模拟电子技术教案课程
- 格式:docx
- 大小:291.10 KB
- 文档页数:118
模拟电子技术电子教案第一章:模拟电子技术概述1.1 教学目标让学生了解模拟电子技术的基本概念、特点和应用领域。
让学生掌握常用的模拟电子元件及其功能。
培养学生对模拟电子技术的兴趣和好奇心。
1.2 教学内容模拟电子技术的定义和特点模拟电子技术的应用领域常用的模拟电子元件:电阻、电容、电感、二极管、晶体管等1.3 教学方法采用讲授法,讲解模拟电子技术的基本概念和特点。
通过实物展示和示范,介绍常用的模拟电子元件及其功能。
引导学生进行实验操作,培养学生的动手能力。
1.4 教学评估通过课堂提问,检查学生对模拟电子技术基本概念的理解。
通过对实验报告的评估,了解学生对常用模拟电子元件功能的掌握情况。
第二章:模拟电路的基本分析方法2.1 教学目标让学生掌握模拟电路的基本分析方法。
培养学生运用基本分析方法解决实际问题的能力。
2.2 教学内容模拟电路的基本分析方法:静态分析、动态分析、频率响应分析等。
常用电路分析工具:节点电压法、回路电流法、频率响应分析法等。
2.3 教学方法采用讲授法,讲解模拟电路的基本分析方法。
通过示例电路,演示常用分析方法的运用。
引导学生进行实际电路的分析,培养学生的实际操作能力。
2.4 教学评估通过课堂提问,检查学生对模拟电路基本分析方法的理解。
通过对实际电路分析的评估,了解学生对分析方法的掌握情况。
第三章:放大电路3.1 教学目标让学生了解放大电路的基本原理和特点。
培养学生掌握放大电路的设计和分析方法。
3.2 教学内容放大电路的基本原理:输入、输出和反馈关系。
放大电路的类型:共射放大电路、共基放大电路、共集放大电路等。
放大电路的设计和分析方法:晶体管参数、电压增益、频率响应等。
3.3 教学方法采用讲授法,讲解放大电路的基本原理和特点。
通过示例电路,介绍不同类型的放大电路。
引导学生进行放大电路的设计和分析,培养学生的实际操作能力。
3.4 教学评估通过课堂提问,检查学生对放大电路基本原理的理解。
《模拟电子技术基础》教案三篇篇一:《模拟电子技术基础》教案1、本课程教学目的:本课程是电气信息类专业的主要技术基础课。
其目的与任务是使学生掌握常用半导体器件和典型集成运放的特性与参数,掌握基本放大、负反馈放大、集成运放应用等低频电子线路的组成、工作原理、性能特点、基本分析方法和工程计算方法;使学生具有一定的实践技能和应用能力;培养学生分析问题和解决问题的能力,为后续课程和深入学习这方面的内容打好基础。
2、本课程教学要求:1.掌握半导体器件的工作原理、外部特性、主要参数、等效电路、分析方法及应用原理。
2.掌握共射、共集、共基、差分、电流源、互补输出级六种基本电路的组成、工作原理、特点及分析,熟悉改进放大电路,理解多级放大电路的耦合方式及分析方法,理解场效应管放大电路的工作原理及分析方法,理解放大电路的频率特性概念及分析。
3.掌握反馈的基本概念和反馈类型的判断方法,理解负反馈对放大电路性能的影响,熟练掌握深度负反馈条件下闭环增益的近似估算,了解负反馈放大电路产生自激振荡的条件及其消除原则。
4.了解集成运算放大器的组成和典型电路,理解理想运放的概念,熟练掌握集成运放的线性和非线性应用原理及典型电路;掌握一般直流电源的组成,理解整流、滤波、稳压的工作原理,了解电路主要指标的估算。
3、使用的教材:绪论本章的教学目标和要求:要求学生了解放大电路的基本知识;要求了解放大电路的分类及主要性能指标。
本章总体教学内容和学时安排:(采用多媒体教学)§1-1电子系统与信号0.5§1-2放大电路的基本知识0.5本章重点:放大电路的基本认识;放大电路的分类及主要性能指标。
本章教学方式:课堂讲授本章课时安排:1本章的具体内容:1节介绍本课程目的,教学参考书,本课程的特点以及在学习中应该注意的事项和学习方法;介绍放大电路的基本认识;放大电路的分类及主要性能指标。
重点:放大电路的分类及主要性能指标。
第1章半导体二极管及其基本电路本章的教学目标和要求:要求学生了解半导体基础知识;理解PN结的结构与形成;熟练掌握普通二极管和稳压管的V-I特性曲线及其主要参数,熟练掌握普通二极管正向V-I特性的四种建模。
模拟电子技术电子教案第一章:模拟电子技术基础1.1 模拟电子技术的概念与发展1.2 模拟电子电路的组成与特点1.3 模拟电子技术的基本定律与分析方法第二章:放大器电路2.1 放大器的作用与分类2.2 放大器的性能指标2.3 放大器的基本电路分析2.4 常用放大器电路实例第三章:滤波器电路3.1 滤波器的作用与分类3.2 滤波器的性能指标3.3 滤波器的基本电路分析3.4 常用滤波器电路实例第四章:振荡器电路4.1 振荡器的作用与分类4.2 振荡器的性能指标4.3 振荡器的基本电路分析4.4 常用振荡器电路实例第五章:模拟电子技术的应用5.1 模拟电子技术在通信领域的应用5.3 模拟电子技术在视频设备中的应用5.4 模拟电子技术在其他领域的应用第六章:模拟集成电路6.1 集成电路概述6.2 模拟集成电路的类型与特点6.3 集成电路的封装与测试6.4 常用模拟集成电路介绍第七章:模拟信号处理7.1 信号处理的基本概念7.2 模拟信号处理技术7.3 信号处理电路实例7.4 信号处理在实际应用中的案例分析第八章:模拟电路设计方法与实践8.1 模拟电路设计的基本原则8.2 电路设计的一般步骤8.3 电路仿真与实验8.4 电路设计实例分析第九章:模拟电子技术在现代科技中的应用9.1 模拟电子技术在生物医学领域的应用9.2 模拟电子技术在工业控制领域的应用9.3 模拟电子技术在新能源领域的应用第十章:模拟电子技术的未来发展趋势10.1 模拟电子技术的发展历程10.2 当前模拟电子技术面临的挑战10.3 模拟电子技术的未来发展趋势10.4 我国在模拟电子技术领域的发展现状与展望重点和难点解析教案中的重点环节包括:1. 模拟电子技术的概念与发展:了解模拟电子技术的基本定义和发展历程,理解模拟电子技术与数字电子技术的区别。
2. 放大器电路的分析:掌握放大器的作用、性能指标和基本电路分析方法,了解不同类型的放大器电路及其应用。
《模拟电子技术基础(同济版)》教学教案(一)章节名称:第一章绪论教学目标:1. 使学生了解模拟电子技术的基本概念、特点和应用领域。
2. 使学生掌握常用的模拟电子电路元件及其参数。
3. 培养学生对模拟电子技术的兴趣和学习的积极性。
教学内容:1. 模拟电子技术的定义、特点和应用。
2. 模拟电子电路的基本元件及其参数。
3. 常用的模拟电子电路符号。
教学过程:1. 导入:通过简单的实例,让学生了解模拟电子技术在生活中的应用,激发学生的学习兴趣。
2. 讲解:讲解模拟电子技术的定义、特点和应用领域,介绍常用的模拟电子电路元件及其参数。
3. 演示:通过示例电路图,讲解模拟电子电路的符号表示方法。
4. 练习:让学生绘制一些简单的模拟电子电路图,加深对电路符号的理解。
教学方法:1. 采用讲授法,讲解基本概念和知识点。
2. 采用演示法,通过示例电路图让学生了解电路符号的表示方法。
3. 采用练习法,让学生动手绘制电路图,巩固所学知识。
教学评价:1. 课堂问答:检查学生对模拟电子技术基本概念的理解。
2. 课后作业:布置一些简单的电路图绘制任务,检验学生对电路符号的掌握程度。
《模拟电子技术基础(同济版)》教学教案(二)章节名称:第二章信号与系统教学目标:1. 使学生了解信号的分类及其特点。
2. 使学生掌握系统的性质和分类。
3. 培养学生对信号与系统的理解能力。
教学内容:1. 信号的分类及其特点。
2. 系统的性质和分类。
3. 信号与系统的联系和应用。
教学过程:1. 导入:通过实际生活中的例子,让学生了解信号和系统的概念,激发学生的学习兴趣。
2. 讲解:讲解信号的分类及其特点,介绍系统的性质和分类。
3. 演示:通过示例,讲解信号与系统的联系和应用。
4. 练习:让学生分析一些实际信号和系统,加深对信号与系统的理解。
教学方法:1. 采用讲授法,讲解信号与系统的基本概念和知识点。
2. 采用演示法,通过示例让学生了解信号与系统的联系和应用。
《模拟电子技术》教案第一章:绪论1.1 课程介绍了解模拟电子技术的基本概念、特点和应用领域。
理解模拟电子技术与其他相关技术(如数字电子技术、通信技术等)的关系。
1.2 模拟电子技术的基本概念学习模拟信号、模拟电路、模拟电子系统的定义和特点。
理解模拟电子技术中的重要参数和概念,如电压、电流、电阻、电容等。
1.3 模拟电子技术的应用领域了解模拟电子技术在各个领域的应用,如音频处理、信号处理、功率放大等。
学习模拟电子技术在现代科技发展中的重要性。
第二章:模拟电路基础2.1 电路元件学习常见电路元件的性质和功能,如电阻、电容、电感等。
掌握电路元件的符号表示和单位。
2.2 基本电路分析方法学习基尔霍夫定律、欧姆定律等基本电路分析方法。
掌握节点电压法、回路电流法等电路分析技巧。
2.3 电路仿真实验利用电路仿真软件进行基本电路分析和设计。
培养学生的实际操作能力和实验技能。
第三章:放大电路3.1 放大电路的基本原理学习放大电路的作用和分类,如电压放大器、电流放大器等。
理解放大电路的基本组成和原理。
3.2 晶体管放大电路学习晶体管的特性和工作原理。
掌握晶体管放大电路的分析和设计方法。
3.3 反馈放大电路学习反馈放大电路的作用和分类,如正反馈、负反馈等。
掌握反馈放大电路的分析和设计方法。
第四章:模拟信号处理4.1 滤波器学习滤波器的作用和分类,如低通滤波器、高通滤波器等。
掌握滤波器的分析和设计方法。
4.2 振荡器学习振荡器的作用和分类,如正弦振荡器、方波振荡器等。
掌握振荡器的分析和设计方法。
4.3 调制与解调学习调制与解调的基本概念和方法,如幅度调制、频率调制等。
掌握调制与解调电路的分析和设计方法。
第五章:模拟电子技术在现代科技中的应用5.1 音频处理学习音频处理的基本原理和方法,如放大、滤波、调制等。
掌握音频处理电路的分析和设计方法。
5.2 信号处理学习信号处理的基本原理和方法,如采样、量化、数字信号处理等。
掌握信号处理电路的分析和设计方法。
模拟电子技术课程教案第一章:模拟电子技术基础1.1 课程介绍了解模拟电子技术的基本概念和应用领域明确本课程的教学目标和学习要求1.2 模拟电子技术概述介绍模拟电子技术的基本原理和特点理解模拟信号与数字信号的区别1.3 模拟电路的基本元件介绍电阻、电容、电感等基本元件的特性分析电路中元件的作用和相互关系1.4 电路定律与分析方法学习欧姆定律、基尔霍夫定律等基本电路定律掌握节点分析、支路分析等电路分析方法第二章:放大电路2.1 放大电路的基本原理了解放大电路的作用和分类明确放大电路的基本组成和性能指标2.2 晶体管放大电路学习晶体管的特性和工作原理分析晶体管放大电路的输入输出特性2.3 放大电路的设计与分析学习放大电路的设计方法和步骤掌握放大电路的稳定性分析、频率响应分析等2.4 放大电路的应用实例分析音频放大器、功率放大器等应用实例了解放大电路在实际应用中的限制和优化方法第三章:滤波电路3.1 滤波电路的基本原理了解滤波电路的作用和分类明确滤波电路的基本组成和性能指标3.2 低通滤波器学习低通滤波器的原理和设计方法分析低通滤波器的频率特性和平滑特性3.3 高通滤波器学习高通滤波器的原理和设计方法分析高通滤波器的频率特性和平滑特性3.4 滤波电路的应用实例分析信号处理、通信系统等领域的滤波应用实例了解滤波电路在实际应用中的限制和优化方法第四章:模拟电路的测量与调试4.1 测量仪器与仪表学习示波器、信号发生器、万用表等测量仪器的基本原理和使用方法了解测量误差的概念和减小方法4.2 电路调试与故障排除学习电路调试的基本方法和步骤掌握故障排除的技巧和常用方法4.3 电路测试与性能评估学习电路测试的方法和指标了解电路性能评估的方法和准则4.4 实例分析:放大电路的测量与调试分析放大电路的测量参数和方法了解放大电路的调试过程和故障排除方法第五章:模拟电路的应用实例5.1 信号发生器的设计与实现学习信号发生器的基本原理和设计方法分析信号发生器的电路结构和性能指标5.2 模拟信号处理电路学习模拟信号处理电路的基本原理和设计方法分析滤波器、放大器等信号处理电路的应用实例5.3 模拟通信系统学习模拟通信系统的基本原理和组成分析调制解调器、放大器等通信电路的应用实例5.4 电源电路的设计与实现学习电源电路的基本原理和设计方法分析开关电源、线性电源等电源电路的应用实例第六章:运算放大器及其应用6.1 运算放大器的基本原理了解运算放大器的工作原理和特性明确运算放大器的应用领域和性能指标6.2 运算放大器的应用电路学习运算放大器的差分放大电路、比例放大电路等基本应用分析运算放大器在信号处理、滤波器设计等领域的应用实例6.3 运算放大器的选型与使用学习运算放大器的选型原则和使用注意事项掌握运算放大器的级联、偏置电路设计和补偿方法6.4 运算放大器的troubleshooting 与优化学习运算放大器电路的故障分析和排除方法了解运算放大器电路的性能优化技巧第七章:振荡电路7.1 振荡电路的基本原理了解振荡电路的作用和分类明确振荡电路的基本组成和性能指标7.2 LC 振荡电路学习LC 振荡电路的原理和设计方法分析LC 振荡电路的频率稳定性和Q 值的影响7.3 晶体振荡电路学习晶体振荡电路的原理和设计方法分析晶体振荡电路的频率稳定性和应用实例7.4 振荡电路的应用实例分析信号发生器、无线通信等领域的振荡应用实例了解振荡电路在实际应用中的限制和优化方法第八章:模拟集成电路8.1 集成电路的基本原理了解集成电路的分类和特点明确集成电路的设计流程和制造工艺8.2 模拟集成电路的基本单元学习放大器、滤波器、转换器等基本模拟集成电路单元的设计方法分析集成电路中元件的匹配和布局要求8.3 集成电路的封装与测试学习集成电路的封装技术和测试方法掌握集成电路的可靠性评估和品质控制要点8.4 集成电路的应用实例分析音频处理、视频处理等领域的集成电路应用实例了解集成电路在现代电子设备中的广泛应用和趋势第九章:模拟电子技术的现代发展9.1 集成电路的设计软件与工具了解现代集成电路设计所需的软件和工具掌握电子设计自动化(EDA)工具的基本使用方法9.2 现代模拟集成电路技术的发展趋势学习FinFET、MEMS 等先进集成电路技术的特点和应用了解物联网、等新兴领域对模拟电子技术的需求和挑战9.3 混合信号集成电路及其应用学习混合信号集成电路的设计方法和应用领域分析模拟数字接口、模拟数字转换器等混合信号电路的应用实例9.4 电源管理集成电路学习电源管理集成电路的基本原理和设计方法分析电源管理集成电路在便携式电子设备中的应用实例第十章:模拟电子技术的实验与实践10.1 实验设备与实验流程了解模拟电子技术实验所需设备和材料掌握实验操作的基本流程和安全注意事项10.2 实验项目与实验指导学习放大电路、滤波电路等基本实验项目的设计与调试分析实验中可能遇到的问题和解决方法10.3 设计性实验与创新实践学习设计性实验的要求和评价标准探索模拟电子技术在创新实践中的应用和解决方案掌握实验结果的展示和交流技巧重点和难点解析重点环节1:模拟电子技术的基本原理和特点解析模拟电子技术的基本概念,包括模拟信号与数字信号的区别强调模拟电子技术的应用领域和实际意义重点环节2:放大电路的作用和分类解析放大电路的基本原理和性能指标强调不同类型放大电路的特点和应用场景重点环节3:滤波电路的设计与分析解析滤波电路的基本原理和设计方法强调滤波电路的频率特性和平滑特性分析重点环节4:模拟电路的测量与调试方法解析测量仪器与仪表的使用方法和测量误差的概念强调电路调试的步骤和故障排除技巧重点环节5:模拟电路的应用实例分析解析信号发生器、音频放大器等应用实例的设计与实现强调模拟电路在实际应用中的限制和优化方法重点环节6:运算放大器的基本原理和应用解析运算放大器的工作原理和特性强调运算放大器的应用电路设计和优化方法重点环节7:振荡电路的原理和设计解析LC振荡电路和晶体振荡电路的设计方法强调振荡电路的频率稳定性和应用实例重点环节8:模拟集成电路的设计与测试解析集成电路的基本单元设计和封装技术强调集成电路的测试方法和可靠性评估重点环节9:现代模拟电子技术的发展趋势解析现代集成电路设计工具和先进技术的发展趋势强调新兴领域对模拟电子技术的需求和挑战重点环节10:模拟电子技术的实验与实践强调实验操作的基本流程和安全注意事项全文总结和概括:本教案涵盖了模拟电子技术的基本原理、放大电路、滤波电路、测量与调试、应用实例、运算放大器、振荡电路、模拟集成电路、现代发展趋势以及实验与实践等十个重点环节。
《模拟电子技术》教案(全)模拟电子技术教案信息工程系目录第一章常用半导体器件第一讲半导体基础知识第二讲半导体二极管第三讲双极型晶体管三极管第四讲场效应管第二章基本放大电路第五讲放大电路的主要性能指标及基本共射放大电路组成原理第六讲放大电路的基本分析方法第七讲放大电路静态工作点的稳定第八讲共集放大电路和共基放大电路第九讲场效应管放大电路第十讲多级放大电路第十一讲习题课第三章放大电路的频率响应第十二讲频率响应概念、RC电路频率响应及晶体管的高频等效模型第十三讲共射放大电路的频率响应以及增益带宽积第四章功率放大电路第十四讲功率放大电路概述和互补功率放大电路第十五讲改进型OCL电路第五章模拟集成电路基础第十六讲集成电路概述、电流源电路和有源负载放大电路第十七讲差动放大电路第十八讲集成运算放大电路第六章放大电路的反馈第十九讲反馈的基本概念和判断方法及负反馈放大电路的方框图第二十讲深度负反馈放大电路放大倍数的估算第二十一讲负反馈对放大电路的影响第七章信号的运算和处理电路第二十二讲运算电路概述和基本运算电路第二十三讲模拟乘法器及其应用第二十四讲有源滤波电路第八章波形发生与信号转换电路第二十五讲振荡电路概述和正弦波振荡电路第二十六讲电压比较器第二十七讲非正弦波发生电路第二十八讲利用集成运放实现信号的转换第九章直流电源第二十九讲直流电源的概述及单相整流电路第三十讲滤波电路和稳压管稳压电路第三十一讲串联型稳压电路第三十二讲总复习第一章半导体基础知识本章主要内容本章重点讲述半导体器件的结构原理、外特性、主要参数及其物理意义,工作状态或工作区的分析。
首先介绍构成PN结的半导体材料、PN结的形成及其特点。
其后介绍二极管、稳压管的伏安特性、电路模型和主要参数以及应用举例。
然后介绍两种三极管(BJT和FET)的结构原理、伏安特性、主要参数以及工作区的判断分析方法。
本章学时分配本章分为4讲,每讲2学时。
第一讲常用半导体器件本讲重点1、PN结的单向导电性;2、PN结的伏安特性;本讲难点1、半导体的导电机理:两种载流子参与导电;2、掺杂半导体中的多子和少子3、PN结的形成;教学组织过程本讲宜教师讲授。
模拟电子技术课程教案一、课程简介1. 课程目的:使学生掌握模拟电子技术的基本理论、基本知识和基本技能,培养学生分析和解决实际问题的能力。
2. 适用对象:电子工程专业本科生。
3. 先修课程:电路分析基础、线性代数、微积分。
二、教学内容1. 模拟电子技术基本概念信号的分类与分析放大器的基本原理2. 放大器电路放大器的基本类型放大器的设计与分析反馈电路3. 滤波器与波形发生器滤波器的设计与分析波形发生器的工作原理4. 模拟电路设计实例运算放大器应用电路信号处理电路信号发生与接收电路5. 常用模拟电子元件电阻、电容、电感二极管、晶体管、场效应晶体管三、教学方法1. 理论教学:采用讲授、讨论、案例分析等方式,使学生掌握基本概念、原理和方法。
2. 实验教学:安排实验课程,让学生动手实践,培养实际操作能力。
3. 课外辅导:提供课外辅导,解答学生在学习过程中遇到的问题。
四、教学评价1. 平时成绩:包括课堂表现、作业、实验报告等,占总评的40%。
2. 期末考试:闭卷考试,占总评的60%。
五、教学进度安排1. 第一周:模拟电子技术基本概念、信号分析2. 第二周:放大器电路(一)3. 第三周:放大器电路(二)、反馈电路4. 第四周:滤波器与波形发生器5. 第五周:模拟电路设计实例6. 第六周:常用模拟电子元件7. 第七周:放大器电路(三)8. 第八周:滤波器与波形发生器(续)9. 第九周:模拟电路设计实例(续)10. 第十周:综合练习与复习六、教学资源1. 教材:《模拟电子技术基础》2. 辅助教材:《模拟电子技术实验指导书》3. 网络资源:相关在线教程、视频讲解、学术文章等。
4. 实验室设备:放大器电路实验装置、滤波器实验装置、波形发生器等。
七、教学注意事项1. 强调理论联系实际,引导学生运用所学知识分析、解决实际问题。
2. 注重培养学生的动手能力,实验课程要求学生独立完成。
3. 关注学生个体差异,提供有针对性的辅导。
《模拟电子技术基础(同济版)》教学教案(一)一、教学目标1. 让学生了解模拟电子技术的基本概念、原理和应用。
2. 使学生掌握晶体管、放大器、滤波器、振荡器等基本电路的分析方法。
3. 培养学生运用模拟电子技术解决实际问题的能力。
二、教学内容1. 模拟电子技术的基本概念1.1 模拟信号与数字信号1.2 模拟电路与数字电路2. 晶体管2.1 晶体管的结构与分类2.2 晶体管的放大作用2.3 晶体管的其他应用3. 放大器3.1 放大器的基本原理3.2 放大器的类型及特点3.3 放大器的分析方法4. 滤波器4.1 滤波器的基本原理4.2 滤波器的类型及特点4.3 滤波器的应用5. 振荡器5.1 振荡器的基本原理5.2 振荡器的类型及特点5.3 振荡器的应用三、教学方法1. 采用讲授法,系统地介绍模拟电子技术的基本概念、原理和应用。
2. 利用示教板、仿真软件等进行演示,帮助学生理解抽象的电路原理。
3. 引导学生进行课后练习,巩固所学知识。
4. 组织课堂讨论,鼓励学生提问、发表见解,提高学生的参与度。
四、教学资源1. 教材:《模拟电子技术基础(同济版)》2. 示教板:展示晶体管、放大器、滤波器、振荡器等电路原理。
3. 仿真软件:辅助分析电路性能,如Multisim、LTspice等。
4. 课件:用于课堂讲解和复习。
五、教学评价1. 平时成绩:考察学生的课堂表现、提问、讨论等参与程度。
2. 课后作业:检验学生对课堂所学知识的掌握情况。
3. 实验报告:评估学生在实验过程中的操作技能和分析能力。
4. 期末考试:全面测试学生对模拟电子技术基础知识的掌握。
《模拟电子技术基础(同济版)》教学教案(二)六、教学目标1. 让学生了解模拟电子技术的基本概念、原理和应用。
2. 使学生掌握晶体管、放大器、滤波器、振荡器等基本电路的分析方法。
3. 培养学生运用模拟电子技术解决实际问题的能力。
七、教学内容1. 模拟电子技术的基本概念1.1 模拟信号与数字信号1.2 模拟电路与数字电路2. 晶体管2.1 晶体管的结构与分类2.2 晶体管的放大作用2.3 晶体管的其他应用3. 放大器3.1 放大器的基本原理3.2 放大器的类型及特点3.3 放大器的分析方法4. 滤波器4.1 滤波器的基本原理4.2 滤波器的类型及特点4.3 滤波器的应用5. 振荡器5.1 振荡器的基本原理5.2 振荡器的类型及特点5.3 振荡器的应用八、教学方法1. 采用讲授法,系统地介绍模拟电子技术的基本概念、原理和应用。
模拟电子技术教案第一章:模拟电子技术基础1.1 学习目的:(1)理解模拟电子技术的基本概念;(2)掌握模拟信号的分类及特点;(3)了解模拟电路的组成及基本原理。
1.2 教学内容:(1)模拟电子技术的定义与特点;(2)模拟信号的分类及特点;(3)模拟电路的组成;(4)模拟电路的基本原理。
1.3 教学方法:(1)采用讲解、演示、实验相结合的方式进行教学;(2)通过具体案例分析,让学生深入了解模拟电子技术的应用;(3)引导学生进行自主学习,提高分析问题和解决问题的能力。
1.4 教学资源:(1)教材:《模拟电子技术基础》;(2)实验设备:模拟电路实验板、信号发生器、示波器等;(3)网络资源:相关在线课程、学术文章等。
第二章:放大器电路2.1 学习目的:(1)掌握放大器电路的基本原理;(2)了解不同类型的放大器电路及其应用;(3)学会分析放大器电路的性能指标。
2.2 教学内容:(1)放大器电路的分类及特点;(2)放大器电路的基本原理;(3)常见放大器电路及其应用;(4)放大器电路的性能指标分析。
2.3 教学方法:(1)采用讲解、演示、实验相结合的方式进行教学;(2)通过实际案例,让学生了解放大器电路在实际应用中的重要性;(3)引导学生进行自主学习,提高分析问题和解决问题的能力。
2.4 教学资源:(1)教材:《模拟电子技术基础》;(2)实验设备:放大器电路实验板、信号发生器、示波器等;(3)网络资源:相关在线课程、学术文章等。
第三章:滤波器电路3.1 学习目的:(1)理解滤波器电路的基本原理;(2)掌握不同类型的滤波器电路及其应用;(3)学会分析滤波器电路的性能指标。
3.2 教学内容:(1)滤波器电路的分类及特点;(2)滤波器电路的基本原理;(3)常见滤波器电路及其应用;(4)滤波器电路的性能指标分析。
3.3 教学方法:(1)采用讲解、演示、实验相结合的方式进行教学;(2)通过实际案例,让学生了解滤波器电路在实际应用中的重要性;(3)引导学生进行自主学习,提高分析问题和解决问题的能力。
《模拟电子技术基础(同济版)》教学教案(一)一、教学目标:1. 让学生了解模拟电子技术的基本概念、基本原理和基本电路。
2. 培养学生掌握模拟电路分析方法,提高分析和解决实际问题的能力。
3. 使学生熟悉常用模拟电子器件的性能、应用和选用方法。
二、教学内容:1. 模拟电子技术的基本概念2. 模拟电路的基本元件3. 模拟电路的基本分析方法4. 常用模拟电子器件5. 模拟电路的应用实例三、教学重点与难点:1. 教学重点:模拟电子技术的基本概念、基本原理和基本电路;模拟电路分析方法;常用模拟电子器件的性能、应用和选用方法。
2. 教学难点:模拟电路的分析方法;常用模拟电子器件的工作原理和性能。
四、教学方法:1. 采用讲授法,系统地讲解模拟电子技术的基本概念、基本原理和基本电路。
2. 采用案例分析法,分析实际电路,使学生掌握模拟电路分析方法。
3. 采用实验法,让学生动手操作,熟悉常用模拟电子器件的性能和应用。
4. 采用讨论法,引导学生思考和探讨模拟电子技术在实际中的应用和发展前景。
五、教学准备:1. 教材:《模拟电子技术基础(同济版)》2. 教学辅助材料:课件、教案、实验设备3. 实验材料:元器件、实验板、测试仪器4. 参考资料:相关论文、书籍、网络资源《模拟电子技术基础(同济版)》教学教案(二)一、教学目标:1. 让学生了解模拟电子技术的基本概念、基本原理和基本电路。
2. 培养学生掌握模拟电路分析方法,提高分析和解决实际问题的能力。
3. 使学生熟悉常用模拟电子器件的性能、应用和选用方法。
二、教学内容:1. 模拟电子技术的基本概念2. 模拟电路的基本元件3. 模拟电路的基本分析方法4. 常用模拟电子器件5. 模拟电路的应用实例三、教学重点与难点:1. 教学重点:模拟电子技术的基本概念、基本原理和基本电路;模拟电路分析方法;常用模拟电子器件的性能、应用和选用方法。
2. 教学难点:模拟电路的分析方法;常用模拟电子器件的工作原理和性能。
《模拟电子技术基础》教学教案第一章:绪论1.1 课程介绍1.2 模拟电子技术的基本概念1.3 模拟电子技术的发展历程1.4 模拟电子技术的应用领域第二章:常用半导体器件2.1 半导体基础知识2.2 晶体管的结构与工作原理2.3 场效应晶体管的结构与工作原理2.4 晶体二极管的结构与工作原理2.5 晶体三极管的结构与工作原理第三章:放大电路基础3.1 放大电路的基本概念3.2 放大电路的分类与性能指标3.3 放大电路的基本分析方法3.4 放大电路的频率响应3.5 放大电路的稳定性与调整第四章:集成运算放大器4.1 运算放大器的基本概念4.2 运算放大器的内部结构与工作原理4.3 运算放大器的性质与参数4.4 运算放大器的基本应用电路4.5 运算放大器的线性应用与非线性应用第五章:模拟信号处理5.1 滤波器的基本概念5.2 滤波器的分类与性能指标5.3 低通滤波器的原理与设计5.4 高通滤波器的原理与设计5.5 带通滤波器和带阻滤波器的原理与设计5.6 滤波器的应用实例第六章:直流稳压电源6.1 稳压电源的基本概念6.2 稳压电源的电路组成6.3 稳压二极管与稳压电路6.4 线性稳压电源的工作原理6.5 开关稳压电源的工作原理第七章:信号运算与处理7.1 模拟运算放大器的基本应用7.2 模拟信号运算与处理的基本概念7.3 模拟信号运算放大器的比例运算7.4 模拟信号运算放大器的积分与微分运算7.5 模拟信号运算放大器的对数与指数运算第八章:模拟信号转换8.1 模数转换器(ADC)的基本概念8.2 模数转换器的工作原理与类型8.3 模拟信号到数字信号的转换过程8.4 数模转换器(DAC)的基本概念8.5 数模转换器的工作原理与类型第九章:振荡电路9.1 振荡电路的基本概念9.2 LC振荡电路的工作原理9.3 RC振荡电路的工作原理9.4 石英晶体振荡电路的工作原理9.5 振荡电路的应用实例第十章:调制与解调10.1 调制与解调的基本概念10.2 调幅(AM)的原理与实现10.3 调频(FM)的原理与实现10.4 调相(PM)的原理与实现10.5 解调电路的原理与实现第十一章:功率放大器11.1 功率放大器的基本概念11.2 功率放大器的分类与性能指标11.3 甲类功率放大器的工作原理11.4 乙类功率放大器的工作原理11.5 甲乙类功率放大器的应用与选择第十二章:模拟集成电路12.1 集成电路的基本概念12.2 模拟集成电路的分类与性能12.3 集成电路的制造工艺12.4 常用模拟集成电路的功能与原理12.5 模拟集成电路的应用与设计第十三章:数字电路与模拟电路的接口13.1 数字电路与模拟电路的接口概念13.2 模拟信号与数字信号的转换原理13.3 数字模拟转换器(DAC)的原理与应用13.4 模拟数字转换器(ADC)的原理与应用13.5 数字电路与模拟电路接口电路的设计与分析第十四章:噪声与滤波14.1 电子系统中的噪声来源14.2 噪声的度量与控制14.3 滤波器在电子系统中的应用14.4 线性滤波器的设计与分析14.5 非线性滤波器的设计与分析第十五章:模拟电子技术在实际应用中的案例分析15.1 模拟电子技术在通信系统中的应用15.2 模拟电子技术在信号处理中的应用15.3 模拟电子技术在医疗设备中的应用15.4 模拟电子技术在消费电子产品中的应用15.5 模拟电子技术在工业控制中的应用重点和难点解析重点:1. 模拟电子技术的基本概念、发展历程和应用领域。
模拟电子技术教案第一章:模拟电子技术概述1.1 教学目标了解模拟电子技术的基本概念掌握模拟电子技术的主要应用领域理解模拟电子技术的基本原理1.2 教学内容模拟电子技术的定义模拟电子技术与数字电子技术的区别模拟电子技术的主要应用领域模拟电子技术的基本原理及其重要性1.3 教学方法采用讲解、案例分析、互动讨论等方式进行教学1.4 教学评估课堂问答小组讨论课后作业第二章:放大器电路2.1 教学目标理解放大器电路的基本原理掌握放大器电路的主要应用学会分析放大器电路的性能指标2.2 教学内容放大器电路的分类及原理放大器电路的主要应用放大器电路的性能指标分析2.3 教学方法采用讲解、实例分析、互动讨论等方式进行教学2.4 教学评估课堂问答小组讨论课后作业第三章:滤波器电路3.1 教学目标理解滤波器电路的基本原理掌握滤波器电路的主要应用学会分析滤波器电路的性能指标3.2 教学内容滤波器电路的分类及原理滤波器电路的主要应用滤波器电路的性能指标分析3.3 教学方法采用讲解、实例分析、互动讨论等方式进行教学3.4 教学评估课堂问答小组讨论课后作业第四章:振荡器电路4.1 教学目标理解振荡器电路的基本原理掌握振荡器电路的主要应用学会分析振荡器电路的性能指标4.2 教学内容振荡器电路的分类及原理振荡器电路的主要应用振荡器电路的性能指标分析4.3 教学方法采用讲解、实例分析、互动讨论等方式进行教学4.4 教学评估课堂问答小组讨论课后作业第五章:模拟集成电路5.1 教学目标理解模拟集成电路的基本原理掌握模拟集成电路的主要应用学会分析模拟集成电路的性能指标5.2 教学内容模拟集成电路的分类及原理模拟集成电路的主要应用模拟集成电路的性能指标分析5.3 教学方法采用讲解、实例分析、互动讨论等方式进行教学5.4 教学评估课堂问答小组讨论课后作业第六章:模拟信号处理6.1 教学目标理解模拟信号处理的基本概念掌握模拟信号处理的主要技术学会分析模拟信号处理的性能指标6.2 教学内容模拟信号处理的概念与分类模拟信号处理的主要技术,包括滤波、放大、调制等模拟信号处理的性能指标分析,如信噪比、失真度等6.3 教学方法采用讲解、实例分析、互动讨论等方式进行教学6.4 教学评估课堂问答小组讨论课后作业第七章:模拟电路设计与仿真7.1 教学目标理解模拟电路设计的基本原则掌握模拟电路仿真的一般方法学会使用仿真软件进行模拟电路的设计与分析7.2 教学内容模拟电路设计的基本原则与步骤模拟电路仿真的一般方法与流程常见仿真软件的使用方法,如Multisim、LTspice等7.3 教学方法采用讲解、实例分析、互动讨论等方式进行教学7.4 教学评估课堂问答小组讨论课后作业第八章:模拟电子技术的应用8.1 教学目标理解模拟电子技术在现代社会中的广泛应用掌握模拟电子技术在实际应用中的关键作用学会分析模拟电子技术应用中的具体问题8.2 教学内容模拟电子技术在通信、音响、医疗等领域的应用实例模拟电子技术在实际应用中的关键作用,如信号处理、滤波等模拟电子技术应用中常见的问题及其解决方法8.3 教学方法采用讲解、实例分析、互动讨论等方式进行教学8.4 教学评估课堂问答小组讨论课后作业第九章:模拟电子技术实验9.1 教学目标掌握模拟电子技术的基本实验技能学会使用常用实验仪器与设备熟练进行模拟电子技术实验操作9.2 教学内容模拟电子技术实验基本要求与注意事项常用实验仪器与设备的使用方法经典模拟电子技术实验项目,如放大器、滤波器等的设计与测试9.3 教学方法采用讲解、示范、互动讨论等方式进行教学9.4 教学评估实验报告实验操作考核实验成果展示第十章:模拟电子技术在现代科技中的应用及发展趋势10.1 教学目标了解模拟电子技术在现代科技领域中的应用掌握模拟电子技术的发展趋势学会分析模拟电子技术在现代科技发展中的重要作用10.2 教学内容模拟电子技术在现代科技领域中的应用,如物联网、大数据等模拟电子技术的发展趋势,包括微电子技术、集成技术等模拟电子技术在现代科技发展中的重要作用及其影响10.3 教学方法采用讲解、实例分析、互动讨论等方式进行教学10.4 教学评估课堂问答小组讨论课后作业重点和难点解析1. 模拟电子技术的定义及应用领域:理解模拟电子技术的基本概念和主要应用领域是教学的基础,需要重点关注。
模拟电子技术教案第一章:模拟电子技术概述教学目标:1. 了解模拟电子技术的概念和发展历程。
2. 掌握模拟电子技术的基本特性及其应用领域。
3. 理解模拟电子技术与数字电子技术的区别。
教学内容:1. 模拟电子技术的定义与发展历程。
2. 模拟电子技术的基本特性:连续性、无限可导性和幅度不变性。
3. 模拟电子技术的应用领域:通信、信号处理、控制等。
4. 模拟电子技术与数字电子技术的比较。
教学方法:1. 讲授法:讲解模拟电子技术的概念、发展历程和基本特性。
2. 案例分析法:分析模拟电子技术在实际应用中的例子。
教学活动:1. 引入话题:通过提问方式引导学生思考什么是模拟电子技术。
2. 讲解与讨论:讲解模拟电子技术的概念、发展历程和基本特性,引导学生参与讨论。
3. 案例分析:分析模拟电子技术在实际应用中的例子,如通信系统、信号处理等。
4. 小组活动:分组讨论模拟电子技术与数字电子技术的区别。
作业与评估:2. 小组报告:要求学生分组进行调查,报告模拟电子技术在实际应用中的案例。
第二章:模拟信号与系统教学目标:1. 了解模拟信号的定义及其分类。
2. 掌握模拟系统的性质及其分类。
3. 理解模拟信号与模拟系统的关系。
教学内容:1. 模拟信号的定义及其分类:连续信号、离散信号。
2. 模拟系统的性质:线性、时不变性、因果性。
3. 模拟信号与模拟系统的关系。
教学方法:1. 讲授法:讲解模拟信号的定义、分类和模拟系统的性质。
2. 图形演示法:通过图形演示模拟信号和模拟系统的关系。
教学活动:1. 引入话题:通过提问方式引导学生思考什么是模拟信号。
2. 讲解与讨论:讲解模拟信号的定义、分类和模拟系统的性质,引导学生参与讨论。
3. 图形演示:通过图形演示模拟信号和模拟系统的关系。
4. 小组活动:分组讨论模拟信号与模拟系统的关系。
作业与评估:1. 课后作业:要求学生分析一些常见的模拟信号。
2. 小组报告:要求学生分组进行调查,报告模拟信号在实际应用中的案例。
《模拟电子技术》教案一、教学目标1. 知识与技能:(1)了解模拟电子技术的基本概念、原理和应用;(2)掌握常用模拟电子元件的特性和应用;(3)学会简单的模拟电路分析和设计方法。
2. 过程与方法:(1)通过实例分析,培养学生的实际操作能力;(2)运用小组讨论法,提高学生的问题解决能力;(3)利用仿真软件,锻炼学生的电路设计与验证能力。
3. 情感态度与价值观:(1)培养学生对模拟电子技术的兴趣和好奇心;(2)培养学生团队合作精神和自主学习能力;(3)使学生认识到模拟电子技术在实际生活中的重要性。
二、教学内容1. 第四章:模拟电子元件(1)电阻、电容、电感的基本概念和特性;(2)二极管、晶体管的基本原理和应用;(3)运算放大器的基本原理和线性应用。
2. 第五章:模拟电路分析(1)直流电路分析方法;(2)交流电路分析方法;(3)谐振电路分析方法。
3. 第六章:模拟电路设计(1)放大电路设计;(2)滤波电路设计;(3)稳压电路设计。
三、教学资源1. 教材:《模拟电子技术》;2. 实验室设备:示波器、信号源、电阻、电容、二极管、晶体管等;3. 仿真软件:Multisim、LTspice等。
四、教学方法1. 讲授法:讲解基本概念、原理和分析方法;2. 实例分析法:分析实际电路,培养学生解决实际问题的能力;3. 小组讨论法:引导学生合作探讨,提高问题解决能力;4. 仿真实验法:利用仿真软件,锻炼学生的电路设计与验证能力。
五、教学评价1. 平时成绩:课堂表现、小组讨论、作业完成情况;2. 考试成绩:笔试、实验操作;3. 综合评价:学生的自主学习能力、问题解决能力、团队合作精神。
六、教学内容4. 第七章:数字电路基础(1)数字逻辑电路的基本概念;(2)逻辑门电路及其组合逻辑;(3)触发器及其时序逻辑。
5. 第八章:数字电路设计(1)数字电路的设计方法;(2)常用的数字电路模块设计;(3)数字电路仿真与验证。
6. 第九章:模拟与数字混合信号处理(1)模拟与数字信号的转换;(2)模拟与数字信号的处理方法;(3)混合信号电路的应用。
模拟电子技术教案课程公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]模拟电子技术教案电子与信息工程学院目录第一章常用半导体器件第一讲半导体基础知识第二讲半导体二极管第三讲双极型晶体管三极管第四讲场效应管第二章基本放大电路第五讲放大电路的主要性能指标及基本共射放大电路组成原理第六讲放大电路的基本分析方法第七讲放大电路静态工作点的稳定第八讲共集放大电路和共基放大电路第九讲场效应管放大电路第十讲多级放大电路第十一讲习题课第三章放大电路的频率响应第十二讲频率响应概念、RC电路频率响应及晶体管的高频等效模型第十三讲共射放大电路的频率响应以及增益带宽积第四章功率放大电路第十四讲功率放大电路概述和互补功率放大电路第十五讲改进型OCL电路第五章模拟集成电路基础第十六讲集成电路概述、电流源电路和有源负载放大电路第十七讲差动放大电路第十八讲集成运算放大电路第六章放大电路的反馈第十九讲反馈的基本概念和判断方法及负反馈放大电路的方框图第二十讲深度负反馈放大电路放大倍数的估算第二十一讲负反馈对放大电路的影响第七章信号的运算和处理电路第二十二讲运算电路概述和基本运算电路第二十三讲模拟乘法器及其应用第二十四讲有源滤波电路第八章波形发生与信号转换电路第二十五讲振荡电路概述和正弦波振荡电路第二十六讲电压比较器第二十七讲非正弦波发生电路第二十八讲利用集成运放实现信号的转换第九章直流电源第二十九讲直流电源的概述及单相整流电路第三十讲滤波电路和稳压管稳压电路第三十一讲串联型稳压电路第三十二讲总复习第一章半导体基础知识本章主要内容本章重点讲述半导体器件的结构原理、外特性、主要参数及其物理意义,工作状态或工作区的分析。
首先介绍构成PN结的半导体材料、PN结的形成及其特点。
其后介绍二极管、稳压管的伏安特性、电路模型和主要参数以及应用举例。
然后介绍两种三极管(BJT和FET)的结构原理、伏安特性、主要参数以及工作区的判断分析方法。
本章学时分配本章分为4讲,每讲2学时。
第一讲常用半导体器件本讲重点1、PN结的单向导电性;2、PN结的伏安特性;本讲难点1、半导体的导电机理:两种载流子参与导电;2、掺杂半导体中的多子和少子3、PN结的形成;教学组织过程本讲宜教师讲授。
用多媒体演示半导体的结构、导电机理、PN结的形成过程及其伏安特性等,便于学生理解和掌握。
主要内容1、半导体及其导电性能根据物体的导电能力的不同,电工材料可分为三类:导体、半导体和绝缘体。
半导体可以定义为导电性能介于导体和绝缘体之间的电工材料,半导体的电阻率为10-3~10-9cm。
典型的半导体有硅Si和锗Ge以及砷化镓GaAs等。
半导体的导电能力在不同的条件下有很大的差别:当受外界热和光的作用时,它的导电能力明显变化;往纯净的半导体中掺入某些特定的杂质元素时,会使它的导电能力具有可控性;这些特殊的性质决定了半导体可以制成各种器件。
2、本征半导体的结构及其导电性能本征半导体是纯净的、没有结构缺陷的半导体单晶。
制造半导体器件的半导体材料的纯度要达到%,常称为“九个9”,它在物理结构上为共价键、呈单晶体形态。
在热力学温度零度和没有外界激发时,本征半导体不导电。
3、半导体的本征激发与复合现象当导体处于热力学温度0K时,导体中没有自由电子。
当温度升高或受到光的照射时,价电子能量增高,有的价电子可以挣脱原子核的束缚而参与导电,成为自由电子。
这一现象称为本征激发(也称热激发)。
因热激发而出现的自由电子和空穴是同时成对出现的,称为电子空穴对。
游离的部分自由电子也可能回到空穴中去,称为复合。
在一定温度下本征激发和复合会达到动态平衡,此时,载流子浓度一定,且自由电子数和空穴数相等。
4、半导体的导电机理自由电子的定向运动形成了电子电流,空穴的定向运动也可形成空穴电流,因此,在半导体中有自由电子和空穴两种承载电流的粒子(即载流子),这是半导体的特殊性质。
空穴导电的实质是:相邻原子中的价电子(共价键中的束缚电子)依次填补空穴而形成电流。
由于电子带负电,而电子的运动与空穴的运动方向相反,因此认为空穴带正电。
5、杂质半导体掺入杂质的本征半导体称为杂质半导体。
杂质半导体是半导体器件的基本材料。
在本征半导体中掺入五价元素(如磷),就形成N型(电子型)半导体;掺入三价元素(如硼、镓、铟等)就形成P型(空穴型)半导体。
杂质半导体的导电性能与其掺杂浓度和温度有关,掺杂浓度越大、温度越高,其导电能力越强。
在N型半导体中,电子是多数载流子,空穴是少数载流子。
多子(自由电子)的数量=正离子数+少子(空穴)的数量在P型半导体中,空穴是多数载流子,电子是少数载流子。
多子(空穴)的数量=负离子数+少子(自由电子)的数量6、PN结的形成及其单向导电性半导体中的载流子有两种有序运动:载流子在浓度差作用下的扩散运动和电场作用下的漂移运动。
同一块半导体单晶上形成P型和N型半导体区域,在这两个区域的交界处,当多子扩散与少子漂移达到动态平衡时,空间电荷区(亦称为耗尽层或势垒区)的宽度基本上稳定下来,PN结就形成了。
当P区的电位高于N区的电位时,称为加正向电压(或称为正向偏置),此时,PN 结导通,呈现低电阻,流过mA级电流,相当于开关闭合;当N区的电位高于P区的电位时,称为加反向电压(或称为反向偏置),此时,PN 结截止,呈现高电阻,流过μA级电流,相当于开关断开。
PN结是半导体的基本结构单元,其基本特性是单向导电性:即当外加电压极性不同时,PN结表现出截然不同的导电性能。
PN结加正向电压时,呈现低电阻,具有较大的正向扩散电流;PN结加反向电压时,呈现高电阻,具有很小的反向漂移电流。
这正是PN结具有单向导电性的具体表现。
7、PN 结伏安特性PN 结伏安特性方程:⎪⎭⎫ ⎝⎛-=1T U u S e I i式中:I s 为反向饱和电流;U T 为温度电压当量,当T =300K 时,T U ≈26mV当u >0且u >>T U 时,T U uS e I i ≈,伏安特性呈非线性指数规律 ;当u <0且︱u ︱>>T U 时,0≈-≈S I i ,电流基本与u 无关;由此亦可说明PN 结具有单向导电性能。
PN 结的反向击穿特性:当PN 结的反向电压增大到一定值时,反向电流随电压数值的增加而急剧增大。
PN 结的反向击穿有两类:齐纳击穿和雪崩击穿。
无论发生哪种击穿,若对其电流不加以限制,都可能造成PN 结的永久性损坏。
8、PN 结温度特性当温度升高时,PN 结的反向电流增大,正向导通电压减小。
这也是半导体器件热稳定性差的主要原因。
9、PN 结电容效应PN 结具有一定的电容效应,它由两方面的因素决定:一是势垒电容C B ,二是扩散电容C D ,它们均为非线性电容。
势垒电容是耗尽层变化所等效的电容。
势垒电容与PN 结的面积、空间电荷区的宽度和外加电压等因素有关。
扩散电容是扩散区内电荷的积累和释放所等效的电容。
扩散电容与PN结正向电流和温度等因素有关。
PN结电容由势垒电容和扩散电容组成。
PN结正向偏置时,以扩散电容为主;反向偏置时以势垒电容为主。
只有在信号频率较高时,才考虑结电容的作用。
第二讲半导体二极管本讲重点1、二极管的伏安特性、单向导电性及等效电路(三个常用模型);2、稳压管稳压原理及简单稳压电路;3、二极管的箝位、限幅和小信号应用举例;本讲难点1、二极管在电路中导通与否的判断方法,共阴极或共阳极二极管的优先导通问题;2、稳压管稳压原理;教学组织过程本讲以教师讲授为主。
用多媒体演示二极管的结构、伏安特性以及温度对二极管特性的影响等,便于学生理解和掌握。
二极管的箝位、限幅和小信号应用举例可以启发讨论。
主要内容1、半导体二极管的几种常见结构及其应用场合在PN结上加上引线和封装,就成为一个二极管。
二极管按结构分为点接触型、面接触型和平面型三大类。
点接触型二极管PN结面积小,结电容小,常用于检波和变频等高频电路。
面接触型二极管PN结面积大,结电容大,用于工频大电流整流电路。
平面型二极管PN结面积可大可小,PN结面积大的,主要用于功率整流;结面积小的可作为数字脉冲电路中的开关管。
2、二极管的伏安特性以及与PN结伏安特性的区别半导体二极管的伏安特性曲线如P7图所示,处于第一象限的是正向伏安特性曲线,处于第三象限的是反向伏安特性曲线。
1)正向特性:当V>0,即处于正向特性区域。
正向区又分为两段:(1)当0<V<U on时,正向电流为零,U on称为死区电压或开启电压。
(2)当V>U on时,开始出现正向电流,并按指数规律增长。
2)反向特性:当V<0时,即处于反向特性区域。
反向区也分两个区域:(1)当V BR<V<0时,反向电流很小,且基本不随反向电压的变化而变化,此时的反向电流也称反向饱和电流I S。
(2)当V≤V BR时,反向电流急剧增加,V BR称为反向击穿电压。
从击穿的机理上看,硅二极管若|V|≥7V时,主要是雪崩击穿;若V≤4V则主要是齐纳击穿,当在4V~7V之间两种击穿都有,有可能获得零温度系数点。
3)二极管的伏安特性与PN结伏安特性的区别:二极管的基本特性就是PN结的特性。
与理想PN结不同的是,正向特性上二极管存在一个开启电压U on。
一般,硅二极管的U on=左右,锗二极管的U on=左右;二极管的反向饱和电流比PN结大。
3、温度对二极管伏安特性的影响温度对二极管的性能有较大的影响,温度升高时,反向电流将呈指数规律增加,硅二极管温度每增加8℃,反向电流将约增加一倍;锗二极管温度每增加12℃,反向电流大约增加一倍。
另外,温度升高时,二极管的正向压降将减小,每增加1℃,正向压降U D大约减小2mV,即具有负的温度系数。
4、二极管的等效电路(或称为等效模型)1)理想模型:即正向偏置时管压降为0,导通电阻为0;反向偏置时,电流为0,电阻为∞。
适用于信号电压远大于二极管压降时的近似分析。
2)简化电路模型:是根据二极管伏安特性曲线近似建立的模型,它用两段直线逼近伏安特性,即正向导通时压降为一个常量Uon;截止时反向电流为0。
3)小信号电路模型:即在微小变化范围内,将二极管近似看成线性器件而将它等效为一个动态电阻r D 。
这种模型仅限于用来计算叠加在直流工作点Q上的微小电压或电流变化时的响应。
5、二极管的主要参数1)最大整流电流IF:二极管长期工作允许通过的最大正向电流。
在规定的散热条件下,二极管正向平均电流若超过此值,则会因结温过高而烧坏。
2)最高反向工作电压U BR:二极管工作时允许外加的最大反向电压。
若超过此值,则二极管可能因反向击穿而损坏。
一般取U BR值的一半。
3)电流I R:二极管未击穿时的反向电流。
对温度敏感。
I R越小,则二极管的单向导电性越好。