当前位置:文档之家› 电感与变压器的区别

电感与变压器的区别

电感与变压器的区别
电感与变压器的区别

能够产生自感、互感作用的器件均称为电感器件。电感器件是无线电设备中重要元件之一,它与电阻、电容、晶体二极管、晶体三极管等电子器件进行适当的配合,可构成各种功能的电子线路。

由于电感器一般由线圈构成,所以又称为电感线圈。为了增加Q值、缩小体积,线圈中常用软磁性材料做成磁芯。电感器有固定电感器、可变电感器、微调电感受器、色码电感器、平面电感器、集成电感器等。

在无线电整机中电感器主要是指各种线圈,对于与电感线圈相关的变压器、延迟线、滤波器等,在本节中将作必要说明。

1.电感线圈电感线圈是用绝缘导线(漆包线、纱包线、***导线等)一圈紧靠一图地绕制而成.在交流电路中,线圈有阻碍交流电流通过的作用,而对稳定的直流电压却不起作用(线罪状本身直流电阻例外)。所以线圈可以在交流电路中作阻流、变压、交连、负载等。当线圈和电容配合是时可作调谐、滤波、选频、分频、退耦等。

电感线圈在电路中常用英文字母“L”表示,电感量的单位是“亨利”,简称亨,常用英文字母“H”表示;比亨小的单位为毫亨,用英文字母mH表示;更小单位为微亨,用英文字母H表示。它们之间的关系为:1H=103mH=106uH.(1)自感与互感。当交流电流通过电感线圈时,将在线圈的周围产生交变磁场,这个磁场能穿过线圈,并且在线圈中产生感应电动势。自感电动势的大小与磁通量的线圈的特性有磁,这种特性用自感电感线圈在电路中常用英文字母“L”表示,电感量的单位是“亨利”,简称亨,常用英文字母“H”表示;比亨小的单位为毫亨,用英文字母mH表示;更小单位为微亨,用英文字母H表示。它们之间的关系为:1H=103mH=106uH.(1)自感与互感。当交流电流通过电感线圈时,将在线圈的周围产生交变磁场,这个磁场能穿过线圈,并且在线圈中产生感应电动势。自感电动势的大小与磁通量的线圈的特性有磁,这种特性用自感系数来表示。电感受。电感受量是表示电感数值大小的量,一般称之为电感。

电感线圈的自感工作原理:线圈(电感)中的自感电动势的方向将要阻碍原磁场的变化,这是因为原有的磁场是线圈中的电流产生的,自感受电动热阻碍通过线圈的电流发生变化,这种阻碍作用就是电感的感抗,其单位欧姆()。感抗的大小与线圈的电流感量的大小和通过电感线圈的交流频率有关,电感量越大,他所形成的感抗也就越大。同一电感量下,交流电流的频率越高,感抗也就越大。它们的关系可下列公式说明:XL=2fL式中XL——感抗;f——电流的频率;L ——电感量。

电感线圈的互感工作原理:在通过交流的电感线圈的交变磁场中,放置另一个电感线圈,交变磁场中的磁力线将穿过这个线圈,并且在该线圈中产生感应电动势,我们将这种现象称之为互感。一般将原电线称为初级圈的互感量有关,初、次级线圈之间的相互作用称为耦合(系数)。耦合系数与两线圈的位置、方式、有无磁芯等因素有关。两线圈的是感量与两线圈之间的耦合系数有关,电感线圈的互感原理也就是常见的变压器原理。

(2)电感线圈的作用。电感的作用如下两点:1)阻流作用:线圈中的自感电动势总是与线圈中的电流变化相对抗。主要可分为高频阻流线圈及低频阻流线圈。

)调谐与选频作用:电感线圈与电容器并联可组成LC调谐电路。即电路的固有振荡频率f0与非交流信号的频率f相等,则回路的感抗与容抗也相等,于是电磁能量就在电感、电容之间来回振荡,这就是LC回路的谐振现象。谐振时由于电路的感抗与容抗等值又反向,因此回路总电流的感抗最小,电流量最大(指f="f0"的交流信号),所以LC谐振电路具有选择频率的作用,能将某一频率f的交流信号选择出来。

(3)电感线圈的检测。电感线圈的检测一般要借助于专用的电子仪器,在不具备专用仪器时,可用万用表对电感受线圈进行检测(只能在致上判断其好坏)。

电感线圈的直流电阻值一般很小,大约为零点几欧到几欧左右,低频线圈的直流电阻最多也只有几百欧至几千欧。当被测线圈电阻为无穷大时,说明线圈内部或引出端已开路。测量过程中还应注意线圈与外电路断开,以避免外电路对线圈的并联形成错误判断。更换新电感线圈时,应注意更换的电感数值相接近。至于局部短路,往往是不能检测出来的,在检修的过程中,只能用代换法。

在使用线圈时应注意不要随意改变线圈的形状、大小、方向及线圈间的距离,否则会影响线圈原有的电感量,特别是更换高频线圈时更应注意。

2.变压器变压器是电子线路中广泛应用的一种无源器件,利用线圈之间的互感作用,可以对交流(或信号)进行电压变换、电流变换、阻抗变换,可以传递信号,阻隔直流等。变压器一般由线圈、铁(磁)芯和骨架等几部分组成,在电子线路中常用英文字母“T”或“B”表示。

压器在电路中的主要作用是进行输入与输出之间的电压和阻抗的变换,其基本工作原理是:当给变压器初级线圈加上一个交变压U1时,在线圈中则产生交变电流I1.由于交变电流I1的作用,在初级线圈中则产生变磁场。于是,在磁芯中产生交变的磁感受应强度和交变的磙。由于磁芯的作用,磁通必须经过变压器的次级线圈,结果在次级线圈中产生互感电动势U2。若初级线圈的匝数为N1,次级线圈的匝数为N2,则有U1/U2=N1/N2=n.当N1大于N2时,n 大于1,则U1大于U2,输出电压小于输入电压。当N1大于N2时,n小于1时,则U1小于U2,输出电压大于输入电压。

变压器的种类繁多,根据其用途可分为低频变压器、中频变压器、高频变压器等多种。按其磁芯又可分为铁芯变压器、磁芯(铁氧体)变压器与空心变压器等几种。

变压器的主要技术参数有:额定功率:指的是在额定的频率的电压下,变压器能长期工作而不超过额定的温升的输出功率。额定功率中会有部分无功功率(因变压器自身损耗电量为铜损),所以其单位用伏安(V A)表示,而不用瓦(W)表示。

匝数比:变压器初级绕组的匝数(N1)与次级绕组的匝数(N2)之比称为匝数比(n),即n=N1/N2.在一般情况下,它就是输入电压与输出电压之比,所以匝数比又可称为变压比。

工作效率:是指变压器次级输出的电功率与功放输入电功率比值的百分数,即:工作效率=输出功率/输入功率*100%工作效率一般是指开磁稳压电源等大功率的工作部分,而中频、高频变压器一般是不考虑工作效率的。

电感与变压器的区别

能够产生自感、互感作用的器件均称为电感器件。电感器件是无线电设备中重要元件之一,它与电阻、电容、晶体二极管、晶体三极管等电子器件进行适当的配合,可构成各种功能的电子线路。 由于电感器一般由线圈构成,所以又称为电感线圈。为了增加Q值、缩小体积,线圈中常用软磁性材料做成磁芯。电感器有固定电感器、可变电感器、微调电感受器、色码电感器、平面电感器、集成电感器等。 在无线电整机中电感器主要是指各种线圈,对于与电感线圈相关的变压器、延迟线、滤波器等,在本节中将作必要说明。 1.电感线圈电感线圈是用绝缘导线(漆包线、纱包线、***导线等)一圈紧靠一图地绕制而成.在交流电路中,线圈有阻碍交流电流通过的作用,而对稳定的直流电压却不起作用(线罪状本身直流电阻例外)。所以线圈可以在交流电路中作阻流、变压、交连、负载等。当线圈和电容配合是时可作调谐、滤波、选频、分频、退耦等。 电感线圈在电路中常用英文字母“L”表示,电感量的单位是“亨利”,简称亨,常用英文字母“H”表示;比亨小的单位为毫亨,用英文字母mH表示;更小单位为微亨,用英文字母H表示。它们之间的关系为:1H=103mH=106uH.(1)自感与互感。当交流电流通过电感线圈时,将在线圈的周围产生交变磁场,这个磁场能穿过线圈,并且在线圈中产生感应电动势。自感电动势的大小与磁通量的线圈的特性有磁,这种特性用自感电感线圈在电路中常用英文字母“L”表示,电感量的单位是“亨利”,简称亨,常用英文字母“H”表示;比亨小的单位为毫亨,用英文字母mH表示;更小单位为微亨,用英文字母H表示。它们之间的关系为:1H=103mH=106uH.(1)自感与互感。当交流电流通过电感线圈时,将在线圈的周围产生交变磁场,这个磁场能穿过线圈,并且在线圈中产生感应电动势。自感电动势的大小与磁通量的线圈的特性有磁,这种特性用自感系数来表示。电感受。电感受量是表示电感数值大小的量,一般称之为电感。 电感线圈的自感工作原理:线圈(电感)中的自感电动势的方向将要阻碍原磁场的变化,这是因为原有的磁场是线圈中的电流产生的,自感受电动热阻碍通过线圈的电流发生变化,这种阻碍作用就是电感的感抗,其单位欧姆()。感抗的大小与线圈的电流感量的大小和通过电感线圈的交流频率有关,电感量越大,他所形成的感抗也就越大。同一电感量下,交流电流的频率越高,感抗也就越大。它们的关系可下列公式说明:XL=2fL式中XL——感抗;f——电流的频率;L ——电感量。 电感线圈的互感工作原理:在通过交流的电感线圈的交变磁场中,放置另一个电感线圈,交变磁场中的磁力线将穿过这个线圈,并且在该线圈中产生感应电动势,我们将这种现象称之为互感。一般将原电线称为初级圈的互感量有关,初、次级线圈之间的相互作用称为耦合(系数)。耦合系数与两线圈的位置、方式、有无磁芯等因素有关。两线圈的是感量与两线圈之间的耦合系数有关,电感线圈的互感原理也就是常见的变压器原理。 (2)电感线圈的作用。电感的作用如下两点:1)阻流作用:线圈中的自感电动势总是与线圈中的电流变化相对抗。主要可分为高频阻流线圈及低频阻流线圈。

变压器参数计算

变压器参数计算 一.电磁学计算公式推导: 1.磁通量与磁通密度相关公式: Ф= B * S ⑴ Ф----- 磁通(韦伯) B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯S ----- 磁路的截面积(平方米) B = H * μ⑵ μ----- 磁导率(无单位也叫无量纲) H ----- 磁场强度(伏特每米) H = I*N / l ⑶ I ----- 电流强度(安培) N ----- 线圈匝数(圈T) l ----- 磁路长路(米) 2.电感中反感应电动势与电流以及磁通之间相关关系式: EL =⊿Ф/ ⊿t * N ⑷

EL = ⊿i / ⊿t * L ⑸ ⊿Ф----- 磁通变化量(韦伯) ⊿i ----- 电流变化量(安培) ⊿t ----- 时间变化量(秒) N ----- 线圈匝数(圈T) L ------- 电感的电感量(亨) 由上面两个公式可以推出下面的公式: ⊿Ф/ ⊿t * N = ⊿i / ⊿t * L 变形可得: N = ⊿i * L/⊿Ф 再由Ф= B * S 可得下式: N = ⊿i * L / ( B * S ) ⑹ 且由⑸式直接变形可得: ⊿i = EL * ⊿t / L ⑺ 联合⑴⑵⑶⑷同时可以推出如下算式: L =(μ* S )/ l * N2 ⑻ 这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素) 3.电感中能量与电流的关系: QL = 1/2 * I2 * L ⑼ QL -------- 电感中储存的能量(焦耳) I -------- 电感中的电流(安培) L ------- 电感的电感量(亨)

电感、线圈和变压器的实用知识

什么是电感器、变压器? 电感器(电感线圈)和变压器均是用绝缘导线(例如漆包线、纱包线等)绕制而成的电磁感应组件,也是电子电路中常用的元器件之一。 一、自感与互感 (一)自感 当线圈中有电流通过时,线圈的周围就会产生磁场。当线圈中电流发生变化时,其周围的磁场也产生相应的变化,此变化的磁场可使线圈自身产生感应电动势(电动势用以表示有源组件理想电源的端电压),这就是自感。 (二)互感 两个电感线圈相互靠近时,一个电感线圈的磁场变化将影响另一个电感线圈,这种影响就是互感。互感的大小取决于电感线圈的自感与两个电感线圈耦合的程度。 二、电感器的作用与电路图形符号 (一)电感器的电路图形符号 电感器是用漆包线、纱包线或塑皮线等在绝缘骨架或磁心、铁心上绕制成的一组串联的同轴线匝,它在电路中用字母“L”表示,图6-1是其电路图形符号。 (二)电感器的作用 电感器的主要作用是对交流信号进行隔离、滤波或与电容器、电阻器等组成谐振电路。 三、变压器的作用及电路图形符号 (一)变压器的电路图形符号 变压器是利用电感器的电磁感应原理制成的部件。在电路中用字母“T”(旧标准为“B”)表示,其电路图形符号如图6-12所示。 (二)变压器的作用

变压器是利用其一次(初级)、二次(次级)绕组之间圈数(匝数)比的不同来改变电压比或电流比,实现电能或信号的传输与分配。其主要有降低交流电压、提升交流电压、信号耦合、变换阻抗、隔离等作用。 (一)电感器的结构与特点 电感器一般由骨架、绕组、屏蔽罩、封装材料、磁心或铁心等组成。 1.骨架骨架泛指绕制线圈的支架。一些体积较大的固定式电感器或可调式电感器(如振荡线圈、阻流圈等),大多数是将漆包线(或纱包线)环绕在骨架上,再将磁心或铜心、铁心等装入骨架的内腔,以提高其电感量。 骨架通常是采用塑料、胶木、陶瓷制成,根据实际需要可以制成不同的形状。 小型电感器(例如色码电感器)一般不使用骨架,而是直接将漆包线绕在磁心上。 空心电感器(也称脱胎线圈或空心线圈,多用于高频电路中)不用磁心、骨架和屏蔽罩等,而是先在模具上绕好后再脱去模具,并将线圈各圈之间拉开一定距离,如图6-4所示。2.绕组绕组是指具有规定功能的一组线圈,它是电感器的基本组成部分。 绕组有单层和多层之分。单层绕组又有密绕(绕制时导线一圈挨一圈)和间绕(绕制时每圈导线之间均隔一定的距离)两种形式;多层绕组有分层平绕、乱绕、蜂房式绕法等多种,如图6-5所示。 3.磁心与磁棒磁心与磁棒一般采用镍锌铁氧体(NX系列)或锰锌铁氧体(MX系列)等材料,它有“工”字形、柱形、帽形、“E”形、罐形等多种形状,如图6-6所示。 4.铁心铁心材料主要有硅钢片、坡莫合金等,其外形多为“E”型。 5.屏蔽罩为避免有些电感器在工作时产生的磁场影响其它电路及元器件正常工作,就为其增加了金属屏幕罩(例如半导体收音机的振荡线圈等)。采用屏蔽罩的电感器,会增加线圈的损耗,使Q值降低。 6.封装材料有些电感器(如色码电感器、色环电感器等)绕制好后,用封装材料将线圈和磁心等密封起来。封装材料采用塑料或环氧树脂等。

线圈电感量的计算详解

线圈电感量的计算详解 在开关电源电路设计或电路试验过程中,经常要对线圈或导线的电感以及线圈的匝数进行计算,以便对电路参数进行调整和改进。下面仅列出多种线圈电感量的计算方法以供参考,其推导过程这里不准备详细介绍。 在进行电路计算的时候,一般都采用SI国际单位制,即导磁率采用相对导磁率与真空导磁率的乘积,即:μ=μrμ0 ,其中相对导磁率μr是一个没有单位的系数,μ0真空导磁率的单位为H/m。 几种典型电感 1、圆截面直导线的电感 其中: L:圆截面直导线的电感 [H] l:导线长度 [m] r:导线半径 [m] μ0 :真空导磁率,μ0=4π10-7 [H/m] 【说明】这是在 l>> r的条件下的计算公式。当圆截面直导线的外部有磁珠时,简称磁珠,磁珠的电感是圆截面直导线的电感的μr倍,μr是磁芯的相对导磁率,μr=μ/μ0 ,μ为磁芯的导磁率,也称绝对导磁率,μr是一个无单位的常数,它很容易通过实际测量来求得。 2、同轴电缆线的电感 同轴电缆线如图2-33所示,其电感为:

其中: L:同轴电缆的电感 [H] l:同轴电缆线的长度 [m] r1 :同轴电缆内导体外径 [m] r2:同轴电缆外导体内径 [m] μ0:真空导磁率,μ0=4π10-7 [H/m] 【说明】该公式忽略同轴电缆外导体的厚度。 3、双线制传输线的电感 其中: L:输电线的电感 [H]

l:输电线的长度 [m] D:输电线间的距离 [m] r:输电线的半径 [m] μ0:真空导磁率,μ0=4π10-7 [H/m] 【说明】该公式的应用条件是: l>> D ,D >> r 。 4、两平行直导线之间的互感 两平行直导线如图2-34所示,其互感为: 其中: M:输电线的互感 [H] l :输电线的长度 [m] D:输电线间的距离 [m] r:输电线的半径 [m] μ0:真空导磁率,μ0=4π10-7 [H/m] 【说明】该公式的应用条件是: >> D ,D >> r 。 5、圆环的电感 其中: L:圆环的电感 [H] R:圆环的半径 [m] r:圆环截面的半径 [m]

变压器基础知识

变压器原理、质量等基础知识 作者:未知????文章来源:未知????点击数:669????更新时间:2008-2-14 变压器的基本原理??????? ??? 变压器是利用线圈互感特性构成的一种元器件,几乎在所有的电子产品中都要用到。它原理简单,但根据不同的使用场合(不同的用途),变压器的绕制工艺会有所不同。变压器的功能主要有:电压变换;阻抗变换;隔离;稳压(磁饱和变压器)等。它是由一个初级线圈(线圈圈数n1)及一个次级线圈(线圈圈数n2)环绕着一个核心。常用的铁心形状一般有E型和C型。 ?

???????E1是初级电压,次级电压E2是? E2 = E1×(n2/n1)??????? ??? 上图是变压器的原理简体图,当一个正弦交流电压U1加在初级线圈两端时,导线中就有交变电流I1并产生交变磁通ф1,它沿着铁心穿过初级线圈和次级线圈形成闭合的磁路。在次级线圈中感应出互感电势U2,同时ф1也会在初级线圈上感应出一个自感电势E1,E1的方向与所加电压U1方向相反而幅度相近,从而限制了I1的大小。为了保持磁通ф1的存在就需要有一定的电能消耗,并且变压器本身也有一定的损耗,尽管此时次级没接负载,初级线圈中仍有一定的电流,这个电流我们称为“空载电流”。??????? ??? 如果次级接上负载,次级线圈就产生电流I2,并因此而产生磁通ф2,ф2的方向与ф1相反,起了互相抵消的作用,使铁心中总的磁通量有所减少,从而使初级自感电压E1减少,其结果使I1增大,可见初级电流与次级负载有密切关系。当次级负载电流加大时I1增加,ф1也增加,并且ф1增加部分正好补充了被ф2 所抵消的那部分磁通,以保持铁心里总磁通量不变。如果不考虑变压器的损耗,可以认为一个理想的变压器次级负载消耗的功率也就是初级从电源取得的电功率。变压器能根据需要通过改变次级线圈的圈数而改变次级电压,但是不能改变允许负载消耗的功率。???????? ??? 下图是各种变压器的电路符号,从变压器的电路符号可以看出变压器的线圈结构。 ? ?

变压器知识培训学习资料

变压器知识培训 变压器概述 变压器是利电磁感应原理传输电能和电信号的器件,它具有变压,变流,变阻抗的作用。变压器种类很多,应用也十分广泛,例如在电力系统中用电力变压器把发电机发出的电压升高后进行远离输电,到达目的地后再用变压器把电压降低以便用户使用,以此减少运输过程中电能的损耗。 变压器的工作原理 变压器由铁芯(或磁芯)和线圈组成,线圈有两个或两个以上的绕组,其中接电源的一侧叫一次侧,一次侧的绕组叫一次绕组,把变压器接负载的一侧叫二次侧,二次侧的绕组叫二次绕组。 变压器是变换交流电压、电流和阻抗的器件,一次线圈中通有交流电流时,铁芯(或磁芯)中便产生交流磁通,使二次级线圈中感应出电压(或电流)。 变压器利用电磁感应原理,从一个电路向另一个电路传递电能或传输信号的一种电器设备。 型号说明:

一、变压器的制作原理: 在发电机中,不管是线圈运动通过磁场或磁场运动通过固定线圈,均能在线圈中感应电势,此两种情况,磁通的值均不变,但与线圈相交链的磁通数量却有变动,这是互感应的原理。变压器就是一种利用电磁互感应,变换电压,电流和阻抗的器件。 二、分类 按容量分类:中小型变压器(35KV及以下,容量在5-6300KVA)、大型变压器(110KV及以下容量为8000-63000KVA)、特大型变压器(220KV以上)。 按用途分类:电力变压器(升压变、降压变、配电变、联络变、厂用或电所用等)、仪用变压器(电流互感器、电压互感器等用于测量和保护用)、电炉变压器、试验变压器、整流变压器、调压变压器、矿用变压器、其它变压器。 按冷却价质分类:干式(自冷)变压器、油浸(自冷)变压器、气体(SF6)变压器。 按冷却方式分类:油浸自冷式、油浸风冷式、强迫油循环风冷式、强迫油循环水冷式、蒸发冷却式。

各种电感计算公式

导线线径与电流规格表 绝缘导线(铝芯/铜芯)载流量的估算方法 以下是绝缘导 线(铝芯/铜芯)载流量的估算 方法,这是电工基础,今天把这些知识教给大家,以便计算车上的导线允许通过的电流.(偶原在省供电局从事电能计量工作) 铝芯绝缘导线载流量与截面的倍数关系 导线截面(平方毫米) 1 1.5 2.5 4 6 10 16 25 35 50 70 95 120 载流量(A 安培) 9 14 23 32 48 60 90 100 123 150 210 238 300 载流是截面倍数 9 8 7 6 5 4 3.5 3 2.5 估算口诀:二点五下乘以九,往上减一顺号走。三十五乘三点五,双双成组减点五。(看不懂没关系,多数情况只要查上表就行了)。条件有变加折算,高温九折铜升级。穿管根数二三四,八七六折满载流。 说明:(1)本节口诀对各种绝缘线(橡皮和塑料绝缘线)的载流量(安全电流)不是直接指出,而是“截面乘上一定的倍数”来表示,通过心算而得。由表5 3可以看出:倍数随截面的增大而减小。“二点五下乘以九,往上减一顺号走”说的是2.5mm’及以下的各种截面铝芯绝缘线,其载流量约为截面数的9倍。如2.5mm’导线,载流量为2.5×9=22.5(A)。从4mm’及以上导线的载流量和截面数的倍数关系是顺着线号往上排,倍数逐次减l ,即4×8、6×7、10×6、16×5、25×4。“三十五乘三点五,双双成组减点五”,说的是35mm”的导线载流量为截面数的3.5倍,即35×3.5=122.5(A)。从50mm’及以上的导线,其载流量与截面数之间的倍数关系变为两个两个线号成一组,倍数依次减0.5。 表格为导线在不同温度下的线径与电流规格表。 (请注意:线材规格请依下列表格,方能正常使用)

电感和变压器的识读与检测(授课教案)

【课题名称】电感器与变压器的识别与检测 【课时安排】2课时(90分钟) 【知识目标】 1、向学生展示不同类型的固定电感器、可变电感器,熟知它们的适用场合 2、讲解电感器的电感量的识别方法,并确定其允许误差范围、额定电流 值。 3、讲解变压器的结构种类。 【能力目标】 1、能用目视法识别常见电感和变压器; 2、能读出电感和变压器上标识的主要参数; 3、会用万用表测电感和变压器并判断质量。 【教学重点】 电感器标识方法 【教学难点】 1、电感器电感量标注法 2、万用表测电感和变压器判断质量. 【教学方法】 多媒体展示法、讲授法、现场演示法 【教具资源】 多媒体课件、各种类型电感万用表 【学情分析】 1、学生在电路学习了与本章内容相关的知识,对电感器和变压器有一定了解。 2、学生对通过学习电阻、电容的标注方法,触类旁通,对电感器的标注方法接受会快一点。 【教学过程】 1、复习旧知:教师提问,学生回答,复习电阻和电容的相关知识,为学习电感做铺垫。 问题1:电阻的标识方法有几种?分别是什么? 问题2:电阻和电容的主要参数有哪些? 问题3:电容的特性有哪些? 2、课题引入:引入另外一种常用电子元器件——电感器,复习已学电感相关知识,为新课新知识做铺垫。 相关知识:电感(或称电感器)也是一种非线性元件,是利用电磁感应原理制成的器件。能够储存磁场能量。由于通过电感的电流值不能突变,所以,电感对直流电流短路(通直流),对突变的电流呈高阻态(阻交流)。 作用: 1、做为滤波线圈阻止交流干扰(隔交通直)。 2、可起隔离作用。 3、与电容组成谐振电路。 4、构成各种滤波器、选频电路等,这是电路中应用最多的方面。 5、利用电磁感应特性制成磁性元件。如磁头和电磁铁。

变压器设计1

干式铁心电抗器 一、基本原理 电抗器是一个电感元件,当电抗器线圈中通以交流电时,产生电抗(X L )和电抗压降(U L =I L X L )。 空心电抗器线圈中无铁心,以非导磁材料空气或变压器油等为介质,其导磁系数很小 (1≈μ) ,磁阻(C r )很大,线圈电感(L )、电抗(X L )及电抗压降(U L )均小; 铁心电抗器的线圈中放有导磁的硅钢片铁心材料,硅钢片导磁系数大,磁阻小,其电感(L )、电抗(X L )及电抗压降(U L )均大。另外,铁心电抗器铁心柱上放有气隙(或油隙),改变气隙长度,会改变磁路磁阻,从而得到所需电感值(L )、电抗(X L )及电抗压降(U L )。 铁心电抗器线圈通过交流电,产生磁通分两部分,如图所示。一部分是通过铁心之外的线圈及空道的漏磁通(q Φ),它产生线圈漏抗(X Lq )及漏抗压降(U Lq = I L X Lq );另一部分是通过铁磁路(铁心及气隙)的主磁通(T Φ),它将在线圈中感应一个电势E ,其E ?可以 视为一个电压降,如忽略电阻电压降,此压降可认为是主电抗压降(U LT ) 。等值电路如图所示。 电抗压降(U L )的通式: C C L C C L C L L L L L l A W fI l A W fI r W I L I X I U 28022 109.72?×==== =μμπωω (V) 式中: L I —通过电抗器线圈的电流(A) L X —电抗器电抗(Ω) L —电抗器电感(H) W —线圈匝数 C r —磁阻(H -1 ),C r =C C A l 0μμ μ—相对导磁系数,如空气或变压器油μ=1 0μ—绝对导磁系数,cm H /104.080?×=πμ C l —磁路长度(cm) C A —磁路面积(cm 2 ) 磁通与磁势图 U LT 等值电路图

变压器与电感知识

变压器与电感知识 能够产生自感、互感作用的器件均称为电感器件。电感器件是无线电设备中重要元件之一,它与电阻、电容、晶体二极管、晶体三极管等电子器件进行适当的配合,可构成各种功能的电子线路。 由于电感器一般由线圈构成,所以又称为电感线圈。为了增加Q值、缩小体积,线圈中常用软磁性材料做成磁芯。电感器有固定电感器、可变电感器、微调电感受器、色码电感器、平面电感器、集成电感器等。 在无线电整机中电感器主要是指各种线圈,对于与电感线圈相关的变压器、延迟线、滤波器等,在本节中将作必要说明。 1.电感线圈电感线圈是用绝缘导线(漆包线、纱包线、***导线等)一圈紧靠一图地绕制而成.在交流电路中,线圈有阻碍交流电流通过的作用,而对稳定的直流电压却不起作用(线罪状本身直流电阻例外)。所以线圈可以在交流电路中作阻流、变压、交连、负载等。当线圈和电容配合是时可作调谐、滤波、选频、分频、退耦等。 电感线圈在电路中常用英文字母“L”表示,电感量的单位是“亨利”,简称亨,常用英文字母“H”表示;比亨小的单位为毫亨,用英文字母mH表示;更小单位为微亨,用英文字母H 表示。它们之间的关系为:1H=103mH=106uH.(1)自感与互感。当交流电流通过电感线圈时,将在线圈的周围产生交变磁场,这个磁场能穿过线圈,并且在线圈中产生感应电动势。自感电动势的大小与磁通量的线圈的特性有磁,这种特性用自感系数来表示。电感受。电感受量是表示电感数值大小的量,一般称之为电感。 电感线圈的自感工作原理:线圈(电感)中的自感电动势的方向将要阻碍原磁场的变化,这是因为原有的磁场是线圈中的电流产生的,自感受电动热阻碍通过线圈的电流发生变化,这种阻碍作用就是电感的感抗,其单位欧姆()。感抗的大小与线圈的电流感量的大小和通过电感线圈的交流频率有关,电感量越大,他所形成的感抗也就越大。同一电感量下,交流电流的频率越高,感抗也就越大。它们的关系可下列公式说明:XL=2fL式中XL——感抗;f——电流的频率;L ——电感量。 电感线圈的互感工作原理:在通过交流的电感线圈的交变磁场中,放置另一个电感线圈,交变磁场中的磁力线将穿过这个线圈,并且在该线圈中产生感应电动势,我们将这种现象称之为互感。一般将原电线称为初级圈的互感量有关,初、次级线圈之间的相互作用称为耦合(系数)。耦合系数与两线圈的位置、方式、有无磁芯等因素有关。两线圈的是感量与两线圈之间的耦合系数有关,电感线圈的互感原理也就是常见的变压器原理。 (2)电感线圈的作用。电感的作用如下两点: 1)阻流作用:线圈中的自感电动势总是与线圈中的电流变化相对抗。主要可分为高频阻流线圈及低频阻流线圈。 2)调谐与选频作用:电感线圈与电容器并联可组成LC调谐电路。即电路的固有振荡频

电感理论与计算

一、电感器的定义 1.1 电感的定义: 电感是导线内通过交流电流时,在导线的内部及其周围产生交变磁通,导线的磁通量与生产此磁通的电流之比。 当电感中通过直流电流时,其周围只呈现固定的磁力线,不随时间而变化;可是当在线圈中通过交流电流时,其周围将呈现出随时间而变化的磁力线。根据法拉弟电磁感应定律---磁生电来分析,变化的磁力线在线圈两端会产生感应电势,此感应电势相当于一个“新电源”。当形成闭合回路时,此感应电势就要产生感应电流。由楞次定律知道感应电流所产生的磁力线总量要力图阻止原来磁力线的变化的。由于原来磁力线变化来源于外加交变电源的变化,故从客观效果看,电感线圈有阻止交流电路中电流变化的特性。电感线圈有与力学中的惯性相类似的特性,在电学上取名为“自感应”,通常在拉开闸刀开关或接通闸刀开关的瞬间,会发生火花,这就是自感现象产生很高的感应电势所造成的。 总之,当电感线圈接到交流电源上时,线圈内部的磁力线将随电流的交变而时刻在变化着,致使线圈不断产生电磁感应。这种因线圈本身电流的变化而产生的电动势,称为“自感电动势”。 由此可见,电感量只是一个与线圈的圈数、大小形状和介质有关的一个参量,它是电感线圈惯性的量度而与外加电流无关。 1.2 电感线圈与变压器 电感线圈:导线中有电流时,其周围即建立磁场。通常我们把导线绕成线圈,以增强线圈内部的磁场。电感线圈就是据此把导线(漆包线、纱包或裸导线)一圈靠一圈(导线间彼此互相绝缘)地绕在绝缘管(绝缘体、铁芯或磁芯)上制成的。一般情况,电感线圈只有一个绕组。 变压器:电感线圈中流过变化的电流时,不但在自身两端产生感应电压,而且能使附近的线圈中产生感应电压,这一现象叫互感。两个彼此不连接但又靠近,相互间存在电磁感应的线圈一般叫变压器。 1.3 电感的符号与单位 电感符号:L

4.变压器与电感器的设计要点

损耗确认:在3.2:节已对反激变压器的损耗进行了分析,但如何确 认实际的情况,只有实测原副边绕组和磁芯的温度,而且要在无风的条件下测量,并根据温度进行改进,使铜损等于铁损,且原副边的铜损相等。但实测原副边绕组的温度很困难,所以,要保证原副边绕组的铜损相等,必须按原副边绕组总的铜面积相等的原则选定线径。 磁芯尺寸:要知道磁芯的尺寸是经过反复优化而确定的,目的是传输更大的功率和减小寄生参数,所以,在使用磁芯时,窗口一定要用满,如原副边绕组一定要绕满窗口,否则就一定会有不妥之处,如选的磁芯型号过大等等。 半匝:在多绕组输出时,偶尔会为得到准确的输出电压而使用半匝,但要搞清楚半匝的本质,从电流必须流过完整的回路角度看,半匝其实并不真正存在,只是另一半是由其余线路来充当而已。这样一来,漏感大增是肯定的,故此,半匝不能在主要绕组上使用。另外还有安规方面的问题。所以要慎用半匝。

线路对漏感有惊人的影响,特别是变压器匝比较大时,所以,良好的布线是保 证漏感较小的前提,因此,变压器漏感的测量要在PCB 板上进行,在输出二极 管D 和电解电容C 的位置,要用短粗铜线短接,这样测ab 点之间的漏感值才是 在电路中起作用的漏感,千万不要被错 误的测量而误导。漏感测量:为了减小漏感,我们花费很大的精力在变压器上进行改善,并测得有不超过2~3%的漏感,深感欣慰。但不要忘记, PCB Q Vin+C Np Ns Vo+Vo-a b D 脉冲丢失:反激变换器在轻载或空载时,会有脉冲丢失的现象,其原因是反激变压器开通一次所存的能量超过负载的需求,电压环的误差放大器处于随机工作状态所致。 增大电感量会有改善,但只增电感量会有其他问题产生,所以,还是在电路上寻找改善的办法,如增大D max 、降低f s 、增加假负栽、加大电流前沿尖峰的削减等等。

电感器、变压器检测方法与经验

电感器、变压器检测方法与经验 1色码电感器的的检测将万用表置于R×1挡,红、黑表笔各接色码电感器的任一引出端,此时指针应向右摆动。根据测出的电阻值大小,可具体分下述三种情况进行鉴别:A被测色码电感器电阻值为零,其内部有短路性故障。 B被测色码电感器直流电阻值的大小与绕制电感器线圈所用的漆包线径、绕制圈数有直接关系,只要能测出电阻值,则可认为被测色码电感器是正常的。 2中周变压器的检测 A将万用表拨至R×1挡,按照中周变压器的各绕组引脚排列规律,逐一检查各绕组的通断情况,进而判断其是否正常。 B检测绝缘性将万用表置于R×10k挡,做如下几种状态测试: (1)初级绕组与次级绕组之间的电阻值; (2)初级绕组与外壳之间的电阻值; (3)次级绕组与外壳之间的电阻值。 上述测试结果分出现三种情况: (1)阻值为无穷大:正常; (2)阻值为零:有短路性故障; (3)阻值小于无穷大,但大于零:有漏电性故障。 3电源变压器的检测 A通过观察变压器的外貌来检查其是否有明显异常现象。如线圈引线是否断裂,脱焊,绝缘材料是否有烧焦痕迹,铁心紧固螺杆是否有松动,硅钢片有无锈蚀,绕组线圈是否有外露等。 B绝缘性测试。用万用表R×10k挡分别测量铁心与初级,初级与各次级、铁心与各次级、静电屏蔽层与衩次级、次级各绕组间的电阻值,万用表指针均应指在无穷大位置不动。否则,说明变压器绝缘性能不良。 C线圈通断的检测。将万用表置于R×1挡,测试中,若某个绕组的电阻值为无穷大,则说明此绕组有断路性故障。 D判别初、次级线圈。电源变压器初级引脚和次级引脚一般都是分别从两侧引出的,并且初级绕组多标有220V字样,次级绕组则标出额定电压值,如15V、24V、35V等。再根据这些标记进行识别。 E空载电流的检测。 (a)直接测量法。将次级所有绕组全部开路,把万用表置于交流电流挡(500mA,串入初级绕组。当初级绕组的插头插入220V交流市电时,万用表所指示的便是空载电流值。此值不应大于变压器满载电流的10%~20%。一般常见电子设备电源变压器的正常空载电流应在100mA左右。如果超出太多,则说明变压器有短路性故障。 (b)间接测量法。在变压器的初级绕组中串联一个10/5W的电阻,次级仍全部空载。把万用表拨至交流电压挡。加电后,用两表笔测出电阻R两端的电压降U,然后用欧姆定律算出空载电流I空,即I空=U/R。 F空载电压的检测。将电源变压器的初级接220V市电,用万用表交流电压接依次测出各绕组的空载电压值(U21、U22、U23、U24)应符合要求值,允许误差范围一般为:高压绕组≤±10%,低压绕组≤±5%,带中心抽头的两组对称绕组的电压差应≤±2%。 G一般小功率电源变压器允许温升为40℃~50℃,如果所用绝缘材料质量较好,允许温升还可提高。 H检测判别各绕组的同名端。在使用电源变压器时,有时为了得到所需的次级电压,可将两个或多个次级绕组串联起来使用。采用串联法使用电源变压器时,参加串联的各绕组的

高频变压器参数计算方法

高频变压器参数计算 一.电磁学计算公式推导: 1.磁通量与磁通密度相关公式: Ф = B * S ⑴ Ф ----- 磁通(韦伯) B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯 S ----- 磁路的截面积(平方米) B = H * μ ⑵ μ ----- 磁导率(无单位也叫无量纲) H ----- 磁场强度(伏特每米) H = I*N / l ⑶ I ----- 电流强度(安培) N ----- 线圈匝数(圈T) l ----- 磁路长路(米) 2.电感中反感应电动势与电流以及磁通之间相关关系式: E L =⊿Ф / ⊿t * N ⑷ E L = ⊿i / ⊿t * L ⑸ ⊿Ф ----- 磁通变化量(韦伯) ⊿i ----- 电流变化量(安培) ⊿t ----- 时间变化量(秒) N ----- 线圈匝数(圈T) L ------- 电感的电感量(亨) 由上面两个公式可以推出下面的公式: ⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得: N = ⊿i * L/⊿Ф 再由Ф = B * S 可得下式: N = ⊿i * L / ( B * S ) ⑹ 且由⑸式直接变形可得: ⊿i = E L * ⊿t / L ⑺ 联合⑴⑵⑶⑷同时可以推出如下算式: L =(μ* S )/ l * N2 ⑻ 这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素) 3.电感中能量与电流的关系: Q L = 1/2 * I2 * L ⑼ Q L -------- 电感中储存的能量(焦耳) I -------- 电感中的电流(安培) L ------- 电感的电感量(亨) 4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数比与占空比的关系式: N1/N2 = (E1*D)/(E2*(1-D)) ⑽ N1-------- 初级线圈的匝数(圈) E1-------- 初级输入电压(伏特) N2-------- 次级电感的匝数(圈) E2-------- 次级输出电压(伏特)

十种线圈电感量的计算

10种线圈电感量的计算 在开关电源电路设计或电路试验过程中,经常要对线圈或导线的电感以及线圈的匝数进行计算,以便对电路参数进行调整和改进。下面仅列出多种线圈电感量的计算方法以供参考,其推导过程这里不准备详细介绍。 在进行电路计算的时候,一般都采用SI国际单位制,即导磁率采用相对导磁率与真空导磁率的乘积,即:μ=μrμ0 ,其中相对导磁率μr是一个没有单位的系数,μ0真空导磁率 的单位为H/m。 几种典型电感 1、圆截面直导线的电感 其中: L:圆截面直导线的电感 [H] l:导线长度 [m] r:导线半径 [m] μ0 :真空导磁率,μ0=4π10-7 [H/m] 【说明】 这是在 l>> r的条件下的计算公式。当圆截面直导线的外部有磁珠时,简称磁珠,磁珠的电感是圆截面直导线的电感的μr倍, μr是磁芯的相对导

磁率,μr=μ/μ0 , μ为磁芯的导磁率,也称绝对导磁率, μr是一个无单位的常数,它很容易通过实际测量来求得。 2、同轴电缆线的电感 同轴电缆线如图2-33所示,其电感为: 其中: L:同轴电缆的电感 [H] l:同轴电缆线的长度 [m] r1 :同轴电缆内导体外径 [m] r2:同轴电缆外导体内径 [m] μ0:真空导磁率,μ0=4π10-7 [H/m] 【说明】 该公式忽略同轴电缆外导体的厚度。

3、双线制传输线的电感 其中: L:输电线的电感 [H] l:输电线的长度 [m] D:输电线间的距离 [m] r:输电线的半径 [m] μ0:真空导磁率,μ0=4π10-7 [H/m] 【说明】 该公式的应用条件是: l>> D ,D >> r 。

变压器和电感的知识

够产生自感、互感作用的器件均称为电感器件。电感器件是无线电设备中重要元件之一,它与电阻、电容、晶体二极管、晶体三极管等电子器件进行适当的配合,可构成各种功能的电子线路。 由于电感器一般由线圈构成,所以又称为电感线圈。为了增加Q值、缩小体积,线圈中常用软磁性材料做成磁芯。电感器有固定电感器、可变电感器、微调电感受器、色码电感器、平面电感器、集成电感器等。 在无线电整机中电感器主要是指各种线圈,对于与电感线圈相关的变压器、延迟线、滤波器等,在本节中将作必要说明。 1.电感线圈电感线圈是用绝缘导线(漆包线、纱包线、***导线等)一圈紧靠一图地绕制而成.在交流电路中,线圈有阻碍交流电流通过的作用,而对稳定的直流电压却不起作用(线罪状本身直流电阻例外)。所以线圈可以在交流电路中作阻流、变压、交连、负载等。当线圈和电容配合是时可作调谐、滤波、选频、分频、退耦等。 电感线圈在电路中常用英文字母“L”表示,电感量的单位是“亨利”,简称亨,常用英文字母“H”表示;比亨小的单位为毫亨,用英文字母mH表示;更小单位为微亨,用英文字母H表示。它们之间的关系为:1H=103mH=106uH.(1)自感与互感。当交流电流通过电感线圈时,将在线圈的周围产生交变磁场,这个磁场能穿过线圈,并且在线圈中产生感应电动势。自感电动势的大小与磁通量的线圈的特性有磁,这种特性用自感系数来表示。电感受。电感受量是表示电感数值大小的量,一般称之为电感。 电感线圈的自感工作原理:线圈(电感)中的自感电动势的方向将要阻碍原磁场的变化,这是因为原有的磁场是线圈中的电流产生的,自感受电动热阻碍通过线圈的电流发生变化,这种阻碍作用就是电感的感抗,其单位欧姆()。感抗的大小与线圈的电流感量的大小和通过电感线圈的交流频率有关,电感量越大,他所形成的感抗也就越大。同一电感量下,交流电流的频率越高,感抗也就越大。它们的关系可下列公式说明:XL=2fL式中XL——感抗;f——电流的频率;L ——电感量。 电感线圈的互感工作原理:在通过交流的电感线圈的交变磁场中,放置另一个电感线圈,交变磁场中的磁力线将穿过这个线圈,并且在该线圈中产生感应电动势,我们将这种现象称之为互感。一般将原电线称为初级圈的互感量有关,初、次级线圈之间的相互作用称为耦合(系数)。耦合系数与两线圈的位置、方式、有无磁芯等因素有关。两线圈的是感量与两线圈之间的耦合系数有关,电感线圈的互感原理也就是常见的变压器原理。 (2)电感线圈的作用。电感的作用如下两点:1)阻流作用:线圈中的自感电动势总是与线圈中的电流变化相对抗。主要可分为高频阻流线圈及低频阻流线圈。 2)调谐与选频作用:电感线圈与电容器并联可组成LC调谐电路。即电路的固有振荡频率f0与非交流信号的频率f相等,则回路的感抗与容抗也相等,于是电磁能量就在电感、电容之间来回振荡,这就是LC回路的谐振现象。谐振时由于电路的感抗与容抗等值又反向,因此回路总电流的感抗最小,电流量最大(指f="f0"的交流信号),所以LC谐振电路具有选择频

线圈电感量的计算(二)

5、矩型线圈的电感 矩形线圈如图2-36所示,其电感为: 6、螺旋线圈的电感

其中: L:螺旋线圈的电感[H] l :螺旋线圈的长度[m] N:线圈的匝数 S:螺旋线圈的截面积[m2] μ:螺旋线圈内部磁芯的导磁率[H/m] k:长冈系数(由2R/l 决定,表2-1) 【说明】上式用来计算空心线圈的电感,μ=μ0 ,计算结果比较准确。当线圈内部有磁芯时,磁芯的导磁率最好选用相对导磁率μr ,μr=μ/μ0 ,μ为磁芯的导磁率,即:有磁芯线圈的电感是空心线圈电感的μr 倍,μr可通过实际测量来决定,只需把有磁芯的线圈和空心线圈分别进行对比测试,即可求得μr 。但由于磁芯的导磁率会随电流变化而变化,所以很难决定其准确值。这个公式是从单层线圈推导出来的,但对多层线圈也可以近似地适 用。 7、多层绕组线圈的电感

其中: L:多层绕组线圈的电感[H] R:线圈的平均半径[m] l :线圈的总长度[m] N:线圈的总匝数 t:线圈的厚度[m] k:长冈系数(由2R/l 决定,见表2-1) c:由l/t 决定的系数(见表2-2) 【说明】上式是用来计算多层线圈绕组、截面为圆形的空心线圈的电感计算公式。长冈系数k可查阅表2-1,系数c可查阅表2-2。当线圈内部有磁芯时,有磁芯线圈的电感是空心线圈电感的μr 倍,μr是磁芯的相对导磁率。相对导磁率的测试方法很简单,只需把有磁芯的线圈和空心线圈分别进行测试,通过对比即可求出相对导磁率的大小。

8、变压器线圈的电感 变压器线圈如图2-39所示,其电感为: L=μN*NS/l (2-108) 其中: L:变压器线圈的电感[H] l :变压器铁芯磁回路的平均长度[m] N:线圈的匝数 S:变压器铁芯磁回路的截面积[m2] μ:变压器铁芯的导磁率[H/m] 【说明】上式是用来计算变压器线圈电感的计算公式。由于变压器铁芯的磁回路基本是封闭的,变压器铁芯的平均导磁率相对来说比较大。铁芯的导磁率一般在产品技术手册中都会给出,但由于大多数开关电源变压器的铁芯都留有气隙,留有气隙的磁回路会出现磁场强度以及磁感应强度分布不均匀,因此,(2-108)式中的导磁率只能使用平均导磁率,技术手册中的数据不能直接使用。 在这种情况下,最好的方法是先制作一个简单样品,例如,在某个选好的变压器铁芯的骨架上绕一个简单线圈(比如匝数为10),然后对线圈的电感量进行测试,或者找一个已知线圈匝数与电感量的样品作为参考。知道了线圈样品的电感量后,只需把已知参数代入(2-108)或(2-94)式,即可求出其它未知参数,然后把所有已知参数定义为一个常数k;最后电感的计算公司就可以简化为:L = kN2 ,这样,电感量的计算就变得非常简单。 9、两个线圈的互感 两线圈的连接方法如图2-40所示。其中图2-40-a和图2-40-b分别为正、反向串联;图2-40-c

变压器基础知识培训教材

变压器基础知识培训教材 第一部分 原材料类 培训资料一 变压器工作原理 一变压器组成 变压器主要由骨架铁芯漆包线绝缘胶带纸等组成其中骨架起支撑作 用铁芯起能量转换桥梁作用漆包线主要用来做绕组绝缘胶带则用来对各绕组之间 的绝缘作保证最简单的变压器应有铁芯和漆包线缺一不可 胶带漆包线 铁芯磁芯 骨架 第1页 二变压器种类 按用途可分为 1电源变压器为电子设备提供电源如整流隔离灯丝等变压器 2音频变压器用于音频放大电路及音响设备中如话筒线间匹配等变压器 3开关电源变压器用于开关电源中的变压器如反激正激半桥正桥等变压 器 4特种变压器主要指具备特殊功能的一些变压器如电力变压器等 按工作频率可分为 1工频变压器指工作频率为50或60HZ的变压器俗称低频变压器

2中频变压器指工作频率为4001000HZ的变压器 3 音频变压器指工作频率在20KHZ 以下的变压器 4 高频变压器指工作频率在20KHZ 以上的变压器 其分类方法有多种如按铁芯结构按相位按绝缘等级按升降压方式等 二变压器工作原理 变压器是把电能从一个电路传递到另一个电路的静止电磁装置 磁力线 初级次级 ui RL 变压器工作原理图 图中与输入电源相连的为初级绕组初级绕组流过交变电流与负载相连的为次级绕组产生的电流同样是交变的 第2页 培训资料二 漆包线 WIRE 一漆包线类别 聚胺基甲酸脂漆包线是以Polyure thane树脂为主体的油脂为绝缘漆膜直铜软化 后表面涂一层或数层绝缘漆并经加工烘干而成其最大的特点是漆包膜在300?以上 时能于短时间内溶解便于直接上锡作业 1 UEW类型直接焊锡容易着色耐温等级有7级分别为 90度--Y级 105度--A级

反激式开关电源变压器初级线圈电感量的计算

反激式开关电源变压器初级线圈电感量的计算 反激式开关电源与正激式开关电源不同,对于如图1-19的反激式开关电源,其在控制开关接通其间是不向负载提供能量的,因此,反激式开关电源在控制开关接通期间只存储能量,而仅在控制开关关断期间才把存储能量转化成反电动势向负载提供输出。在控制开关接通期间反激式开关电源是通过流过变压器初级线圈的励磁电流产生的磁通来存储磁能量的。根据(1-98)式和(1-102)式,当控制开关接通时,流过变压器初级线圈的最大励磁电流为: (1-123)式就是计算反激式开关电源变压器初级线圈电感的公式。式中,L1为变压器初级线圈的电感,P为变压器的输入功率,Ton为控制开关的接通时间;I1m为流过变压器初级线圈的最大励磁电流,I1m= 2I1,I1为流过变压器初级线圈的励磁电流(平均值,可用有效值代之)。 由此可知,在计算反激式开关电源变压器的参数时,不但要根据(1-120)式计算变压器初级线圈的最少匝数,还要计算变压器初级线圈的电感量。当变压器初级线圈的最少匝数确定以后,变压器初级线圈的电感量就只能再由选择变压器铁心气隙的大小来决定,或由选择变压器铁心的导磁率来决定。 1-7-3-2-3.变压器初、次级线圈匝数比的计算 图1-19,反激式开关电源在控制开关接通期间是不输出功率的,仅在控制开关关断期间才把存储能量转化成反电动势向负载提供输出。反激式开关电源变压器次级线圈输出端一般都接有一个整流二极管,和一个储能滤波电容。由于储能滤波电容的容量很大,其两端电压基本不变,变压器次级线圈输出电压uo相当于被整流二极管和输出电压Uo进行限幅,因此,被限幅后的剩余电压幅值正好等

电感和变压器的相关公式

电感和变压器的相关公式 安培环路定律: 磁压: 磁动势: 电磁感应定律: 带磁芯的电感公式: 磁压: 磁阻: 电阻: 开气隙磁芯: 磁通变化量: n l H i ?= i n l H ?=?c m l H U ?=i n F ?=t t n t n e ΔΔ= Δ?Δ= ΔΔ? =ψφφ) (dt di L dt di l A n dt dH nA dt dB nA dt d n e u c ?=?====?=μμφ2 c l A n L ??= μ2 φ φμμφ μ ?=?=?=?==mc c c c c c c m R A l l A l B Hl U c c mc A l R ?=μS l R ? =ρδ δ δ μμA l A l n R R n R n L c c m mc m ?+ ?=+==02 2 22 111φφφ?=t 2 21111i N i N i N t ???=? 1i =输入电流 反射电流 变压器工作原理:

导线集肤深度: 矩形波电流产生的集肤效应:矩形波电流的集肤深度为基波正弦 波的集肤深度的70%。 当负载电流比较大时(一般大于20A),应采用铜箔,而不是用 利兹线(多股细小且绝缘)或多股实心线并绕,开关频率低于50kHz 时,应尽量避免使用利兹线。 铁氧体磁芯损耗: 磁芯的工作状态分为三类: Ⅰ类:有直流偏磁的单向磁化(主要关注磁芯的饱和问题) Ⅱ类:无直流偏磁的单向磁化(主要关注磁芯的复位问题) Ⅲ类:双向磁化(主要关注磁芯的高频损耗问题) γ μπ?????= Δf k 22μ导线材料的磁导率 γ材料的电导率(γ=1/ρ) k材料电导率的温度系数 β=2.2~2.4 α=1.2~1.7 B为磁感应强度 η为材料系数 f为交变频率

相关主题
文本预览
相关文档 最新文档