表达式求值
- 格式:doc
- 大小:49.00 KB
- 文档页数:6
表达式求值的类型定义与操作实现一、需求分析设计一个程序,演示用算符优先法对算术表达式求值的过程。
利用算符优先关系,实现对算术四则混合运算表达式的求值。
(1)输入的形式:表达式,例如2*(3+4)#;包含的运算符只能有'+' 、'-' 、'*' 、'/' 、'('、')';(2)输出的形式:运算结果,例如Answer is:77.000000;(3)程序所能达到的功能:对表达式求值并输出结果。
二、概要设计:本课程设计需要用到抽象数据类型栈存储表达式。
本部分给出栈的类型定义与表达式求值操作描述。
1、存储结构(顺序栈):typedef struct SqStack{SElemType *base;SElemType *top;int stacksize;}SqStack;2、基本操作:Status InitStack(SqStack &s)操作结果:初始化一个空栈s。
Status GetTop(SqStack s,SElemType &e)初始条件:栈s已存在。
操作结果:得到s的栈顶元素并用e带回。
Status Push(SqStack &s,SElemType e)初始条件:栈s已存在。
操作结果:向栈s中压入元素e。
Status Pop(SqStack &s,SElemType &e)初始条件:栈s已存在‘操作结果:弹出栈s栈顶元素,并用e带回。
Status In(char e)操作结果:判断e是否为7种运算符之一char Precede(char p,char c)操作结果:比较运算符p与运算符c的优先级。
SElemType Operate(SElemType x,char n,SElemType y)操作结果:计算x,y对运算符n的运算结果。
三、详细设计本部分主要给出表达式求值的实现算法1、初始化一个空栈sStatus InitStack(SqStack &s) //{s.base=(SElemType *)malloc(STACK_INIT_SIZE*sizeof(SElemType));if(!s.base)exit(OVERFLOW);s.top=s.base;s.stacksize=STACK_INIT_SIZE;return OK;}2、读取栈顶元素Status GetTop(SqStack s,SElemType &e){if(s.top==s.base)return ERROR;e=*(s.top-1);return OK;}3、向栈s中压入元素eStatus Push(SqStack &s,SElemType e){if(s.top-s.base>=s.stacksize){s.base=(SElemType*)realloc(s.base,(s.stacksize+STACKINCREMENT)*sizeof(SElemType));if(!s.base)exit(OVERFLOW);s.top=s.base+s.stacksize;s.stacksize+=STACKINCREMENT;}*s.top++=e;return OK;}4、弹出栈顶元素Status Pop(SqStack &s,SElemType &e) //{if(s.top==s.base)exit(OVERFLOW);e=* --s.top;return OK;}5、判断是否为7种运算符之一Status In(char e) / /{switch(e){case '+':case '-':case '*':case '/':case '(':case ')':case '#':return(1);break;default:return(0);}}6、比较两运算符优先级char Precede(char p,char c){ 'switch(p){case '+':case '-':switch(c){case '*':case '/':case '(':return '<';break;default:return '>';break;}break;case '*':case '/':switch(c){case '(':return '<';break;default:return '>';break;}break;case '(':switch(c){case ')':return '=';break;case '#':printf("ERROR!!\n");exit(OK);default:return '<';break;}break;case ')':switch(c){case '(':printf("ERROR!!\n");exit(OK);default:return '>';break;}break;case '#':switch(c){case ')':printf("ERROR!!\n");exit(OK);case '#':return '=';break;default:return '<';break;}break;}}7、四则运算SElemType Operate(SElemType x,char n,SElemType y) {SElemType e;switch(n){case '+':e=x+y;break;case '-':e=x-y;break;case '*':e=x*y;break;case '/':if(y==0){printf("分母不能为0!\n");exit(1);}else{e=x/y;break;}}return e;}8、主函数进行表达式求值void main(){SqStack OPTR,OPND;SElemType p,s,a,b,theta;char c;printf("请输入一个表达式并以'#'结束\n(只包括' +-*/' 和'('')'):\n");InitStack(OPTR);Push(OPTR,'#');InitStack(OPND);c=getchar();GetTop(OPTR,p);while(c!='#'||p!='#'){if(!In(c)){s=c-48;c=getchar();while(c>='0'&&c<='9'){s=s*10+(c-48);c=getchar();}Push(OPND,s);}else{switch(Precede(p,c)){case '<':Push(OPTR,c);c=getchar();break;case '=':Pop(OPTR,s);c=getchar();break;case '>':Pop(OPTR,theta);Pop(OPND,b);Pop(OPND,a);Push(OPND,Operate(a,theta,b));break;}GetTop(OPTR,p);}}//whileprintf("\n\n");GetTop(OPND,p);printf("Answer is:%f\n",p);getch();}四、调试分析1、初始化了一种类型的两个栈,分别用来存放数值和运算符。
c语言算术表达式求值【实用版】目录1.引言2.C 语言算术表达式的基本概念3.C 语言算术表达式的求值方法4.实际应用示例5.总结正文【引言】在 C 语言编程中,算术表达式是用来进行数值计算的重要工具。
本篇文章将为大家介绍 C 语言算术表达式的求值方法。
【C 语言算术表达式的基本概念】C 语言中的算术表达式主要包括以下几种:1.一元运算符:例如+、-、*、/等,用于对一个数值进行操作。
2.二元运算符:例如+、-、*、/等,用于对两个数值进行操作。
3.关系运算符:例如<、>、<=、>=、==、!=等,用于比较两个数值的大小或相等性。
4.逻辑运算符:例如&&、||、! 等,用于进行逻辑判断。
【C 语言算术表达式的求值方法】C 语言中,算术表达式的求值主要遵循以下规则:1.先进行括号内的运算,再进行括号外的运算。
2.先进行乘除法运算,再进行加减法运算。
3.关系运算符和逻辑运算符的优先级较低,从左到右依次进行运算。
【实际应用示例】下面我们通过一个实际的 C 语言程序,来演示算术表达式的求值过程。
```c#include <stdio.h>int main() {int a = 10, b = 5;int result;result = a + b * (a - b) / (a * b);printf("The result is: %d", result);return 0;}```在这个程序中,我们定义了两个整数变量 a 和 b,并通过算术表达式计算 result 的值。
根据我们之前提到的算术表达式求值规则,我们可以将这个表达式分解为以下几个步骤:1.计算括号内的值:a - b = 10 - 5 = 52.计算乘法运算:b * (a - b) = 5 * 5 = 253.计算除法运算:(a * b) / (a * b) = 14.计算加法运算:a + 25 = 10 + 25 = 355.输出结果:printf("The result is: %d", result); 输出 35【总结】通过本篇文章的介绍,相信大家已经对 C 语言算术表达式的求值方法有了更加深入的了解。
小学综合算式专项测题数学表达式求值在小学综合算式的学习中,求值是一个重要的内容。
通过求值,可以帮助孩子巩固和运用所学的数学表达式,提高其算术运算能力。
下面本文将针对小学综合算式专项测题,围绕数学表达式的求值展开论述。
一、整数运算的求值整数运算是小学数学学习的基础,也是综合算式求值的重要部分。
在求整数运算的值时,我们可以利用规则和性质进行简化计算。
例如,对于表达式“3 + 7”,可以直接将3与7相加,得到结果10。
类似地,对于“9 - 4”,可以将9减去4,得到5。
通过这样的简化计算,可以帮助学生更好地理解整数运算的过程,并能够灵活地运用于实际问题的求解当中。
二、带有括号的算式求值在综合算式中,常常会使用括号来改变计算次序。
对于带有括号的算式,我们需要按照括号内的运算规则进行计算,然后根据整体算式的运算顺序进行求值。
例如,对于算式“4 × (3 + 2)”,首先计算括号中的表达式3 + 2,得到结果5,然后将4与5相乘,得到结果20。
通过这样的求值过程,可以帮助学生掌握括号运算的应用技巧。
三、混合运算的求值小学综合算式中常会出现混合运算的情况,即涉及多种运算符的表达式。
在求解混合运算的值时,我们需要按照运算顺序和运算法则进行计算,最终得到最终结果。
例如,“2 × 3 - 4 ÷ 2”,根据运算顺序,我们先进行乘法运算,得到结果6;然后进行除法运算,得到结果2;最后进行减法运算,得到最终结果0。
通过这样的求值过程,可以培养学生进行多种运算符混合运算的能力。
四、应用题中的数学表达式求值在小学综合算式的学习中,经常会遇到一些实际应用题,需要根据题意进行数学表达式的求值。
这类题目要求学生能够将实际问题转化为数学表达式,并根据题目所给条件进行求解。
例如,“小明有10元钱,他花了3元买了两本书,还剩多少钱?”可以将这个问题转化为算式“10 - 3 × 2”,然后求出最终结果。
表达式求值算法总结(C++)表达式求值,一般采用栈和队列的方式来求值,下面介绍表达式求值的两种算法。
方法一、使用两个栈,一个为操作符栈OPTR(operator),一个是操作数栈OPND(operand)算法过程:当输入3 * ( 4 - 1 * 2 ) + 6 / ( 1 + 1 )时,为简单方便,我们输入时,按照字符的顺序一个一个的处理,比如ch = getchar()。
然后根据ch 的值判断:若ch 是数字,直接压入操作数栈OPND;若ch 是'(',直接入栈OPTR;若ch 是')',若OPTR 和OPND 非空,弹出OPTR的栈顶操作符,弹出OPND栈顶的两个操作数,做运算,然后见个结果压入栈OPND,直到弹出的OPTR栈顶元素时')';若ch 是操作符(比如+, -, *, /),如果OPTR栈顶元素是(,直接入栈OPTR,如果不是'('且OPTR栈非空且栈顶元素操作符的优先级大于ch,那么弹出OPTR的栈顶操作符,并弹出OPND中栈顶的两个元素,做运算,将运算结果入栈OPND,此时,重复这一步操作;否则将ch入栈OPTR;若ch为EOF,说明表达式已经输入完成,判断OPTR是否为空,若非空,一次弹出OPTR 栈顶操作符,并与OPND栈顶两个元素做运算,将运算结果入栈OPND,最后表达式的结果即OPND的栈底元素。
以表达式3 * ( 4 - 1 * 2 ) + 6 / ( 1 + 1 )为例,计算过程如下所示:通过上述的计算过程,写出伪代码如下所示:void GetExpress(Stack * OPTR, Stack * OPND){char ch;while ((ch = getchar ()) != EOF) {if (IsDigit (ch)) {PushStack (OPND, ch);}else if (ch == '(')PushStack (OPTR, ch);else if (ch == ')') {while (!IsStackEmpty(OPTR)) {PopStack (OPTR, op);if (op == ')')break;PopStack (OPND, num2);PopStack (OPND, num1);res = Calc (num1, num2, op);PushStack (OPND, res);}}else if (ch == '+' || ch == '-'|| ch == '*' || ch == '/') {while (!IsStackEmpty (OPTR) && GetTop (OPTR)!='(' && GetTop (OPTR)>ch) { PopStack (OPTR, op);PopStack (OPND, num2);PopStack (OPND, num1);res = Calc (num1, num2, op);PushStack (OPND, res);}if (IsStackEmpty (OPTR) || GetTop(OPTR)=='(')PushStack (OPTR, ch);}}}// 当表达式输入完成后,需要对OPTR栈和OPND中的元素进行运算int GetValue(Stack * OPTR, Stack * OPND){while (!IsStackEmpty (OPTR)) {PopStack (OPTR, op);PopStack (OPND, num2);PopStack (OPND, num1);res = Calc (num1, num2, op);PushStack (OPND, res);}// 最后的操作数栈OPND栈顶元素即是表达式的值return GetTop(OPND);}PS: 上面没有指出表达式非法的情况方法二:采用中缀表达式的方法,求取表达式的中缀表达式,借用一个操作符栈OPTR和中缀表达式队列Queue,求取中缀表达式,然后对中缀表达式求值。
XXXXXX大学《数据结构》课程设计报告班级:学号:姓名:指导老师:目录一算术表达式求值一、需求分析二、程序得主要功能三、程序运行平台四、数据结构五、算法及时间复杂度六、测试用例七、程序源代码二感想体会与总结算术表达式求值一、需求分析一个算术表达式就是由操作数(operand)、运算符(operator)与界限符(delimiter)组成得。
假设操作数就是正整数,运算符只含加减乘除等四种运算符,界限符有左右括号与表达式起始、结束符“#”,如:#(7+15)*(23—28/4)#。
引入表达式起始、结束符就是为了方便.编程利用“算符优先法”求算术表达式得值.二、程序得主要功能(1)从键盘读入一个合法得算术表达式,输出正确得结果。
(2)显示输入序列与栈得变化过程。
三、程序运行平台Visual C++6、0版本四、数据结构本程序得数据结构为栈。
(1)运算符栈部分:struct SqStack //定义栈{char *base; //栈底指针char *top; //栈顶指针intstacksize; //栈得长度};intInitStack (SqStack &s) //建立一个空栈S{if (!(s、base= (char *)malloc(50*sizeof(char))))exit(0);s、top=s、base;s、stacksize=50;return OK;}char GetTop(SqStack s,char &e) //运算符取栈顶元素{if (s、top==s、base) //栈为空得时候返回ERROR{ﻩ printf("运算符栈为空!\n");ﻩ return ERROR;}elsee=*(s、top-1); //栈不为空得时候用e做返回值,返回S得栈顶元素,并返回OK returnOK;}int Push(SqStack&s,char e) //运算符入栈{if (s、top—s、base >= s、stacksize)ﻩ{printf("运算符栈满!\n");ﻩs、base=(char*)realloc(s、base,(s、stacksize+5)*sizeof(char));//栈满得时候,追加5个存储空间if(!s、base)exit (OVERFLOW);s、top=s、base+s、stacksize;s、stacksize+=5;}ﻩ*(s、top)++=e;//把e入栈ﻩreturn OK;}int Pop(SqStack &s,char &e) //运算符出栈{if (s、top==s、base) //栈为空栈得时候,返回ERROR{printf("运算符栈为空!\n”);ﻩ return ERROR;}else{ﻩﻩe=*-—s、top;//栈不为空得时候用e做返回值,删除S得栈顶元素,并返回OK return OK;}}int StackTraverse(SqStack&s)//运算符栈得遍历{ﻩchar *t;ﻩt=s、base;ﻩif (s、top==s、base){ﻩ printf(”运算符栈为空!\n”); //栈为空栈得时候返回ERRORreturn ERROR;}while(t!=s、top){ﻩﻩprintf(" %c",*t); //栈不为空得时候依次取出栈内元素t++;ﻩ}return ERROR;}(2)数字栈部分:struct SqStackn//定义数栈{int *base; //栈底指针int*top; //栈顶指针int stacksize; //栈得长度};intInitStackn (SqStackn &s) //建立一个空栈S{s、base=(int*)malloc(50*sizeof(int));if(!s、base)exit(OVERFLOW);//存储分配失败s、top=s、base;s、stacksize=50;return OK;}int GetTopn(SqStackn s,int&e) //数栈取栈顶元素{if(s、top==s、base){printf("运算数栈为空!\n");//栈为空得时候返回ERRORﻩ return ERROR;}elseﻩe=*(s、top-1);//栈不为空得时候,用e作返回值,返回S得栈顶元素,并返回OKreturnOK;}int Pushn(SqStackn &s,int e) //数栈入栈{if(s、top—s、base>=s、stacksize){ﻩﻩprintf("运算数栈满!\n");//栈满得时候,追加5个存储空间ﻩs、base=(int*)realloc (s、base,(s、stacksize+5)*sizeof(int));if(!s、base) exit (OVERFLOW);ﻩs、top=s、base+s、stacksize;//插入元素e为新得栈顶元素s、stacksize+=5;}*(s、top)++=e; //栈顶指针变化returnOK;}int Popn(SqStackn &s,int &e)//数栈出栈{ﻩif (s、top==s、base){ﻩ printf("运算符栈为空!\n");//栈为空栈得视时候,返回ERRORﻩ return ERROR;ﻩ}else{ﻩﻩe=*—-s、top;//栈不空得时候,则删除S得栈顶元素,用e返回其值,并返回OK ﻩreturnOK;}}int StackTraversen(SqStackn &s)//数栈遍历{ﻩint*t;ﻩt=s、base ;ﻩif(s、top==s、base)ﻩ{printf("运算数栈为空!\n”);//栈为空栈得时候返回ERRORﻩ return ERROR;ﻩ}ﻩwhile(t!=s、top)ﻩ{printf(” %d”,*t); //栈不为空得时候依次输出t++;}return ERROR;}五、算法及时间复杂度1、算法:建立两个不同类型得空栈,先把一个‘#’压入运算符栈。
C#算术表达式求值(后缀法),看这⼀篇就够了⼀、种类介绍算术表达式有三种:前缀表达式、中缀表达式和后缀表达式。
⼀般⽤的是中缀,⽐如1+1,前后缀就是把操作符移到前⾯和后⾯,下⾯简单介绍⼀下这三种表达式。
1、前缀表⽰法前缀表⽰法⼜叫波兰表⽰法,他的操作符置于操作数的前⾯(例:+ 1 2),是波兰数学家扬·武卡谢维奇1920年代引⼊的,⽤于简化命题逻辑。
因为我们⼀般认为操作符是在操作数中间的,所以在⽇常⽣活中⽤的不多,但在计算机科学领域占有⼀席之地。
⼀般的表⽰法对计算机来说处理很⿇烦,每个符号都要考虑优先级,还有括号这种会打乱优先级的存在,将使计算机花费⼤量的资源进⾏解析。
⽽前缀表⽰法没有优先级的概念,他是按顺序处理的。
举个例⼦:9-2*3这个式⼦,计算机需要先分析优先级,先乘后减,找到2*3,再进⾏减操作;化成前缀表⽰法就是:- 9 * 2 3,计算机可以依次读取,操作符作⽤于后⼀个操作数,遇到减就是让9减去后⾯的数,⽽跟着9的是乘,也就是说让9减去乘的结果,这对计算机来说很简单,按顺序来就⾏了。
2、中缀表⽰法这也就是我们⼀般的表⽰法,他的操作符置于操作数的中间(例:1 + 2),前⾯也说过这种⽅法不容易被计算机解析,但他符合⼈们的普遍⽤法,许多编程语⾔也就⽤这种⽅法了。
在中缀表⽰法中括号是必须有的,要不然运算顺序会乱掉。
3、后缀表⽰法后缀表⽰法⼜叫逆波兰表⽰法,他的操作符置于操作数的后⾯(例:1 2 +),他和前缀表⽰法都对计算机⽐较友好,但他很容易⽤堆栈解析,所以在计算机中⽤的很多。
他的解释过程⼀般是:操作数⼊栈;遇到操作符时,操作数出栈,求值,将结果⼊栈;当⼀遍后,栈顶就是表达式的值。
因此逆波兰表达式的求值使⽤堆栈结构很容易实现,且能很快求值。
注意:逆波兰记法并不是简单的波兰表达式的反转。
因为对于不满⾜交换律的操作符,它的操作数写法仍然是常规顺序,如,波兰记法/ 6 3的逆波兰记法是6 3 /⽽不是3 6 /;数字的数位写法也是常规顺序。
c语言基于二叉树的表达式求值算法C语言中,基于二叉树的表达式求值算法主要包括两部分:中缀表达式转换为后缀表达式和后缀表达式求值。
1.中缀表达式转换为后缀表达式中缀表达式是我们常见的数学表达方式,例如3 + 4 * 2 - 5。
为了方便计算机求值,我们需要将中缀表达式转换为后缀表达式,也叫做逆波兰表达式。
转换的过程使用栈数据结构来实现。
具体算法如下:1.定义一个栈和一个结果字符串,栈用于存储操作符,结果字符串用于保存后缀表达式。
2.从左到右遍历中缀表达式的每一个字符。
3.如果当前字符是数字,直接将其加入结果字符串。
4.如果当前字符是左括号"(",将其入栈。
5.如果当前字符是右括号")",则依次将栈顶的操作符弹出并加入结果字符串,直到遇到左括号为止,同时将左括号从栈中弹出。
6.如果当前字符是操作符,需要将栈中优先级比当前操作符高或者相等的操作符弹出并加入结果字符串,然后将当前操作符入栈。
7.遍历完所有字符后,将栈中剩余的操作符依次弹出并加入结果字符串。
8.最终结果字符串就是后缀表达式。
例如,对于中缀表达式3 + 4 * 2 - 5,转换为后缀表达式为3 4 2 * + 5 -2.后缀表达式求值后缀表达式求值算法使用栈数据结构来实现。
具体算法如下:1.定义一个栈,用于存储操作数。
2.从左到右遍历后缀表达式的每一个字符。
3.如果当前字符是数字,则将其转换为对应的整数并入栈。
4.如果当前字符是操作符,则从栈中弹出两个操作数,先弹出的作为右操作数,后弹出的作为左操作数,根据操作符进行运算,得到结果后入栈。
5.遍历完所有字符后,栈顶的数字即为最终的结果。
例如,对于后缀表达式3 4 2 * + 5 -,求值的过程如下:1.入栈3。
2.入栈4。
3.入栈2。
4.弹出2和4,计算4 * 2 = 8,将8入栈。
5.弹出8和3,计算3 + 8 = 11,将11入栈。
6.入栈5。
7.弹出5和11,计算11 - 5 = 6,得到最终结果。
栈的应⽤——表达式求值 表达式求值是程序设计语⾔编译中的⼀个基本问题,它的实现就是对“栈”的典型应⽤。
本⽂针对表达式求值使⽤的是最简单直观的算法“算符优先法”。
本⽂给出两种⽅式来实现表达式求值,⽅式⼀直接利⽤中缀表达式求值,需要⽤到两个栈,操作数栈和操作符栈。
⾸先置操作数栈为空栈,操作符栈仅有“#”⼀个元素。
依次读⼊表达式中的每个字符,若是操作数则进操作数栈,若是操作符则和操作符栈的栈顶运算符⽐较优先权作相应操作,直⾄整个表达式求值完毕。
⽅式⼆⾸先把中缀表达式转换为后缀表达式并存储起来,然后利⽤读出的后缀表达式完成求值,其本质上是⽅式⼀的分解过程。
表达式求值的代码如下:#include <iostream>#include "stack"#include "map"using namespace std;/* 只能求⼀位整数的加减乘除混合运算 */map<char, pair<int, int>> priority; // 存放各个操作符的栈内栈外优先级,first是栈内,second是栈外char infix[50]; // 存放初始的中缀表达式char postfix[50]; // 存放转化的后缀表达式int result;void MakePriority() // 构造运算符优先级表{priority.insert(make_pair('#', make_pair(0, 0))); // isp(#)=0, icp(#)=0priority.insert(make_pair('\n', make_pair(0, 0))); // isp(\n)=0, icp(\n)=0 表达式结尾的'#'⽤'\n'代替,这样可以省略表达式末尾的结束符'#'priority.insert(make_pair('(', make_pair(1, 6))); // isp(()=1, icp(()=6priority.insert(make_pair('*', make_pair(5, 4))); // isp(*)=5, icp(*)=4priority.insert(make_pair('/', make_pair(5, 4))); // isp(/)=5, icp(/)=4priority.insert(make_pair('%', make_pair(5, 4))); // isp(%)=5, icp(%)=4priority.insert(make_pair('+', make_pair(3, 2))); // isp(+)=3, icp(+)=2priority.insert(make_pair('-', make_pair(3, 2))); // isp(-)=3, icp(-)=2priority.insert(make_pair(')', make_pair(6, 1))); // isp())=6, icp())=1}void InfixToPostfix() // 把中缀表达式转换为后缀表达式{int i = 0;stack<char> optrStack; // 操作符栈char optr; // optr为栈顶的操作符optrStack.push('#');while (!optrStack.empty()){if (isdigit(infix[i])) // 是操作数则直接输出(追加到postfix结尾){postfix[strlen(postfix)] = infix[i];postfix[strlen(postfix) + 1] = '\0';i++; // 读⼊中缀表达式的下⼀个字符}else// 是操作符, ⽐较优先级{optr = optrStack.top(); // 取出栈顶操作符if (priority[infix[i]].second > priority[optr].first) // icp(infix[i]) > isp(optr),infix[i]⼊栈{optrStack.push(infix[i]);i++;}else if (priority[infix[i]].second < priority[optr].first)// icp(infix[i]) < isp(optr),optr退栈并输出{postfix[strlen(postfix)] = optr;postfix[strlen(postfix) + 1] = '\0';optrStack.pop();}else// icp(infix[i]) = isp(optr),退栈但不输出,若退出的是'(',则继续读⼊下⼀个字符{optrStack.pop();if (optr == '(')i++;}}}}void CalculateByPostfix() // 通过后缀表达式求值{int i = 0;stack<int> opndStack; // 操作数栈int left, right; // 左右操作数int value; // 中间结果int newOpnd;while (postfix[i] != '#' && i < strlen(postfix)){switch (postfix[i]){case'+':right = opndStack.top(); // 从操作数栈中取出两个操作数opndStack.pop();left = opndStack.top();opndStack.pop();value = left + right;opndStack.push(value); // 中间结果⼊栈break;case'-':right = opndStack.top();opndStack.pop();left = opndStack.top();opndStack.pop();value = left - right;opndStack.push(value);break;case'*':right = opndStack.top();opndStack.pop();left = opndStack.top();opndStack.pop();value = left * right;opndStack.push(value);break;case'/':right = opndStack.top();opndStack.pop();left = opndStack.top();opndStack.pop();if (right == 0){cerr << "Divide by 0!" << endl;}else{value = left / right;opndStack.push(value);}break;default:newOpnd = (int)(postfix[i] - 48); // 操作数直接⼊栈opndStack.push(newOpnd);break;}i++;}result = opndStack.top();}void CalculateByInfix() // 直接利⽤中缀表达式求值{int i = 0;stack<char> optrStack; // 操作符栈stack<int> opndStack; // 操作数栈char optr; // optr为操作符栈顶的操作符int left, right, value; // 左右操作数以及中间结果optrStack.push('#');optr = optrStack.top();while (!optrStack.empty()) // 直到操作符栈为空{if (isdigit(infix[i])) // 是操作数, 进操作数栈{value = (int)(infix[i] - 48);opndStack.push(value);i++;}else// 是操作符, ⽐较优先级{optr = optrStack.top(); // 取出操作符栈顶的操作符if (priority[infix[i]].second > priority[optr].first) // icp(infix[i]) > isp(optr),infix[i]⼊栈 {optrStack.push(infix[i]);i++;}else if (priority[infix[i]].second < priority[optr].first) // icp(infix[i]) < isp(optr),optr退栈并输出{optrStack.pop();right = opndStack.top(); // 从操作数栈中取出两个操作数opndStack.pop();left = opndStack.top();opndStack.pop();switch (optr){case'+':value = left + right;opndStack.push(value); // 中间结果⼊栈break;case'-':value = left - right;opndStack.push(value); // 中间结果⼊栈break;case'*':value = left * right;opndStack.push(value); // 中间结果⼊栈break;case'/':if (right == 0){cerr << "Divide by 0!" << endl;}else{value = left / right;opndStack.push(value);}break;default:break;}}else{optrStack.pop();if (optr == '(')i++;}}}result = opndStack.top();}int main(){MakePriority(); // 构造运算符优先级表cout << "请输⼊中缀表达式:";cin >> infix;cout << "直接利⽤中缀表达式求值为:";CalculateByInfix();cout << result << endl;cout << "转化为后缀表达式:";InfixToPostfix();for (int i = 0;i < strlen(postfix);i++){cout << postfix[i];}cout << endl;cout << "利⽤后缀表达式求值为:";CalculateByPostfix();cout << result << endl;return0;} 为了⽅便起见,本⽂只是简单的设计了⼀个针对⼀位整数的四则运算进⾏求值的算法,对于处理多位整数的四则运算,需要对本⽂接受输⼊的数据类型进⾏“升阶”,把字符数组换成字符串数组,将⼀个整数的多位数字存⼊⼀个字符串进⾏处理。
表达式求值(⽆括号)对于⾃然数的表达式求值,操作有加、减、乘、除和幂运算,分别⽤+,-, *, /,^来表⽰,为⽅便运算,加⼊#运算符,其运算优先级最低,由于运算符优先级不⼀样,可以利⽤栈实现此操作。
算法思想(1)规定运算符的优先级表(2)设置两个栈:OVS(运算数栈)和OPTR(运算符栈),为了操作⽅便可以先在OPTR栈中先放⼀个#运算符(3)⾃左向右扫描,进⾏如下处理:若遇到运算数则⾦OVS栈;若遇到运算符则与OPTR栈顶运算符进⾏⽐较:•如果当前运算符的优先级⼤于OPTR栈顶运算符的优先级,则当前运算符进⼊OPTR栈;•如果当前运算符的优先级⼤于等于OPTR栈顶运算符的优先级,则OPTR退栈⼀次,得到栈顶运算符op,连续退栈OVS两次,得到运算数a 和b,执⾏op运算,得到结果T,将T进OVS栈。
可以⾃⼰画⼀个表达式两个栈的变化图,有助于理解#include<stdio.h>#include<stdlib.h>#include<math.h>#include<stdbool.h>typedef struct node{int data;//⽆论对于运算符还是运算数,都⽤int型变量来保存node *next;}LinkStackNode, *LinkStack;void InitStack(LinkStack *S){//初始化链栈*S = (LinkStack)malloc(sizeof(LinkStackNode));(*S)->next = NULL;}int Push(LinkStack top, int x){// 进栈操作LinkStackNode *temp;temp = (LinkStackNode*)malloc(sizeof(LinkStackNode));if(temp == NULL) return0;temp->data = x;temp->next = top->next;top->next = temp;return1;}int Pop(LinkStack top, int *x){//出栈操作LinkStackNode *temp;temp = top->next;if(temp == NULL) return0;*x = temp->data;top->next = temp->next;free(temp);return1;}int GetNum(char ch){//返回字符对应的数字return ch - '0';}bool IsEmpty(LinkStack top){//栈为空返回假if(top->next == NULL) return false;return true;}int GetTop(LinkStack top){//返回栈顶元素if(top->next == NULL) return1;return top->next->data;}char Compare(char ch1, char ch2){//实现运算符优先级⽐较switch(ch1){case'#':switch(ch2){case'#': return'=';case'+':case'-':case'*':case'/':case'^': return'<';}case'+':switch(ch2){case'#': return'>';case'+':case'-': return'=';case'*':case'/':case'^': return'<';}case'-':switch(ch2){case'#': return'>';case'+':case'-': return'=';case'*':case'/':case'^': return'<';}case'*':switch(ch2){case'#':case'+':case'-': return'>';case'*':case'/': return'=';case'^': return'<';}case'/':switch(ch2){case'#':case'+':case'-': return'>';case'*':case'/': return'=';case'^': return'<';}case'^':switch(ch2){case'#':case'+':case'-':case'*':case'/': return'>';case'^': return'=';}}}int Calculate(int a, char op, int b){//计算 a op b 的值int c;switch(op){case'-': c = a - b; break;case'+': c = a + b; break;case'*': c = a * b; break;case'/': c = a / b; break;case'^': c = pow(a, b); break;default : c = 0;}return c;}int ExpEvaluation(){//实现LinkStack ovs, optr;InitStack(&ovs);InitStack(&optr);Push(optr, (int)'#');printf("\n\nPlease input an expression(Ending with '#'):\n");char ch = getchar();int num = 0, a, b, t, op, zan;while(ch != '#' || (char)GetTop(optr) != '#'){while(ch >= '0' && ch <= '9'){//如果数字不是⼀位数字,便把字符转化为数字 num = num * 10 + GetNum(ch);ch = getchar();}if(num != 0){//如果num不为0便进OVS栈Push(ovs, num);num = 0;//把num置零}else{switch(Compare(ch, (char)GetTop(optr))){//对运算符优先级进⾏⽐较,实现对应三种关系的操作case'>': Push(optr, (int)ch); ch = getchar(); break;case'=':case'<': Pop(optr, &op);Pop(ovs, &a);Pop(ovs, &b);t = Calculate(b, (char)op, a);Push(ovs, t);break;}}}t = GetTop(ovs);//取栈顶元素,返回值return t;}int main(){int ans = ExpEvaluation();printf("%d\n", ans);return0;}。
c++变量赋值规则C++是一种强类型的编程语言,其中变量的赋值规则是非常严格的。
在C++中,变量的赋值必须符合以下几个规则:1.类型一致规则:在C++中,变量必须先声明其类型,然后才能赋值给它。
这意味着一个整型变量只能接受整型值,一个浮点型变量只能接受浮点型值,以此类推。
试图将一个不同类型的值赋给一个变量是非法的。
例如,以下的代码在编译时会产生错误:```int num = 10;num = 3.14; //错误,浮点型值不能直接赋给整型变量```2.常量赋值规则:在C++中,常量是指在程序执行过程中值无法改变的变量。
对常量进行赋值时,必须赋予常量一个初始值,并且在声明时使用`const`关键字。
例如,以下的代码是合法的:```const int num = 10; //声明一个常量并赋初值为10```常量一旦赋值后,其值就无法再改变。
试图对常量进行赋值操作会导致编译错误。
例如,以下的代码在编译时会产生错误:```const int num = 10;num = 20; //错误,常量值不能被改变```3.赋值运算符规则:C++中的赋值运算符(`=`)用于将一个值赋给一个变量。
赋值运算符必须出现在赋值语句的左边,并且变量必须先声明才能被赋值。
例如,以下的代码是合法的:int num; //声明一个整型变量num = 10; //将10赋给变量num```赋值运算符可以将一个变量的值赋给另一个变量。
例如,以下的代码是合法的:```int num1 = 10;int num2;num2 = num1; //将num1的值赋给num2```4.表达式求值规则:在C++中,表达式的求值顺序是从左到右的。
在一个赋值语句中,等号右边的表达式会首先被求值,然后将结果赋给等号左边的变量。
例如,以下的代码是合法的:int num1 = 10;int num2 = 20;int result;result = num1 + num2; //将num1和num2的和赋给result```在表达式中,括号中的部分会被先求值,然后才是乘法、除法、加法和减法等运算。
算术表达式求值实验报告1. 背景算术表达式求值是计算机科学中的基本问题之一,涉及到对数学表达式的解析和计算。
在计算机编程中,经常需要对用户输入的数学表达式进行求值,以得到正确的计算结果。
因此,研究如何高效地求解算术表达式是非常重要的。
在本次实验中,我们将探索不同方法来求解算术表达式,并比较它们的性能和准确性。
我们将使用Python语言作为实现工具,并通过编写代码来实现不同方法。
2. 分析2.1 表达式解析在进行表达式求值之前,我们首先需要对输入的数学表达式进行解析。
解析过程主要包括以下几个步骤:1.去除空格:将输入的字符串中的空格字符去除。
2.分词:将字符串按照运算符和操作数进行分割,得到一个由标记组成的列表。
3.构建语法树:根据分词结果构建一个语法树,用于表示数学表达式的结构。
4.求值:通过遍历语法树并执行相应操作,最终得到表达式的值。
2.2 求值方法在本次实验中,我们将尝试以下两种不同的求值方法:1.递归求值:通过递归地遍历语法树来求解表达式。
递归求值的优点是简单易懂,但可能存在性能问题。
2.栈求值:使用栈数据结构来辅助求解表达式。
栈可以有效地处理运算符的优先级和括号的匹配问题。
2.3 性能评估为了评估不同方法的性能,我们将使用一组测试用例来对其进行比较。
测试用例包括不同长度和复杂度的数学表达式,以及各种运算符和括号的组合。
我们将使用Python内置的time模块来测量每种方法的执行时间,并比较它们之间的差异。
此外,我们还将检查每种方法是否能正确地计算出表达式的结果。
3. 实验结果3.1 表达式解析在实现表达式解析过程时,我们首先去除输入字符串中的空格,并将其转换为一个字符列表。
然后,我们使用递归下降法来构建语法树。
具体而言,我们定义了以下几个函数:1.parse_expression(tokens):该函数接受一个标记列表作为参数,并返回一个表示整个表达式的语法树。
2.parse_term(tokens):该函数接受一个标记列表作为参数,并返回一个表示项的语法树。
数据结构表达式求值实验报告一、实验目的本次实验的主要目的是通过实现表达式求值的程序,深入理解数据结构和算法在解决实际问题中的应用。
具体包括掌握栈这种数据结构的操作和使用,熟悉表达式的转换和计算过程,提高编程能力和问题解决能力。
二、实验环境本次实验使用的编程语言为C++,开发工具为Visual Studio 2019。
三、实验原理表达式求值是程序设计中的一个常见问题,通常采用栈这种数据结构来实现。
表达式可以分为中缀表达式、后缀表达式和前缀表达式。
中缀表达式是我们日常使用的表达式形式,如“2 +3 4”,但直接对中缀表达式求值比较复杂。
而后缀表达式(如“2 3 4 +”)和前缀表达式(如“+2 3 4”)求值相对简单。
因此,在实现表达式求值时,通常先将中缀表达式转换为后缀表达式,然后对后缀表达式进行求值。
转换过程中,使用两个栈,一个用于存储操作数,另一个用于存储运算符。
求值过程中,根据后缀表达式的特点,从左到右依次处理操作数和运算符,进行相应的计算。
四、实验步骤1、定义数据结构定义栈类,用于存储操作数和运算符。
定义一个结构体来表示操作数和运算符。
2、中缀表达式转后缀表达式从左到右扫描中缀表达式。
遇到操作数,直接输出。
遇到运算符,根据其优先级与栈顶运算符的优先级进行比较,决定入栈或出栈操作。
3、后缀表达式求值从左到右扫描后缀表达式。
遇到操作数,入栈。
遇到运算符,从栈中取出两个操作数进行计算,将结果入栈。
4、主函数输入中缀表达式。
调用转换函数和求值函数,输出计算结果。
五、实验代码```cppinclude <iostream>include <stack>include <string>//定义操作符的优先级int priority(char op) {if (op =='+'|| op =='')return 1;if (op ==''|| op =='/')return 2;return 0;}//中缀表达式转后缀表达式std::string infixToPostfix(std::string infix) {std::stack<char> opStack;std::string postfix ="";for (char c : infix) {if (isdigit(c)){postfix += c;} else if (c =='('){} else if (c ==')'){while (!opStackempty()&& opStacktop()!='('){postfix += opStacktop();opStackpop();}opStackpop();//弹出'('} else {while (!opStackempty()&& priority(opStacktop())>=priority(c)){postfix += opStacktop();opStackpop();}opStackpush(c);}}while (!opStackempty()){postfix += opStacktop();}return postfix;}//后缀表达式求值int evaluatePostfix(std::string postfix) {std::stack<int> operandStack;for (char c : postfix) {if (isdigit(c)){operandStackpush(c '0');} else {int operand2 = operandStacktop();operandStackpop();int operand1 = operandStacktop();operandStackpop();switch (c) {case '+':operandStackpush(operand1 + operand2);break;case '':operandStackpush(operand1 operand2);break;case '':operandStackpush(operand1 operand2);break;case '/':operandStackpush(operand1 / operand2);break;}}}return operandStacktop();}int main(){std::string infixExpression;std::cout <<"请输入中缀表达式: ";std::cin >> infixExpression;std::string postfixExpression = infixToPostfix(infixExpression);int result = evaluatePostfix(postfixExpression);std::cout <<"表达式的计算结果为: "<< result << std::endl;return 0;}```六、实验结果输入不同的中缀表达式,如“2 +3 4”“( 2 + 3 )4”等,程序能够正确地将其转换为后缀表达式,并计算出结果。
[NOIP2013普及组]表达式求值[NOIP2013 普及组] 表达式求值给定⼀个只包含加法和乘法的算术表达式,请你编程计算表达式的值。
Input⼀⾏,为需要你计算的表达式,表达式中只包含数字、加法运算符“+”和乘法运算符“*”,且没有括号,所有参与运算的数字均为 int 范围内的正整数。
输⼊数据保证这⼀⾏只有0~9、+、*这12种字符。
Output⼀个整数,表⽰这个表达式的值。
直接上代码1 #include<iostream>2long long a[1000001],ha=1,sum=0;3char s[1000001];4using namespace std;5int main()6 {7 cin>>a[ha];8 a[ha]%=10000;9while(cin>>s[ha]>>a[++ha])10 {11 a[ha]%=10000;12 }13for(int i=ha;i>=1;i--)14 {15if(s[i]=='*')16 {17 a[i]*=a[i+1];18 a[i]%=10000;19 a[i+1]=0;20 }21 }22for(int i=1;i<=ha;i++)23 {24 sum+=a[i];25 sum%=10000;26 }27 cout<<sum;28return0;29 }啥意思呢,就是说他肯定是⼀个数接着⼀个字符再接着⼀个数,所以我们可以⽤:cin>>a[ha]; while(cin>>s[ha]>>a[++ha]那我们就不必把连续的⼏个数字字符组成⼀个数字这个恶⼼的东西了,之后我们把所有是乘数的压⼊栈中,两个两个的乘起来再相加,但是有⼀点需要注意⼀下就是其实并不是两两相乘,⽽是把我们得到的乘数两两分组,所以如果是两两相乘的话就会有很多值被新加了起来,所以对于两个数a[i]和a[i+1],相乘以后要让a[i+1]=0,这样下⼀次a[i+2]与a[i+1]如果相乘的话结果就是0,把它加进来也没啥影响。
表达式求值(数据结构)表达式求值(数据结构)一、引言表达式求值是计算机科学中一个重要的概念,它是计算机程序中常见的操作之一。
通过对表达式中的运算符和操作数进行计算,可以得到表达式的结果。
本文将介绍表达式求值的相关知识和算法,并提供一个基于数据结构的表达式求值的范本。
二、基本概念1.表达式:由操作数、运算符和括号组成的符号串,用于表示一个计算过程。
2.操作数:表达式中用于参与计算的数值或变量。
3.运算符:表达式中用于进行运算的符号,如加减乘除等。
4.括号:用于控制运算优先级和改变运算次序的符号。
三、表达式求值的算法表达式求值的基本思路是通过遍历表达式字符串并利用栈来进行计算。
1.建立一个操作数栈和一个运算符栈。
2.从左到右遍历表达式字符串,依次处理每个字符。
3.如果当前字符是操作数,则直接入操作数栈。
4.如果当前字符是运算符,则进行如下处理:●如果运算符栈为空或栈顶运算符是左括号,则将当前运算符入运算符栈。
●如果当前运算符的优先级高于栈顶运算符的优先级,则将当前运算符入运算符栈。
●如果当前运算符的优先级低于或等于栈顶运算符的优先级,则从运算符栈顶取出一个运算符进行计算,并将结果入操作数栈,直到栈顶运算符的优先级低于当前运算符,然后将当前运算符入运算符栈。
5.如果当前字符是左括号,则将其入运算符栈。
6.如果当前字符是右括号,则从运算符栈顶取出一个运算符进行计算,并将结果入操作数栈,直到取出的运算符是左括号。
7.遍历完表达式字符串后,将运算符栈中剩余的运算符依次取出进行计算,并将结果入操作数栈。
8.操作数栈中最后剩下的元素即为表达式的求值结果。
四、示例代码```pythonclass ExpressionEvaluation:def __init__(self, expression):self.expression = expressionself.operators = []self.operands = []self.precedence = {'+': 1, '.': 1, '': 2, '/': 2}def evaluate(self):for char in self.expression:if char.isdigit():self.operands.append(int(char))elif char in self.precedence:while self.operators andself.operators[.1] != '(' and self.precedence[char] <= self.precedence[self.operators[.1]]:lculate()self.operators.append(char)elif char == '(':self.operators.append(char)elif char == ')':while self.operators[.1] != '(':lculate()self.operators.pop()while self.operators:lculate()return self.operands[.1]def calculate(self):operator = self.operators.pop()operand2 = self.operands.pop()operand1 = self.operands.pop()if operator == '+':self.operands.append(operand1 + operand2)elif operator == '.':self.operands.append(operand1 ●operand2) elif operator == '':self.operands.append(operand1 operand2) elif operator == '/':self.operands.append(operand1 / operand2) expression = \。
《数据结构(C++版)》课设计报告2012—2013学年第一学期
课程名称数据结构
设计题目表达式求值
专业班级
姓名
学号
指导教师
课程设计题目:表达式求值
一、问题描述
对一个合法的中缀表达式求值。
简单起见,假设表达式只包含+,-,*,/等4个双目运算符,且运算符本身不具有二义性,操作数均为一位整数。
二、基本要求
1.正确解释表达式;
2.符合四则运算规则;
3.输出最后的计算结果。
三、概要设计
对中缀表达式求值,通常使用“算符优先算法”。
根据四则运算规则,在运算的每一步中,任意两个相继出现的运算符t和c之间的优先关系至多是下面三种关系之一:
(1) t的优先级低于c;
(2) t的优先级等于c;
(3) t的优先级高于c。
为实现算符优先算法,可以使用两个工作栈:一个栈OPTR存放运算符;另一个栈OPND存放操作数,中缀表达式用一个字符串数组存储。
四、详细设计
利用类模板
#include<iostream>
using namespace std;
const int StackSize=100;
template <class DataType> //定义模板类SeqStack
class SeqStack{
public:
SeqStack( ) ; //构造函数,栈的初始化
~SeqStack( ); //析构函数
void Push(DataType x); //将元素x入栈
DataType Pop( ); //将栈顶元素弹出
DataType GetTop( ); //取栈顶元素(并不删除)
int Empty( ); //判断栈是否为空
void Printf();
private:
DataType data[StackSize]; //存放栈元素的数组
int top; //栈顶指针,指示栈顶元素在数组中的下标
};
template <class DataType>
SeqStack<DataType>::SeqStack( ){ top=-1; }
template <class DataType>
SeqStack<DataType>::~SeqStack( ){}
template <class DataType>
void SeqStack<DataType>::Push(DataType x){ if (top==StackSize-1) throw "上溢";
data[++top]=x;
}
template <class DataType>
DataType SeqStack<DataType>::Pop( ){ DataType x;
if (top==-1) throw "下溢";
x=data[top--];
return x;
}
template <class DataType>
DataType SeqStack<DataType>::GetTop( ){
if (top!=-1)
return data[top];
}
template <class DataType>
int SeqStack<DataType>::Empty( ){
if(top==-1) return 1;
else return 0;
}
template<class DataType>
void SeqStack<DataType>::Printf(){
while(top!=-1)
{
cout<<GetTop()<<endl;
Pop();
}
}
int isp(char op){
switch(op){
case '\0':
return 0;
break;
case '+':
return 3;
break;
case '-':
return 3;
break;
case '*':
return 5;
break;
case '/':
return 5;
break;
case '(':
return 1;
break;
default:
return 6;
}
}
int icp(char ch){ switch(ch){
case '+':
return 2;
break;
case '-':
return 2;
break;
case '*':
return 4;
break;
case '/':
return 4;
break;
case '(':
return 6;
break;
case ')':
return 1;
break;
default:
return 0;
}
}
int calculate(int a, char ch, int b){
switch(ch){
case '+':
return a + b;
break;
case '-':
return a - b;
break;
case '*':
return a * b;
break;
case '/':
return a / b;
break;
default:
return -1;
}
}
int evaluation(char infixS[]){
SeqStack<char> OPTR;
SeqStack<int> OPND;
OPTR.Push('\0');
int i = 0;
char ch = infixS[i];
int a,b;
while(ch != '\0'){
if(ch >= '0' && ch <= '9'){
OPND.Push(ch - '0');
ch = infixS[++i];
}//if
if(ch == '+' || ch == '-' || ch == '*' || ch == '/' || ch == '(' || ch == ')'){
if(icp(ch) > isp(OPTR.GetTop())){
OPTR.Push(ch);
ch = infixS[++i];
}
else if(icp(ch) < isp(OPTR.GetTop())){
b = OPND.Pop();
a = OPND.Pop();
OPND.Push(calculate(a,OPTR.Pop(),b));
}
else{
OPTR.Pop();
ch = infixS[++i];
}
}//if
}//while
while(OPTR.GetTop() != '\0'){
b = OPND.Pop();
a = OPND.Pop();
OPND.Push(calculate(a,OPTR.Pop(),b));
}//while
return OPND.Pop();
}
//设计主函数。
int main(){
char s[] = {'8','*','(','2','+','3',')','*','2','+','1','\0'};
cout<<evaluation(s)<<endl;
return 0;
}
四、运行和测试
1.所求表达式为:
char s[] = {'8','*','(','2','+','3',')','*','2','+','1','\0'}
2.测试后结果:
五、总结与心得
解决此问题首先得区分运算符和操作数,得非常熟悉栈的使用,包括入栈.出栈等.在优先级中容易出错,对于不同栈相同字符其等级也不同,这样利于辨别 .以字符序列形式从终端输入语法正确的、不含变量的整数表达式。
利用课本3.2.5节中给出的算符优先关系,实现对算术四则混合运算表达式的求值,并仿照课本上的例子演示在求值过程中运算符栈、运算数栈、输入字符和主要操作的变化过程.。