因子分析理论与案例
- 格式:doc
- 大小:172.00 KB
- 文档页数:11
因子分析理论与案例
一、
因子分析原理
因子分析是一种将多变量化简的多元统计方法,它可以看作是主成份分析的推广。因子分析的目的是分解原始变量,从中归纳出潜在的“类别”,相关性较强的变量归为一类,不同类间的变量的相关性则较低。每类变量代表了一个“共同因子”,即一种内在结构(联系)。因子分析就是寻找这种内在结构(联系)的方法。
从全部计算过程来看作R 型因子分析与作Q 型因子分析都是一样的,只不过出发点不同,R 型从相关系数矩阵出发,Q 型从相似系数阵出发都是对同一批观测数据,可以根据其所要求的目的决定用哪一类型的因子分析。 (一)模型
主要模型形式:
(2)矩阵型式
(二)相关概念解释
⎥⎥⎥⎥⎥⎦
⎤
⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡p m pm p p m m p F F F a a a a a a a a a X X X εεε
21212
1
2222111211
21⎪⎪⎩⎪⎪⎨
⎧++++=++++=++++=p
m pm p p m m m m F a F a F a X F a F a F a X F a F a F a X εε
ε 222112
22221212112121111)1(展开式m 1m X A
F
+
p 1p m m 1p 11m p
2
Cov F 01
03D F I F F =1.
01ε
ε=
⨯⨯⨯⨯≤⎛⎫ ⎪
= ⎪ ⎪⎝⎭
简记为:() ()() ()且满足:)) (,)=) ()=即不相关且方差
1、因子载荷
a ij 称为因子载荷(实际上是权数)。
因子载荷的统计意义:就是第i 个变量与第j 个公共因子的相关系数,即表示变量xi 依赖于Fj 的份量(比重),心理学家将它称为载荷。
2、变量共同度
3、方差贡献率
方差贡献率指的是公因子对于自变量的每一分量所提供的方差总和,它是衡量公因子相对重要程度的指标。通常情况下,我们将因子载荷矩阵的所有方差贡献率计算出来并按照大小排序,从而提炼出最具影响力的因子。
二、
主要计算方法及步骤
(一)方法说明
1、因子载荷矩阵估计方法
因子载荷的求解方法主要有主成分法,主轴因子旋转法和极大似然法。主成分法指在进行因子分析之前先对数据进行主成分分析,把前几个主成分作为未旋转的公因子,但是此种方法得到的特殊因子间并不相互独立,当变量的共同度较大时,特殊因子所起的作用较小,它们之间的相关性可以忽略。
主轴因子法与主成分分析方法类似,都是都分析矩阵的结构入手,主轴因子
i m
22
i
ij j 1i i11i22im m i
22
i i11im m i 222
2
i1i2im i 22
i i 22i i i X A i h a i 1,,p X a F +a F ++a F +Var X a Var F a Var F Var a a a h X 1h εεσσσ====++++=+=+∑ 变量的共同度——因子载荷阵中第行元素的平方和,即:为了说明他的统计意义,将下式两边求方差,即()=()++()+()
=由于已经标准化了,所以有:
法的不同之处在于,其假定m 个公因子只能解释原始变量的部分方差,利用变量共同度来代替相关矩阵中对角元素1,并以新矩阵为出发点求解特征值和特征向量。
极大似然估计法假定公因子与特殊因子服从正态分布,通过构造似然函数求因子载荷和特殊因子方差的极大似然估计。
2、因子旋转
因子分析的目的不仅是找出主因子,更重要的是知道每个主因子的意义。主因子的意义是根据主因子与可观测变量Xi 的关系来确定的。因此希望主因子Fj 对Xi (i=1,2,…,p )的载荷平方,有的值很大,有的值很小,(向0,1两极分化),因子载荷矩阵的这种特征称“因子简单结构”。
但是用上述方法所求出的主因子解,初始因子载荷矩阵并不满足“简单结构准则”,各因子的典型代表变量不很突出,因而容易使因子的意义含糊不清,不便于对因子进行解释。为此须对因子载荷矩阵施行旋转,因子轴方差最大正交旋转的目的即使因子载荷矩阵成为“简单结构”的因子载荷矩阵。使得因子载荷的平方按列向0和1两极转化,较大的载荷值只集中在少数X 变量上,达到其结构简化的目的。易于因子命名。
经过旋转后,主因子对Xi 的方差贡献(变量共同度)并不改变,但各主因子的方差贡献可能有较大的改变,即不再与原来相同,因此,可以通过适当的旋转求得令人满意的主因子。
为了对公因子F 能够更好的解释,可通过因子旋转的方法得到一个好解释的公因子。
所谓对公因子更好解释,就是使每个变量仅在一个公因子上有较大的载荷,而在其余的公因子上的载荷比较小。这种变换因子载荷的方法称为因子轴的旋转。因子旋转的方法很多,常用的为方差最大正交旋转。 3、因子得分
在分析中,人们往往更愿意用公共因子反映原始变量,这样更有利于描述研究对象的特征。因而往往将公共因子表示为变量(或样品)的线性组合,即: 11111221221122221122p p p p
m m m mp p
f x x x f x x x f x x x βββββββββ=
+++=+++=+++
称上式为因子得分函数,用它可计算每个样品的公因子得分。估计因子得分的方法很多。
(二)计算步骤
1、数据标准化
2、建立相关系数矩阵
3、求解特征根及相应特征向量
4、因子旋转
5、计算因子得分
三、实证分析
(一)、背景介绍
随着市场竞争的日益激烈,公司在人才选择方面更加注重人才的综合素质,并结合职位特定选择专门人才。在本文中选取一家集生产与销售于一体的大公司在人才招聘中数据,从综合素质以及招聘职位来选择优秀的员工。
“华威”公司是一家集生产、销售为一体的大型国际著名公司。现公司计划录用6名的员工。经过初选,公司对48位应聘者进行面试,面试共有15项指标,这15项指标分别是:求职信的形式(FL)、外貌(APP)、专业能力(AA)、讨人喜欢(LA)、自信心(SC)、洞察力(LC)、诚实(HON)、推销能力(SMS)、经验(EXP)、驾驶水平(DRV)、事业心(AMB)、理解能力(GSP)、潜在能力(POT)、交际能力(KJ)和适应性(SUIT)。每项指标的分数是从0分到10分,0分最低,10分最高。每位求职者的15项指标的得分在文件(应聘者得分记录.xls)中。试从综合素质选出6名优秀员工,若将这6名员工分别分配到管理、销售和生产部门各2名,指出合理的分配方案。
(二)、分析过程详解
1、数据标准化
由于数据均为在面试中的打分成绩,量纲相同,并且观察数据的分布,并无异常值的出现,因此数据没有必要进行标准化,可以直接进行分析。
2、建立相关系数矩阵