压缩感知概述
- 格式:pdf
- 大小:1.24 MB
- 文档页数:34
2011.No31 03.2 熟悉结构施工图结构施工图是关于承重构件的布置,使用的材料、形状、大小及内部构造的工程图样,是承重构件以及其他受力构件施工的依据。
看结构施工图最难的就是钢筋,要把结施图看懂就要知道钢筋的分布情况,现在都是在使用平法来标示钢筋,所以也要把平法弄懂才行。
在识读与熟悉结施图的过程中应该充分结合钢筋平法表示的系列图集,搞清楚:a 各结构构件的钢筋的品种,规格,以及受力钢筋在各构件的布置情况。
b 箍筋与纵向受力钢筋的位置关系。
c 各个构件纵向钢筋以及箍筋弯钩的角度及其长度。
d 熟悉各构件节点的钢筋的锚固长度。
e 熟悉各个构件钢筋的连接方式。
f 熟悉在钢筋的搭接区域内,钢筋的搭接长度。
g 核算钢筋的间距是否满足施工要求,尤其是各个构件节点处的钢筋间距。
h 弯起钢筋的弯折角度以及离连接点的距离。
除此以外,对于钢筋混凝土构件,还应该熟悉各个构件的砼保护层厚度,各个构件的尺寸大小、布置位置等。
特别注意的是对于结施图的阅读应充分结合建施图进行。
4 结束语在熟悉施工图纸的过程中,施工技术人员对于施工图纸中的疑问,和比较好的建议应该做好记录,为后续工作(图纸自审和会审)做好准备。
参考文献[1]《建筑识图》周坚主编 中国电力出版社 2007年;[2]《建筑工程项目管理》银花主编 机械工业出版社 2010年;摘 要 压缩感知(Compressive Sensing, CS)理论是一个充分利用信号稀疏性或可压缩性的全新信号采集、编解码理论。
本文系一文献综述,主要介绍了压缩感知的三部分即信号的稀疏表示、测量矩阵的设计、信号恢复算法的设计。
关键词 压缩感知 稀疏表示 测量矩阵 信号恢复算法1 引言1928年由美国电信工程师H.奈奎斯特(Nyquist)首先提出,1948年信息论的创始人C.E.香农(Shannon)又对其加以明确说明并正式作为定理引用的奈奎斯特采样定理,是采样带限信号过程所遵循的规律。
压缩感知,又称压缩采样,压缩传感。
它作为一个新的采样理论,它通过开发信号的稀疏特性,在远小于Nyquist 采样率的条件下,用随机采样获取信号的离散样本,然后通过非线性重建算法完美的重建信号[1]。
压缩感知理论一经提出,就引起学术界和工业界的广泛关注。
他在信息论、图像处理、地球科学、光学/微波成像、模式识别、无线通信、大气、地质等领域受到高度关注,[2]并被美国科技评论评为2007年度十大科技进展。
编辑本段基本知识现代信号处理的一个关键基础是Shannon 采样理论:一个信号可以无失真重建所要求的离散样本数由其带宽决定。
但是Shannon 采样定理是一个信号重建的充分非必要条件。
在过去的几年内,压缩感知作为一个新的采样理论,它可以在远小于Nyquist 采样率的条件下获取信号的离散样本,保证信号的无失真重建。
压缩感知理论一经提出,就引起学术界和工业的界的广泛关注。
[3]压缩感知理论的核心思想主要包括两点。
第一个是信号的稀疏结构。
传统的Shannon 信号表示方法只开发利用了最少的被采样信号的先验信息,即信号的带宽。
但是,现实生活中很多广受关注的信号本身具有一些结构特点。
相对于带宽信息的自由度,这些结构特点是由信号的更小的一部分自由度所决定。
换句话说,在很少的信息损失情况下,这种信号可以用很少的数字编码表示。
所以,在这种意义上,这种信号是稀疏信号(或者近似稀疏信号、可压缩信号)。
另外一点是不相关特性。
稀疏信号的有用信息的获取可以通过一个非自适应的采样方法将信号压缩成较小的样本数据来完成。
理论证明压缩感知的采样方法只是一个简单的将信号与一组确定的波形进行相关的操作。
这些波形要求是与信号所在的稀疏空间不相关的。
压缩感知方法抛弃了当前信号采样中的冗余信息。
它直接从连续时间信号变换得到压缩样本,然后在数字信号处理中采用优化方法处理压缩样本。
这里恢复信号所需的优化算法常常是一个已知信号稀疏的欠定线性逆问题。
压缩感知简介 压缩感知(也称为压缩感知、压缩采样或稀疏采样)是⼀种信号处理技术,通过寻找⽋定线性系统的解决⽅案来有效地获取和重构信号。
这是基于这样的原理,即通过优化,可以利⽤信号的稀疏性从⽐Nyquist-Shannon 采样定理所需的样本少得多的样本中恢复它。
有两种情况可以恢复。
第⼀个是稀疏的,这要求信号在某些域中是稀疏的。
第⼆个是不相⼲性,它通过等距属性应⽤,这对于稀疏信号来说已经⾜够了。
概述 信号处理⼯程领域的⼀个共同⽬标是从⼀系列采样测量中重建信号。
⼀般来说,这项任务是不可能的,因为在未测量信号的时间内⽆法重建信号。
然⽽,通过对信号的先验知识或假设,可以从⼀系列测量中完美地重建信号(获取这⼀系列测量称为采样)。
随着时间的推移,⼯程师们对哪些假设是实⽤的以及如何推⼴它们的理解有所提⾼。
信号处理的早期突破是奈奎斯特-⾹农采样定理。
它指出,如果真实信号的最⾼频率⼩于采样率的⼀半,则可以通过sinc 插值完美地重构信号。
主要思想是,利⽤关于信号频率约束的先验知识,重构信号所需的样本更少。
⼤约在 2004 年,Emmanuel Candès、Justin Romberg、Terence Tao和David Donoho证明,在了解信号稀疏性的情况下,可以使⽤⽐采样定理所需更少的样本来重建信号。
这个想法是压缩感知的基础。
历史 压缩传感依赖于其他⼏个科学领域在历史上使⽤过的技术。
在统计学中,最⼩⼆乘法由L1-norm,由Laplace引⼊。
随着线性规划和Dantzig单纯形算法的介绍,L1-norm ⽤于计算统计。
在统计理论中,L1-norm 被George W. Brown和后来的作者⽤于中值⽆偏估计量。
它被Peter J. Huber 和其他从事稳健统计⼯作的⼈使⽤。
L1-norm 也⽤于信号处理,例如,在 1970 年代,地震学家根据似乎不满⾜Nyquist-Shannon 标准的数据构建了地球内反射层的图像。
压缩感知技术在雷达信号处理中的应用研究雷达技术是一种重要的探测和测量手段,其应用广泛,包括军事、民用、工业等领域。
雷达技术的发展给人们带来了很多便利,但同时也带来了很多问题,如信号处理中的大数据问题。
压缩感知技术是一个新兴的信号处理技术,已被广泛应用于雷达信号处理中,本文将介绍压缩感知技术在雷达信号处理中的应用研究。
一、压缩感知技术概述压缩感知技术(Compressed Sensing,CS)是一种新兴的信号处理技术,它通过提取信号的非均匀采样,实现对信号的高效压缩和重构。
该技术是由Emmanuel J. Candes、David L. Donoho、Terence Tao等人在2004年左右提出的,目的是用尽可能少的信息来获取尽可能完整的信号。
在压缩感知技术中,信号和噪声之间是以低维度的方式存在的。
当信号的维度低于采样点数时,就可以通过优化算法将信号还原出来。
这样可以大大降低采样频率,使得信号处理的速度大大提高。
二、压缩感知技术在雷达信号处理中的应用在雷达信号处理中,通常需要采集大量数据以获取所需信息。
但是数据量过大,处理速度过慢,这成为了雷达信号处理中的难题。
压缩感知技术是一种非常有效的解决方案。
将压缩感知技术应用于雷达信号处理中可以提高信号采集效率、降低数据存储成本、加速信号处理速度,从而增强了雷达系统的性能。
压缩感知技术可以应用于雷达信号的压缩采样、信号重构等方面。
在雷达信号的压缩采样中,传统的采样方式是按照一定间隔对信号进行采样,采集大量的无效信息,而压缩感知技术可以通过非均匀采样来实现对有效信息的采样,从而降低了采样频率。
在雷达信号的信号重构中,传统的信号重构技术是进行插值处理,但是这种方法会产生误差,而且计算复杂度较高。
而压缩感知技术通过优化算法就可以将信号还原出来,同时大大降低了计算复杂度。
三、应用研究实例压缩感知技术在雷达信号处理中的应用已经被广泛研究。
以下是几个应用研究实例:1.基于压缩感知技术的雷达成像雷达成像是一种非常常用的探测手段。
压缩感知概述一、压缩感知的提出信号采样是模拟的物理世界通向数字的信息世界之必备手段。
多年来,指导信号采样的理论基础一直是著名的Nyquist采样定理。
定理指出,只有当采样速率达到信号带宽的两倍以上时,才能由采样信号精确重建原始信号。
可见,带宽是Nyquist采样定理对采样的本质要求。
但是,对于超宽带通信和信号处理、核磁共振成像、雷达遥感成像、传感器网络等实际应用,信号的带宽变得越来越大,人们对信号的采样速率、传输速度和存储空间的要求也变得越来越高。
然而传统的信号压缩实际上是一种严重的资源浪费,因为大量的采样数据在压缩过程中被丢弃了,而它们对于信号来说是不重要的或者只是冗余信息。
从这个层面上讲:带宽不能本质地表达信号的信息,基于信号带宽的Nyquist采样机制是冗余的或者说是非信息的。
近年来基于信号稀疏性提出一种称为压缩感知(compressed sensing)或压缩采样(compressive sampling)的新兴采样理论,成功实现了信号的同时采样与压缩。
二、压缩感知基本原理简单地说,压缩感知理论指出:当信号在某个变换域是稀疏的或可压缩的,可以利用与变换矩阵非相干的测量矩阵将变换系数线性投影为低维观测向量,同时这种投影保持了重建信号所需的信息,通过进一步求解稀疏最优化问题就能够从低维观测向量精确地或高概率精确地重建原始高维信号。
原理框图如图(一)所示:图一原理框图图解:设长度为N的信号X在某组正交基或紧框架 上的变换系数是稀疏的,则用一个与变换基ψ不相关的观测基N)N(M M <<⨯Φ:对系数向量进行线性变换,并得到观测集合Y :M*1,从而使得维数降低。
即:Y=ΦΘ=X A X CS T =Φψ;X T ψ=Θ。
在该理论框架下,采样速率不再取决于信号的带宽,而在很大程度上取决于两个基本准则:稀疏性和非相干性,或者说是稀疏性和等距约束性。
当前压缩感知理论主要涉及三个核心问题是:信号系数表示即稀疏矩阵ψ,观测矩阵Φ,以及重构算法的设计。
基于压缩感知理论的模数转换器采样速率降低方案一、压缩感知理论概述压缩感知理论是一种新兴的信号处理理论,它突破了传统的奈奎斯特采样定理,允许在远低于信号最高频率的情况下对信号进行采样,并且能够从这些不完整的采样中恢复出原始信号。
这一理论的提出,为模数转换器(ADC)的设计提供了新的思路,使得在保持信号质量的前提下,降低采样速率成为可能。
1.1 压缩感知理论的核心概念压缩感知理论的核心在于信号的稀疏表示。
一个信号如果能够在某个变换域(如小波变换、傅里叶变换等)下表示为稀疏的,即只有少数几个非零系数,那么这个信号就可以被压缩感知。
在实际应用中,许多自然信号(如图像、声音等)都具有稀疏特性,这为压缩感知理论的应用提供了广阔的空间。
1.2 压缩感知理论的数学基础压缩感知理论的数学基础是线性代数中的稀疏信号恢复问题。
给定一个信号向量 \( \mathbf{x} \) 和一个测量矩阵 \( \mathbf{\Phi} \),通过测量向量 \( \mathbf{y} = \mathbf{\Phi x} \) 来恢复原始信号 \( \mathbf{x} \)。
如果 \( \mathbf{x} \) 是 K-稀疏的,即在某个变换域下只有 K 个非零系数,那么在一定条件下,可以通过优化算法从 \( \mathbf{y} \) 恢复出 \( \mathbf{x} \)。
1.3 压缩感知理论的应用前景压缩感知理论在信号处理、图像处理、通信等领域具有广泛的应用前景。
在模数转换器的设计中,利用压缩感知理论可以降低采样速率,减少数据量,从而降低硬件成本和功耗,提高系统性能。
二、基于压缩感知的模数转换器设计基于压缩感知理论的模数转换器设计,旨在通过降低采样速率来减少数据量,同时保证信号的恢复质量。
这种设计方法需要考虑信号的稀疏性、测量矩阵的选择、优化算法等多个方面。
2.1 信号的稀疏表示在设计基于压缩感知的模数转换器时,首先要确定信号的稀疏表示。
压缩感知⼀、什么是压缩感知(CS)?compressed sensing⼜称compressed sampling,CS是⼀个针对信号采样的技术,它通过⼀些⼿段,实现了“压缩的采样”,准确说是在采样过程中完成了数据压缩的过程。
因此我们⾸先要从信号采样讲起:1. 我们知道,将模拟信号转换为计算机能够处理的数字信号,必然要经过采样的过程。
问题在于,应该⽤多⼤的采样频率,即采样点应该多密多疏,才能完整保留原始信号中的信息呢?------------------------------------------------------------------------------------------------------------------------------------------------------------2. 奈奎斯特给出了答案——信号最⾼频率的两倍。
⼀直以来,奈奎斯特采样定律被视为数字信号处理领域的⾦科⽟律。
-----------------------------------------------------------------------------------------------------------------------------------------------------------3. ⾄于为什么是两倍,学过信号处理的同学应该都知道,时域以τ为间隔进⾏采样,频域会以1/τ为周期发⽣周期延拓。
那么如果采样频率低于两倍的信号最⾼频率,信号在频域频谱搬移后就会发⽣混叠。
-----------------------------------------------------------------------------------------------------------------------------------------------------------4. 然⽽这看似不容置疑的定律却受到了⼏位⼤神的挑战。
压缩感知理论
压缩感知理论是一种新兴的机器学习理论,它将经典机器学习理论与数据压缩技术结合起来,以提高机器学习的性能。
压缩感知理论的主要思想是通过数据压缩来提高机器学习的性能。
数据压缩的方法有多种,可以通过算法、特征选择或数据压缩来实现,其中算法压缩可以消除冗余信息,特征选择可以降低特征维度,而数据压缩可以减少数据量。
压缩感知理论将机器学习的性能提升到一个新的高度。
它可以有效减少训练时间,提高精度,并使训练更加稳定。
它还可以节约存储空间,降低计算和内存消耗,有利于模型部署和大规模应用。
在一些场景中,压缩感知理论可以使用少量数据集来训练模型,从而提高训练效果。
压缩感知理论可以说是经典机器学习理论和数据压缩技术的两个优秀元素的结合,它可以极大地提高机器学习的性能。
它的应用有很多,可以帮助我们快速准确地解决许多复杂的机器学习问题,有助于提升系统的效率,实现更好的性能。
压缩感知图像处理技术随着科技的发展,图像处理技术也在不断地创新和改进。
其中,压缩感知图像处理技术是一项非常有前景的技术。
它可以在保证图像质量的同时,减少图像处理的时间和成本,广泛应用于数字图像处理、图像压缩、视频压缩等领域。
一、压缩感知图像处理技术的概念压缩感知图像处理技术(Compressed Sensing)是指一种新型的信号采样与处理方法,它是一种以少量采样数据重建高维信号的理论和算法。
在传统的数字信号采样中,要求采样的样本数必须大于等于信号的维数,才能准确地采样信号。
而在压缩感知图像处理技术中,只需要采集不多于信号的运动维数次数的采样数据,就可以重构出完整的信号。
二、压缩感知图像处理技术的原理压缩感知图像处理技术的原理是在稀疏性假设的基础上,利用随机矩阵将高维信号随机映射到低维空间,并利用少量的观测信号(线性变换后)进行重建。
在信号的稀疏表示下,通过对信号的采样和重建可以达到信号的压缩和恢复的效果。
三、压缩感知图像处理技术的优势相比传统的信号采样方法,压缩感知图像处理技术具有以下优势:1、减少数据的采集和存储量。
由于相比传统信号采集方法,压缩感知图像处理技术可以仅采集一部分信号,就能获得完整的信号信息,从而减少了数据的采集和存储量。
2、提高图像处理的速度。
由于采集和存储的数据量减少了,同时又可以恢复出完整的图像信号,因此可以大大提高图像处理的速度。
3、已经广泛应用。
压缩感知图像处理技术已经被广泛应用于图像压缩、视频转码、稀疏信号重构等领域,取得了很好的效果。
四、压缩感知图像处理技术的应用随着压缩感知图像处理技术的成熟和应用,它已经被广泛应用在各个领域:1、图像处理。
利用压缩感知图像处理技术对图像信号进行压缩和重构。
2、视频转码。
将高清视频等复杂的数据进行压缩和转码。
3、稀疏信号重构。
通过少量样本进行大规模稀疏信号重构。
四、压缩感知图像处理技术存在的问题压缩感知图像处理技术虽然有很多优势,但同时存在以下问题:1、复杂的计算量。