机械系统动力学答案2011版啊
- 格式:docx
- 大小:167.83 KB
- 文档页数:8
第十一章机械系统动力学11-1填充题(1) _____________________________ 机器速度波动的类型有______________________________ 和两种。
前者一般采用的调节方法是_______ ,后者一般采用的调节方法是_________ 。
(2)用飞轮进行调速时,若苴它条件不变,则要求的速度不均匀系数越小,飞轮的转动惯量将越—。
在满足同样的速度不均匀系数条件下,为了减小飞轮的转动惯量,应将飞轮安装在___________ 轴上。
(3)___________________________________________________ 最大盈亏功是指机械系统在一个运动循环中的与 _________________________________________________ 之差的最大值。
(4) ____________________________________________________________________________ 某机械主轴实际转速在其平均转速的±3%范围内变化,则其速度不均匀系数忌___________________________ 。
(5)某机器的主轴平均角速度^lOOrad/s,机器运转的速度不均匀系数飪0.05,则该机器的最大角速度如《等于_______ r ad/s,最小角速度轴加等于 ________ rad/s。
11-2选择题(1)_______________________________________________________________________________________ 在周期性速度波动中,一个周期内等效驱动力做功瞅1与等效阻力做功M的疑值关系是__________________A.Wd>Wr;B.恥<昭;C. WWr:D.肌=%(2)在机械系统的启动阶段,系统的动能______ ,并且 _____ 。
作业(二)单自由度机械系统动力学等效转动惯量等效力矩1.如题图1所示的六杆机构中,已知滑块5的质量为m 5=20kg ,l AB =l ED =100mm ,l BC =l CD =l EF =200mm ,φ1=φ2=φ3=90o ,作用在滑块5上的力P=500N .当取曲柄AB 为等效构件时,求机构在图示位置的等效转动惯量和力P的等效力矩.图1答案:解此题的思路是:①运动分析求出机构处在该位置时,质心点的速度及各构件的角速度.②根据等效转动惯量,等效力矩的公式求出.做出机构的位置图,用图解法进行运动分析.V C =V B =ω1×l AB ω2=0V D =V C =ω1×l AB 且ω3=V C /l CD =ω1V F =V D =ω1×l AB (方向水平向右) ω4=0由等效转动惯量的公式:e J =m 5(V F /ω1)2=20kg ×(ω1×l AB /ω1)2=0.2kgm 2由等效力矩的定义: e M =500×ω1×l AB ×cos180o/ω1=-50Nm (因为VF 的方向与P方向相反,所以α=180o )2.题图2所示的轮系中,已知各轮齿数:z 1=z 2’=20,z 2=z 3=40,J 1=J 2’=0.01kg ·m 2,J 2=J 3=0.04kg ·m 2.作用在轴O3上的阻力矩M3=40N ·m .当取齿轮1为等效构件时,求机构的等效转动惯量和阻力矩M3的等效力矩.图2答案:该轮系为定轴轮系.i 12=ω1/ω2=(-1)1z 2/z 1∴ ω2=-ω1/2=-0.5×ω1ω2’=ω2=-0.5×ω1i 2’3=ω2’/ω3=(-1)1z 3/z 2’ ∴ ω3=0.25×ω1根据等效转动惯量公式e J = J 1×(ω1/ω1)2+J 2×(ω2/ω1)2+J 2’×(ω2’/ω1)2+J 3×(ω3/ω1)2 ∑=+=n i i Si Si i e J v m J 12121]()([ωωω∑=±=n i i i i i i e M v F M 111)]()(cos [ωωωα∑=+=n i i Si Si i e J v m J 12121]()([ωωω=J 1+J 2/4+J 2’/4 +J 3/16=0.01+0.04/4+0.01/4+0.04/16=0.025 kg ·m 2根据等效力矩的公式: e M =M 3×ω3/ω1=40×0.25ω1/ω1=10N ·m3.在题图3所示减速器中,已知各轮的齿数:z 1=z 3=25,z 2=z 4=50,各轮的转动惯量J 1=J 3=0.04kg ·m 2,J 2=J 4=0.16kg ·m 2,(忽略各轴的转动惯量),作用在轴Ⅲ上的阻力矩M 3=100N ·m .试求选取轴Ⅰ为等效构件时,该机构的等效转动惯量J 和M 3的等效阻力矩M r .图3答案:i 12=ω1/ω2=z 2/z 1 ω2=ω1/2 ω3=ω2=ω1/2 i 34=ω3/ω4=z 4/z 3ω4=ω1/4等效转动惯量:J=J 1(ω1/ω1)2+J 2(ω2/ω1)2+J 3(ω3/ω1)2+J 4(ω4/ω1)2=0.042+0.16×(1/2)2+0.04×(1/2)2+0.16×(1/4)2=0.04+0.04+0.01+0.01=0.1 kg ·m 2等效阻力矩:M r =M 3×ω4/ω1=100/4=25(N ·m)4.题图4所示为一简易机床的主传动系统,由一级带传动和两级齿轮传动组成.已知直流电动机的转速n 0=1500r/min ,小带轮直径d =100mm ,转动惯量J d =0.1kg ·m 2,大带轮直径D =200mm ,转动惯量J D =0.3kg ·m 2.各齿轮的齿数和转动惯量分别为:z 1=32,J 1=0.1kg ·m 2,z 2=56,J 2=0.2kg ·m 2,z 2’=32,J 2’=0.4kg ·m 2,z 3=56,J 3=0.25kg ·m 2. 要求在切断电源后2秒,利用装在轴上的制动器将整个传动系统制动住.求所需的制动力矩M 1.图4∑=±=n i i i i i i e M v F M 111()(cos [ωωωα答案:电机的转速n0=1500r/min其角速度ω0=2π×1500/60=50π(rad/s)三根轴的转速分别为:ω1=d×ω0/D=25π(rad/s)ω2=z1×ω1/z2=32×25π/56=1429π(rad/s)ω3=z2’×ω2/z3=32×1429π/56=816π(rad/s)轴的等效转动惯量:J V=J d×(ω0/ω1)2+J D×(ω1/ω1)2+J1×(ω1/ω1)2+J2×(ω2/ω1)2+ J2’×(ω2/ω1)2+ J3×(ω3/ω1)2∴J V=0.1×(50π/25π)2+0.3×12+0.1×12+(0.2+0.1)×(14.29π/25π)2+0.25×(8.16π/25π)2=0.4+0.4+0.098+0.027=0.925 (kg·m2)轴制动前的初始角速度ω1=25π,制动阶段做减速运动,即可求出制动时的角加速度∴ωt=ω0-εt即0=25π-2εε=12.5π则在2秒内制动,其制动力矩M为:M=J V×ε=0.925×12.5=36.31 (kg·m)5.在题图5所示定轴轮系中,已知各轮齿数为:z1=z2’=20,z2=z3=40;各轮对其轮心的转动惯量分别为J1=J2’=0.01kg·m2,J2=J3=0.04kg·m2;作用在轮1上的驱动力矩M d=60N·m,作用在轮3上的阻力矩M r=120N·m.设该轮系原来静止,试求在M d和M r作用下,运转到t=15s时,轮1的角速度ω1和角加速度α1.图5答案:i12=ω1/ω2=(-1)1×z2/z1 ω2=-ω1/2i13=ω1/ω3=(-1)2×z2×z3/z1×z2’ω3=20×20×ω1/40×40=ω1/4轮1的等效力矩M为:M=M d×ω1/ω1+M r×ω3/ω1 =60×1-120/4=30 N·m轮1的等效转动惯量J为:J=J1(ω1/ω1)2+(J2’+J2)(ω2/ω1)2+J3(ω3/ω1)2=0.01×1+(0.01+0.04)/4+0.04/16=0.025 (kg·m2)∵M=J ×ε∴角加速度ε=M/J=1200 (rad/s2)初始角速度ω0=0 ∴ω1=ω0+ε×tω=1200×1.5=1800(rad/s)。
机械系统动力学2011版1.如图所示的扭转摆,弹簧杆的刚度系数为K,圆盘的转动惯量为J,试求系统的固有圆频率。
(15分)图1解:如图建立坐标系设定坐标轴Z与摆线重合,初始时在重力作用下平衡,给圆盘一个相对于Z 轴的微小扭转角Ф,使之做自由扭转震动,该系统的扭转振动的微分方程为:将上式化简后得:系统的固有频率:2.系统如图所示,其滑轮质量为M。
忽略绳的弹性和M的转动(只考虑M 的上下振动),试利用能量法确定系统的固有频率。
(15分)机械系统动力学2011版图2解:如图建立坐标系:方法一:通过微分方程求出固有频率 物体平衡时,弹簧变形为:以物体平衡位置为原点,建立图示X 坐标系,物块分力如图所示,其运动微分方程:对于m 物块对于M 物块整理可得:系统的固有频率:方法二:利用能量法确定系统的固有频率 以系统平衡时重物的位置为原点。
δ x机械系统动力学2011版系统的动能系统的势能由于d(U+T)/dt=0所以可得:其中可得系统的固有频率:或可表示为:设系统运动方程为若以平衡位置为势能零点,则系统势能系统的动能由于机械能守恒定律,即T+U=常数,则得可得系统的固有频率:3. 某振动系统如图3所示,试用拉个朗日法写出系统的动能、势能和能量散失函数。
(10分)图3机械系统动力学2011版系统有两个质量块,设各质量块的位移x 1(t), x 2(t)为广义坐标,并设x 1(t)>x 2(t),系统地动能为系统的势能4. 图4所示的系统,物体质量为1m ,滑轮质量为2m ,半径为R ,试求系统的振动微分方程。
(15分)图4以平衡位置为坐标原点,设小车偏离平衡位置x ,弹簧K1对小车力为F K1,弹簧K2 对滑轮力为F K2,小车对滑轮的力为F 12,滑轮对小车的反作用力为F 21 对于小车可列微分方程对于滑块可列微分方程其中整理方程组可得系统振动微分方程:方法二: 利用能量法确定系统的振动微分方程机械系统动力学2011版以系统平衡时重物的位置为原点, 设小车偏离平衡位置x ,滑轮偏转 系统的动能系统的势能由于d(U+T)/dt=0 所以可得:整理方程组可得系统振动微分方程:5. 如图5所示的单摆,其质量为m ,摆杆是无质量的刚性杆,长为l 。
第一章绪论1、系统:具有特定功能的、相互间具有一定联系的许多要素构成的一个整体,即由两个或两个以上的要素组成的具有一定结构和特定功能的整体都是系统。
2、机械系统的组成:1、动力系统。
2、执行系统。
3、传动系统。
4、操纵、控制系统。
5、支承系统。
6、润滑、冷却与密封系统。
3、产品设计类型:完全创新设计、适应性设计、变异性设计。
4、机械系统的设计要求:功能、适应性、可靠性、生产能力、使用经济性、成本六方面的要求。
5、产品的产生过程分哪几个阶段?产品策划---产品设计---产品生产---产品运转---产品报废或回收。
6、产品的设计过程分哪几个阶段?功能原理方案设计阶段---结构总体设计阶段---技术设计阶段第二章机械系统总体设计1、功能原理方案设计步骤设计任务-求总功能-总共能分解-寻求子功能解-原理解功能-评价与决策-最佳原理方案2、什么是“黑箱法”:根据系统的某种输入及要求获得某种输出的功能要求,从中寻找出某种物理效应或原理来实现输入-输出之间的转换,得到相应的解决方法,从而推求出“黑箱”的功能结构,使“黑箱”逐渐变成“灰箱”、“白箱”的一种方法。
3、功能元、功能结构功能元:在一个系统中,总功能可以分解为一些分功能,其中可以分解到最低层次的分功能,并且分解到最后不能再分解的基本功能单位叫做功能元。
功能结构:将总功能分解为分功能,并相应找出实现各分功能的原理方案,从而简化了实现总功能的原理构思。
反之,同一层次的功能单位组合起来,应能满足上一层次功能的要求,最后组合成的整体应能满足总功能的要求。
这种功能的分解和组合关系称为功能结构。
4、机械系统总体参数包括哪些性能参数、结构参数、尺寸参数、运动参数、动力参数。
5、七个标准公比为:1.06、1.12、1.26、1.41、1.58、1.78和2。
6、公比φ、变速范围R n与级数Z间的关系。
Z=lgRn/lgφ+1第三章执行系统设计1、执行系统的组成:由执行末端和与之相连的执行机构。
机械设计基础复习大纲2011、4、3第1章绪论掌握:机器的特征:人为的实物组合、各实物间具有确定的相对运动、有机械能参与或作机械功机器的组成:驱动部分+传动部分+执行部分了解:机器、机构、机械、常用机构、通用零件、标准件、专用零件和部件的概念课程内容、性质、特点和任务第2章机械设计概述了解:与机械设计有关的一些基础理论与技术,机器的功能分析、功能原理设计,机械设计的基本要求和一般程序、机械运动系统方案设计的基本要求和一般程序、机械零件设计的基本要求和一般程序,机械设计的类型和常用的设计方法第3章机械运动设计与分析基础知识掌握:构件的定义(运动单元体)、分类(机架、主动件、从动件)构件与零件(加工、制造单元体)的区别平面运动副的定义、分类(低幅:转动副、移动副;高副:平面滚滑副)各运动副的运动特征、几何特征、表示符号及位置机构运动简图的画法(注意标出比例尺、主动件、机架和必要的尺寸)机构自由度的定义(具有独立运动的数目)平面运动副引入的约束数(低幅:引入2个约束;高副:引入1个约束)平面机构自由度计算(F=3n-2P5-P4)应用自由度计算公式时的注意事项(复合铰链、局部自由度、虚约束、公共约束)机构具有确定运动的条件(机构主动件数等于机构的自由度)速度瞬心定义(绝对速度相等的瞬时重合点)瞬心分类:绝对瞬心(绝对速度相等且为零的瞬时重合点,位于绝对速度的垂线上)相对瞬心(绝对速度相等但不为零的瞬时重合点,位于相对速度的垂线上)速度瞬心的数目:K=N(N—1)/2速度瞬心的求法:观察法:转动副位于转动中心;移动副位于垂直于导轨的无穷远;高副位于过接触点的公法线上三心定理:互作平面平行运动的三个构件共有三个瞬心,且位于同一直线上用速度瞬心求解构件的速度(关键找到三个速度瞬心,建立同速点方程,然后求解)了解:运动链的定义及其分类(闭式链:单环链、多环链;开式链)运动链成为机构的条件(具有一个机架、具有足够的主动件)机动示意图(不按比例)与机构运动简图的区别第6章平面连杆机构掌握:平面连杆机构组成(构件+低副;各构件互作平行平面运动)──低副机构平面连杆的基本型式(平面四杆机构)、平面四杆机构的基本型式(铰链四杆机构)铰链四杆机构组成(四构件+四转动副)铰链四杆机构各构件名称(机架、连杆、连架杆、曲柄、摇杆、固定铰链、活动铰链)铰链四杆机构的分类:曲柄摇杆机构、双曲柄机构、双摇杆机构铰链四杆机构的变异方法:改变构件长度、改变机架(倒置)铰链四杆机构的运动特性:曲柄存在条件:①最长杆长度+最短杆长度≤其余两杆长度之和②连架杆与机架中有一杆为四杆中之最短杆曲柄摇杆机构的极限位置(曲柄与连杆共线位置)曲柄摇杆机构的极位夹角θ(两极限位置时曲柄所夹锐角)曲柄摇杆机构的急回特性及行程速比系数平面四杆机构的运动连续性铰链四杆机构的传力特性:压力角α:不计摩擦、重力、惯性力时从动件受力方向与受力点速度方向间所夹锐角传动角γ:压力角的余角许用压力角[]︒=40α~︒50、许用传动角[]︒=50γ~︒40曲柄摇杆机构最小传动角位置(曲柄与机架共线的两位置中的一个)死点位置:传动角为零的位置(︒=0γ)实现给定连杆二个或三个位置的设计实现给定行程速比系数的四杆机构设计:曲柄摇杆、曲柄滑块和摆动导杆机构了解:连杆机构的特点、铰链四杆机构以及变异后机构的特点及应用、死点(止点)位置的应用和渡过 基本设计命题:实现给定的运动要求:连杆有限位置、连架杆对应角位移、轨迹满足各种附加要求:曲柄存在条件、运动连续条件、传力及其他条件实验法设计实现给定连杆轨迹的四杆机构,解析法设计实现给定两连架杆对应位置的四杆机构第7章 凸轮机构掌握:凸轮机构的组成(凸轮+从动件+机架)──高副机构凸轮机构的分类:按凸轮分类:平面凸轮(盘形凸轮、移动凸轮),空间凸轮按从动件分类:端部形状:尖端、滚子、平底、曲面运动形式:移动、摆动安装方式:对心、偏置按锁合方式分类:力锁合、形锁合基圆(理论廓线上最小向径所作的圆)、理论廓线、实际廓线、行程从动件运动规律(升程、回程、远休止、近休止)刚性冲击(硬冲:速度突变,加速度无穷大)、柔性冲击(软冲:加速度突变)运动规律特点:等速运动规律:速度为常数、始末两点存在硬冲、用于低速等加速等减速:加速度为常数、始末中三点存在软冲、不宜用于高速余弦加速度:停─升─停型:始末两点存在软冲、不宜用于高速升─降─升型:无冲击、可用于高速正弦加速度:无冲击、可用于高速反转法绘制凸轮廓线的方法:对心或偏置尖端移动从动件,对心或偏置滚子移动从动件滚子半径的选择、基圆半径的确定、运动失真及其解决的方法了解:凸轮机构的特点、凸轮机构的应用、凸轮机构的一般命名原则四种运动规律的推导方法和位移曲线的画法运动规律的基本形式:停─升─停;停─升─降─停;升─降─升运动规律的选择原则,平底从动件凸轮廓线的绘制方法及运动失真的解决方法机构自锁、偏置对压力角的影响,压力角α、许用压力角[]α、临界压力角c α三者关系:[]c ααα<≤max第8章 齿轮传动掌握:齿轮机构的组成(主动齿轮+从动齿轮+机架)──高副机构圆形齿轮机构分类:平行轴:直齿圆柱齿轮机构(外啮合、内啮合、齿轮齿条)斜齿圆柱齿轮机构(外啮合、内啮合、齿轮齿条)人字齿轮机构相交轴:圆锥齿轮机构(直齿、斜齿、曲齿)相错轴:螺旋齿轮机构、蜗轮蜗杆机构齿廓啮合基本定律(两轮的传动比等于公法线割连心线线段长度之反比)定传动比条件、节点、节圆、共轭齿廓渐开线的形成、特点及方程一对渐开线齿廓啮合特性:定传动比特性、啮合角和啮合线保持不变、可分性渐开线齿轮各部分名称:齿数、模数、压力角、顶隙、分度圆、基圆、齿顶圆、齿根圆齿顶高、齿根高、齿全高、齿距(周节)、齿厚、齿槽宽标准直齿圆柱齿轮的基本参数:齿数z 、模数m 、压力角α(︒20)齿顶高系数*a h (1.0、0.8)、顶隙系数*c (0。
机械系统动力学试题A平分标准1 填空(20)(每空2分)离散线性系统的数学模型可用线性常微分方程描述。
LTI系统为线性时不变系统。
静态设计主要考虑静态载荷作用,动态设计主要考虑振动与动态载荷作用。
系统有离散系统和连续系统。
确定性系统在随机激励下,响应是随机的。
重力场的势函数为-mgy 。
广义坐标为完全决定系统状态的独立参数。
牛顿力学的主要不便是处理约束反力不方便。
连续系统的自由度数为无穷多。
2 用拉格朗日方程建立单摆运动方程(20)。
解:3 写出建立拉格朗日方程的步骤(20)。
解:(1)确定系统自由度数,选取广义坐标(5);(2)计算系统动能E(5);(3)计算系统的广义力Q(5);(4)将动能和广义力代入格郎日方程,得系统运动微分方程(5)。
4如图,推导杆的纵向振动微分方程(20)。
解:微元所受的合力为:dx x F F T ∂∂=(2) 因为 xu AE A F T ∂∂==σ(3) 所以 dx xu AE dx x F F T 22∂∂=∂∂=(5) 微元的质量为:dx A M ρ=(2)代入牛顿定律得:dx tu A dx x u AE 2222∂∂=∂∂ρ(3) 222221t u c x u ∂∂=∂∂即(4) ρE c =2其中(1)5 等效力学模型微分方程中,已知等效转动惯量为常数,等效力矩为)(ϖe e M M =,0=t 时,0=ϖ,求时间和角速度的关系(20)。
解:等效力学模型微分方程为:e e e M dt d d dJ dt d J =⎪⎭⎫ ⎝⎛+22221ϕϕϕ(5) 因等效转动惯量为常数,故有:e e M dtd J =22ϕ(2) 即:e e M dtd J =ω,)(ϖe e M M =(3) 分离变量得:)(ϖωe e M d J dt =(5) 积分并应用初始条件,得:⎰=ωϖω0)(e e M d J t (5)。
三 峡 大 学2011年研究生入学考试试题参考答案(A 卷)考试科目: 921机械原理一、判断题(对者打√,错者打╳)(10分)(每题1分)1. ╳,2. ╳,3. √,4. ╳,5. ╳,6. √,7. √,8. √,9. √,10. ╳二、填空题(20分)(每题2分)1. 构 件, 运 动 副 ; 运 动2. 机 架, 杆 组, 原 动 件3. 三个,一条直线4. 三角带属槽面摩擦性质,当量摩擦系数较平面摩擦系数大,故传力大。
5. θψ==30 K =+-=18018014θθ. 6. 尖顶从动件、滚子从动件和平底从动件7. 直8. 节;分度9. (1) 各齿轮的轴线相对机架都是固定的;(2)至少一个齿轮的几何轴线相对机架不是固定的。
10. 瞬时功率相等(等效力所产生的功率等于原机器上的外力和外力矩产生的功率之和);动能相等(等效质量的动能等于机器所有运动构件的动能之和〕。
三、选择题(20分)(每题2分)1.C ,2.C ,3.C ,4. C ,5.B ,6. A ,7.B ,8.C ,9.C ,10.C四、简答题(20分)(每题5分) 1. 无 哥 氏 加 速 度, 因 为ωω230==2. 在具有往复运动构件的连杆机构中,当曲柄匀速旋转一周时,往复从动件的往复运动的平均速度不相等,则从动件就具有急回运动。
通常用行程速比变化系数K 来表示机构急回特征的相对程度。
K 212,v v v =为往复从动件反回行程的平均速度,v 1为正行程的平均速度。
例如牛头刨床在工作时,正行程是切削过程,刀具相对工件的运动宜慢且均匀。
而回 程时则希望快些以提高生产率,因而在牛头刨床中就应采用具急回作用的机构。
3. (1) 不相同。
(2) 凸轮的实际廓线相同,而从动件端部形状不同时,该凸轮的理论廓线不相同,故从动件的运动规律不相同。
4. 分度圆是齿轮基本尺寸计算的基准圆;在分度圆上具有标准模数和 标准压力角值;分度圆上的齿厚等于齿槽宽;分度圆与用齿条刀加工时的节圆重合。
5. 如何设计参数,使减振器效果最佳?
答:动力减振器视辅助质量与主质量联结方式不同分为:
ⅰ 有阻尼动力减振器(有弹性元件又有阻尼元件与主质量联结) ⅱ 无阻尼动力减振器(有弹性元件无阻尼元件与主质量联结) ⅲ 磨擦减振器(无弹性元件只有阻尼元件与主质量联结)
1)对无阻尼减振器(0ξ=)时:
()()22
1
222221st A u αλδλαλλα-=--- 当 ()21,0n A ωωαλ===即时只有减振器振动
(主系统实现减振)主系统共振危害大。
通常令21,1n n ωωα==即 以消除主系统的共振
2)对有阻尼动力减振器(0ξ≠);
不同值ξ,不同幅频曲线,无论ξ为何值,所有曲线过P 和Q 点。
令该两点分别对应的频率 : 12;P Q λλ⇒⇒ 要使振幅最大值尽可能小。
减振器在整个频率范围内都有好的减振效果。
即:
111max st st st P Q A A A δδδ⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
按这条件推导减振器最佳参数:22,,k u m αξ→→
a.
即1,st P Q A δ⎛⎫= ⎪⎝⎭ 12A u m ⇒−−
→−−→选定 b.由
11u α=
+ 得 22:k u m αα⇒⇒ c.由()23
3281P Q opt u
u ξξξ+==+ 得ξ
d.验算减振器弹性元件强度:由2A 验算减振器弹簧强度.
3) 对磨擦减振器
图中,无论阻尼比ξ为何值,各曲线都过Q 点(和P 点,0λ=处) 为使Q 点为最高点,求得最佳阻尼比:
opt
ξ=。
第十四章 机械系统动力学14-11、在图14-19中,行星轮系各轮齿数为123z z z 、、,其质心与轮心重合,又齿轮1、2对质心12O O 、的转动惯量为12J J 、,系杆H 对的转动惯量为H J ,齿轮2的质量为2m ,现以齿轮1为等效构件,求该轮系的等效转动惯量J ν。
22222121221123231211321211322212311212213121313()()()()1()()()()()()()o H H H o H J J J J m z z z z z z z z z O O z z z z z z z O O J J J J m z z z z z z z z νννωωωωωωωωωωωωωνω=+++=-=+=+=+-=++++++解:14-12、机器主轴的角速度值1()rad ϖ从降到时2()rad ϖ,飞轮放出的功(m )W N ,求飞轮的转动惯量。
m axm in1222121()22F F W y M d J WJ ϕνϕϕωωωω==-=-⎰解:14-15、机器的一个稳定运动循环与主轴两转相对应,以曲柄和连杆所组成的转动副A 的中心为等效力的作用点,等效阻力变化曲线c A F S ν-如图14-22所示。
等效驱动力a F ν为常数,等效构件(曲柄)的平均角速度值25/m rad s ϖ=,3H 1232 1 H O 1O 2不均匀系数0.02δ=,曲柄长度0.5O A l m =,求装在主轴(曲柄轴)上的飞轮的转动惯量。
(a) W v 与时间关系图 (b )、能量指示图a 224()23015mW y=25N m 25 6.28250.02cva O A vc O A O A va F W W F l F l l F N M va N J kg mνν=∏⨯∏=∏+==∏==⨯ 解:稳定运动循环过程14-17、图14-24中各轮齿数为12213z z z z =、,,轮1为主动轮,在轮1上加力矩1M =常数。
太原理工大学研究生试题 姓名: 学号: 专业班级: 机械工程2014级课程名称: 《机械系统动力学》 考试时间: 120分钟 考试日期: 2015、12、11 题号 一 二 三 四 五 六 七 八 总分 分数1 圆柱型仪表悬浮在液体中,如图1所示。
仪表质量为m,液体的比重为ρ,液体的粘性阻尼系数为r,试导出仪表在液体中竖直方向自由振动方程式,并求固有频率。
(10分)2 系统如图2所示,试计算系统微幅摆动的固有频率,假定OA 就是均质刚性杆,质量为m 。
(10分)3 图3所示的悬臂梁,单位长度质量为ρ,试用雷利法计算横向振动的周期。
假定梁的变形曲线为⎪⎭⎫ ⎝⎛-=x L y y M 2cos 1π(y M 为自由端的挠度)。
(10分) 4 如图4所示的系统,试推导质量m 微幅振动的方程式并求解θ(t)。
(10分)5 一简支梁如图5所示,在跨中央有重量W 为4900N 电机,在W 的作用下,梁的静挠度δst=0、2cm,粘性阻尼使自由振动10周后振幅减小为初始值的一半,电机n=600rpm 时,转子不平衡质量产生的离心惯性力Q=1960N,梁的分布质量略去不计,试求系统稳态受迫振动的振幅。
(15分)6 如图6所示的扭转摆,弹簧杆的刚度系数为K ,圆盘的转动惯量为J ,试求系统的固有频率。
(15分)7如图7一提升机,通过刚度系数m N K /1057823⨯=的钢丝绳与天轮(定滑轮)提升货载。
货载重量N W 147000=,以s m v /025.0=的速度等速下降。
求提升机突然制动时的钢丝绳最大张力。
(15分)8某振动系统如图8所示,试用拉个朗日法写出动能、势能与能量散失函数。
(15分)太原理工大学研究生试题纸图1 图2 图3图4 图5 图6m1m2x1x2Q1sinωt Q2sinωtk1 r1k2r2k3r3图7 图8。