七年级数学上册绝对值教案新人教版
- 格式:doc
- 大小:135.50 KB
- 文档页数:4
1.2.4 绝对值一、创设情境,导入新知甲、乙两辆汽车从同一处O出发,分别向东西方向行驶10 km,达到A,B两处,请在数轴上表示出来并回答问题(规定向东为正方向).(1) 它们行驶的路线相同吗?(2) 它们行驶的路程相等吗?二、小组合作,探究概念和性质知识点一:绝对值合作探究:探究一探究两辆车的行驶路线相同吗?行驶路程相同吗?请用数轴解释(规定向东为正方向).师生活动:学生思考上述问题,在分析问题的过程中得到,表示两辆汽车位置的数是互为相反数,那么进一步思考就会提出一个问题:互为相反数的两个数只有符号不同,那么相同的方面是什么?为了解决这一问题,先请同学们观察两个点的位置关系,并请同学在讨论后说出它们的位置关系.学生小组内交流:位置关系是两个点分别在原点的两侧,两个点到原点的距离相等或者说两个点到原点有相同倍的单位长度.教师引出新课:两个点到原点的距离相等表明相应的有理数具有什么样的性质呢?今天我们就来研究这个问题.绝对值的定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作| a |.教材挖掘:例:因为点A表示10,与原点的距离是10 个单位长度,所以| 10 | = 10.师生活动:这样我们就进一步明确一个数是由它的符号和绝对值两部分组成.教师强调:这里的数a可以是正数、负数和0.练一练:1.利用数轴,口答下列问题:师生活动:学生根据绝对值的定义直接求出各数的绝对值,然后观察每个问题中的绝对值符号内的数和相应的结果之间的关系,进行归纳、总结.探究二对于任意数a,你能求出它的绝对值?师生活动:教师引导学生确定数轴上a的位置是需要考虑a的正负性,需要分类讨论.然后共同归纳总结:数学语言:当a > 0时,| a | =_____ ; 当a < 0时,| a | =_____ ; 当a = 0时,| a | =______.总结:一个正数的绝对值是它______;一个负数的绝对值是它的_______;0 的绝对值是_____.典例精析例1 (1) 写出 1,-0.5,−74 的绝对值;(2) 如图,数轴上的点 A ,B ,C ,D 分别表示有理数 a ,b ,c ,d ,这四个数中,绝对值最小的是哪个数?教师活动: 组织学生进行小组讨论,引导学生思考可以从哪些角度来判断绝对值最小的数。
人教版数学七年级上册1.2.4《绝对值》教案一. 教材分析《绝对值》是人教版数学七年级上册第1章第2节的内容,本节课主要让学生理解绝对值的概念,掌握绝对值的性质,并能运用绝对值解决一些实际问题。
绝对值是数学中的一个基本概念,它在日常生活和工农业生产中有着广泛的应用。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,他们对数学概念的理解和运用已经有了一定的基础。
但同时,学生对新的数学概念的接受和理解还需要一定的引导和培养。
他们对绝对值的概念和性质可能还存在一些模糊的认识,需要通过实例和练习来加深理解。
三. 教学目标1.让学生理解绝对值的概念,掌握绝对值的性质。
2.培养学生运用绝对值解决实际问题的能力。
3.培养学生的抽象思维能力和逻辑思维能力。
四. 教学重难点1.绝对值的概念和性质。
2.运用绝对值解决实际问题。
五. 教学方法采用问题驱动法、实例教学法和小组合作学习法,引导学生通过观察、思考、讨论、操作等活动,掌握绝对值的概念和性质,提高学生的动手操作能力和解决问题的能力。
六. 教学准备1.PPT课件。
2.相关例题和练习题。
3.学生分组合作学习资料。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,如温度、距离等,引导学生思考这些问题的共同特点,从而引出绝对值的概念。
2.呈现(10分钟)介绍绝对值的定义,用PPT展示绝对值的图形表示,让学生直观地理解绝对值的概念。
同时,给出绝对值的性质,让学生通过观察和思考来理解这些性质。
3.操练(10分钟)让学生分组合作,运用绝对值的性质解决一些实际问题,如求距离、计算温度等。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示一些练习题,让学生独立完成,检验学生对绝对值概念和性质的掌握程度。
教师选取部分题目进行讲解,分析解题思路。
5.拓展(10分钟)让学生思考绝对值在实际生活中的应用,如地图上的距离、股票的涨跌等。
引导学生运用绝对值的知识解决这些问题,提高学生的应用能力。
七年级数学《绝对值》教案【优秀6篇】数学《绝对值》教案篇一●教学内容七年级上册课本11----12页1.2.4绝对值●教学目标1、知识与能力目标:借助于数轴,初步理解绝对值的概念,能求一个数的绝对值,初步学会求绝对值等于某一个正数的有理数。
2、过程与方法目标:通过从数形两个侧面理解绝对值的意义,初步了解数形结合的思想方法。
通过应用绝对值解决实际问题,体会绝对值的意义。
3、情感态度与价值观:通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,使学生能积极参与数学学习活动,对数学有好奇心与求知欲。
●教学重点与难点教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。
教学难点:绝对值定义的得出、意义的理解,以及求绝对值等于某一个正数的有理数。
●教学准备多媒体课件●教学过程一、创设问题情境1、两只小狗从同一点O出发,在一条笔直的街上跑,一只向右跑10米到达A点,另一只向左跑10米到达B点。
若规定向右为正,则A处记作__________,B处记作__________。
以O为原点,取适当的单位长度画数轴,并标出A、B的位置。
(用生动有趣的引例吸引学生,即复习了数轴和相反数,又为下文作准备)。
2、这两只小狗在跑的过程中,有没有共同的地方?在数轴上的A、B两点又有什么特征?(从形和数两个角度去感受绝对值)。
3、在数轴上找到-5和5的点,它们到原点的距离分别是多少?表示-和的点呢?小结:在实际生活中,有时存在这样的情况,无需考虑数的正负性质,比如:在计算小狗所跑的路程中,与小狗跑的方向无关,这时所走的路程只需用正数,这样就必须引进一个新的概念———绝对值。
二、建立数学模型1、绝对值的概念(借助于数轴这一工具,师生共同讨论,引出绝对值的概念)绝对值的几何定义:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。
比如:-5到原点的距离是5,所以-5的绝对值是5,记|-5|=5;5的绝对值是5,记做|5|=5.注意:①与原点的关系②是个距离的概念2、。
七年级数学《绝对值》教案【优秀9篇】学习难点: 篇一绝对值的综合运用绝对值教案篇二绝对值教学目标:通过数轴,使学生理解绝对值的概念及表示方法1、理解绝对值的意义,会求一个数的绝对值及进行有关的简单计算2、通过绝对值概念、意义的探讨,渗透数形结合、分类讨论等数学思想方法3、通过学生合作交流、探索发现、自主学习的过程,提高分析、解决问题的能力教学重点:理解绝对值的概念、意义,会求一个数的绝对值教学难点:绝对值的概念、意义及应用教学方法:探索自主发现法,启发引导法设计理念:绝对值的意义,在初中阶段是一个难点,要理解绝对值这一抽象概念的途径就是把它具体化,从学生生活周围熟悉的事物入手,借助数轴,使学生理解绝对值的几何意义。
通过“想一想”,“议一议”,“做一做”,“试一试”,“练一练”等,让学生在观察、思考,合作交流中,经历和体验绝对值概念的形成过程,充分发挥学生在教学活动中的主体地位,从而逐步渗透数形结合、分类讨论等数学思想方法,提高学生分析、解决问题的能力。
教学过程:一、创设情境,复习导入。
今天我们来学习一个重要而很实际的数学概念,提高我们的数学本领,先请大家看屏幕,思考并解答题中的问题。
(用多媒体出示引例)星期天张老师从学校出发,开车去游玩,她先向东行千米,到了游乐园,下午她又向西行千米,回到家中(学校、游乐园、家在同一直线上),如果规定向东为正,①用有理数表示张老师两次所行的路程;②如果汽车每公里耗油升,计算这天汽车共耗油多少升?① 千米,千米;②()×升。
在学生讨论的基础上,教师指出:这个例子涉及两个问题,第一问中的向东和向西是相反意义的量,用正负数表示,第二问是计算汽车的耗油量,因为汽车的耗油量只与行驶的路程有关,而与行驶的方向没有关系,所以没有负数。
这说明在实际生活中,有些问题中的量,我们并不关注它们所代表的意义,只要知道具体数值就行了。
你还能举出其他类似的例子吗?。
小组讨论,有的同学在思考,有的在交流,有些例子被否定,有的得到同伴的赞许,气氛热烈。
七年级数学《绝对值》教案数学是人们对客观世界定性掌控和定量刻画逐渐抽象概括、形成方法和理论,并进行广泛运用的进程。
这里给大家分享一些关于七年级数学《绝对值》教案,方便大家学习。
七年级数学《绝对值》教案篇1一、说教材(五)教材的地位和作用《绝对值》是选自人教版初一数学第一章第二节第四部分的内容。
这部分内容之前已经学习了有理数、数轴、相反数的内容,这是本节课学习的基础。
绝对值的内容主要包括含义及有理数之间的大小比较,这也为后面学习有理数的加减法奠定了基础。
(六)教学目标根据对教材内容的分析,以及在新课改理念的指导下,制定了以下三维目标:(一)知识与技能知道、掌控绝对值的含义,并且会比较有理数之间的大小。
(二)进程与方法运用数轴来推理数的绝对值,并在推理的进程中清楚的论述自己的观点,从而逐渐发展产生的抽象思维。
(三)情感态度与价值观体验数学活动的探干脆和创造性,感受数学的严谨性以及数学结论的肯定性。
教学重难点通过以上对教材内容及教学目标的分析,以及学生已有的知识水平,本节课的教学重难点以下:重点:绝对值的知道以及有理数的比较难点:负数的绝对值的知道及比较二、说学情以上就是我对教材的分析,由于教学目标及重难点的肯定也是在学生情形的基础上进行的,所以下面我对学情进行分析。
初一学生的抽象思维开始有了一定的发展,但还需一定的感性材料作支持,同时思维比较活跃和积极,所以教学进程中会重视直观材料的运用,然后引导学生自主摸索并知道知识,以激发学生的学习爱好,调动学生的积极性和主动性。
三、说教材基于以上对教材、学情的分析,以及新课改的要求,我在本课中采取的教法有:讲授法、演示法和引导归纳法。
演示法中需要的教具有多媒体和温度计。
四、说教法新课改理念告知我们,学生不仅要学到具体的知识,更重要的是学生要学会怎样自己学习,为毕生学习奠定扎实的基础。
所以本课中我将引导学生通过自主探究、合作交换的学法来更好的掌控本节课的内容。
五、说教学程序为了更好的实现三维目标、突破重难点,我将本课的教学程序设计为以下五个环节:(一)情境导入出示温度计,北方某一城市的温度是零下15摄氏度,南方某一城市的温度是15摄氏度 ,学生在稿纸上画一条数轴,标出这两个温度,并请一位学生画在黑板上。
1、理解并掌握绝对值的几何意义和代数意义2、掌握绝对值的非负性3、掌握绝对值的化简4、学会利用绝对值比较有理数的大小和分类讨论思想5、体会整体思想● (2019年·成都) 计算(6分).()311630cos 22-0-+-︒-∏1、绝对值的几何意义:数轴上表示数a 的点与原点的距离,叫做数a 的绝对值,记作a . b a -的几何意义:在数轴上,表示数a,b 对应两点间的距离.例如,在数轴上表示+5的点与原点的距离是5,所以55=+;在数轴上表示-6的点与原点的距离是6,所以-6的绝对值是6,记作66=-。
2、绝对值的代数意义(性质):一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.3、求字母a 的绝对值:⎪⎩⎪⎨⎧<-=>=)0()0()0(a a a a a a a ⎩⎨⎧<-≥=)0()0(a a a a a ⎩⎨⎧≤->=)0()0(a a a a a4、利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小.5、绝对值具有非负性.(1)对于任意实数a ,总有0≥a .(2)如果若干个非负数的和为0,那么这若干个非负数都必为0. 例如:若0=++c b a ,则0,0,0===c b a .6、绝对值的其它性质:(1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a a ≥,且a a -≥(2)若b =a ,则b a =或b a -=; b a ab ⋅= ; ()0≠=b ba b a ; 222a a a ==● 例1、1、求下列各数的绝对值。
21-= ; 49-= ; ()2---= ; 7.8-= ;21= ; 8()7--= ; (24.2)-+= ; [](1)---= ; 2、若4x -=,则x =_______; 若104x -=,则x =__________; 若34x -=,则x =__________;若,,4b a a =-=则b= ;3、若ab ab <,则下列结论正确的是( )A.0,0<<b aB.0,0<>b aC.0,0><b aD.0<ab1、(1) 6.2-的相反数是 ,倒数是 ;(2)已知 3.7a =,则a = ;若 3.7a -=,则a = ;(3)若a a =,则a 是 ;若a a -=-,则a 是 ;(4)若a 是负数,则a -= ;(5)已知,0,5,2<==xy y x 则y x +的值等于 ;2、(1)当0a >时,6a -= ; (2)当5a >时,5a -= ;(3)当5a <时,5a -= ;3、a ,b 是有理数,若a >b 且|a|<|b|,下列说法正确的是( )A. a 一定是正数B. a 一定是负C. b 一定是正数D. b 一定是负数● 例2、 1、已知022=++-y x 求:(1)x ,y 的值;(2)552x y -的值。
七年级数学《绝对值》教案精选3篇七年级数学《绝对值》教案篇一一、教学目标:1.知识目标:①能准确理解绝对值的几何意义和代数意义。
②能准确熟练地求一个有理数的绝对值。
③使学生知道绝对值是一个非负数,能更深刻地理解相反数的概念。
2.能力目标:①初步培养学生观察、分析、归纳和概括的思维能力。
②初步培养学生由抽象到具体再到抽象的思维能力。
3.情感目标:①通过向学生渗透数形结合思想和分类讨论的思想,让学生领略到数学的奥妙,从而激起他们的好奇心和求知欲望。
②通过课堂上生动、活泼和愉快、轻松地学习,使学生感受到学习数学的快乐,从而增强他们的自信心。
二、教学重点和难点教学重点:绝对值的几何意义和代数意义,以及求一个数的`绝对值。
教学难点:绝对值定义的得出、意义的理解及求一个负数的绝对值。
三、教学方法启发引导式、讨论式和谈话法四、教学过程(一)复习提问问题:相反数6与-6在数轴上与原点的距离各是多少?两个相反数在数轴上的点有什么特征?(二)新授1.引入结合教材P63图2-11和复习问题,讲解6与-6的绝对值的意义。
2.数a的绝对值的意义①几何意义一个数a的绝对值就是数轴上表示数a的点到原点的距离。
数a的绝对值记作|a|。
举例说明数a的绝对值的几何意义。
(按教材P63的倒数第二段进行讲解。
)强调:表示0的点与原点的距离是0,所以|0|=0。
指出:表示“距离”的数是非负数,所以绝对值是一个非负数。
②代数意义把有理数分成正数、零、负数,根据绝对值的几何意义可以得出绝对值的代数意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0。
七年级数学《绝对值》教案篇二各位专家领导:你们好!今天我说课的内容是人教版七年级上册1、2、4 绝对值内容。
首先,我对本节教材进行一些分析:一、教材分析(说教材):(一)、教材所处的地位与作用:本节内容在全书及章节的地位是:《绝对值》是七年级数学教材上册1、2、4 节内容。
人教版七年级数学上册:1.2.4《绝对值》教案4一. 教材分析《绝对值》是人教版七年级数学上册第一章第二节第四个小节的内容。
绝对值是实数的一个基本概念,也是初中数学中的重要内容。
它不仅涉及到有理数的分类,而且还是解一元一次方程、不等式以及函数等数学问题的重要工具。
本节课主要让学生了解绝对值的概念,掌握绝对值的性质,并能够运用绝对值解决一些实际问题。
二. 学情分析学生在学习本节课之前,已经学习了有理数、实数等基础知识,对于数的概念有一定的了解。
但是,对于绝对值这一概念,学生可能较为陌生,需要通过实例和讲解来理解和掌握。
同时,学生需要具备一定的抽象思维能力,能够从具体的实例中提炼出绝对值的性质。
三. 教学目标1.让学生了解绝对值的概念,能够正确理解绝对值的定义。
2.让学生掌握绝对值的性质,能够运用绝对值的性质解决一些实际问题。
3.培养学生的抽象思维能力,提高学生解决数学问题的能力。
四. 教学重难点1.绝对值的概念和性质。
2.运用绝对值解决实际问题。
五. 教学方法1.采用情境教学法,通过具体实例引入绝对值的概念,让学生在实际情境中理解和掌握绝对值。
2.采用讲授法,讲解绝对值的性质,引导学生通过归纳总结出绝对值的性质。
3.采用练习法,让学生通过解决实际问题,巩固对绝对值的理解和运用。
六. 教学准备1.准备相关的实例,用于引入绝对值的概念。
2.准备PPT,用于展示绝对值的性质和实例。
3.准备一些练习题,用于巩固学生对绝对值的理解和运用。
七. 教学过程1.导入(5分钟)通过一个具体实例,如“小明的家距离学校5公里,请问小明从学校出发,走到家还是走到学校,距离分别是多少?”让学生思考并解答,引出绝对值的概念。
2.呈现(15分钟)PPT展示绝对值的性质,引导学生通过观察和思考,归纳总结出绝对值的性质。
同时,对学生的回答进行点评和指导。
3.操练(15分钟)让学生通过解决一些实际问题,运用绝对值的性质进行计算和解答。
第一章有理数第4 课时绝对值【教学目标】1、知识与技能(1)理解绝对值的几何定义与代数定义(2)掌握绝对值的非负性2、过程与方法在练习过程中加强学生对绝对值定义的理解3、情感态度(1)通过解释绝对值的几何意义,渗透数形结合的思想.(2)敢于面对数学活动中的困难,有学好数学的自信心.【教学重难点】教学重点:1、绝对值的几何意义、代数定义的理解2、绝对值的非负性教学难点:绝对值定义的理解与运用【教学过程】教学环节教学内容设计意图一、回顾新知、反思疑难通过课堂内的学习,我们收获了绝对值的哪些知识?回顾绝对值的概念,为难点突破做准备二、反思疑难、应用新知重难点1:绝对值的定义【例1】若|x|=﹣(﹣8),则x=.【变式1】已知|a|=2,|b|=3,且b<a,则a= ,b=A.a=±2,b=±3B.a=±2,b=-3C.a=±2,b=3D.a=2,b=3重难点2:绝对值的化简【例2】化简|π - 4|+|3 + π|=.A.7B.7+2πC.-1D.-1+2π问题1:你知道π大概是多少么?问题2:那么π﹣4 和3+π,是大于0 还是小于0 呢?通过例 1 的教学让学生回顾绝对值的定义通过变式加深学生对绝对值定义的理解,学会分类讨论通过例2 让学生了解绝对值化简的解题关键是掌握绝对值的规律归纳小结:解题步骤:先判断绝对值里的数的大小,再根据绝对值的代数定义进行化简。
重难点3:绝对值的非负性【例3】已知|x-4|+|5-y|=0,则x= ,y=A.x=4,y=-5B.x=4,y=5C.x=-4,y=-5D.x=-4,y=5问题1:什么情况下两个数相加等于0?问题2:什么是绝对值的非负性?解题妙招:绝对值表示点到0 的距离,距离没有负数,所以|a|≥0. 通过例3 加深学生对绝对值的非负性的理解三、总结升华、反思提升本节课重点:1.几何定义2.代数定义3.绝对值的非负性老师帮助学生梳理本节课内容,并用课件演示。
《绝对值》教案一、教学目标1.知识与技能:掌握绝对值的代数意义和几何意义,能进行绝对值的简单计算。
2.过程与方法:经历观察、猜想、验证等数学活动,培养学生的逻辑推理能力和自主学习能力。
3.情感态度和价值观:感受数学与生活的联系,培养学生的数学应用意识和数学学习兴趣。
二、教学重难点1.教学重点:掌握绝对值的代数意义和几何意义,能进行简单的绝对值计算。
2.教学难点:理解绝对值的非负性,会用绝对值表示两个数之间的距离。
三、教具准备多媒体课件、黑板、粉笔。
四、教学过程设计1.导入新课,揭示课题(1)通过复习相反数的概念,引出绝对值的概念。
(2)揭示课题:今天我们将学习一种新的数学概念——绝对值。
1.探究新知,掌握概念(1)通过实例引入绝对值的概念,让学生观察并思考:这些数的绝对值有什么特点?它们的符号和大小有什么关系?(2)讲解绝对值的代数意义和几何意义,强调绝对值的非负性。
(3)通过例题和练习,让学生掌握绝对值的简单计算。
(4)引导学生用绝对值表示两个数之间的距离,理解绝对值的实际意义。
1.巩固练习,深化理解(1)出示一些练习题,让学生进行计算和判断,加深对绝对值的理解。
(2)通过讨论和交流,让学生发现绝对值在生活中的应用,培养学生的数学应用意识。
1.课堂小结,回顾反思(1)回顾本节课的学习内容,总结绝对值的定义、性质和计算方法。
(2)引导学生反思自己的学习过程和方法,提出改进意见。
(3)布置课后作业,让学生巩固所学知识。
五、教学反思本节课的教学目标是让学生掌握绝对值的代数意义和几何意义,能进行简单的绝对值计算。
在教学过程中,我注重引导学生通过观察、猜想、验证等数学活动来探究新知,培养学生的逻辑推理能力和自主学习能力。
同时,我也注重与学生的互动和交流,鼓励学生发表自己的见解和疑问,营造积极的学习氛围。
在巩固练习环节,我设计了多层次的练习题,以满足不同学生的学习需求。
在课堂小结环节,我引导学生回顾反思自己的学习过程和方法,提出改进意见,培养学生的元认知能力。
1、2.4 绝对值(一)★目标预设一、知识与能力:二、过程与方法:通过应用绝对值解决实际问题,体会绝对值的意义.三、情感态度与价值观:使学生能积极参与数学学习活动,对数学有好奇心与求知欲★重点、难点重点:正确理解绝对值的含义难点:绝对值化简★教学准备:投影仪、幻灯片★教学过程一、创设情景,谈话导入两辆汽车从同一处O出发,分别向东、西方向行驶10㎞,到达A、B两处,它们的行驶路线相同吗?它们行驶路程的远近(线段OA、OB的长度)相同吗?(激情引趣导入新课二、精讲点拨,质疑问难1、由(一)中问题,引入绝对值定义:一个数a的绝对值就是数轴上表示数a的点与原点的距离,数a的绝对值记作∣a∣.2、绝对值的代数意义:①一个正数的绝对值是它本身②一个负数的绝对值是它的相反数③0的绝对值是03、如果a是正数,则a>0;a为负数,则a<0.则绝对值的意义用数学符号语言表达为:如果a>0,则∣a∣=a如果a<0,则∣a∣=-a;如果a=0,则∣a∣=0.由此可知,任何一个数的绝对值不可能是数,即∣a∣0三、课堂活动,强化训练师生互动,先要求学生独立思考、解决,再在小组内互相交流.例1、求8、-8、41、-41、0、6-π、π-5的绝对值. 教师示X 一题的解题格式,其余题目由学生独立完成.例2、计算:∣321∣+∣-431∣-∣-221∣-∣-331∣例3、写出绝对值小于3的所有整数例4、当a>0时,∣2a∣=,当a>1时,∣a-1∣=,当a<1时,∣a-1∣=.学生练习:书本P14,P15练习四、延伸拓展、巩固内化引导同学们一起看书P16页内容.得到:1、正数大于0,0大于负数,正数大于负数.2、两个负数绝对值大的反而小.例如:10,0-1,1-1,-1-2(小组讨论,代表发言,学生点评)学生练习: ①14.3-π=,π-14.3=②③④⑧②当a=时,∣a∣=a;当=a=时,∣a∣=-a.③∣a∣一定是正数吗?它是什么数?④绝对值大于4且不大于9的整数有哪些?⑤若∣a∣=1,∣b∣=2,则a+b=⑥如果a=b,则∣a∣=∣b∣对不对?⑦如果∣a∣=∣b∣,则a=b对不对?⑦若∣a∣+∣b-1∣=0,求a-b ⑧计算200112003120021200312001120021---+-五、布置作业:P18:4、5、9、10及《当堂反馈》1、2.4 绝对值(二)★目标预设一、知识与能力:会利用绝对值比较两负数的大小二、过程与方法:通过应用绝对值解决实际问题,体会绝对值的意义.三、情感态度与价值观:使学生能积极参与数学学习活动,对数学有好奇心与求知欲★重点、难点重点:进一步理解绝对值的意义难点:正确掌握利用绝对值比较两个负数的大小★教学准备:投影仪、幻灯片★教学过程一、创设情景,谈话导入前面学过了数轴表示两个有理数的大小,右边的数总比左边的数大或者说左边的数总比右边的数小,比较3与5大家小学学过了,比较-3与-5,在数轴上-3在-5的右边,所以-3比-5大,除了用数轴这个工具来比较两个负数的大小外还有其他方法吗?二、精讲点拨,质疑问难1、如何比较-2与-3的大小,请你从中找出规律?将-2与-3在数轴上找到相应的点,可以猜想:-2比-3大2、-2与-3分别到原点的距离哪个大,哪个小?3、从-2、-3这两个负数的大小和它们到原点的距离的大小中,得到下列式子--2,∴3-23-再如:10, 0-1 , 1 -1 ,-1-2发现规律:1、利用数轴比较有理数大小由数轴的性质可知,在数轴上表示的两个数,右边的数总比左边的数大,即:正数大雨零,负数小于零,正数大于负数。
七年级数学上册《绝对值》教案(通用10篇)七年级数学上册《绝对值》教案篇1一、教学目标:1、掌握绝对值的概念,有理数大小比较法则。
2.学会计算绝对值,比较两个或多个有理数的大小。
3.经验数学的概念和规则来源于现实生活,渗透着数形结合和分类的思想。
二、教学难点:两个负数大小的比较。
三、知识重点:绝对值的概念。
四、教学过程:(一)设置情境。
1、引入课题。
星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正:(1)用有理数表示黄小姐两次走过的距离。
(2)如果汽车每公里耗油0.15升,那么这一天汽车耗油多少升?2、学生思考后,教师作如下说明:在现实生活中,有些问题只关注量的具体值,而与相反的意义无关,即与正负无关。
比如我们只关心车的距离和汽油的价格,而与行驶的方向无关。
3、观察并思考:画一个数轴,原点代表学校。
在数轴上画代表朱家尖岛和黄先生家的点。
观察图形,说出朱家尖岛黄老师家到学校的距离。
4、学生回答后,教师说明如下:数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|。
例如,上面的问题中|20|=20,|-10|=10显然,|0|=0这个例子中,第一问是相反意义的量,用正负数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义。
为引入绝对值概念做准备。
使学生体验数学知识与生活实际的联系。
因为绝对值概念的几何意义是数形转化的典型模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备。
(二)合作交流。
1、探究规律例1求下列各数的绝对值,并归纳求有理数a的绝对有什么规律?-3,5,0,+58,0.6。
2.要求小组讨论和合作学习。
3.教师引导学生先利用绝对值的意义寻找答案,再观察原数及其绝对值的特点,结合反数的意义,最后总结出求绝对值的规律(见教材第15页)。
七年级数学绝对值教案(最新4篇)七年级数学绝对值教案篇一一、教学目标1.初步理解绝对值的意义,掌握求有理数的绝对值的方法,并会求有理数的绝对值。
2.利用绝对值解决?些简单的实际问题。
3.使学生初步了解数形结合的思想方法。
4.通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,体会绝对值的意义和作用,感受数学在生活中的价值。
二、教法设计通过实体模型或问题实例创设学生参与情景,在自主看书寻找问题答案后探求绝对值的意义及应用。
三、教学重点和难点重点:初步理解绝对值的意义,会求一个有理数的绝对值。
难点:对绝对值意义的初步理解。
四、课时安排1课时五、师生互动活动设计自主、探究、合作、交流。
六、教学思路(一)、导入1.教师拿出准备好的数轴模型,让学生观察后摆放在讲台前,叫两个学生站在绳上标有点12、点6的位置,让其他学生观察度量后回答:这两个同学与原点的距离各是多少?另外叫两个学生分别站在绳上标有点一6、点一12的位置,其他学生观察度量后回答:这两个同学与原点的距离各是多少?(给学生充分的时间思考,相互讨论、探讨。
)或:创设问题情景挂出画有数轴的磁性黑板,两只小狗分别站在数轴上原点的左、右两侧3个单位的点上,向它离开原点的'距离各是多少?(激情引趣,导人新课)2.概念的引述.教师引导学生看书自学后,举例说明:什么是一个数的绝对值?如何表示一个数的绝对值?(叫学生板书)(学生在自学的基础上,可相互合作、探讨,教师参与学生的讨论,并进行个别指导。
)3.引导学生思考书中“想一想”:互为相反数的两个数的绝对值有什么关系?(在学生充分思考后,教师要引导学生相互说,并叫5个学生上黑板举例说明这个关系。
)(二)、新知识运用例1:求下列各数的绝对位:(小黑板示)、、0、-7.8、教师示范一题的解题格式,其余题目由学生独立完成。
(培养学生规范化解题的良好习惯)四、知识拓展师生互动,先要求学?思考、解决,再在组内互相交流。
绝对值人教版数学七年级上册教案一、教学目标1.理解绝对值的概念,掌握绝对值的性质。
2.能够正确求解绝对值表达式。
3.培养学生的逻辑思维能力和解决问题的能力。
二、教学重点与难点重点:绝对值的概念和性质。
难点:绝对值表达式的求解。
三、教学过程1.导入同学们,我们之前学习了有理数的概念,那么大家知道什么是绝对值吗?今天我们就来学习绝对值的相关知识。
2.新课讲解我们来了解一下什么是绝对值。
绝对值是一个数到0的距离,用符号“”表示。
比如,|-5|表示-5到0的距离,也就是5。
同样,|5|也表示5到0的距离,也是5。
我们来看一下绝对值的性质:①任何数的绝对值都是非负数。
②0的绝对值是0。
③互为相反数的两个数的绝对值相等。
下面,我们通过一些例子来巩固一下绝对值的概念。
请大家看黑板,我要写一些数,你们来判断这些数的绝对值分别是多少。
3.课堂练习(1)求下列数的绝对值:|-3|,|4|,|-7|,|0|。
(2)判断下列说法是否正确:①绝对值是正数。
②0的绝对值是1。
③互为相反数的两个数的绝对值相等。
(3)求解下列绝对值表达式:①|a|,其中a为任意实数。
②|a3|,其中a为任意实数。
③|a+5|,其中a为任意实数。
4.讨论与交流同学们,现在请大家分成小组,讨论一下如何求解含有绝对值的一元一次方程。
比如,|x2|=3。
每个小组可以尝试给出解题思路,然后我们一起分享。
经过大家的讨论,我们发现求解含有绝对值的一元一次方程的关键是去掉绝对值符号。
具体步骤如下:①当绝对值等于正数时,可以去掉绝对值符号。
②当绝对值等于0时,方程只有一个解。
③当绝对值等于负数时,方程无解。
①|x1|=4②|2x3|=5③|x+2|=06.课后作业(1)教材P42习题1、2、3。
(2)预习下节课内容:绝对值的几何意义。
四、教学反思重难点补充:1.教学重点补充:在讲解绝对值的概念时,通过具体例子让学生直观感受绝对值的意义。
如:|-3|表示-3到0的距离,也就是3,让学生在数轴上标出-3和0,直观看到这个距离。
1.2.4绝对值(第一课时)(新人教版七年级上洋思教案)课题:1.2.4 绝对值(第一课时)教材:新课标人教版学习目标:1.知识与技能①能根据一个数的绝对值表示“距离”,初步理解绝对值的概念,能求一个数的绝对值.②通过应用绝对值解决实际问题,体会绝对值的意义和作用.2.过程与方法经历绝对值的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指导思维活动的能力.3.情感、态度与价值观①通过解释绝对值的几何意义,渗透数形结合的思想.②体验运用直观知识解决数学问题的成功.重点:给出一个数,会求它的绝对值.难点:绝对值的几何意义、代数定义的导出.教学过程一.板书课题,揭示目标同学们,本节课我们一同学习“1.2.4 绝对值(第一课时)”本节课的学习目标是(投影).学习目标①能根据一个数的绝对值表示“距离”,初步理解绝对值的概念,能求一个数的绝对值.②通过应用绝对值解决实际问题,体会绝对值的意义和作用.二.指导自学自学指导请认真看P11.―12的内容.思考P11页思考题中的问题,5分钟后,比比谁的答案正确.三.学生自学1.学生按照自学指导看书,教师巡视,确保人人学得紧张高效.2.检查自学效果(1)投影练习观察出示一组数6与-6,3.5与-3.5,1和-1,它们是一对互为________,它们的__________不同,__________相同.例如6和-6两个数在数轴上的两点虽然分布在原点的两边,但它们到原点的距离相等,如果我们不考虑两点在原点的哪一边,只考虑它们离开原点的距离,这个距离都是6,我们就把这个距离叫做6和-6的绝对值.绝对值:在数轴上表示数a的点与原点的距离叫做a的绝对值,记作│a│.想一想(1)-3的绝对值是什么?(2)+237的绝对值是多少?(3)-12的绝对值呢?(4)a的绝对值呢?总结互为相反数的两个数的绝对值相同.求+2.3,-1.6,9,0,-7,+3的绝对值.(出示胶片)由此,你想到什么规律?讨论交流正数的绝对值是它本身,负数的绝对值是它的相反数,0 的绝对值是零.总结正数的绝对值是它本身.负数的绝对值是它的相反数.零的绝对值是零.讨论字母a可以代表任意的数,那么表示什么数?这时a的绝对值分别是多少?学生活动:分组讨论,教师加入讨论,学生相反补充回答.归纳若a0,则│a│=a若a0,则│a│=-a若a=0,则│a│=0例题填空:(1)绝对值等于4的数有2 个,它们是±4 .(2)绝对值等于-3的数有0 个.(3)绝对值等于本身的数有无数个,它们是0和正数(非负数).(4)①若│a│=2,则a= ±2 .②若│-a│=3,则a= ±3 .(5)绝对值不大于2的整数是0,±1,±2 .(6)根据绝对值的意义,思考:①如果=1,那么a 0;②如果=-1,那么a 0;③如果a0,那么-│a│= a .去绝对值符号,首先要判断绝对值里的正负情况,由此发展自身的合情推理能力.备选例题(20XX年四川资阳)绝对值为4的数是()A.±4 B.4 C.-4 D.2要注意到一个正数的绝对值等于它本身,负数的绝对值等于它的相反数.A四.讨论更正,合作探究1.学生自由更正,或写出不同解法;2.评讲本节课,我们学习认识了绝对值,要注意掌握以下两点:①一个数的绝对值是在数轴上表示这个数的点到原点的距离;②求一个数的绝对值必须先判断是正数还是负数.回答下列问题:(1)数轴上表示2和5的两点之间的距离是3 ,数轴上表示-2和-5 的两点之间的距离是 3 ,数轴上表示1和-3的两点之间的距离是4 ;五.课堂作业。
人教版数学七年级上册1.2.4《绝对值》教学设计一. 教材分析绝对值是初中数学中的一个重要概念,对于七年级学生来说是全新的内容。
本节课的内容主要包括绝对值的定义、性质以及绝对值在数轴上的表示方法。
教材通过简单的例子引导学生探究绝对值的性质,让学生在理解绝对值概念的基础上,能够运用绝对值性质解决问题。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于数轴、有理数等概念有一定的了解。
但绝对值作为一个新的概念,对学生来说仍然具有一定的抽象性。
因此,在教学过程中,教师需要关注学生的认知水平,通过生动形象的例子和直观的数轴演示,帮助学生理解和掌握绝对值的概念和性质。
三. 教学目标1.理解绝对值的定义,掌握绝对值的性质。
2.能够运用绝对值性质解决简单问题。
3.培养学生的逻辑思维能力和数学素养。
四. 教学重难点1.绝对值的定义和性质。
2.绝对值在数轴上的表示方法。
3.运用绝对值性质解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入绝对值的概念,让学生在具体的情境中感受绝对值的意义。
2.数形结合法:利用数轴直观地表示绝对值,帮助学生理解和掌握绝对值的性质。
3.引导发现法:教师引导学生发现绝对值的性质,培养学生的探究能力和思维品质。
4.归纳总结法:在教学过程中,教师引导学生总结绝对值的性质,加深学生对知识点的理解。
六. 教学准备1.教学课件:制作内容丰富、形式多样的课件,帮助学生理解和掌握绝对值的概念和性质。
2.数轴教具:准备数轴教具,方便学生直观地理解绝对值在数轴上的表示。
3.练习题:准备一定数量的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例引入绝对值的概念,如:“小明的家距离学校5公里,那么小明的家到学校的距离是多少?”引导学生思考并回答问题,引出绝对值的概念。
2.呈现(10分钟)介绍绝对值的定义,即一个数的绝对值是它到原点的距离。
通过数轴演示,让学生直观地理解绝对值的意义。
《1.2.4绝对值》绝对值是新人教版七年级上册第一章第二节第四课时的内容,教材之所以把它安排在此处,是基于以下两个方面的考虑:其一,学生在小学就已经具备距离、两个同类量之间比较的概念,进入初中以来又学习了有理数、数轴、相反数。
学生已经具有了接受绝对值的相关知识的基础。
其二,绝对值概念的掌握可以促进对数轴概念的理解,同时也是数的大小比较、数的运算的基础。
由此,我认为教材把绝对值安排在了此处是起到了承前启后、承上启下的作用。
【知识与能力目标】1、能根据一个数的绝对值表示“距离”,初步理解绝对值的概念,能求一个数的绝对值。
2、通过应用绝对值解决实际问题,体会绝对值的意义和作用。
【过程与方法目标】1、经历绝对值的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指点思维活动的能力。
2、培养学生分析解决问题的能力,逐步渗透数形结合的数学思想。
【情感态度价值观目标】1、通过解释绝对值的几何意义,渗透数形结合的思想。
2、体验运用直观知识解决数学问题的成功。
【教学重点】绝对值的概念。
【教学难点】绝对值的概念与两个负数的大小比较。
收集相关文本资料,相关图片,相关动画等碎片化资源。
第一课时一、学前准备问题:如下图两辆汽车从同一处O出发,分别向东、西方向行驶10 km,到达A,B两处,它们的行驶路线相同吗?它们的行驶路程相同吗?结论:它们的行驶路线不同,行驶路程相同。
二、合作探究、归纳1、由上问题可以知道,10到原点的距离是,—10到原点的距离也是到原点的距离等于10的数有个,它们的关系是一对 .这时我们就说10的绝对值...是10,—10的绝对值...也是10。
例如,—3.8的绝对值是3.8;17的绝对值是17;—613的绝对值是613。
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作∣a∣。
问题2:练习,讨论,归纳.1、2的绝对值是____,说明数轴上表示-2 的点到____的距离是____个长度单位。
广东省广州市白云区汇侨中学七年级数学上册《绝对值》教案
新人教版新人教版
今天我说课的内容是人教版七年级上册1.2.4绝对值内容。
首先,我对本节教材进行一些分析:
一、教材分析(说教材):
(一)、教材所处的地位和作用:
本节内容在全书及章节的地位是:《绝对值》是七年级数学教材上册1.2.4节内容。
在此之前,学生已学习了有理数,数轴与相反数等基础内容,这为过渡到本节的学习起着铺垫作用。
绝对值不仅可以使学生加深对有理数的认识,还为以后学习两个负数的比较大小以及有理数的运算作好必要的准备!所以说本讲内容在有理数这一节中,占据了一个承上启下的位置。
(二)、教育教学目标:
根据新课标的要求及七年级学生的认知水平我特制定的本节课的教学目标如下:
1、知识目标:
1)使学生了解绝对值的表示法,会计算有理数的绝对值。
2)能利用数形结合思想来理解绝对值的几何定义;理解绝对值非负的意义。
3)能利用分类讨论思想来理解绝对值的代数定义;理解字母a的任意性。
2、能力目标:
通过教学初步培养学生分析问题,解决实际问题,读图分析、收集处理信息、团结协作、语言表达的能力,以及通过师生双边活动,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力。
3、思想目标:
通过对绝对值的教学,让学生初步认识到数学知识来源于实践,引导学生从现实生活的经历与体验出发,激发学生对数学问题的兴趣,使学生了解数学知识的功能与价值,形成主动学习的态度。
(三):重点,难点以及确定的依据:
本课中绝对值的两种定义是重点,绝对值的代数定义是本课的难点,其理论依据是如何突破绝对值符号里字母a的任意性这一难点,由于学生年龄小,解决实际问题能力弱,对数学分类讨论思想理解难度大。
下面,为了讲清重难点,使学生能达到本节课设定的教学目标,我再从教法和学法上谈
谈:
二、教学策略(说教法)
(一)、教学手段:
由于七年级学生的理解能力和思维特征,他们往往需要依赖直观具体形象的图形的年龄特点,以及七年级学生刚刚学习有理数中的正负数,相反数,对正负数,相反数的概念理解不一定很深刻,许多学生容易造成知识遗忘,也为使课堂生动、有趣、高效,特将整节课以观察、思考、讨论贯穿于整个教学环节之中,采用启发式教学法和师生互动式教学模式,注意师生之间的情感交流,并教给学生“多观察、动脑想、大胆猜、勤钻研”的研讨式学习方法。
教学中积极利用多媒体课件,向学生提供更多的活动机会和空间,使学生在动脑、动手的过程中获得充足的体验和发展,从而培养学生的数形结合的思想。
为充分发挥学生的主体性和教师的主导辅助作用,教学过程中我设计了七个教学环节:
1 、温故知新,激发情趣
2 、得出定义,揭示内涵
3 、手脑并用,深入理解
4 、启发诱导,初步运用
5 、反馈矫正,注重参与
6 、归纳小结,强化思想
7 、布置作业,引导预习
(二)、教学方法及其理论依据:
坚持“以学生为主体,以教师为主导”的原则,即“以学生活动为主,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则,根据七年级学生的心理发展规律,联系实际安排教学内容。
采用学生参与程度高的学导式讨论教学法。
在学生看书、讨论基础上,在教师启发引导下,运用问题解决式教学法,师生交谈法、问答法、课堂讨论法,引导学生来理解教材中的理论知识。
在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现的机会,培养其自信心,激发其学习热情。
有效地开发各层次学生的潜在智能,力求使每个学生都能在原有的基础上得到发展。
同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践,学以致用,落实教学目标。
三:学情分析:(说学法)
1、知识掌握上,七年级学生刚刚学习有理数中的相反数,对相反数的概念理解不一定
很深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述。
2、学生学习本节课的知识障碍。
学生对绝对值两种概念,不易理解,容易出错,所以
教学中教师应予以简单明白、深入浅出的分析。
3、由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱
发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用多媒体课件,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
4、心理上,学生对数学课的重视与兴趣,老师应抓住这有利因素,引导学生认识到数
学课的科学性,学好数学有利于其他学科的学习以及学科知识的渗透性。
最后我来具体谈一谈这一堂课的教学过程:
四、教学程序设计
(一)、温故知新,激发情趣:
首先打出第一张幻灯片复习提问:什么叫做相反数?学生回答后让大家讨论:你能找出互为相反数的两个数在数轴上表示的点的共同特点吗?学生会积极回答第一个问题,但第二个问题学生可能难以准确回答,于是打出第二张幻灯片引导学生仔细观察,认真思考。
从而引出课题:绝对值。
结合实例使学生以轻松愉快的心情进入了本节课的学习,也使学生体会到数学来源于实践,同时对新知识的学习有了期待,为顺利完成教学任务作了思想上的准备。
(二)、得出定义,揭示内涵:
由于学生是第一次接触绝对值这样比较深奥的数学名词,所以我利用数轴在第三张幻灯片里直接给出绝对值的几何定义:一般地,数轴上表示数a的点与原点的距离叫做数a
的绝对值,(abso lute value)这个定义学生接受起来比较容易。
给出定义后引导学生讨论:“定义里的数a可以表示什么样的数?(通过教师的亲切的语言启发学生,以培养师生间的默契)通过讨论由师生共同得到:绝对值定义里的数a可以是正数,负数和0。
然后再回到第一张幻灯片里提出的问题:互为相反数的两个数的绝对值有什么关系?(三)、手脑并用,深入理解:
1、在上一环节与学生一起理解了绝对值的定义后,我再提出问题:如何由文字语言向数学符号语言的转化,即如何简单地标记绝对值,而不用汉字?在此不用提问学生,采取自问自答形式给出绝对值的记法。
2、为进一步强化概念,在对绝对值有了正确认识的基础上,请学生做教材的课堂练习第一题,写出一些数的绝对值。
可以请学生起立回答。
我就学生的回答情况给出评价,如“很好”“很规范”“老师相信你,你一定行”等语言来激励学生,以促进学生的发展;并再次强调绝对值的定义。
3、在完成第一题的练习后,我又给出一新的幻灯片,并提出问题:议一议一个数的绝对值与这个数有什么关系?启发学生举一些实际的例子来发现规律,并总结规律。
从而引出绝对值的第二个定义。
(四)、启发诱导,初步运用:
有了绝对值的两个定义后,我安排了10道不同层次的判断题让学生思考。
特别注重对于不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现的机会,培养其自信心,激发其学习热情。
(五)、反馈矫正,注重参与:
为巩固本节的教学重点我再次给出三道问题:
1)绝对值是7的数有几个?各是什么?有没有绝对值是-2的数?
2)绝对值是0的数有几个?各是什么?
3)绝对值小于3的整数一共有多少个?先让学生通过小组讨论得出结果,通过以上练习使学生在掌握知识的基础上达到灵活运用,形成一定的能力。
视学生的反馈情况以及剩余时间的多少我还预备了五道课堂升华的思考题,再次强化训练,启发学生的思维。
(六)、归纳小结,强化思想:
(七)、布置作业,引导预习:
1、全体学生必做课本习题1.2 3,4,5 ,10。
2、选作两道思考题:
(1)求绝对值不大于2的整数;(2)已知x是整数,且2.5<|x|<7,求x.
总之,在教学过程中,我始终注意发挥学生的主体作用,让学生通过自主、探究、合作学习来主动发现结论,实现师生互动,通过这样的教学实践取得了良好的教学效果,我认识到教师不仅要教给学生知识,更要培养学生良好的数学素养和学习习惯,让学生学会学习,才能使自己真正成为一名受学生欢迎的好教师。