度的著名法器——阿基米德原则。
用于微纳米几何量尺寸测量的三维微接触式测头李源;吴俊杰【摘要】为实现微纳尺度器件三维几何形貌测量及表征,基于电容和压阻原理,开发了两种三维微接触式测头。
其中电容测头测量范围4.5μm,轴向分辨力和横向分辨力分别为10 nm和25 nm;压阻测头测量范围4.6μm,轴向分辨力和横向分辨力分别为5 nm和10 nm。
两种测头均可集成到纳米测量机,实现微结构几何参数的测量。
%In order to realize dimensional measurement and charac-terization of miniaturized components in micro/nano scale, two 3D micro tactile probes were developed based on capacitive and piezo-resistive principle. Range of capacitive probe is 4.5 μm, with a resolution of 10 nm and 25 nm in axial and lateral direction, respectively. The piezo-resistive probe has an axial and lateral resolution of 5 nm and 10 nm in full range of 4.6 μm. The two probes can be integrated to nano measuring machine to realize measurement of geometrical parameter in microstructures.【期刊名称】《上海计量测试》【年(卷),期】2014(000)005【总页数】4页(P2-5)【关键词】微接触式测头;电容传感器;压阻传感器;纳米测量机【作者】李源;吴俊杰【作者单位】上海市计量测试技术研究院;上海市计量测试技术研究院【正文语种】中文纳米科技、MEMS(微机电系统)技术和超精密加工技术的发展,对微小器件尺寸测量提出了更高的要求。
与时俱进探讨“精密测量技术”教学内容与教学方法的改革作者:余卿,崔长彩,张认成,傅师伟来源:《教育教学论坛》 2016年第13期余卿,崔长彩,张认成,傅师伟(华侨大学机电及自动化学院测控系,福建厦门361021)摘要:针对测控技术与仪器专业,探讨《精密测量技术》的教学内容和方法新发展:在内容上增加新一代几何产品技术规范与认证(GPS)体系下的不确定度理论、三维表面形貌测量理论和方法以及微纳测量技术等;在理论授课方法上增加多媒体辅助教学手段,实验教学环节增加虚拟网络实验选修环节。
关键词:教育学;精密测量技术;教学内容;教学方法中图分类号:G642.4 文献标志码:A 文章编号:1674-9324(2016)13-0146-02一、前言随着新技术新原理的发展,传统测量理论和方法及仪器也得到了不断的发展和完善,针对测控专业本科生和研究生的教学,需要在现有教材的基础上调整和充实新的教学内容[1]。
对于测控专业,大部分院校受授课学时的限制没有开设“互换性与测量技术”等相关课程,而在其后续课程中都离不开对机械互换性基本概念和原理的知识基础[2]。
新一代几何产品技术规范与认证(GPS)体系是国际标准化组织(ISO)对原有几何量相关组织改组以后,适应新的要求规划的标准框架,其内容涵盖从产品设计、制造、检验与认证、使用等全生命周期的各个方面,其技术方法以计量数学为基础,集中了计算机技术、光学技术、微纳技术等先进技术,是一个更丰富、更合理、更易于实现的标准体系,提出了新模型概念、模型操作概念、新不确定度概念、三维表面形貌测量技术、软件量规概念等等[3-4]。
二、教学内容改革探索为适应学科体系发展和科学技术进步的需要,调整后的教学内容将在经典理论和方法的基础上,充实新原理、新技术、新手段,除去不适合、不适用的部分,突出一个“新”字。
调整后的精密测量技术基础教学内容体系如下:第一章:概述。
包括测量的意义和地位;测量原则和测量方法的选用;测量不确定度的基本概念和计算。
精密测量技术在物理实验中的应用案例在物理学研究领域,精密测量技术是不可或缺的工具。
它们扮演着确保实验数据准确性和可靠性的关键角色。
本文将通过几个实际案例,探讨精密测量技术在物理实验中的应用。
第一个案例是时间测量。
在实验中,精确测量时间是非常重要的,因为时间是许多物理量的基础。
例如,在研究物体运动的速度、加速度或波动的频率时,我们需要准确地测量时间。
一种常用的时间测量工具是高精度的计时器。
通过使用计时器,我们可以测量与事件相关的时间间隔,如反射光束的往返时间或简单机械系统的周期。
这些时间测量数据可以用于进一步分析和研究。
第二个案例是长度测量。
在物理实验中,测量长度是常见任务之一。
无论是测量一个导线的长度,还是确定物体的几何形状,准确的长度测量都是至关重要的。
在很多情况下,常规的尺子和卷尺是不够精确的。
因此,科学家们经常使用光学测量仪器,如干涉测量仪、激光测距仪和显微测量技术。
这些技术可以通过测量光波干涉模式或利用激光束的反射来实现亚微米级甚至纳米级的精度。
除了时间和长度测量,温度测量也是物理实验中的另一个重要方面。
特别是在材料学和热力学研究中,对温度的精确测量至关重要。
实验室中常用的温度测量仪器包括温度传感器和热电偶。
温度传感器可以通过测量物体的热辐射或与物质的热导率相关的电阻来测量温度。
热电偶则利用两种不同金属间的温差所产生的电压来测量温度。
通过使用这些精密测温设备,科学家们可以获得精确的温度数据,从而深入研究材料性质和热力学行为。
最后一个案例是测量物体的质量。
在物理实验中,准确测量物体的质量是实现实验目标的重要步骤。
传统的质量测量方法通常使用天平或弹簧秤。
然而,这些方法在高精度测量时存在一定的误差。
为了获得更准确的质量测量结果,科学家们常常使用精密天平或质量计。
这些设备具有高分辨率和高灵敏度,可以测量微小质量的变化。
例如,在核物理实验中,测量放射性物质的衰变速率需要精确测量物质的质量变化,以便确定衰变常数。
精密工程测量技术及应用摘要:随着社会的发展,我国科学技术水平得到了显著提升,各行各业各类工程中精密工程测量技术的应用也得到了有效推广,这也在一定程度上进一步推动我国的工业化进程。
但是我国当前各行各业精密工程测量技术的应用过程中,仍然存在一定的问题,使得精密工程测量技术的应用很难发挥理想的效果。
本文中我们就将针对精密工程测量技术及其应用进行深入探究,希望可以更好的推广落实精密工程测量技术的科学应用,推动我国工业化的进一步发展。
关键词:工程测量;发展;应用大型工程开展过程中,前期对工程进行精密测量是非常必要的,可以在很大程度上提升相关工程设计的精准度和实用性,保障相应工程的质量。
但是在精密工程测量技术应用过程中,要尽可能结合现代测量的新理论,才能真正的保障精密工程测量技术在实际应用中发挥更大的功效。
接下来我们就来具体探讨了解一下精密工程测量技术及其有效应用。
一.精密工程测量的基本概述工程开展过程中,需要提前对施工区域进行现场踏勘,从而得到准确的相关数据来作为参考进行相应的工程设计,保证相应工程设计的科学性。
而为了获取更加精准的相关数据信息,当前很多工程测量过程中所应用的相关技术也更加的精密。
以绝对测量精度优于毫米级或相对测量精度达到1×10-5以上作业精度也在很大程度上提升了我国工业发展的水平。
随着现代科学技术的不断进步和我国综合国力的不断提高,我国大型工程项目尤其是科学工程得到了蓬勃的发展,如航空、航天和加速器等工程,其复杂的结构和精密的测量要求在施工、安装、检测、控制和监测等工作,都对精密工程测量提出了更高的要求,使得精密工程测量得到了迅速的发展,精密测量技术在加速器工程、高铁工程、大型射电望远镜工程和工业测量等领域都发挥了不可替代的作用,成为影响工程整体质量的重要因素,因此,加强对精密工程测量技术的研究和应用十分重要。
工程测量技术通常根据实际的应用需求分为两种:普通测量和特殊测量。
普通测量中,我们对于测量结果的精准度要求相对较低,因而它的应用范围也相对较广。