当前位置:文档之家› 新生仔猪精氨酸营养及调控研究进展

新生仔猪精氨酸营养及调控研究进展

新生仔猪精氨酸营养及调控研究进展
新生仔猪精氨酸营养及调控研究进展

新生仔猪精氨酸营养及调控研究进展1

何子双1,印遇龙2,胡元亮1

1南京农业大学动物医学院,南京(210095)

2中国科学院亚热带农业生态研究所,长沙(410125)

E-mail:hezishuang@https://www.doczj.com/doc/109026192.html,

摘要:精氨酸是新生仔猪的必需氨基酸,具有许多重要的生理生化功能。7~21日龄哺乳仔猪精氨酸不足和极限下生长的主要原因是母猪乳汁精氨酸浓度低及仔猪小肠上皮细胞内源性合成的精氨酸/瓜氨酸减少。小肠上皮细胞线粒体N-乙酰谷氨酸水平下降是仔猪内源性精氨酸/瓜氨酸合成减少的潜在机理。N-氨基甲酰谷氨酸和皮质醇在调控新生仔猪内源性精氨酸/瓜氨酸合成方面具有重要作用。

关键词:仔猪;精氨酸;营养;调控

精氨酸是幼龄哺乳动物(包括仔猪)的必需氨基酸[1]、组织蛋白中最丰富的氮载体及细胞合成肌酸、脯氨酸、谷氨酸、多胺和一氧化氮等的前体;可用于多种代谢途径,包括精氨酸酶、一氧化氮合酶、精氨酸/甘氨酸胍基转移酶、精氨酰-tRNA合成酶等[2]。新生仔猪生长迅速,代谢功能旺盛,对精氨酸的需求特别高,而精氨酸不足是影响仔猪快速生长的主要因素。

1.新生仔猪精氨酸营养研究进展

新生仔猪是指出生后到断奶期的哺乳仔猪。美国NRC(national research council)指出3~5 kg仔猪的精氨酸需要量总计为1.5 g/day[3]。虽然传统的观点认为,母猪乳汁可以提供适当的氨基酸以促进仔猪的生长,但是,近年来的研究表明,哺乳仔猪实际上为极限下生长(Sub-maximal growth)。人工喂养的资料表明,新生仔猪的生物学生长潜力≥400g/d(出生至21日龄),或者说要高于哺乳期生长(230g/d)的74%[4]。哺乳仔猪极限下生长的代谢依据还不明了,有学者认为,精氨酸不足是主要因素[2]。

1.1 新生仔猪精氨酸不足

新生仔猪精氨酸不足指的是其体内精氨酸供给不足,不能保持仔猪最快生长和最佳代谢功能的需要。推测其原因可能是多方面的,包括日粮精氨酸供给不足、肠道精氨酸/瓜氨酸合成减少、精氨酸合成酶遗传缺陷、肠道精氨酸输送障碍、肠道精氨酸酶基因过度表达、肾脏转化瓜氨酸为精氨酸的功能障碍等。以前的研究主要集中在母猪乳汁精氨酸不足和仔猪内源性精氨酸合成减少两个方面。

1.1.1 母猪乳汁精氨酸不足根据母猪乳汁和仔猪的氨基酸模式、乳汁精氨酸供给量与估计的仔猪需要量之间的差异证明了母猪乳汁精氨酸不足。精氨酸/赖氨酸质量比在母猪乳汁(哺乳第7 d)和7日龄仔猪体内平均值分别为0.35和0.97,说明有一定数量的精氨酸由仔猪体内合成。根据仔猪精氨酸摄入量和精氨酸存积和代谢量计算结果表明,母猪乳汁供给1周龄仔猪的精氨酸≤需要量的40%。因此,体内合成的精氨酸对哺乳仔猪具有重要意义[5~7]。对婴儿、新生小鼠的研究结果与此一致[8, 9]。

1.1.2 仔猪内源性精氨酸合成减少仔猪小肠上皮细胞合成精氨酸/瓜氨酸,称为内源性精氨酸/瓜氨酸合成。1~7日龄以精氨酸、7日龄后以瓜氨酸为主。肠源瓜氨酸主要在肾脏被转

1本课题得到国家自然科学基金(编号:30528006)的资助。

化为精氨酸[10]。脯氨酸(母猪乳汁丰富的氨基酸)和谷氨酰胺/谷氨酸是仔猪小肠上皮细胞合成精氨酸/瓜氨酸的前体,而以脯氨酸为主。同时,外源精氨酸对内源性精氨酸/瓜氨酸合成具有调节作用[11]。值得注意的是,7日龄哺乳仔猪小肠合成的精氨酸/瓜氨酸和比新生仔猪减少了70%左右,在14~21日龄更进一步下降。其原因可能是细胞5-羧基-吡咯啉合成酶(pyrroline-5-carboxylate synthase,P5CS)和N-乙酰谷氨酸合成酶(N-acetylglutamate synthase,NAGS)的活性降低[2]。3~14日龄仔猪血浆精氨酸、鸟氨酸和瓜氨酸浓度逐渐下降20%~41%。7~14日龄血浆氨浓度比1~3日龄高18%~46%,亚硝酸盐和硝酸盐浓度低16%~29%,肝脏尿素生成减少。血浆精氨酸浓度下降和氨浓度上升是确定仔猪精氨酸不足的敏感指标,提示7~21日龄哺乳仔猪精氨酸不足。血浆亚硝酸盐和硝酸盐浓度降低反映了机体合成一氧化氮减少[12]。

1.1.3 精氨酸不足为仔猪生长的限制性因素在精氨酸不足的幼龄大鼠,极限下生长和一氧化氮合成减少已经被证实[13]。而哺乳仔猪大约在8日龄表现出精氨酸不足及极限下生长。Leibholz、Kim等报道日粮添加精氨酸促进了仔猪的生长,同时提高了血浆鸟氨酸和瓜氨酸水平,证明精氨酸增加了内源性瓜氨酸合成[14, 15]。精氨酸促进仔猪生长的可能机理包括:①增加了精氨酸利用率,有利于组织合成蛋白质;②刺激了血管内皮细胞、内分泌细胞及其他细胞的一氧化氮合成;③促进了一氧化氮介导的胰岛素和生长激素分泌;④改善了组织对胰岛素的敏感性;⑤增加了多种组织多胺的合成。

2.仔猪精氨酸营养调控研究进展

在目前的养猪业,仔猪通常由母猪哺乳直到约21日龄断奶。把仔猪提前到4~7日龄断奶应用高精氨酸日粮有许多困难。根据哺乳仔猪内源性精氨酸合成不足的观点和精氨酸促进仔猪生长的巨大潜力,找到能够改善断奶前仔猪精氨酸营养的有效手段就显得非常重要。

2.1 补充外源性精氨酸/瓜氨酸

通过母猪日粮或仔猪直接口服精氨酸/瓜氨酸存在的问题是母猪乳腺对精氨酸的分解和仔猪小肠氨基酸的拮抗作用。母猪哺乳期1~21 d的常规日粮中补充0.4%精氨酸,乳汁中总精氨酸含量没有变化。哺乳仔猪口服精氨酸(145 mg/kg体重,1日2次),提高了血浆精氨酸浓度,但是降低了赖氨酸和组氨酸浓度。哺乳仔猪口服瓜氨酸121 mg/kg体重,每日2次,提高了血浆精氨酸浓度但是降低了血浆色氨酸、组氨酸和赖氨酸浓度,提示小肠对这些氨基酸的吸收受到了影响。体外试验也证明了瓜氨酸降低仔猪小肠上皮细胞对色氨酸、组氨酸和赖氨酸的转运[2, 16]。

2.2 内源性精氨酸/瓜氨酸合成的调节

2.2.1 NAG在调控内源性精氨酸合成的作用NAGS只分布于肝脏和小肠黏膜细胞线粒体内,其功能是催化谷氨酸和乙酰辅酶A合成N-乙酰谷氨酸(N-acetylglutamate,NAG)。NAG 是氨基甲酰磷酸合成酶-Ⅰ(carbamoylphosphate synthase-Ⅰ,CPS-Ⅰ)的变构催化剂,而CPS-Ⅰ催化合成的氨基甲酰磷酸(carbamoylphosphate,CP)为线粒体转化鸟氨酸为瓜氨酸所必需。

NAG可能在调节哺乳仔猪小肠精氨酸/瓜氨酸合成中起着关键作用。与新生仔猪相比,7~14日龄仔猪小肠上皮细胞线粒体中NAG浓度降低,与此时小肠合成精氨酸/瓜氨酸减少一致。有研究表明,小肠上皮细胞线粒体NAG浓度下降由NAGS活性显著降低所致[2]。在

2~21日龄仔猪,小肠CPS-Ⅰ的蛋白含量相似。提示低水平的NAG可能导致了CPS-Ⅰ活性降低,这可能是仔猪内源性精氨酸合成减少的潜在机理。提高细胞线粒体NAG水平,可能促进小肠瓜氨酸合成,从而增加内源精氨酸供给。

2.2.2 利用NCG调控小肠上皮细胞合成精氨酸/瓜氨酸哺乳动物的细胞浆内分解NAG的活性很高,因此不能利用外源NAG增加线粒体内NAG浓度。N-氨基甲酰谷氨酸(N-carbomoylglutamate,NCG,NAG的类似物)在胞浆不被分解,容易进入线粒体发挥其效应,因此为稳定的CPS-Ⅰ催化剂。根据对大鼠的研究,NCG对动物没有毒性,并被用于防治遗传性NAGS缺陷婴儿的高氨血症[2]。

体内和体外试验证明,NCG促进了14日龄仔猪小肠上皮细胞瓜氨酸和精氨酸合成。在小肠上皮细胞培养液添加2 mmol/L NCG分别增加了由谷氨酰胺和脯氨酸合成的瓜氨酸7.7和0.6倍,也显著增加了合成精氨酸的产量。4日龄哺乳仔猪灌服NCG 50 mg/kg体重,每日2次,直到14日龄,增加了血浆精氨酸浓度68%,提高了仔猪增重61%。表明NCG催化了小肠瓜氨酸和精氨酸合成。更重要的是,NCG对血浆色氨酸、赖氨酸和组氨酸浓度没有影响,说明不影响小肠对这些氨基酸的吸收[2]。Frank 等对9日龄哺乳仔猪灌服NCG 50 mg/kg体重,每日2次,直到17日龄,提高了仔猪增重25%及血浆精氨酸浓度32%,并有一定的促进蛋白质合成效应[17]。

2.2.3 糖皮质激素在调控内源性精氨酸合成的作用糖皮质激素是由肾上腺分泌,具有多种生理效应的类固醇激素。氢化可的松(皮质醇)是其主要活性成分。研究表明,围产期猪胎儿血液氢化可的松浓度升高与内源性精氨酸合成功能有密切关系。如谷胺酰胺酶、脯氨酸氧化酶、鸟氨酸氨基转移酶、CPS-Ⅰ、鸟氨酸氨基甲酰基转移酶活性在90 d猪胎儿小肠上皮细胞的活性比初生仔猪低35%~50%,P5CS、精氨酰琥珀酸合成酶、精氨酰琥珀酸裂合酶在90 d猪胎儿极低,初生仔猪较高。所以内源性精氨酸合成在90 d猪胎儿极少,只有到出生时才达到较高水平[18]。氢化可的松(生理范围内)浓度升高,对新生大鼠肝脏尿素循环的相关酶及仔猪小肠上皮细胞P5CS、ASS、ASL和断奶仔猪P5CS、ASL的表达都有促进作用[19~22]。而3-21日龄仔猪体内氢化可的松浓度下降[23, 24]与内源性精氨酸/瓜氨酸合成减少趋势一致。Tsai等利用地塞米松增加了新生早产婴儿血液瓜氨酸和精氨酸的浓度[25]。Wu 等发现氢化可的松生理浓度升高,提高了仔猪小肠上皮细胞鸟氨酸脱羧酶活性,增强了新生仔猪小肠上皮细胞多胺合成,促进了小肠的发育[26]。更重要的是,皮质醇(生理范围内)浓度升高没有引起胎儿和新生儿的小肠精氨酸酶表达,提示其可以增加体内精氨酸供给[27];但是在强应激的仔猪,过高的皮质醇可以诱导精氨酸酶的表达,从而导致血液精氨酸浓度降低[2]。

3.小结与展望

综上所述,母猪乳汁精氨酸不足、仔猪内源性精氨酸合成减少是新生仔猪精氨酸不足和极限下生长的主要原因;而小肠上皮细胞线粒体NAG水平降低可能是仔猪内源性精氨酸合成减少的潜在机理。增加精氨酸供给具有促进仔猪生长的极大潜力。利用NCG催化小肠瓜氨酸和精氨酸合成,提供了一种新的增加哺乳仔猪精氨酸供给手段。同时,尽管皮质醇对仔猪生长和内源性精氨酸合成有促进作用,但是过量外源皮质醇的应用可能干扰其内分泌平衡和精氨酸酶的表达。以后的研究应继续探讨仔猪小肠精氨酸合成相关酶差异表达、活性调控的机理,寻找新的、更安全、简便的方法以促进新生仔猪内源性精氨酸合成,这对阐明精氨酸营养调控机理和提高养猪生产率有重要的理论和现实意义。

参考文献

[1]Southern L L, Baker D H. Arginine requirement of the young pig [J]. J. Anim. Sci., 1983, 57: 402–412.

[2]Wu G Y, Knabe D A, Kim S W. Arginine Nutrition in Neonatal Pigs [J]. J. Nutr. 134: 2783S-2790S, 2004.

[3]National Research Council. Nutrient requirements of swine [M]. 10th rev. ed. NATIONAL ACADEMY PRESS, Washington, D.C. 20418, ISBN 0-309-05993-3 (pbk.).

[4]Kim J H, Heo K N, Odle J, et al. Liquid diets accelerate the growth of early-weaned pigs and the effects are maintained to market weight [J]. J. Anim. Sci. 2001, 179: 427–434.

[5]Wu G, Knabe D A. Free and protein-bound amino acids in sow’s colostrum and milk [J]. J. Nutr. 1994, 124: 415–424.

[6]Wu G, Knabe D A. Arginine synthesis in enterocytes of neonatal pigs. Am. J. Physiol. 1995, 269: R621–R629.

[7]Flynn N E, Wu G. An important role for endogenous synthesis of arginine in maintaining arginine homeostasis in neonatal pigs [J]. Am. J. Physiol. 1996, 271: R1149–R1155.

[8]Kamoun P, Aral B, Saudubray J M. A new inherited metabolic disease: pyrroline-5-carboxylate synthetase deficiency [J]. Bull. Acad. Natl. Med. 1998, 182: 131–139.

[9]Wang T, Lawler A M, Steel G, et al. Mice lacking ornithine aminotransferase have paradoxical neonatal hypoornithinaemia and retinal degeneration. Nat. Genet. 1995, 11: 185–190.

[10]Windmueller H G, Spaeth A E. Source and fate of circulating citrulline [J]. Am. J. Physiol. 1981, 241: E473–E480.

[11]Wilkinson D L, Bertolo R F P, Brunton J A, et al. Arginine synthesis is regulated by dietary arginine intake in the enterally fed neonatal piglet [J]. Am J Physiol Endocrinol Metab. 2004, 287: E454–E462.

[12]Flynn N E, Knabe D A, Mallick B K, et al. (2000) Postnatal changes of plasma amino acids in suckling pigs [J]. J. Anim. Sci. 78: 2369–2375.

[13]Wu G, Flynn N E, Flynn S P, et al. Dietary protein or arginine deficiency impairs constitutive and inducible nitric oxide synthesis by young rats [J]. J. Nutr. 1999, 129: 1347–1354.

[14]Leibholz, J. Arginine requirements of pigs [J]. J. Agric. Res. 1982, 33: 165–170.

[15]Kim S W, McPherson R L, Wu G. Dietary arginine supplementation enhances the growth of milk-fed young pigs [J]. J. Nutr. 2004, 134: 625–630.

[16]O’Quinn P R, Knabe D A, Wu G. Arginine catabolism in lactating porcine mammary tissue [J]. J. Anim. Sci. 2002, 80: 467–474.

[17]Frank J W, Escobar J, Nguyen H V, et al. Oral N-carbamylglutamate (NCG) supplementation increases growth rate in sow-reared piglets [J]. FASEB J. 2006, 20: A425.

[18]Wu G, Jaeger L A, Bazer, F W, et al. Arginine deficiency in preterm infants: biochemical mechanisms and nutritional implications [J]. J. Nutr. Biochem. 2004, 15: 442–451.

[19]Morris SM Jr. Regulation of enzymes of the urea cycle and arginine metabolism [J]. Annu Rev Nutr 2002, 22: 87–105.

[20]Flynn NE, Wu G. Glucocorticoids play an important role in mediating the enhanced metabolism of arginine and glutamine in enterocytes of postweaning pigs [J]. J Nutr. 1997, 127: 732–7.

[21]Flynn NE, Meininger CJ, Ing NH, Morris SM Jr, Wu G. Glucocorticoids mediate enhanced expression of intestinal type II arginase and argininosuccinate lyase in postweaning pigs [J]. J Nutr. 1999, 129: 799–803.

[22]Wu G, Meininger CJ, Kelly K, et al. A cortisol surge mediates the enhanced expression of pig intestinal pyrrline-5-carboxylate synthase during weaning [J]. J Nutr. 2000, 130: 1914–1919.

[23]McCauley I, Hartmann PE. Changes in piglet leukocytes, B lymphocytes and plasma cortisol from birth to three weeks after weaning [J]. Res Vet Sci. 1984, 37: 234–41.

[24]Kattesh HG, Charles SF, Baumbach GA, Gillespie BE. Plasma cortisol distribution in the pig from birth to six weeks of age [J]. Biol Neonate, 1990, 58: 220–226.

[25]Tsai FJ, Tsai CH, Wu SF, Liu YH, Yeh TF. Catabolic effect in premature infants with early dexamethasone treatment [J]. Acta Paediatr. 1996, 85: 1487–1490.

[26]Wu G, Flynn NE, Knabe DA. Enhanced intestinal synthesis of polyamines from proline in cortisol-treated piglets [J]. Am J Physiol Endocrinol Metab 2000, 279: E395–402.

[27]Flynn N, Wu G. Regulation of intestinal amino acid metabolism by glucocorticoids [J]. Rec. Res. Devel. Physiol. 2003, 1: 169–178.

Progress on arginine nutrition and regulation in neonatal

piglets

He Zishuang1, Yin Yulong2, Hu Yuanliang1

1Veterinary College, Nanjing Agricultural University, Nanjing, PRC (210095)

2Institute of subtropic agriculture, CAS, Changsha, PRC (210045)

Abstract

Arginine is an essential amino acid for neonatal piglets and represents remarkable physiological and biochemic functions. The causes of arginine deficiency and submaximal growth in 7- to 21- d old suckling pigs include mainly low arginine concentration in sow’s milk and decrease of arginine and citrulline synthesized by enterocytes in piglets; and a declined level of mitochondrial N-acetylglutamate is responsible for the latter status. N-carbamylglutamate and cortisol play an important role in regulating the endogenous arginine and citrulline synthesis in neonatal piglets. Keywords: piglet; arginine; nutrition; regulation

作者简介:何子双,男,1965年生,博士研究生,主要研究方向是中药药理及仔猪营养调控。

精氨酸

精氨酸被专家称为机体内运输和储存氨基酸的重要载体,在肌内代谢中极为重要,在人体内合成能力较低,需要部分从食物中补充,对于中老年人来说,它为你的健康保驾护航,同事它也是维持婴儿生长发育所必不可少的。由于精氨酸的许多新功能逐渐被人们发现,其应用变的越来越广,越来越令人瞩目。 精氨酸独特的生理功能——预防心脑血管疾病 研究发现,一氧化氮在维持血管扩张力的恒定和调节血压的稳定性中起着非常重要的作用。一氧化氮能共与动脉血管中的肌肉细胞接触并使之放松,扩张了动脉血管,使得血压降低,从而改善血流,因此能够有效降低心脑血管疾病的风险。 除此之外,一氧化氮还能预防血液在一些危险的部位发生凝结(如心脏,大脑)。如果血液在心脏或脑部发生凝结,病人就会罹患心脏病或中风。只要人体产生足够的一氧化氮,那么就会大大降低心脑血管疾病的风险,预防中风、心脏病等心脑血管疾病。 100多年前,当硝酸甘油作为缓解心绞痛的特效药物在心脏病患者身上使用时,人们并不明白其作用机理。1986年这一百年谜团终于被美国加州大学洛杉矶分校药理学教授、药学院院长伊格纳罗博士破译,伊格纳罗博士因发现有关于一氧化氮在心血管系统中具有独特的信号分子作用,而于1998年获得诺贝尔医学奖。 伊格纳罗经过三年的研究发现,硝酸甘油本身并不是一种药物,可是当人体摄入之后,它就转变、代谢称为一氧化氮。一氧化氮一旦生成之后,就与动脉中的肌肉接触并使之放松,扩张了动脉,这样就使得血压降低,从而改善血流。除此之外,一氧化氮还能预防血液在一些危险的部位发生凝结,病人就会罹患心脏病或中风。只要人体产生足够的一氧化氮,那么就会大大降低心脑血管疾病的风险,因此,一氧化氮能有效的降低血压,预防中风和心脏病。氨基酸家族中的精氨酸,是人体内生成丰富的一氧化氮的重要来源。 精氨酸是一氧化氮的前体,补充精氨酸能够显著提高体内一氧化氮含量,一氧化氮能够与动脉中的肌肉细胞接触并使之放松,扩张血管,使得血压降低,从而改善血流,因此能够有效降低心脑血管疾病的风险。 精氨酸是自然的产物,是一种来自蛋白质的氨基酸,有很多来源,无论是鸡肉、鱼肉和某些蔬菜都含有精氨酸,但是普通的食物中的精氨酸往往含量较低,产生的一氧化氮数量较少,不具备相关的营养价值。 研究证实,补充富含精氨酸的食物可降低高血压和心脑血管疾病的危害,其生理机能也与精氨酸能够有效促进体内一氧化氮生成有关。高脂肪饮食会导致体内内皮依赖性血管舒张功能降低,导致血压增高,血流降低,血黏度增加。而精氨酸能够有效的促进一氧化氮在体内的生成,能够减轻体内氧化脂质对一氧化氮的降解,从而提高体内的一氧化氮的含量,减轻心脑血管疾病导致的危害。 此外,精氨酸还具有有效的改善中老年男性性功能的作用。一般男性大约从四十到五十岁开始,生殖系统机能开始老化,体内雄激素(睾酮)水平随着年龄的增加而降低,会出现许多类似于妇女更年期的症状,而精氨酸就是最佳的救星! 精氨酸可以在踢被生成大量的一氧化氮,能使血管扩张、软化、充盈、从而缓解心脏负担!原料:复合氨基酸(L-精氨酸、瓜氨酸等)、糊精、羟甲基纤维钠、轻质碳酸钙、胭脂红 作用:免疫调节。复合氨基酸中的极品,是最珍贵的氨基酸,补充人体所需。 原理:维持人体蛋白质营养的新陈代谢,在人体内合成各种酶、激素、免疫蛋白、血红蛋白等功能蛋白质,维持人体心、肝、脾、肺、肾所有器官组织细胞的正常运转。如果氨基酸的摄入能够保持均衡和充足,人体即可获得强大的自愈力和抵抗力。 瑞年精氨酸片三大国际顶尖技术:肠溶、缓释、螯合

断奶仔猪的营养和管理

断奶仔猪的营养和管理 [美]密苏里大学L.A11著 北京养猪育种中心刘志南译 美国大豆协会施学仕校794 养猪业的经济效益如何?很大程度上取决于仔猪在断奶过程中,如何控制仔猪不出现生长抑制和不发生疾病。仔猪断奶后,生长速度很快达到高峰,但是由于采食量有限及消化机能不全,加之其他经济方面的原因,这种生长潜能往往得不到充分发挥。 在美国的养猪业中,仔猪14—21日龄断奶正越来越普遍。早期断奶,能够最大限度地发挥母猪的繁殖性能,使每年每头母猪产更多的仔猪。然而,断奶越早,仔猪在营养学、免疫学和神经内分泌学等方面受到的影响就越大,这些又常常对采食、生长、健康和免疫状态产生不良效应。仔猪从断奶到8—10周龄的生长速度又直接关系育成育肥阶段的生产性能,影响养猪业的经济效益。 对早期断奶仔猪的饲养和管理,在过去的10年里,我们积累了大量的经验。由于养猪者对仔猪实行早期断奶,因此养猪业改变了从断奶到出售阶段只饲喂简单、玉米豆粕日粮饲养体系,而分别配给成分不同的日粮,以满足猪只生长发育的营养需求。但是,许多问题,不考虑饲料价格,也不清楚仔猪料对后续育肥阶段的生产性能的影响问题,仍然沿用更昂贵的蛋白成分和高度可消化成分的混料,其费用高于单一的玉米—大豆粕粉料4—6倍。 断奶日龄 成功的断奶程序决定于选择断奶日龄,断奶日龄又是与设备条件、营养和养猪者的管理技巧息息相关的。总的说来,仔猪断奶越晚,对断奶应激的抵抗能力就越强。 长期以来,人们就把早期断奶作为提高母猪生产能力的一种手段。由于产仔设备投资往往最大,因此,早期断奶在同样的设备费用情况下可增加窝数。但是,存在这样一个问题,那就是断奶时仔猪日龄越小,在断奶初期的几周内保持满意的生产性能的困难就越大。 仔猪断奶时产生的主要应激因素是环境性的和营养性的。 环境应激 仔猪断奶时发生的一般的环境应激包括温度控制不当,卫生不良,以及常常因猪栏不适而限制了采食和饮水。 断奶后,采食量减少和体脂消耗,使刚刚断奶的仔猪对低温相当敏感,不同体重的猪只所要求的环境温度列在表1。 表1 推荐的断奶仔猪对温度的要求 仔猪越小,所要求的温度就越高并越要稳定。断奶后第一周时日温度变化超过2℃时,就会引起腹泻和生长不良。舍温测定位置应与猪体高度相同,因为人眼睛水平线处的温度要比地面的高出4℃。

18、近五年我国猪营养研究进展

专题报告近五年我国猪营养研究进展 广东省农业科学院院长蒋宗勇 在养猪业,大家都有一个共识,即“养重于防,防重于治”。只有养好猪,才能给猪场带来经济利益。而在饲养过程中,充足且均衡的营养是养好猪的必要条件。在养猪的各个环节,母猪、仔猪、育肥猪,其所需营养均·有所差异,因此要细化饲养管理。 母猪营养 我国生猪生产规模在世界上排名第一。近些年,我国保持年上市生猪6.6亿头,母猪存栏量约为4800万头,但我国母猪生产性能远低于发达国家生产水平。过去五年内,母猪营养引起了大家的关注。随着养猪业的发展,规模化猪场越来越多。这些规模化猪场以饲养瘦肉型猪为主,瘦肉型母猪和传统母猪的营养需求有很大的差异。母猪的营养水平及能量水平对妊娠母猪体况有决定性的影响,而体况对母猪繁殖性能有非常重要的影响。母猪过肥或过瘦,都会影响其繁殖性能。在生产实际当中,规模化养猪场妊娠母猪采取限饲的手段,根据体况的胖或瘦来凋节其饲料用量,让其达到理想的体况。郑爱荣等报道,妊娠35d以内按照维持需要的1.2倍饲喂母猪,其胚胎存活率最好,显著高于维持需要的2或0.6倍,所以这个阶段,控制营养水平非常重要。徐盛玉等进一步证明饲喂过高或过低营养水平的日粮,引起母猪孕酮分泌过高或过低,降低胚胎成纤维细胞生长因子受体-2、视黄醇等,降低胚胎成活率。 营养水平里面,最关键的就是能量水平。实际生产中,妊娠母猪一般采用限饲的管理方法,能量水平过高过低均会影响母猪繁殖性能。周平等报道,按NRC推荐量给59.0kg后备母猪减少或增加叫12.5个百分点的饲粮能量水平,母猪发情率随能量水平增加而提高。但若过度限饲,母猪妊娠期( 30d至分娩) 能量限饲( 80%NRC推荐水平)会抑制后代仔猪早期生长及肌纤维发育,降低仔猪初生重、断奶重和日增重。此外,在生产实践中采用比较多的方式是,在母猪妊娠后期饲粮中添加3%油脂粉,可显著提高仔猪初生重。 限饲也有一个弊端:在猪场中,每天早上都会听到妊娠母猪傲傲叫,因为每天给它们的饲料量非常有限,它们很饿。那么应如何解决呢?在生产实践当中,往往在饲料里面适当的添加粗纤维,比如苜宿草粉、麦糠、米糠、稻谷等,可增加饲料容积及母猪饱腹感,改善繁殖性能。张金枝等报道,妊娠母猪从妊娠25d到分娩,饲粮中添加20%苜宿粉可显著提高母猪体增重、断奶窝仔数、哺乳期仔猪成活率。这种做法具有晋遍性,在很多猪场都已经得到证实。初产母猪、经产母猪所需纤维水平也有所不同。第1胎母猪饲粮含中性洗涤纤维(NDF)水平为10.8%,每日摄入量为222g,第2胎母猪饲粮NDF水平为15.8%,每日摄入量为365g可显著改善母猪的繁殖性能。 我国泌乳母猪碰到的最大的问题就是采食量上不去,泌乳母猪因采食量或者能量不足而降低泌乳住能的很常见,因而提高能量摄入是生产中必须要考虑的问题。怎么样才能提高?

脂肪在现代断奶仔猪生产中的研究及应用

脂肪在现代断奶仔猪生产中的研究及应用 【摘要】:脂肪是机体的必需营养成分,也是动物饲料中能量浓度最高的饲料原料。仔猪哺乳期营养的主要来源是母乳,其中乳脂提供能量的62%,是哺乳期仔猪能量的主要来源之一。3~5周龄仔猪断奶后由采食母乳过渡到采食以玉米、豆粕为主的开食料,该料每千克仅含消化能13.8~14.2MJ。断奶仔猪往往食欲差,采食量小,从开食料中难以获得足够能量和其他养分,造成仔猪生长缓慢或停滞。自50年代起人们就在断奶仔猪日粮中添加脂肪以提高日粮能值,70~80年代期间多次试验结果并不一致。随着近年来人们对肠道消化酶发育规律,以及断奶日龄、环境、遗传和营养条件等因素研究的深入,认为有必要重新研究、评价仔猪日粮添加脂肪的效果。 【关键词】:脂肪,断奶仔猪,营养,消化 The Study and Application of Fat on Modern Production of Weaned Piglets 【Abstract】:Fat is a necessary nutrition in the body. It’s also the highest concentration of energy in animal feed, so it’s one of the main energy source in lactation.3-5 weeks after weaning transition feed breast milk to feed corn, soybean meal based starter, per kilogram of the material containing only 13.8 ~ 14.2MJ of digestible energy. Weaned piglets always have poor appetite, feed intake, which is difficult to obtain enough energy and other nutrients from the starters, the piglets got a slow growth or stagnation. In 1950s fat is added in weaning piglets to increasing dietary value, in 70s to 80s years, the results are not consistent. In recent years, with the deep study on development rules of intestinal digestive enzyme, weaning age environment, genetic and nutritional conditions and other factors, it’s necessary to re-examine, evaluate the effects of added fat in piglets. The piglets attain nutrition mainly from breast milk lactation from which butterfat provides 62% energy. 【Keywords】:fat;weaned piglets;nutrition;digestion 近年来,由于规模化、集约化养猪的迅猛发展,仔猪断奶日龄越来越早,断奶后仔猪为抗应激所需的高耗能和能量摄入不足的矛盾也越来越突出。众所周知,早期断奶仔猪遇到的普遍问题是断奶应激,仔猪必须学会由吸吮母乳向采食谷物—豆粕型的干饲料过渡;断奶后最初1-2周,仔猪对谷物饲料的采食量很低,而谷物饲料和母乳比较,干物质消化能相差非常大(分别为14.20MJ/kg和22.18MJ/kg)[1],这两方面的原因导致早期断奶仔猪的能量摄入严重不足。针对这种情况,国内外近年对仔猪的脂肪营养和原料选择重新进行了研究,对脂肪的使用效果、使用方法及促脂肪利用物质进行了重新认识。 1. 脂肪对断奶仔猪的营养作用 仔猪断奶应激,小肠绒毛缩短,消化道容积缩小,致使采食量降低。为满足仔猪快速生长的需要,同时克服断奶时消化道容积小的局限,仔猪日粮需要高养分浓度。Toptis认为提高能量浓度是解决养分浓度的第一步[2]。Dove在540头25日龄断奶仔猪日粮中添加5%的油脂,试验组仔猪日增重明显提高(P<0.01)[3]。有人发现,断奶仔猪日粮添加6%的动物脂肪,断奶后5周日增重提高21.4%(P<0.01),且饲料转化率(G/F)得到明显改善[4]。通常认为脂肪除自身的能量营养外,它还能延缓食物在胃肠道中的流速、增加碳水化合物和蛋白质等营养物质在消化道内的消化吸收时间,从而提高其吸收利用率,这种效应称“额外代谢效应”。同时日粮脂肪也是体内必需脂肪酸的来源和维生素A、D、E、K消化吸收的载体。脂肪对改善日粮适口性,加工颗粒时润滑环模都有积极作用[5]。

动物营养学的发展趋势及对我国动物营养学未来发展的建议

动物营养学的发展趋势及对我国动物营养学未来发展的建议 发布时间:2010-09-02 浏览量:77 次 摘要:本文对动物营养学的概念及作用、发展趋势及前沿和我国动物营养学的研究现状及存在的问题做了概要分析,并对我国动物营养学的未来发展和推动其发展的政策措施提出了初步建议,仅供同行参考。 关键词:动物营养学发展趋势建议 1 前言 动物营养学是一门主要以动物生理学和动物生物化学为基础,揭示营养物质在动物体内的代谢机理、规律及功能、研究发挥最大遗传潜力对各种营养素的适宜需要量以及评定饲料对动物的营养价值的应用基础科学,是沟通动物饲养学与动物生理生化这些主要基础学科的桥梁,最终目标是为畜禽饲养中科学配制全价平衡高效饲料等,以改善动物健康和促进动物高效生产,用最少的饲料投入向人类提供量多、质优且安全的畜产品,同时减少畜牧生产对环境的污染,保护生态平衡,奠定理论基础。饲料是畜牧业赖以持续稳定发展的物质基础,饲料成本占整个畜牧业生产成本的70%左右。因此,动物营养学的科研水平直接关系到饲料工业和畜牧业的生产水平和可持续发展,在畜牧业乃至整个国民经济发展中起着十分重要的作用。 2 动物营养学的发展趋势及前沿 动物营养科学,如从拉瓦希(Lavoisier)1777年提出生物氧化学说为起点,迄今已逾220年。它和其它科学一样,是在人类活动中知识积累的基础上随着其它相关科学的进展而发展起来的。十九世纪为营养学的草创年代,主要反映在能量代谢与饲料的能值评定方面,同时也萌发了对蛋白质与矿物元素的研究。二十世纪为营养科学之盛世。这一个世纪以来,营养科学突飞猛进,揭开了新的篇章。营养研究由粗到细、由浅入深、由表及里,正向着更深入、更全面和更系统的方向发展,具体主要表现在以下几个方面: 2.1 营养代谢机理研究正向分子水平深入

新生仔猪精氨酸营养及调控研究进展

新生仔猪精氨酸营养及调控研究进展1 何子双1,印遇龙2,胡元亮1 1南京农业大学动物医学院,南京(210095) 2中国科学院亚热带农业生态研究所,长沙(410125) E-mail:hezishuang@https://www.doczj.com/doc/109026192.html, 摘要:精氨酸是新生仔猪的必需氨基酸,具有许多重要的生理生化功能。7~21日龄哺乳仔猪精氨酸不足和极限下生长的主要原因是母猪乳汁精氨酸浓度低及仔猪小肠上皮细胞内源性合成的精氨酸/瓜氨酸减少。小肠上皮细胞线粒体N-乙酰谷氨酸水平下降是仔猪内源性精氨酸/瓜氨酸合成减少的潜在机理。N-氨基甲酰谷氨酸和皮质醇在调控新生仔猪内源性精氨酸/瓜氨酸合成方面具有重要作用。 关键词:仔猪;精氨酸;营养;调控 精氨酸是幼龄哺乳动物(包括仔猪)的必需氨基酸[1]、组织蛋白中最丰富的氮载体及细胞合成肌酸、脯氨酸、谷氨酸、多胺和一氧化氮等的前体;可用于多种代谢途径,包括精氨酸酶、一氧化氮合酶、精氨酸/甘氨酸胍基转移酶、精氨酰-tRNA合成酶等[2]。新生仔猪生长迅速,代谢功能旺盛,对精氨酸的需求特别高,而精氨酸不足是影响仔猪快速生长的主要因素。 1.新生仔猪精氨酸营养研究进展 新生仔猪是指出生后到断奶期的哺乳仔猪。美国NRC(national research council)指出3~5 kg仔猪的精氨酸需要量总计为1.5 g/day[3]。虽然传统的观点认为,母猪乳汁可以提供适当的氨基酸以促进仔猪的生长,但是,近年来的研究表明,哺乳仔猪实际上为极限下生长(Sub-maximal growth)。人工喂养的资料表明,新生仔猪的生物学生长潜力≥400g/d(出生至21日龄),或者说要高于哺乳期生长(230g/d)的74%[4]。哺乳仔猪极限下生长的代谢依据还不明了,有学者认为,精氨酸不足是主要因素[2]。 1.1 新生仔猪精氨酸不足 新生仔猪精氨酸不足指的是其体内精氨酸供给不足,不能保持仔猪最快生长和最佳代谢功能的需要。推测其原因可能是多方面的,包括日粮精氨酸供给不足、肠道精氨酸/瓜氨酸合成减少、精氨酸合成酶遗传缺陷、肠道精氨酸输送障碍、肠道精氨酸酶基因过度表达、肾脏转化瓜氨酸为精氨酸的功能障碍等。以前的研究主要集中在母猪乳汁精氨酸不足和仔猪内源性精氨酸合成减少两个方面。 1.1.1 母猪乳汁精氨酸不足根据母猪乳汁和仔猪的氨基酸模式、乳汁精氨酸供给量与估计的仔猪需要量之间的差异证明了母猪乳汁精氨酸不足。精氨酸/赖氨酸质量比在母猪乳汁(哺乳第7 d)和7日龄仔猪体内平均值分别为0.35和0.97,说明有一定数量的精氨酸由仔猪体内合成。根据仔猪精氨酸摄入量和精氨酸存积和代谢量计算结果表明,母猪乳汁供给1周龄仔猪的精氨酸≤需要量的40%。因此,体内合成的精氨酸对哺乳仔猪具有重要意义[5~7]。对婴儿、新生小鼠的研究结果与此一致[8, 9]。 1.1.2 仔猪内源性精氨酸合成减少仔猪小肠上皮细胞合成精氨酸/瓜氨酸,称为内源性精氨酸/瓜氨酸合成。1~7日龄以精氨酸、7日龄后以瓜氨酸为主。肠源瓜氨酸主要在肾脏被转 1本课题得到国家自然科学基金(编号:30528006)的资助。

精氨酸

精氨酸 精氨酸在体内起生理作用的主要是左旋精氨酸。正常情况下,体内精氨酸一部分来源于膳食,一部分通过几个器官间的协同作用由鸟氨酸通过瓜氨酸合成,其前体物质是谷氨酸或谷氨酰胺。机体中所有组织均利用精氨酸合成细胞浆蛋白和核蛋白,同时精氨酸也是脒基的唯一提供者,进而合成肌酸。精氨酸是碱性氨基酸,可广泛参与机体组织代谢,与机体免疫功能、蛋白质代谢、创面愈合等密切相关。它还能促进血氨进入尿素循环,防止氨中毒,其代谢中间产物多胺是重要的胃肠粘膜保护剂,能促进粘膜增殖。精氨酸也是合成一氧化氮的唯一底物,可参与免疫和血管张力调节。 精氨酸不仅是机体蛋白质的组成成分,而且还是多种生物活性物质的合成前体,如多胺和NO等,通过刺激部分激素分泌,参与内分泌调节和机体特异性免疫调节等生物学过程,因而L-Arg被科学家誉为“神奇分子”。L-Arg还是内生性一氧化氮(NO)的唯一前体。精氨酸为条件性必需氨基酸,对胎儿期和哺乳期动物来说是一种必需氨基酸,而对成年动物来说是非必需氨基酸,在体内能自身合成,但体内生成速度较慢,有时需要部分从食物中补充。精氨酸的多种生物学功能引起了营养和医学科研工作者的广泛关注,从而成为目前氨基酸研究的热点之一。 精氨酸是幼龄哺乳动物的必需氨基酸,是组织蛋白中最丰富的氮载体。精氨酸是碱性氨基酸,在动物体内有重要的生理生化功能,其不仅是细胞质和核酸蛋白的主要成分,还是将天门冬氨酸、谷氨酸、脯氨酸、羟脯氨酸、聚胺(腐胺、精脒、精胺)等转换为高能磷酸化合物肌酸磷酸的中间体,是肌酐酸唯一的氨来源;还作为尿素循环的中间体,通过尿素循环解除氨中毒,避免由于氨过量造成的代谢紊乱;在机体的匀质代谢方面也起着重要的作用,可用于多种代谢途径,包括精氨酸酶、一氧化氮合酶、精氨酸/甘氨酸胍基转移酶(AGAT)、精氨酰-tRNA 合成酶等。另外,精氨酸不仅作为蛋白质合成的重要原料,同时也是机体内肌酸、多胺和一氧化氮(NO)等物质的合成前体,在动物体营养代谢与调控过程中发挥着重要作用,是新生哺乳动物的必需氨基酸,也是成年哺乳动物的条件性必需氨基酸。近年来,研究者对精氨酸营养和生理功能的研究日益增多,且不断突破。 一、概述 1、发现

2013华南农业大学研究生动物营养学期末考试真题

1 .以一种动物为例评述能量在动物体内的转化过程 答:动物摄入的饲料能量伴随着养分的消化代谢过程,发生一系列转化,饲料能量可相应划分成若干部分,如图所示。每部分的能值可根据能量守衡和转化定律进行测定和计算。 一、总能( Gross Energy,缩写GE) 总能:是指饲料中有机物质完全氧化燃烧生成二氧化碳、水和其他氧化物时释放的全部能量,主要为碳水化合物、粗蛋白质和粗脂肪能量的总和。饲料的总能取决于其碳水化合物、脂肪和蛋白质含量。 二、消化能(Digestible Energy,缩写为DE) 消化能:是饲料可消化养分所含的能量,即动物摄入饲料的总能与粪能之差。即: DE = GE - FE 按上式计算的消化能称为表观消化能(缩写为ADE)。 粪能FE:为粪中养分所含的总能,称为粪能。正常情况下,动物粪便主要包括以下能够产生能量的物质:(1)未被消化吸收的饲料养分(2)消化道微生物及其代谢产物(3)消化道分泌物和经消化道排泄的代谢产物。(4)消化道粘膜脱落细胞。 代谢粪能FmE:后三者称为粪代谢物,所含能量为代谢粪能(缩写为FmE,m代表代谢来源)。 真消化能:FE中扣除FmE后计算的消化能称为真消化能(缩写为TDE),即: TDE = GE - ( FE - FmE ) 用TDE反映饲料的能值比ADE准确,但测定较难。三、代谢能(Metabolizable Energy,缩写为ME) 代谢能ME:指饲料消化能减去尿能(缩写UE)及消化道可燃气体的能量(缩写Eg)后剩余的能量。 ME = DE -( UE + Eg )= GE – FE – UE - Eg 尿能UE:是尿中有机物所含的总能,主要来自于蛋白质的代谢产物,如尿素、尿酸、肌酐等。 消化道气体能Eg:来自动物消化道微生物发酵产生的气体,主要是甲烷。 内源尿能UeE:尿中能量除来自饲料养分吸收后在体内代谢分解的产物外,还有部分来自于体内蛋白质动员分解的产物,后者称为内源氮,所含能量称为内源尿能(缩写为UeE)。 真代谢能TME : TME = TDE - [ ( UE - UeE) + Eg ] 四、净能(Net Energy,缩写为NE)

动物营养学的研究方向及发展趋势

动物营养学的研究方法及发展趋势 武彦华2006级生物科学20060501740 摘要:本文对动物营养学的概念及其研究方法的发展历程,即由传统动物营养学向系统动物营养学的发展的叙述,同时对各学科在动物营养研究方法中的应用和动物营养学的发展趋势以及存在的问题进行了分析。 关键词:动物营养学研究方法发展历程 动物营养学是一门主要以动物生理学和动物生物化学为基础,揭示营养物质在体内的代谢机理、规律及功能、研究发挥最大遗传潜力对各种营养素的适宜需要量以及评定饲料对动物的营养价值的应用基础科学。它是沟通动物饲养学与动物生理生化等基础学科的桥梁,最终目标是为畜禽词养中科学配制全价平衡高效饲料,用最少的饲 料投人向人类提供量多、质优且安全的畜产品,同时减少畜牧生产对环境的污染,保护生态平衡,奠定理论基础。经过了220多年的发展,动物营养这一学科的整体思维方式也逐渐发生了变化,即由传统动物营养学的以生物还原论为学科的整体思维方式,逐渐向系统动物营养学的以现代系统思维方式为学科的整体思维方式转变。由于思维方式的转变,动物营养和饲料科学的研究方法也相应地发生了显著变化,由最初的经验阶段即描述阶段逐渐向控制阶段发展。也就是说目前营养学的研究已不仅仅是停留在对营养规律的探讨上,而是正在向预测营养过程和控制营养过程的方向发展,由传统动物营养研究方法逐渐

向系统动物研究方法发展,由正在进行以饲养标准为研究中心向以营养调控为中心的战略转变发展。 1.动物营养学的发展趋势 1.1营养代谢机理研究正向分子水平深入 纵观动物营养学的研究历史,人们已从表观水平上研究营养素的作用,深入发展到向血液、组织和组织中酶等生物活性物质以及细胞形态、亚细胞超微结构,即深入到了细胞和亚细胞水平上研究营养素的作用。近年来,人们已投入大量精力研究营养素在动物体内分子水平的代谢机理,即研究营养素对特异生物活性物质基因表达各环节的作用。有研究表明,动物体内有许多功能基因尚未得到充分表达,其中一个重要原因是饲料中供给的营养物质的量与质的问题。研究营养对基因表达作用是当今动物营养学的发展趋势和研究前沿,对于更深入地阐明营养素在动物体内的确切代谢机理、寻找评价动物营养状况更为灵敏的方法以及调控养分在体内的代谢路径等,都具有重要科学意义。 1.2营养物质在消化道中的消化吸收机理研究更加活跃 营养消化机理研究已取得大量成果,如已基本阐明蛋白质、碳水化合物、脂类、矿物元素和维生素在消化道中的主要消化过程,小肠是体内养分消化吸收的主要部位等。由于消化道是一个十分复杂的动态变化体系,目前对许多养分的确切消化吸收形态和机理仍然不清。近年来的研究进一步显示,小肽也是蛋白质在肠道中的消化吸收形态之一,且比游离氨基酸吸收快。这一研究成果对于建立畜禽饲料蛋白质营养价值评定新体系以及饲料工

补充精氨酸与运动能力关系的研究进展_熊正英

第43卷2007年第3期 西 北 师 范 大 学 学 报(自然科学版) Vo l 143 2007 No 13 Jo ur nal of No rthw est N o rmal U niversit y (Natura l Science) 收稿日期:2006O 12O 03;修改稿收到日期:2007O 03O 28 作者简介:熊正英(1952)))),男,陕西商南人,教授.主要从事运动生物化学与营养的研究. E O ma il:x zy5201@yahoo 1com 1cn 补充精氨酸与运动能力关系的研究进展 熊正英,李润红 (陕西师范大学体育学院,陕西西安 710062) 摘 要:采用文献资料法,论述了运动对精氨酸代谢的影响以及补充精氨酸提高运动能力的机制.在运动应激状态下,机体对精氨酸的需求量明显增加,提供充足的精氨酸能明显减少氮丢失,有益于机体蛋白质合成,促进肌糖原的储备及恢复;同时可增加冠状动脉流量和改善心脏功能,增强和调节机体的免疫功能,因此对延缓疲劳的发生和促进恢复有一定的作用. 关键词:精氨酸;肌糖原;心肌;免疫;运动 中图分类号:G 80717 文献标识码:A 文章编号:1001-988ú(2007)03-0107-05 T he development of researching on arginine supplement and exercise ability XIONG Zheng O y ing,LI Run O hong (Colleg e of Phy sical Educatio n,Shaanx i No rmal U niversity,Xi p an 710062,Shanxi,China) Abstract:T he m ethod of literature is applied to setting forth the effect o f exercise on the m etabolic of ar ginine and mechanism of supplementing arg inine fo r enhancing the exercise ability.In the state of ex ercise stress,the body r equirement for arginine increases no tably,therefore enough supply of arginine can decr ease the lo ss of nitrog en and be g ood for the synthesis of body pro tein and the recov er y of muscle gly cog en.M eantime arg inine helps to increase coronary bloo d flow and improv e heart function,and has the functions of streng thening and nur sing immune ability,so arginine has functio ns o f delaying ex ercise fatigue and promo ting the r ecovery of ex ercise fatig ue. Key words:arginine;m uscle g lycogen;m yocar dial;imm unity ;ex ercise 精氨酸(Ar g)在体内起生理作用的主要是左旋精氨酸(L-Arg ).正常情况下,体内精氨酸一部分来源于膳食,一部分通过几个器官间的协同作用由鸟氨酸通过瓜氨酸合成,其前体物质是谷氨酸(Glu)或谷氨酰胺(Gln).机体中所有组织均利用精氨酸合成细胞浆蛋白和核蛋白,同时精氨酸也是脒的唯一提供者,进而合成肌酸[1] .精氨酸是碱性氨基酸,可广泛参与机体组织代谢,与机体免疫功能、蛋白质代谢、创面愈合等密切相关.它还能促进血氨进入尿素循环,防止氨中毒,其代谢中间产物多胺是重要的胃肠粘膜保护剂,能促进粘膜增殖.精氨酸也是合成一氧化氮的唯一底物,可参与免疫和血管张力调节[2].近年来,一氧化氮对骨 骼肌中葡萄糖转运的促进作用和参与免疫调节作用得到学者们的广泛认同.作为一氧化氮的生成前体 左旋精氨酸能否成为改善运动能力、促进疲劳消除的营养补充剂已是学者们研究的焦点. 1 运动对左旋精氨酸代谢的影响 尿素合成的前体是左旋精氨酸和NH 3,运动过程中NH 3生成增加,使尿素的合成也增加,同时一氧化氮的生成也要增加,这必然使左旋精氨酸的消耗增加,使一氧化氮合酶的作用底物左旋精氨酸水平下降,因而一氧化氮的生成可能会减少.尽管精氨酸是人体可自身合成的一种半必需氨基酸,但人体合成的速度是否能够满足在运动中各种消耗 107

断奶仔猪的采食量和饮水量

断奶仔猪的采食量和饮水量 自然状态下,断奶是逐渐发生的,仔猪从母体吸收营养未被打断,有很多机会学习采食和饮水。相反,21 d或更早断奶的家养猪,本已习惯了通过吮吸母乳来满足它们的饥饿和口渴,但断奶以后,它们就不得不学习区分饥饿和口渴的生理驱动,并且还必须学会如何通过饮水和固体食物来满足这种胜利驱动。对食物和饮水的不熟悉(lack offamiliarity)意味着仔猪需要一些时间来学习如何满足其需要并维持体内稳衡。几年前,我们的一项研究发现,刚断奶后的一段时间,仔猪只饮水不吃食(图6. 4 )。只有当它们学会如何分辨食物以后才使饮水和进食的比例逐渐正常(表6.7)。 图 6.4 21 d断奶仔猪的饮水量[L/(头·d)] 表 6.7 饲喂两种商业日粮的21日龄断奶仔猪饮水量与采食量的比率 断奶后周 数 饮水量与采食量的比 商业日粮A商业日粮B 1 4.3:1 4.0:1 2 3.2:1 3.5:1

3 2.9:1 3.6:1 4 2.8:1 3.7:1 目前的许多研究表明,不仅断奶前仔猪的采食行为有很大差别,就是断奶之后这种差别也同样存在。Bruininx等(2001b)用自动称重系统测量了舍内群饲猪断奶后短时间内的采食量,得到的数据(图6. 5 )说明了两个重要问题。第一,从断奶到第1次采食的时间间隔, 仔猪个体间有很大差异,有大约to%的猪断奶后40 h才开始第1次采食,有一些猪甚至将近100卜后才有了第1次采食。第二,仔猪开始采食的时间一般不会发生在天黑的时候。用计算机自动化设备饲喂的仔猪与用单个料槽饲喂的仔猪,其生长性能很相似(Bruininx等,2001a)。所以我们推断,这种采食方式比较适应这一类型的饲喂系统。但是,这种系统阻碍了属于这个年龄仔猪的正常社会适应性(social facilitation)和同步采食行为(synchronous feeding behaviour)。 图 6.5 断奶后不同时间间隔不采食仔猪的比例 曲线代表不同断奶体重的仔猪,阴影表示天黑时期。 资料来源:Bruininx等,2001a。 69

仔猪精氨酸营养的研究进展

2008第2期养猪SWINEPRODUCTION食量,提高日增重。 2.3腹泻情况 由表2可知,试验组腹泻率比对照组低20个百分点,两组差异显著。从试验组和对照组腹泻仔猪的腹泻时间来看,对照组仔猪腹泻的时间比试验组长,康复期也比试验组长。此外,试验组精神状态和整齐度较好;而对照组猪精神状态较差,皮毛较粗乱,个体均匀度差异较大,整齐度不及试验组。 3结论 目前相当一部分的规模化猪场为了解决仔猪的应激下痢、甚至断奶仔猪多系统衰竭综合征(PMWS) 等问题,常常在仔猪的饲粮和饮用的自来水中添加大量药物, 但效果不是很理想。本试验表明, 哺乳仔猪冬季饮用温水可以促进哺乳仔猪的采食量, 显著地提高哺乳仔猪的日增重、降低腹泻率,有抗应激、防下痢的作用,值得养猪生产者的借 鉴。 (编辑:富春妮)表1 饮用温水对哺乳仔猪生长性能的影响 项目 头数/头初生重 /kg 断奶重/kg增重 /kg 日增重 /g 总耗料量/kg头均耗料量/kg 对照组401.47a ±0.025.22a ±0.083.75178.57a ±2.7252.401.31 a 试验组401.48a±0.026.05b±0.104.57217.61b ±3.1166.001.65b 注:同列肩标字母相同表示差异不显著(P>0.05),字母不同表示差异显著(P<0.05),下同。 表2 仔猪腹泻情况 项目试验头数/头 腹泻头数/头 腹泻率/%对照组401230a试验组 40 4 10b 仔猪精氨酸营养的研究进展 雷奇,车向荣 (山西农业大学动物科技学院动物营养实验室,山西太谷030801) 中图分类号:S816 文献标志码:A 文章编号:1002-1957(2008)02-0013-03 摘要:精氨酸是仔猪受伤或应激时的必需氨基酸,在动物体内具有重要的营养作用。此文对精氨 酸的性质、在仔猪体内的代谢途径以及对仔猪的营养作用等3方面进行了综述。关键词:精氨酸;营养;仔猪 收稿日期:2007-12-24 作者简介:雷奇(1980-),男,山西大同人,在读硕士研究生,主攻动物营养及其代谢调控. 通讯作者:车向荣,男,山西运城人,教授,博士,主攻动物营养及其代谢调控.E-mail:chexr@126.com1932年, 德国学者Kreb和Henseleit根据一系列试验首次提出了鸟氨酸循环(ornithinecycle)学说,发现鸟氨酸、瓜氨酸和精氨酸能够大大加速尿素合成。所有机体组织均利用精氨酸合成细胞浆蛋白和核蛋白,同时精氨酸也是脒的唯一提供者,进而合成肌酸。传统分类把精氨酸定义为非必需氨基酸,而动物试验发现,在生长发育过程中如果饲粮中缺乏精氨酸,则达不到最佳生长速度,此时就需要依靠体内合成的精氨酸,但仍然不能满足动物机体生长发育的要求;其次,在应激状态下,体内合成的精氨酸也不足以维持生理代谢的需要。因此有人提出精氨酸应归为必需氨基酸。正常情况下,体内精氨酸一部分来源于饲料,一部分通过几个器官之间的协同作用,由鸟氨酸通过瓜氨酸合成[1]。Barbul从整体水平对精氨酸的作用进行了研究并指出,大 剂量精氨酸具有改善动物营养状况、增加胸腺质量和胸腺淋巴细胞数,增强免疫功能,抑制肿瘤生长及转移的效果;而毒理学研究表明,精氨酸属于毒性非常低的化合物[1]。同时,精氨酸具有促胰岛素生成及分泌的作用,可促进生长发育、创伤愈合及氮储留[2]。 1精氨酸的生物化学功能 精氨酸是6个碳原子的碱性氨基酸,有D-精氨酸和L-精氨酸两种异构体。在生物体内有生理作用 的是L-精氨酸: 它是动物体蛋白质合成的必需氨基酸;通过尿素循环解除氨中毒,避免因氨过量引起代谢紊乱;是合成多胺的前体,也是肌酸酐唯一的氨来源。目前,精氨酸在动物体内的作用可概括为:①增加机体内氮储留;②发挥调节作用,控制蛋白质更新;③促进肌肉的蛋白质合成;④改善机体氮平衡, 提升机体的免疫状态[3~5] ;⑤是合成一氧化氮(NO)的前体物质[6]。 2精氨酸在仔猪体内的代谢途径2.1精氨酸在仔猪体内的合成途径 一般情况下,哺乳动物的精氨酸可由谷氨酰胺!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 13

动物营养学课程论文

提高反刍动物饲料转化效率的措施 摘要:为了更深入的了解提高反刍动物饲料转化效率的措施;为了更好的掌握查阅、收集、整理、归纳与分析《动物营养学》相关资料的方法;为了对《动物营养学》的最新研究进展有一个更全面的了解;同时也为了毕业论文的写作打好基础。故而归纳各家对提高反刍动物饲料转化效率的措施的研究写了这篇综述论文。 关键词:转化;措施;效率;反刍动物 引言 反刍动物属哺乳纲,偶蹄目,反刍亚目。我们在生活中所熟知的反刍动物以牛、羊为最。其他不怎么常见的如骆驼、鹿、长颈鹿。这类动物都生有复杂的反刍胃,可以反刍食物,即可以把吞入胃中的食物呕到嘴部咀嚼充分后再吞入腹中。反刍动物一般都有四个胃骆驼较为特殊有三个胃。四个胃分别为瘤胃、网胃、瓣胃以及皱胃。不同的胃对饲料的消化、吸收和利用具有不同的功能与作用[1]。我国作为一个世界上首屈一指的农业大国,具有丰富的饲料资源。这对我们研究提高反刍动物饲料转化效率的措施具有重要的意义。对我国的畜牧业来讲同样具有重要的意义。 正文 1提高植物性饲料转化效率的方法 我国作为世界上首屈一指的农业大国,秸秆饲料资源相当丰富。如何很好的利用这些饲料资源成为我们必须要认真面对的问题。由于秸秆类饲料中各有机物质的消化率普遍较低,一般很少超过50%[2]。其中粗蛋白在3%~6%不等。粗灰分含量很高,对动物有营养意义的矿物元素很少。矿物质和维生素的含量都很低,尤其是钙和磷的含量很低[3]。含磷量在0.02%~0.16%,而日粮配方所需的含磷量都在0.2%以上。远低于动物的日需要量。于是如何提高饲料的转化效率成为动物科学工作者的重中之重。 1.1 物理法 我国作为世界上首屈一指的农业大国,秸秆饲料资源相当丰富。如何很好的利用这些饲料资源成为我们必须要认真面对的问题。由于秸秆类饲料中各有机物质的消化率普遍较低,一般很少超过50%。其中粗蛋白在3%~6%不等。粗灰分含量很高,对动物有营养意义的矿物元素很少。矿物质和维生素的含量都很低,尤其是钙和磷的含量很低。含磷量在0.02%~0.16%,而日粮配方所需的含磷量都在0.2%以上。远低于动物的日需要量。于是如何提高饲料的转化效率成为动物科学工作者的重中之重。 对于植物饲料在我国主要就是各种秸秆,且多为农作物秸秆。提高饲料的转化效率不外乎破坏植物细胞壁,弱化或破坏木质素与纤维素或半纤维素之间的结构,使饲料主要是

精氨酸

L-盐酸精氨酸 Cas 号: 15595-35-4 别名: L-精氨酸盐酸盐;L-精氨酸单盐酸盐;L-胍基戊氨酸盐酸盐;L-盐酸蛋白氨基酸;L-盐酸胍基戊氨酸 分子结构: 描述: 1.L-盐酸精氨酸(15595-35-4)的生产方法: 以明胶为原料,经酸性水解,再分离精制而得。 明胶[HCl,(水解)]→[116-122℃,16h]水解液[减压]→[(浓缩)]浓缩液

[NaOH(中和)]→[pH10.5-11]中和液[缩合]→[pH8]苯亚甲基精氨酸粗品[HCl(水解)]→[煮沸]水解液[活性炭(脱色)]→脱色液[303×2树脂(吸附)]→[pH7-8]滤液[HCl(酸化)]→[pH3-3.5]酸化液[浓缩、结晶]→L-精氨酸盐酸盐。 苯亚甲基精氨酸粗品的制备:将明胶和2倍量工业盐酸放入水解罐内,加热于116-122℃回流16h,得水解液。减压浓缩至1/2体积时,再加蒸馏水稀释至原体积,再浓缩,得浓缩液。冷却后,缓缓加入30%NaOH溶液,不断搅拌,并使温度在10℃以下,调节pH至10.5-11,再缓缓滴加苯甲醛,当pH为8时,苯甲醛停止滴加,搅拌反应0.5h使其反应完成,苯亚甲基精氨酸结晶析出,静置6h后过滤,取结晶并用水洗涤,滤干,粉碎,于60℃干燥,得苯亚甲基精氨酸粗品。 粗品水解,分离纯化:在苯亚甲基精氨酸粗品中,加入其量0.8倍的6mol/L 盐酸,加热煮沸50min进行酸水解,水解至40min时,加入少量活性炭脱色,过滤,滤渣用热水洗涤,再过滤,合并洗涤液,静置分层。分离出上层苯甲醛溶液待回收,下层水溶液,加入已处理好的弱碱性苯乙烯型阴离子树脂303×2,进行吸附,至pH7-8为止(约需3h),滤去树脂,收集滤液。再加6mol/LH Cl酸化收集得的滤液,使pH至3-3.5,加入适量活性炭,加热搅拌10min,过滤取滤液然后在水浴上保温80-90℃减压浓缩,至有少量结晶析出时,停止减压浓缩,冷却结晶,过滤取结晶先用70%乙醇洗涤,再用95%乙醇洗涤,滤干,于80℃干燥,得精制L-盐酸精氨酸(15595-35-4)。总收率约为4.5%。 2.用法及剂量: 治疗肝昏迷、降血氨:每次15~20g,以5%葡萄糖液1000mL稀释后于4小时内滴完;治疗碱血症:每10g精氨酸相当于48mmol盐酸;治疗男性不育症:口服每日4g,三个月为一疗程。 3.不良反应和注意事项: 健康人一次静滴本品30g或肝不全病人一日静滴30g,均可耐受,无副作用。静滴过快可引起流涎、呕吐、面部潮红等。大剂量注人可引起高氯性酸血症。无尿症或肾功能减退患者慎用或忌用。 4.贮藏: 密闭保存。 5.鉴别: (1)取本品约2mg,加水2ml使溶解,加茚三酮约2mg,加热,溶液显蓝紫色。 (2)取本品约50mg,加水1ml溶解后,加α-萘酚溶液与次溴酸钠试液各0.5ml,即显红色。 6.L-盐酸精氨酸(15595-35-4)的检查: (1)溶液的澄清度与颜色:取本品1g,加水10ml溶解后,溶液应澄清无色。 (2)硫酸盐:取本品0.5g,依法检查,如发生浑浊,与标准硫酸钾溶液1.5ml 制成的对照液比较,不得更浓(0.03%)。 (3)磷酸盐:取本品0.4g,置坩埚中,加硝酸镁0.3g与水5ml,摇匀,置水浴上蒸发至干,用小火灼烧至完全灰化,加水5ml与硫酸溶液(1→4)3ml,缓缓加热5分钟,加热水10ml,滤过,滤液置比色管中,滤渣用热水适量洗涤,洗液并入滤液中并使总液量达25ml,加钼酸铵溶液与米妥溶液各1ml,

相关主题
文本预览
相关文档 最新文档