一元一次方程导学案
- 格式:docx
- 大小:78.83 KB
- 文档页数:24
⼀元⼀次⽅程全章导学案第⼀课时 3.1.1⼀元⼀次⽅程(1)学习⽬标1. 了解什么是⽅程,什么事⼀元⼀次⽅程。
2. 体会字母表⽰数的优越性。
重点:知道什么是⽅程,⼀元⼀次⽅程难点:找等关系列⽅程使⽤说明及学法指导:先⾃学课本78—81页内容,独⽴完成学案,然后⼩组讨论交流。
⼀. 导学1. 书中问题⽤算术⽅法解决应怎样列算式:2.含X 的式⼦表⽰关于路程的数量:王家庄距青⼭___千⽶,王家庄距秀⽔___千⽶。
从王家庄到青⼭⾏车__⼩时,王家庄到秀⽔__⼩时。
3车从王家庄到青⼭的速度为___千⽶/⼩时,从王家庄到秀⽔的速度为___千⽶/⼩时。
4.车匀速⾏驶,可列⽅程为:5.什么是⽅程?6.什么是⼀元⼀次⽅程?⼆、合作探究1.判断下列式⼦是否是⽅程:(1)5x+3y-6x=7 (2)4x-7 (3)5x >3(4)6x 2+x-2=0 (5)1+2=3 (6) -x5-m=112.下列式⼦哪些是⼀元⼀次⽅程?不是⼀元⼀次⽅程的,要说明理由. (1)9x=2 (2)x+2y=0 (3)x 2-1=0(4) x=0 (5) x3=2 (6) ax=b(a 、b 是常数)3.(1)已知2x m+1 +3=7是⼀元⼀次⽅程,求m 的值;(2)已知关于x 的⽅程mx n-1+2=5是⼀元⼀次⽅程,则m=__,n=__.4、根据下列条件列出⽅程:(1)某数的5倍加上3,等于该数的7倍减去5;(2)某数的3倍减去9,等于该数的三分之⼆加6;(3)某数的8倍⽐该数的5倍⼤12;(4)某数的⼀半加上4,⽐该数的3倍⼩21.(5)某班有x名学⽣,要求平均每⼈展出4枚邮票,实际展出的邮票量⽐要求数多了15枚,问该班共展出多少枚邮票?三、学习⼩结四、作业习题3.1第1、5题。
第⼆课时 3.1.1 ⼀元⼀次⽅程(2)学习⽬标1.根据实际问题中的数量关系,设未知数,列出⼀元⼀次⽅程。
2.知道⽅程的解和解⽅程是两个不同的概念。
第四章第_1_节《一元一次方程》导学案课题等式与方程课型新授班级姓名主备人审核人复备人案序学习目标1、通过实例知道什么是方程,一元一次方程,方程的解.2、知道列方程是解决问题的重要方法,初步学会设未知数列方程.重难点重点:理解什么是一元一次方程难点:如何根据实际问题列方程.前置学习(课前独学20分或30分钟)1.温故知新给出的四个式子3+5X、4-11Y、X=0 、2+X=4 、7+8Y=20哪些是方程呢?什么是方程?请你举出两个例子.2、针对本节所学习教材内容,教师提出三个或以上可操作,可测的大问题:(1)预习课本120页到121页“议一议”的上面,开动脑筋直接填到课本上. (2)你得到的是方程吗?这些方程有什么共同的特点?3、跟踪练习:根据题意列方程(课本121页随堂练习1)。
课堂学习流程总结反思一、前置学习展示交流5-10分钟:(对学群学)(一)老师提出的问题:1、什么是一元一次方程?2、什么是方程的解?(二)学生总结,学生整理二、分层训练(20分钟)(一)双基过关:121页随堂练2,122页习题1.4的1题(二)能力提升小芬买15份礼物,共花900元,已知每份礼物内部有1包饼干及每支售价20元的棒棒糖2支,若每包饼干的售价为X元,列出的方程为?三、课堂小结(5分钟)◆总结所学,建构知识:四、达标反馈(10-15分钟)必做题:一、列等式表示(1)比a大5的数等于8.(2)b的三分之一等于9.(3)x的2倍与10的和等于18.(4)x的三分之一减的差等于6.(5)比a的3倍大5的数等于的4倍.选做题:一个两位数,十位数字是个位数字的2倍,将两个数字对调后得到的两位数比原来的数小36,求这个两位数.(列方程)时间____________________评价_______________________第四章第_1_节《一元一次方程》导学案课题等式的基本性质课型新授班级姓名主备人审核人复备人案序学习目标①了解等式的两条性质;②会用等式的性质解简单的(用等式的一条性质)一元一次方程;重难点重点:理解和应用等式的性质难点:应用等式的性质把简单的一元一次方程化成“x=a”.前置学习(课前独学20分或30分钟)1、温故知新用估算的方法我们可以求出简单的一元一次方程的解.你能用这种方法求出下列方程的解吗?(1)3x-5=22;(2) 0.28-0.13y=0.27y+1.2、针对本节所学习教材内容,教师提出三个或以上可操作,可测的大问题:(1)预习课本122页的天平实验,如果把天平看成等式,那么你能得到什么结论?(2)如果天平两边砝码的质量同时扩大相同的倍数或同时缩小为原来的几分之一,那么天平还保持平衡吗?如果把天平看成等式,那么你又得到什么结论?(3)请你帮小刚解开上节课的那个迷.3、跟踪练习:课本124页随堂练习第1题和第2题的(2)、(4).课堂学习流程总结反思一、前置学习展示交流5-10分钟:(对学群学)(一)老师提出的问题:1、等式的性质1是什么?2、等式的性质2是什么?(二))学生总结,学生整理)二、分层训练(20分钟)(一)双基过关:解方程(1)X+2=5; (2)3=X-5 (3)-3X=15(4)-n/3-2=10(二)能力提升小颖碰到这样一道题:2X=5X,她在方程的两边都除以X,竟然得到2=5.你能说出她错在哪里吗?三、课堂小结(5分钟)◆总结所学,建构知识:四、达标反馈(10-15分钟)必做题:利用等式的性质解下列方程(1)x-5=6 (2)0.3x=45(3)-y=0.6 (4)12 3y=-选做题:小涵的妈妈从商店买回一条裤子,小涵问妈妈:“这条裤子需要多少钱?”妈妈说:“按标价的八折是36元.”你知道标价是多少元吗?时间____________________评价_______________________第四章第_2_节《一元一次方程》导学案课题解一元一次方程1课型新授班级姓名主备人审核人复备人案序学习目标1、掌握移项方法2、学会解“ax+b=cx+d”类型的一元一次方程,体会解法中蕴涵的化归思想.重难点重点:掌握移项方法难点:学会解“ax+b=cx+d”类型的一元一次方程前置学习(课前独学20分或30分钟)1、温故知新(1)等式的基本性质是什么?(2)用等式的基本性质解方程:5X-2=82、针对本节所学习教材内容,教师提出三个或以上可操作,可测的大问题:(1)利用等式的基本性质得到5X=8+2,与原方程5X-2=8比较,你发现了什么?(2)预习课本126页例1上面的部分,说明什么是移项,移项有什么作用?移项需要注意什么?(3)运用你学到的移项知识再解方程:5X-2=83、跟踪练习:课本127页随堂练习.课堂学习流程总结反思一、前置学习展示交流5-10分钟:(对学群学)二、巩固训练(20分钟)解方程:(1)2X+6=1 (2)3X+3=2X+7(一)双基过关127页习题4.3第1题(二)能力提升把一些图书分给某班学生阅读,如果每人3本,则剩余20本;如果每人4本,则还缺25本,这个班有多少学生?三、课堂小结(5分钟)◆总结所学,建构知识:四、达标反馈(10-15分钟)必做题:解方程:3x+5=4x+1 9-3y=5y+5127页习题4.3第2题选做题:把100写成两个数的和,使第一个数加3,与第二个数减3的结果相等.这两个数分别是多少?时间____________________评价_______________________第四章第_2_节《一元一次方程》导学案课题解一元一次方程2课型新授班级姓名主备人审核人复备人案序学习目标1会解带括号的一元一次方程2能根据具体问题中的数量关系列方程,并根据具体问题的实际意义,检验结果是否合理..重难点重点:会解带括号的一元一次方程.难点:能根据具体问题中的数量关系列方程.前置学习(课前独学20分或30分钟)1、温故知新解方程:3x+5=4x+1 9-3y=5y+5移项需要注意什么?2、针对本节所学习教材内容,教师提出三个或以上可操作,可测的大问题:(1)课本128页上的问题列出方程:4(X+0.5)+X=20-3对吗?为什么?你还能列出不同的方程吗?(2)怎样解方程:4(X+0.5)+X=20-3(4)预习例3、例4.3、跟踪练习:课本129页随堂练习课堂学习流程总结反思一、前置学习展示交流5-10分钟:(对学群学)二、巩固训练(20分钟)课本129页随堂练习(一)双基过关课本129习题4.4的第1、2题(二)能力提升一个两位数,十位数字是个位数字的4倍,将两个数字对调后得到的两位数比原来的数小54,求这个两位数.三、课堂小结(5分钟)◆总结所学,建构知识:四、达标反馈(10-15分钟)必做题:解方程(1)5a+(2-4a)=0 (2)7x+2(3x-3)=20 (3)3(2X+1)=12选做题:爷爷与孙子下棋,爷爷赢1盘记1分,孙子赢1盘记3分,下了8盘后两人得分相等.他们各赢了多少盘?时间____________________评价_______________________第四章第_2_节《一元一次方程》导学案课题解一元一次方程3课型新授班级姓名主备人审核人复备人案序学习目标1、会用去分母的方法解一元一次方程.2、通过去分母解方程,了解数学中的“化归”思想.得出解一元一次方程的一般步骤.重难点重点:会用去分母的方法解一元一次方程. 难点:总结解一元一次方程的一般步骤.前置学习(课前独学20分或30分钟)1、温故知新. 解方程:(1)3(X-7)-5(4-X)=15 (2)-2(3X-6)=12-(X+3)2、针对本节所学习教材内容,教师提出三个或以上可操作,可测的大问题:(1)预习课本130页例5、例6比较两种方法有什么区别?哪一种更简单,为什么?去分母时应该注意什么?(2)用你所学的方法解方程:xx24)142(71-=+(3)解一元一次方程有哪些步骤?3、跟踪练习:课本131页随堂练习(1)、(4)(6)课堂学习流程总结反思一、前置学习展示交流5-10分钟:(对学群学) 二、巩固训练(20分钟) 解方程621x --31+x =1-412+x(一)双基过关课本131页随堂练习(2)、(3)(5)(二)能力提升1、如果三个连续整数之和是33,那么这三个整数各是多少?三、课堂小结(5分钟) ◆ 总结所学,建构知识:四、达标反馈(10-15分钟) 必做题:(1)67313yy +=+ (2) 32116110412x x x --=+++选做题:1、如果三个连续奇数之和是21,那么其中最小的奇数是多少?时间____________________评价_______________________第四章第_2节《一元一次方程》导学案课题解一元一次方程4课型班级姓名主备人审核人复备人案序学习目标1、会解带中括号的方程和分子分母带小数的方程。
一元一次方程导学案【学习目标】1、知道什么是方程,会判断一个数学式子是算式还是方程;2、能根据简单的实际问题列一元一次方程,并了解其步骤;3、会判断方程的解。
【学习重点】一元一次方程的含义。
【学习难点】根据简单的实际问题列一元一次方程。
课前自主学习(查阅教材和相关资料,完成下列内容)考点一.方程的概念1、含有的等式叫方程。
考点二.一元一次方程的概念1.只含有个未知数,未知数的次数都是次的方程,叫做一元一次方程。
考点三.列方程遇到实际问题时,要先设字母表示 ,然后根据问题中的 ,最后写出含有未知数的 ,就能列出方程.归纳:列方程解实际问题的步骤:第一步: ,第二步: ,第三步: .考点四.解方程及方程的解的含义解方程就是求出使方程中等号左右两边的的值,这个值就是方程的 .【重要思想】1.类比思想:算式与方程的对比2.转化思想:把实际问题转化为数学问题,特别是方程问题.学练提升问题1:判断下列数学式子X+1, 0.5x-x, 2x-3=7, 3x+2=2x-5 , 2x2+3x-8=0,x+2y=7.是方程有 ,是一元一次方程有【规律总结】【同步测控】1.自己编造两个方程: , .2.自己编造两个一元一次方程: , .问题2.根据问题列方程:1.用一根长24cm的铁丝未成一个正方形,正方形的变长是多少?2.一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间他到规定的检修时间2450小时?【同步测控】根据下列问题,设未知数,列出方程1.环形跑道一周长400m,沿跑道跑多少周,可以跑3000m?2.甲种铅笔每只0.3元,乙种铅笔铅笔每只0.6元,用9元钱买了两种铅笔共20支,两种铅笔各买了多少支?【规律总结】【同步测控】1.一个梯形的下底比上底多2cm,高是5cm,面积是40cm2,求上底.2.x的2倍于10的和等于18;3.比b的一半小7的数等于a与b的和;4.把1400元奖学金按照两种奖项将给22名学生,其中一等奖每人200元,二等奖每人50元,获得一等奖的学生多少人?问题三、判断方程的根1.判断下列各数X=1,x=2,x=-1,x=0.5.那个是方程2x+3=5x-3的解?2.当x= 时,方程3x-5=1 两边相等?等式性质导学案【学习目标】1、了解等式的两条基本性质,并会用数学式子表示;2、能利用等式的基本性质解简单的方程; 【学习重点】理解等式的两条基本性质。
§6.1 从实际问题到方程科目:七年级数学备课人:王淑轶【教学目标】1.能判断一个数是不是某个方程的解,掌握用尝试检验方法求方程的解的思想方法;2.会列一元一次方程解决一些简单的应用题;3.初步认识方程与现实问题的联系,感受数学的应用价值,激发数学学习兴趣。
【教学重点】能判断一个数是不是某个方程的解,会列一元一次方程解决一些简单的应用题。
【教学难点】会列一元一次方程解决一些简单的应用题。
【教学过程】一、复习回顾,导入新课1.列方程解下面的应用题:一本笔记本1.2元。
小红有6元钱,那么她最多能买到多少本这样的笔记本呢?解:设小红能买到x本笔记本,根据题意得:1.2x=6解得:x=5答:小红能买到5本这样的笔记本。
2.结合上题的解答,说说列方程解应用题的一般步骤是什么?有哪些应当注意的问题?二、自主探索1.阅读课本1页“第6章导图”内容,试分别用算术法和方程法解答:一队师生共328人,乘车外出旅游,已有校车可乘64人,如果租用客车,每辆可乘44人,那么还要租多少辆客车?算术法:方程法:(328-64)÷44 解:设需要租用x辆客车,根据题意得:=264÷44 44x+64=328=6(辆) 解得:x=6答:还要租用6辆客车。
答:还要租用6辆客车。
2.阅读课本2页~3页“问题2”内容,完成下列问题:(1)小敏同学得出答案使用的是什么方法?他的答案正确吗?小敏同学是用“尝试、检验”的方法找出方程的解的。
他的答案是正确的。
(2)你能列方程解答张老师的这道题吗?试一试。
三、合作交流1.你用方程法得到的答案和小敏的答案一样吗?你有什么发现?2.讨论:如果未知数可能取到的数值较多,或者不一定是整数,该从何试起?如果试验根本无法入手又该怎么办呢?四、实践应用1.课本3页“习题6.1”第1~3题。
2.补充练习:(1)检验下列方程后面括号内所列各数是否为相应方程的解。
(a)x-3(x+2)=6+x (x=3,x=-4)(b)2y(y-1)=3 (y=-1,y=32) (c)5(x-1)(x-2)=0 (x=0,x=1,x=2)(2)根据题意,列出相应的方程,不必求解。
3.1 从算式到方程《3.1.1 一元一次方程》教案【教学目标】1.通过现实生活中的例子,体会方程的意义,领悟一元一次方程的概念,并会进行简单的辨别;(重点)2.初步学会找实际问题中的等量关系,设出未知数,列出方程.(重点,难点)【教学过程】一、情境导入问题:一辆客车和一辆卡车同时从A地出发沿同一公路同一方向行驶,客车的行驶速度是70km/h,卡车的行驶速度是60km/h,客车比卡车早1h经过B地,A,B两地间的路程是多少?1.若用算术方法解决应怎样列算式?2.如果设A,B两地相距x km,那么客车从A地到B地的行驶时间为________,货车从A地到B地的行驶时间为________.3.客车与货车行驶时间的关系是____________.4.根据上述关系,可列方程为____________.5.对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?二、合作探究探究点一:方程的概念判断下列各式是不是方程;若不是,请说明理由.(1)4×5=3×7-1;(2)2x+5y=3;(3)9-4x>0;(4)x-32=13;(5)2x+3.解析:根据方程的定义对各小题进行逐一分析即可.解:(1)不是,因为不含有未知数;(2)是方程;(3)不是,因为不是等式;(4)是方程;(5)不是,因为不是等式.方法总结:本题考查的是方程的概念,方程是含有未知数的等式,在这一概念中要抓住方程定义的两个要点①等式;②含有未知数.探究点二:一元一次方程的概念【类型一】 一元一次方程的辨别下列方程中是一元一次方程的有( )A .x +3=y +2B .1-3(1-2x )=-2(5-3x )C .x -1=1xD.y3-2=2y -7 解析:A.含有两个未知数,不是一元一次方程,错误;B.化简后含有未知数项可以消去,不是方程,错误;C.分母中含有字母,不是一元一次方程,错误;D.符合一元一次方程的定义,正确.故选D.方法总结:判断一元一次方程需满足三个条件:(1)只含有一个未知数;(2)未知数的次数是1;(3)是整式方程.【类型二】 利用一元一次方程的概念求字母次数的值方程(m +1)x |m |+1=0是关于x 的一元一次方程,则( )A .m =±1B .m =1C .m =-1D .m ≠-1解析:由一元一次方程的概念,一元一次方程必须满足未知数的次数为1且系数不等于0,所以⎩⎨⎧|m |=1m +1≠0,解得m =1.故选B.方法总结:解决此类问题要明确:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1且系数不为0,则这个方程是一元一次方程.据此可求方程中相关字母的值.探究点三:方程的解下列方程中,解为x =2的方程是( )A .3x -2=3B .-x +6=2xC .4-2(x -1)=1 D.12x +1=0 解析:A.当x =2时,左边=3×2-2=4≠右边,错误;B.当x =2时,左边=-2+6=4,右边=2×2=4,左边=右边,即x =2是该方程的解,正确;C.当x =2时,左边=4-2×(2-1)=2≠右边,错误;D.当x =2时,左边=12×2+1=2≠右边,错误.故选B.方法总结:检验一个数是否是方程的解,就是要看它能不能使方程的左、右两边相等.探究点四:列方程某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6·1”儿童节举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x 支,则依题意可列得的一元一次方程为( )A .1.2×0.8x +2×0.9(60+x )=87B .1.2×0.8x +2×0.9(60-x )=87C .2×0.9x +1.2×0.8(60+x )=87D .2×0.9x +1.2×0.8(60-x )=87解析:设铅笔卖出x 支,根据“铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元”,得出等量关系:x 支铅笔的售价+(60-x )支圆珠笔的售价=87,据此列出方程为1.2×0.8x +2×0.9(60-x )=87.故选B.方法总结:解题的关键是正确理解题意,设出未知数,找到题目当中的等量关系,列方程.三、板书设计1.方程的定义2.一元一次方程:只含有一个未知数(元),未知数的次数都是1的整式方程叫做一元一次方程.3.列方程解决实际问题的步骤:①设未知数(用字母)②找等量关系(表示出相关的量)③列出方程【教学反思】本课首先用实际问题引入课题,然后运用算术的方法给出解答.在各环节的安排上都设计成一个个的问题,使学生能围绕问题展开思考、讨论.通过本节的教学让学生体会到从算式到方程是数学的进步,渗透化未知为已知的重要数学思想.使学生体会到数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决;从而激发学生学习数学的热情.第三章一元一次方程3.1从算式到方程《3.1.1一元一次方程》同步练习能力提升1.下列说法中错误的是( )A.所有的方程都含有未知数B.x=-1是方程x+2=3的解C.某教科书5元一本,买x本共花去5x元D.比x的一半大-1的数是5,则可列方程x-1=52.某市电力部门呼吁广大市民做到节约用电,倡导低碳生活.为响应号召,某单位举行烛光晚餐,设座位有x排,每排坐30人,则有8人无座位;每排坐31人,则空出26个座位.下列方程正确的是( )A.30x-8=31x+26B.30x+8=31x+26C.30x-8=31x-26D.30x+8=31x-263.若x=2是关于x的方程2x+3m-1=0的解,则m的值为( )A.-1B.0C.1D.4.已知方程(a-2)x|a|-1=1是关于x的一元一次方程,则a= .5.一个一元一次方程的解为2,请写出满足条件的一个一元一次方程.6.某地团组织集中开展“佩戴团徽送温暖,争做明义献爱心”的活动,王老师利用寒假带领团员乘车到农村开展“送字典下乡”活动.每张车票原价是50元,甲车车主说:“乘我的车可以8折(即原价的80%)优惠.”乙车车主说:“乘我的车可以9折(即原价的90%)优惠,老师不用买票.”王老师心里计算了一下,觉得无论坐谁的车,花费都一样.请问王老师一共带了多少名学生?如果设一共带了x名学生,那么可列方程为.7.小明在玩“QQ农场”游戏时,观察好友“咖啡思语”和“雨薇”的信息发现:“咖啡思语”的金币比“雨薇”的金币的4倍还多3个.“咖啡思语”的金币数如图所示,则“雨薇”有多少个金币?如果设“雨薇”有x个金币,那么可列方程为.8.由于电子技术的飞速发展,计算机的成本不断降低,若每隔3年计算机的价格降低,现价为2 400元的某型号计算机,3年前的价格为多少元?下面提供两种答案:3 500元,3 600元.请你列出方程再检验.★9.售货员:“快来买啦,特价鸡蛋,原价每箱14元,现价每箱12元,每箱有鸡蛋30个.”顾客:“我在店里买了一些这种特价鸡蛋,花的钱比按原价买同样多鸡蛋花的钱的2倍少96元.”请你求出顾客在店里买了多少箱这种特价鸡蛋.(列出方程即可)★10.已知关于x的方程ax+b=c的解为x=1,求|c-a-b-1|的值.创新应用★11.某校七年级四个班为贫困地区捐款:七(1)班捐的钱数是四个班捐款总和的;七(2)班捐的钱数是四个班捐款总和的;七(3)班捐的钱数是四个班捐款总和的;七(4)班捐了159元,求这四个班捐款的总和.若设这四个班捐款的总和为x元,你能列出方程吗?并检验x=636是不是所列方程的解.★12.已知关于x的方程(m-3)x m+4+18=0是一元一次方程.试求:(1)m的值;(2)2(3m+2)-3(4m-1)的值.参考答案能力提升1.B2.D 参加烛光晚餐的人数为(30x+8)人或(31x-26)人,根据参加烛光晚餐的人数不变,可得方程30x+8=31x-26.3.A 把x=2代入2x+3m-1=0得2×2+3m-1=0,经验证m=-1.4.-2 由题意,得|a|-1=1,所以|a|=2,所以a=2或a=-2.又因为a-2≠0,所以a≠2,所以a=-2.5.x-2=0(答案不唯一)6.(x+1)×50×80%=90%×50x此题要注意坐甲车的老师买票,坐乙车的老师不用买票,两车买票的人数不一样.7.4x+3=99 0878.解:设3年前价格为x元,根据题意,得x=2400,经检验知,x=3600是方程的解.9.解:设顾客买了x箱鸡蛋,由题意,得12x=2×14x-96.10.解:当x=1时,有a+b=c,所以|c-a-b-1|=|0-1|=1.创新应用11.解:根据题意,列方程得x+x+x+159=x.将x=636代入方程的两边,左边=×636+×636+×636+159=636,右边=636,所以左边=右边.所以x=636是所列方程的解.12.解:(1)由题意知m+4=1,且m-3≠0,所以m=-3.(2)原式=6m+4-12m+3=-6m+7.当m=-3时,原式=-6×(-3)+7=25.第三章 一元一次方程3.1 从算式到方程《3.1.1 一元一次方程》导学案【学习目标】:1.通过算术与方程方法的使用与比较,体验用方程解 决某些问题的优越性, 提高解决实际问题的能力.2.掌握方程、一元一次方程的定义以及解的概念,学会判断某个数值是不是 一元一次方程的解.3.初步学会如何寻找问题中的等量关系,并列出方程.【重点】:掌握一元一次方程的概念,能够根据具体问题中的数量关系列一元一次方程.【难点】:找出具体问题中的等量关系,列一元一次方程.【自主学习】一、知识链接回忆小学学过的有关方程的知识回答下列问题:1.含有 的 叫做方程.2.判断下列各式哪些是方程:(1)5x +3y -6x =37( ) (2)4x -7( )(3)5x ≥ 3( ) (4)6x ²+x -2=0( )(5)1+2=3( ) (6)x5-m =11( ) 二、新知预习1.根据要求列出式子.(1)x 的2倍与3的差是6;(2)正方形的周长为24cm,请写出它的边长a与周长的关系式.2.观察上面所列的两个式子,议一议它们有什么共同特征.【课堂探究】一、要点探究探究点1:方程及一元一次方程的概念合作探究一辆快车和一辆慢车同时从A地出发沿同一公路同方向行驶,快车的行驶速度是70 km/h,慢车的行驶速度是60 km/h,快车比慢车早1 h经过B地,A,B 两地间的路程是多少?(1)上述问题中涉及到了哪些量?①路程 ______________;②速度 ________________; 快车每小时比慢车多走_____km.③时间 ________________. 相同的时间,快车比慢车多走了_____km.快车走了______h,故AB之间的路程为_______km.算式:____________________________.(2)如果将AB之间的路程用x表示,用含x的式子表示下列时间关系:快车行完AB全程所用时间为 h;慢车行完AB全程所用时间为 h;两车所用的时间关系为:快车比慢车早到1h即:()-()=1把文字用符号替换为 .(3)如果用y表示客车行完AB的总时间,你能从快车与慢车的路程关系中找到等量关系,从而列出方程吗?(4)如果用z 表示慢车行完AB 的总时间,你能找到等量关系列出方程吗?(5)刚才列的方程都有什么特点?①每个方程中,各含有_______个未知数;②每个方程中未知数的次数均为_____;③每个方程中等号两边的式子都是________.要点归纳:只含有 个未知数(元),未知数的次数都是 ,等号两边都是 ,这样的方程叫做一元一次方程. 典例精析例1 若关于x 的方程2x |n |-1-9=0是一元一次方程,则n 的值为 .【变式题】加了限制条件,需进行取舍方程 (m +1) x |m |+1= 0是关于x 的一元一次方程,则m = .易错提醒:一元一次方程中求字母的值,需谨记两个条件:未知数的次数为__________,系数不为________.针对训练下列哪些是一元一次方程?(1)2x +1; (2)2m +15=3;(3)3x -5=5x +4; (4)x 2 +2x -6=0;(5)-3x +1.8=3y ; (6)3a +9>15;(7)61 x =1.探究点2:列方程例2 某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6·1”儿童节举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.求卖出铅笔的支数.方法归纳:列出方程的一般步骤:1.设未知数;2.找等量关系;3.列方程.针对训练:1.两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后,快车以每小时75km的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇?设慢车开出a小时后与快车相遇,可列方程为 ;2.六一中队的植树小队去植树,如果每人植树5棵,还剩下14棵树苗,如果每人植树7棵,就少6棵树苗.设这个小队有x人,可列方程为 .探究点3:方程的解思考:对于方程4x =24,容易知道x=6可以使等式成立,对于方程170+15x=245,你知道x等于什么时,等式成立吗?我们来试一试.例3 x=1000和x=2000中哪一个是方程 0.52x-(1-0.52)x =80的解?方法总结:判断一个数值是不是方程的解的步骤:1.将数值代入方程左边进行计算;2.将数值代入方程右边进行计算;3.若左边=右边,则是方程的解,反之,则不是.针对训练检验x = 3是不是方程 2x-3 = 5x-15的解.5.已知方程 (m-2) x|m|-1+3 = m-5是关于x的一元一次方程,求m的值,并写出其方程.。
一元一次方程复习导学案一、课前诊断 实践1:判断下列各等式哪些是一元一次方程,哪些不是一元一次方程,并说明理由。
(1)3-2=1( ) (2)3x+y=2y+x ( ) (3)2x-4=0( ) (4)0.5ab ( ) 理由:_____________ 理由:___________ 理由:____________ 理由:__________举一反三1:是关于x 的一元一次方程, 求k 的值。
解:∵原方程为一元一次方程, 又∵k-1≠____∴ =_______ ∴k ≠____ ∴∴k=____ 变式1: 是关于x 的一元一次方程, 则k =____。
分析:次数_____________系数___________________变式2:是关于x 的一元一次方程, 则k =____。
分析:次数_____________系数____________________变式3:是关于x 的一元一次方程, 则k =____。
分析:次数____________系数____________________ 解决类似问题需要注意什么?实践2:解:去分母________________ 去括号_______________ 移项_________________ 合并同类项_____________ 系数化一__________ 举一反三2:实践3:等式的性质 下列判断错误的是( )A .若b a =,则33-=-bc acB .若b a =,则1122+=+c bc a C .若2=x ,则x x 22= D .若bx ax =,则b a = 二、课堂小检测 (1)选择题1.在方程23=-y x ,021=-+xx ,2121=x ,0322=--x x 中一元一次方程的个数为( )A .1个B .2个C .3个D .4个2.解方程3112-=-x x 时,去分母正确的是( ) A .2233-=-x x B .2263-=-x x C .1263-=-x x D .1233-=-x x 3.方程x x -=-22的解是( )A .1=xB .1-=xC .2=xD .0=x 4.下列两个方程的解相同的是( )A .方程635=+x 与方程42=xB .方程13+=x x 与方程142-=x xC .方程021=+x 与方程021=+x D .方程5)25(36=--x x 与3156=-x x 5、下列等式变形正确的是( ) A.如果ab s =,那么asb =; B.如果x-6=6,那么x=3 C.如果x -3=y -3,那么x -y =0; D.如果m x =m y ,那么x =y6.足球比赛的记分规则是:胜一场得3分,平一场得1分,负一场得0分,若一个队打了14场比赛得17分,其中负了5场,那么这个队胜了( )场。
人教版七年级上册数学导学案第三章一元一次方程3.1.1一元一次方程(1)学习目标1.了解什么是方程,什么事一元一次方程。
2.体会字母表示数的优越性。
重点:知道什么是方程,一元一次方程难点:找等关系列方程使用说明及学法指导:先自学课本78—80页内容,独立完成学案,然后小组讨论交流。
一. 导学1.书中问题用算术方法解决应怎样列算式:2.含X的式子表示关于路程的数量:王家庄距青山___千米,王家庄距秀水___千米。
从王家庄到青山行车__小时,王家庄到秀水__小时。
3车从王家庄到青山的速度为___千米/小时,从王家庄到秀水的速度为___千米/小时。
4.车匀速行驶,可列方程为:5.什么是方程?6.什么是一元一次方程?二、合作探究1.判断下列式子是否是方程:(1)5x+3y-6x=7 (2)4x-7 (3)5x >3(4)6x 2+x-2=0 (5)1+2=3 (6) -x5-m=11 2.下列式子哪些是一元一次方程?不是一元一次方程的,要说明理由.(1)9x=2 (2)x+2y=0 (3)x 2-1=0(4) x=0 (5)x3=2 (6) ax=b(a 、b 是常数)3.(1)已知2x m+1 +3=7是一元一次方程,求m 的值;(2)已知关于x 的方程mx n-1+2=5是一元一次方程,则m=__,n=__.4、根据下列条件列出方程:(1)某数的5倍加上3,等于该数的7倍减去5;(2)某数的3倍减去9,等于该数的三分之二加6;(3)某数的8倍比该数的5倍大12;(4)某数的一半加上4,比该数的3倍小21.(5)某班有x名学生,要求平均每人展出4枚邮票,实际展出的邮票量比要求数多了15枚,问该班共展出多少枚邮票?三、学习小结四、作业习题3.1第1、5题。
3.1.1 一元一次方程(2)学习目标1.根据实际问题中的数量关系,设未知数,列出一元一次方程。
2.知道方程的解和解方程是两个不同的概念。
重点:根据实际问题列一元一次方程难点:找相等关系列方程。
3.1.1 《一元一次方程》导学案教学目标:1、学会如何寻找问题中的相等关系,列出方程,了解方程的概念;2、培养学生获取信息、分析问题、处理问题的能力;3、通过实际问题,感受数学与生活的联系。
重点:了解一元一次方程及其相关概念。
难点:寻找问题中的相等关系,列方程。
一、知识回忆路程、速度、时间之间有什么关系二、情景创设问题:汽车匀速行驶途经王家庄、青山、秀水三地的时间如图表所示。
翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米。
王家庄到翠湖的路程有多远?三、自主探究问题1、利用以上信息你能回答以下问题吗?① 青山到翠湖的路程是千米;翠湖到秀水的 路程是 千米;青山到秀水的路程是 千米。
②汽车从青山到秀水的行驶时间是小时,③汽车从王家庄到青山的行驶时间是小时,④汽车从王家庄到秀水的行驶时间是小时,列算式是问题2、上面我们利用的是算术方法,小学我们曾经学过用方程解决问题的实例,那么本题能否用方程的知识来解决呢?请完成下面的填空:如果设王家庄到翠湖的路程是x千米①王家庄到青山的路程是千米;②王家庄到秀水的路程是千米③汽车从王家庄到青山的行驶速度是千米/小时;④汽车从王家庄到秀水的行驶速度是千米/小时;⑤汽车从青山到秀水的行驶速度是千米/小时⑥根据题意你找出的等量关系是:⑦根据⑥你列出的等式是:探究收获由此可知:要先设字母表示未知数,然后根据问题中的,写出含有的等式─方程。
四、尝试应用1.根据下列问题,设未知数并列出方程。
(1)用一根长24cm的铁丝围成一个正方形,正方形的边长是多(2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时。
(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?解:设这个学校的学生数为x ,那么女生数为 ,男生数为 列方程为交流归纳:以上各方程有什么共同特点?收获 总结:什么是一元一次方程?跟踪练习 (相信自己)下列各式哪些是方程,哪些是一元一次方程:(1) 2x - 1 (2) x +y = 1(3) m -1≥0 (4) x +3=a(5) 4x -3=x (x +1) (6) x =0(7)2、由下列问题中的条件,分别列出方程:(1)一名射击运动员,两次射击的平均成绩为6.5环,其中第二次的成绩为9环,问第一次射击的成绩是多少环?(2)一件衣服按8折销售的售价为72元,这件衣服的原价是多少元?(3)一个梯形的下底比上底多2cm ,高是5cm ,面积是40cm 2,求上底x1 2 3 = + 2归纳列方程解决实际问题的步骤:(一设、二找、三列)阅读教材P81倒数1、2自然段解方程——方程的解思考:x=1000和x=2000中哪一个是方程0.52x-(1-0.52)x=80的解?五、拓展提高1.填空(1)已知关于X的方程3X-2m=4的解是2则m=。
《一元一次方程》导学案课型:(新授)课时:【总第1课时】设计人:教学时间:20 年10月23日【学习目标】1、知识技能:初步学会如何寻找问题中的相等关系,列出方程,了解方程、一元一次方程、方程的解的概念;培养获取信息,分析问题,处理问题的能力。
2、过程与方法:经历将实际问题数学化的一般过程,通过对列算式与列方程的比较,分别归纳出它们的特点,从而感受到从算术方法到代数方法是数学的进步;发展归纳概括能力,通过表示数量关系、列方程解决问题、总结特征的活动,是学生初步感知与人合作交流的思维过程;3、情感态度:通过实际问题解决,体验从算术方法到代数方法是一种进步,进一步渗透数学建模思想;通过“实际问题-设未知数-建立模型”的具体操作,发展由实际问题抽象出方程模型的能力.【学习重点】初步掌握“根据具体问题中的数量关系列出方程”的一般步骤;掌握方程与一元一次方程的概念;会判断具体方程是否是一元一次方程。
【学习难点】找出题中表示数量关系的语句,并分析列方程。
【头脑风暴】你知道数学中“元”的含义吗?能给大家解释“一元”“二元”“多元”的含义吗?(一)换种方式表达1、你能用“数学符号语言”将“数学文字语言”进行翻译吗?(1)比a大5的数等于8;(2)b的三分之一等于9;(3)X的2倍与10的和是18;(4)比y的3倍大5的数等于y的4倍;(二)换种方法解决2、一辆客车和一辆卡车同时从汉中开往神河镇,客车的速度是80km/h,卡车的速度是70km/h,客车比卡车早1h到达神河镇。
你能算出从汉中到神河镇的路程是多少吗?(时间=路程÷速度)(1)你能用算式解决吗?(2)你能设未知数来解决吗?客车从汉中地到神河镇地的行驶时间为____h,卡车从汉中地到神河镇地的行驶时间为_____h 因为客车比卡车早1h经过神河镇地,所以___ 比____小1.(3)通过以上两种方法对问题的解决,你认为那种方法分析起来更简便?这种方法的优势在哪里?方法:优点:(三)我探索,我发现3、(1)请将以上五个等式依次写下来,观察它们的有什么共同特征?(注:用等号连接的式子叫等式)= 有个未知数,未知数的最高次数是;= 有个未知数,未知数的最高次数是;= 有个未知数,未知数的最高次数是;= 有个未知数,未知数的最高次数是;= 有个未知数,未知数的最高次数是;(2)由此你能给“方程”定义吗?【知识拓展1】:中国人对方程的研究有悠久历史,著名的中国古代数学著作《九章算术》大约成书于公元前200~前50年,其中有专门以”方程“命名的一章,其中以一些实际应用问题为例,给出了列由几个方程组的解题方法。
第五章《一元一次方程》导学提纲课时课题:第五章《一元一次方程》课型:预习课教学目标:1.了解方程、方程的解、一元一次方程及其相关概念,理解等式的基本性质.2.会解一元一次方程,掌握一元一次方程解法的一般步骤,并能体验解方程中蕴含的转化思想.3.能以一元一次方程为工具解决一些简单的实际问题,包括列方程、求解方程、根据问题的实际意义检验所得结果是否合理.教学重点、难点:重点:掌握一元一次方程的解法,会列一元一次方程解决简单的实际问题.难点:寻找相等关系,列出一元一次方程解决实际问题教学过程:二、专题研究第一关、一元一次方程的概念关1、知识回顾(1)方程的有关概念:①____________________________________________叫做方程.②____________________________________________叫做一元一次方程.③____________________________________________叫做方程的解.(2)等式的基本性质:①等式两边同时加上或减去_____________,所得的结果仍是等式.②等式两边同时乘以或除以_____________,所得的结果仍是等式.2、典题剖析例1已知下列方程:①32xx-=;②0.3x =1;③512xx=-;④x2-4x=3;⑤x=0;⑥x+2y=0,其中一元一次方程的个数是().A.2个B.3个C.4个D.5个分析:方程①中的分母中含未知数x,所以它不是一元一次方程,方程④中未知数x的最高次数是2,而不是1,所以它不是一元一次方程;方程⑥中含有两个未知数,所以也不是一元一次方程.解:方程②、③、⑤是一元一次方程,故选B.例2用适当的数或代数式填空,使所得的结果仍是等式,并说明变形的依据:(1)若3x+5=8,则3x=8-( );理由__________.(2)若-2a=12,则a=( );理由__________.分析:(1)方程的左边减去5,根据方程的变形1,方程的右边也必须减去5;(2)方程的左边除以-2,根据方程的变形2,方程的右边也必须除以-2.解:(1)填5,根据方程的变形1;(2)填14-,根据方程的变形2.跟踪练习(选做):1.根据下面所给的条件,能列出方程的是().A.一个数的13是6B.a与1的差的14C.甲数的2倍与乙数的5倍D.a与b的和的60%2.下面的方程变形,结果错误的是().A.如果x=y,那么x-3=y-3 B.如果x=-y,那么-3x=3yC.如果4x=4y+1,那么x=y+1 D.如果0.5x=2,那么x=4 3.如果x=2是方程112x a+=-的解,那么a的值是___________.羊族们顺利地通过“概念关”后,灰太狼气急败坏,迫不及待地推出了第二关.第二关、一元一次方程的解法关1.知识回顾(1)移项:将方程中的某些项_______后,从方程的一边移到________的变形叫做移项.(2)解一元一次方程的一般步骤:①去分母;②___________;③_________;④______________;⑤_______________.2.典题剖析例1 解方程:2113332x xx-++=-分析:由于方程中含有分母,所以应先去分母,即在方程两边同乘以最小共分母6. 本题可按照解一元一次方程的一般步骤求解.解:去分母,得18x+2(2x-1)=18-3(x+1).去括号,得18x +4x -2=18-3x -3. 移项,得18x +4x +3x=18-3+2. 合并同类项,得25x=17. 系数化为1,得1725x =. 例2 当n =_________时,单项式422n x-与2113n x --的和是单项式.分析:由于两个单项式的和仍是单项式,则这两个单项式必为同类项,故可根据同类项定义中“相同字母的指数相同”来构造方程,进而求解.解:根据题意,得4212nn -=-,解得2n =. 故填2.跟踪练习(选做):1.方程2x -3=5x -21的解是( ).A .x=4B .x=-6C .x=5D .x=62.解方程21101136x x +--=,去分母正确的是( ). A .2x +1-10x -1=1 B .4x +2-10x +1=6 C .4x +2-10x +1=1 D .4x +2-10x -1=6 3.若代数式5x -7与1-2x 的和是21,则x 的值等于__________.小羊们过了“解法关”关后,灰太狼有些急了,他紧接着推出了迷魂阵的最后一关“应用关”.第三关、一元一次方程的应用关1.知识回顾列方程解应用题的基本步骤:(1)审:审题,弄清题目中未知量和已知量之间的关系,找出代表题目全部含义的________________;(2)设:设一个___________为x ,其它的未知量用含x 的代数式表示; (3)列:根据等量关系列出_____________;(4)解:解所列的____________,求出未知数x 的值;(5)验:检验未知数x 的值是否是方程的解,是否符合题意; (6)答:写出答语.2.典题剖析例1 去年春季某地大旱,导致大量农田减产,下图是一对农民父子的对话内容,请根据对话内容分别求出该农户今年两块农田的花生产量分别是多少千克?分析:解题时应首先结合图示读懂题意,由于本题的相等关系有两个:①去年第一块田的产量+去年第二块田的产量=470千克;②今年第一块田的产量+今年第二块田的产量=57千克. 故可利用一个相等关系设出未知数,用另一个相等关系列方程.解:设去年第一块田的花生产量为x 千克,第二块田的花生产量为(470-x )千克. 根据题意,得(180%)(190%)(470)57x x -+--=. 解得100x =,所以470-x =370. 所以100×(1-80%)=20(千克),370×(1-90%)=37(千克).答:该农户今年第一块田的花生产量是20千克,第二块田的花生产量是37千克.例2 如图,地面上钉着用一根彩绳围成的直角三角形,如果将直角三角形锐角顶点上的一个钉子去掉,并将这条彩绳钉成一个长方形,求所钉长方形的长、宽各是多少?面积是多少?分析:由于直角三角形有两个锐角,所以分两种情况讨论. 但无论哪种情况,在图形变化过程中,彩绳的长度始终保持不变,即“三角形的周长=长方形的周长”.解:(1)当去掉以∠A 为顶点的钉子时,此时围成以BC 为一条边的长方形. 设长方形的宽为x . 根据题意,得6810622x ++=⨯+. 解得6x =. 所以长方形的长为6,宽为6,面积为66⨯= 36.(2)当去掉以∠B 为顶点的钉子时,此时围成以AC 为一条边的长方形. 设长方形的宽为x . 根据题意,得6810822x ++=⨯+. 解得4x =. 所以长方形的长为8,宽为4,面积为84⨯= 32.答:当所钉的长方形的长为6,宽为6时,面积为36;当所钉的长方形的长为8,宽为4时,面积为32.跟踪练习(选做):1.某班有30名同学去铁道游击队纪念馆游览,购买甲、乙两种门票共用去420元,其中甲种门票每张10元,乙种门票每张20元,那么购买了甲种门票( ).今年,第一块田的产量比去年减产80%,第二块田咱家两块农田去年花生产量一共是470千克,可老天不A.14张B.16张C.18张D.20张2.某商店将某种数码相机按进价提高35%,然后打出“九折酬宾,外送50元出租车费”的广告,结果每台数码相机仍获利208元,那么每台数码相机的进价是________元.3.目前“自驾游”已成为人们出游的重要方式之一.“十一”节期间,林老师驾轿车从A 地到B地,共用了4.5小时;返回时平均速度每小时提高了10千米,比去时少用了半小时.则A地到B地的距离为_______________.看到羊族又一次胜利了,主席台上的红太狼气得暴跳如雷,抡起平底锅砸向灰太狼,灰太狼一边抱着头逃跑,一边冲着羊族大叫:“我一定会回来的……”三、课时小结在本章的学习中,需要注意的问题有:1.要熟知一元一次方程的定义,特别注意未知数的系数不为0;在运用等式的性质时,等式两边应是相同的运算,等式两边同除以的数不能为0.2.在解一元一次方程时,注意根据方程的特点灵活选择求解的方法,如有的方程可不按照一般步骤进行求解.3.解一元一次方程时常见误区有:(1)移项时,移动的项不变号;(2)在去括号时,漏乘项或误用去括号法则;(3)在去分母时,忘记乘没有分母的项或忽略分数线的括号作用.4.列一元一次方程解决实际问题时,常出现的错误有:(1)单位不统一;(2)复杂问题中搞错等量关系;(3)考虑问题不全面,没有检查方程的解是否符合题意.四、课堂检测1.(2012年重庆市)已知关于x的方程2x+a-9=0的解是x=2,则a的值为().A.2B.3C.4D.52.(2012年枣庄市)“五一”节期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元.设该电器的成本价为x元,根据题意,下面所列方程正确的是().A.x(1+30%)×80%=2080 B.x·30%·80%=2080C.2080×30%×80%=x D.x·30%=2080×80% 3.(2012年莆田市)如果单项式x a+1y5与2x3y2b-1是同类项,那么a b的值为________.4.(2012年灵武市)一元一次方程13124x x-+=-的解为_________.5.(2012年聊城市)儿童节期间,文具商店搞促销活动,同时购买一个书包和一个文具盒可以打8折优惠,能比标价省13.2元. 已知书包标价比文具盒标价的3倍少6元,那么书包和文具盒的标价各是多少元?五、作业设计1.若关于x的方程2132x a x ax---=-与方程3(x-2)=4x-5的解相同,求a的值.2.食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?。
第三章 一元一次方程3.1 从算式到方程3.1.1 一元一次方程学习目标1.理解一元一次方程的概念.2.理解方程的解及解方程的概念,学会检验一个数值是不是方程的解的方法.3.进一步体会找等量关系,会用方程表示简单实际问题. 重点难点1.一元一次方程及方程的解的概念.2.验证一个数是不是一个方程的解.3.理解题意,寻求数量间的等量关系并列出方程. 学习过程第一环节 自主学习1.判断下列是不是方程,是打“√”,不是打“×”: (1)-2+5=3( × ) (2) x >3( × ) (3)2x 2-5x +1=0( √ ) (4) 2a +b ( × ) (5) x =4( √ )2.根据下面实际问题中的数量关系,设未知数列出方程:(1)用一根长为48 cm 的铁丝围成一个正方形,正方形的边长为多少? 解:设正方形的边长为x cm ,列方程得: 4x =48 .(2)某校女生人数占全体学生人数的52%,比男生多80人,这个学校有多少学生? 解:设这个学校学生人数为x ,则女生人数为 0.52x ,男生数为 0.48x ,依题意得方程: 0.52x -0.48x =80 .(3)练习本每本0.8元,小明拿了10元钱买了若干本,还找回4.4元.问:小明买了几本练习本?解:设小明买了x 本练习本,列方程得: 10-0.8x =4.4 .第二环节 合作探究 1.一元一次方程:都含有 一 个未知数(元),未知数的次数都是 1 ,等号两边都是整式,这样的方程叫作一元一次方程.2.判断下列各式是不是一元一次方程,是打“√”,不是打“×”: (1)5x =0 ( √ ) (2)1+3x ( × ) (3)y 2=4+y ( × ) (4)x +y =5 ( × )(5) 3m +2=1-m ( √ )(6)1x+1=0( × ) 3.x 为自然数,当x 取0,1,2,3,4,5,6时.把这些值分别代入方程x +92=6的左边得:特别强调:解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解 .做一做,展示你的才能例检验2和-3是否为方程2x+3=3x+1的解.解:(1)当x=2时,左边=2×2+3 =7 ,右边=3×2+1 =7 ,因为左边=右边(填“=”或“≠”),所以x=2 是方程的解(填“是”或“不是”);(2)当x=-3时,左边=2×(-3)+3 =-3 ,右边=3×(-3)+1 =-8 ,因为左边≠右边(填“=”或“≠”),所以x=-3 不是方程的解(填“是”或“不是”).4.判断下列t的值是不是方程2t+1=7-t的解:(1) t=-2;(2)t=2.解:(1)不是;(2)是.第三环节课堂检测基础闯关1.x=2是下列方程( C )的解.A.5-x=2B.3x-1=4-2xC.3-(x-1)=2x-2D.x-4=5x-22.在下列方程中,是一元一次方程的是( B )A.x-3=y+2B.x2=0C.-3x+2D.-3x2=03.超市搞促销活动,某种书包原价每个x元,第一次降价打八折,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程( B )A.0.08x-10=90B.0.8x-10=90C.90-0.8x=10D.x-0.8x-10=904.x=3和x=-6中,x=-6 是方程x-3(x+2)=6的解.5.若x=3是方程2x-10=4a的解,则a=-1 .6.某文艺团体为“希望工程”募捐组织了一场义演,共售出1 000张演出票,已知成人票40元/张,学生票25元/张,共筹得票款3.4万元,设成人票售出x张,根据题意可列方程40x+25(1 000-x)=34 000 .拓展提升1. x k-1+21=0是关于x的一元一次方程,则k= 2 .2.x|k|+21=0是关于x的一元一次方程,则k=±1 .3.(k-1)x|k|+21=0是关于x的一元一次方程,则k=-1 .4.(k+2)x2+kx+21=0是关于x的一元一次方程,则k=-2 .第四环节课后小结3.1.2 等式的性质学习目标1.掌握等式的性质.2.会运用等式的性质解简单的一元一次方程. 重点难点1.探索并理解等式的基本性质.2.能利用等式的性质进行等式变形. 学习过程第一环节 自主学习 下列各式中,哪些是等式,哪些是一元一次方程? (1)4-1=3;(2)6x -2=10;(3)y =0; (4)3a +4;(5)am +bm =(a +b )m ;(6)6x -1>y ;(7)2x 2+5 x =0;(8)S =12(a +b )h .解:等式有:(1)(2)(3)(5)(7)(8);一元一次方程有:(2)(3).第二环节 合作探究1.等式的性质1:等式的两边加(或减) 同一个数(或式子) ,结果仍 相等 .即,如果a =b ,那么a ±c= b ±C.2.请说明下列等式是怎样变形的.(1)将等式x -5=2的两边 加5 ,得到x =7,根据是 等式的性质1 ; (2)将等式x +6=8的两边 减6 ,得到x =2,根据是 等式的性质1 . 3.等式的性质2:等式的两边乘同一个 数 或除以同一个 不为0的数 ,结果仍 相等 ,即如果a =b ,那么ac = bc ;如果a =b (c ≠ 0),那么a c = b c.温馨提示:等式两边除以同一个数时,这个数不能为 0 .4.请说明下列等式是怎样变形的.(1)将等式4 x =12的两边 除以4 ,得到x =3,根据是 等式的性质2 ; (2)将等式12x =7的两边 乘2 ,得到x =14,根据是 等式的性质2 .做一做,展示你的才能例 利用等式的性质解下列方程:(1) x +5=23;(2)-7x =56; (3)-12x +4=5.解:(1)两边减5,得x +5-5=23-5, 于是x =18.(2)两边除以-7,得-7x -7=56-7,于是x =8.(3)两边减4,得-12x +4-4=5-4,化简,得-12x =1,两边乘-2,得x =-2. 温馨提示:解以x 为未知数的方程,就是把方程逐步转化为 x =a (a 为常数) 的形式, 等式 的性质是转化的重要依据.第三环节 课堂检测基础闯关1.下列变形中,正确的是( D )A.若2a =3,则a =23 B.若-2x =1,则x =-2C.若5m =4,则m =-1D.若6a =2b ,则3a =b 2.下列变形正确的是( D )①由-3+2x =5,得2x =5-3;②由3y =-4,得y =-34;③由x -3=2x ,得-3=x ;④由3=x +2,得x =3-2.A.①②B.①④C.②③D.③④3.若m -2=n -2,则m =n ,这是根据 等式的性质1 ,在等式的两边 加2 .4.若3x =-13,则x =-19,这种变形是在等式的两边 除以3 ,其依据是 等式的性质2 .5.解方程2x -4=1时,先在方程的两边 加4 ,得到 2x =5 ,然后在方程的两边 除以2 ,得到x = 52.6.利用等式的性质解方程:3x =-2x +35.解:两边同加2x ,得3x +2x =-2x +35+2x , 即5x =35,两边同除以5,得 x =7. 拓展提升1.运用等式性质的变形,正确的是( B ) A.如果a =b ,那么a +c =b -c B.如果a c =bc ,那么a =bC.如果a =b ,那么a c =bcD.如果a =3,那么a 2=3a 22.若x -1=2 017-y ,则x +y = 2 018 .第四环节 课后小结3.2 解一元一次方程(一) 合并同类项与移项第1课时 合并同类项学习目标1.掌握合并同类项解“ax +bx =c ”类型的一元一次方程的方法.2.能熟练求解一元一次方程. 重点难点1.学会合并同类项,会解“ax +bx =c ”类型的一元一次方程.2.学会列方程解决实际问题的思想方法. 学习过程第一环节 自主学习1.方程5x -6x =3的解是( C ) A..x =2 B..x =3 C..x =-3 D..x =-22.若-x +3x =7-1,则x = 3 .3.某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买的数量又是去年的2倍.设前年购买计算机x 台,则去年购买计算机 2x 台,今年购买计算机 4x 台,列方程得 x +2x +4x =140 ,解得x = 20 ,所以前年这个学校购买了 20 台计算机.第二环节 合作探究 1.将方程中的同类项进行 合并 ,把以x 为未知数的一元一次方程变形为 ax =b (a ≠0,a ,b 为已知数)的形式,然后利用 等式的性质2 ,方程两边 同时除以a ,从而得到x =ba.温馨提示:解方程中“合并同类项”这一变形的依据是 乘法的分配律 ,“系数化为1”的依据是 等式的性质2 .2.解下列方程:(1)9x -5x =4-8;(2)4x -6x -x =-15; (3)7x -2.5x +3x -1.5x =-15×4-6×3. 解:(1)合并同类项,得4x =-4, 系数化为1,得x =-1.(2) 合并同类项,得-3x -15, 系数化为1,得x =5.(3)合并同类项,得6x =-78, 系数化为1,得x =-13. 做一做,展示你的才能例 有一列数,按一定规律排列成1,-3,9,-27,81,-243,…,其中某三个相邻数的和是-1 701,这三个数各是多少?解:设所求三个数分别是x ,-3x ,9x . 由三个数的和是-1 701,得 x -3x +9x =-1 701,合并同类项,得7x =-1 701, 系数化为1,得x =-243. 所以-3x =729,9x =-2 187.所以这三个数是-243,729,-2 187.第三环节 课堂检测基础闯关1.解下列方程时,既要合并含未知数的项,又要合并常数项的是( B ) A.5x +2x =7 B.3x -2x =1+5 C.-x -4x =-1 D.5x =3+22.下列解为x =2的方程是( C ) A.7x -3x =-4 B.x =-1+1 C.3x +x =5+3 D.-2x =43.学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,今年购置计算机的数量是( C )A.25台B.50台C.75台D.100台 4.方程-4x -11x =9+6的解为 x =-1 .5.有一列数,按一定规律排列成 2,-6,18,-54,162,-486,…,其中三个相邻的数的和是1 134,则这三个数分别是 162,-486,1 458 .6.解下列方程:(1)16x -2.5x -7.5x =9+3;(2)12x -25x =-3+1. 解:(1)合并同类项,得6x =12,系数化为1,得x =2. (2)合并同类项,得110x =-2,系数化为1,得x =-20.拓展提升甲乙两人骑摩托车同时从相距70千米的两地相向而行,甲的速度是40千米/时,乙的速度为30千米/时,问:经过几小时两人相距35千米?解:设经过x 小时,两人相距35千米.①相遇前:40x +30x =70-35,解得x =0.5; ②相遇后:40x +30x =70+35,解得x =1.5. 答:经过0.5小时或1.5小时两人相距35千米.第四环节 课后小结第2课时移项学习目标1.掌握移项的方法,学会解“ax+b=cx+d”类型的一元一次方程.2.体会解方程中的化归思想.重点难点1.会利用移项与合并同类项解一元一次方程.2.会列一元一次方程解决实际问题.学习过程第一环节自主学习1.解下列方程(1)-7x+2x=4-9; (2)9x-x-5x=9.解:(1)合并同类项,得-5x=-5,系数化为1,得x=1.(2)合并同类项,得3x=9,系数化为1,得x=3.2.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少人?解:设这个班有x名学生.每人分3本,共分出3x本,加上剩余的20本,这批书共(3x +20)本.每人分4本,需要4x本,减去缺的25本,这批书共4x-25本.根据这批书的总数不变,可列方程得3x+20=4x-25.解得x=45.所以这个班有45人.第二环节合作探究1.把等式一边的某项变号后移到另一边,叫作移项.温馨提示:移项的依据是等式的性质1 ,移项要改变符号.2.解下列方程:(1)3x+7=32-2x;(2)7x+1.37=15x-0.23.解:(1)移项,得3x+2x=32-7,合并同类项,得5x=25,系数化为1,得x=5.(2)移项,得7x-15x=-0.23-1.37,合并同类项,得-8x=-1.6,系数化为1,得x=0.2,温馨提示:(1)在解方程移项时,习惯上把含有未知数的项放在等号的左边,常数项放在等号的右边.(2)移项要变号.做一做,展示你的才能例某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200 t,如用新工艺,则废水排量要比环保限制的最大量少100 t,新旧工艺的废水排量之比为2∶5,两种工艺的废水排量各是多少?温馨提示:因为新、旧工艺的废水排量之比为2∶5,所以可设它们的废水排量分别为2x t ,5x t ,则用旧工艺的废水排量表示环保限制的最大量为 (5x -200) t ,用新工艺的废水排量表示环保限制的最大量为 (2x +100) t.解:设新、旧工艺的废水排量分别为2x t 、5x t ,依题意得 5x -200=2x +100 ,移项,得5x -2x =100+200 ,合并同类项,得 3x =300 ,系数化为1,得 x =100 .则2x = 200 ,5x = 500 .答:新、旧工艺的废水排量分别为 200 t 、 500 t.第三环节 课堂检测 基础闯关1.下列方程变形中的移项正确的是( A ) A.由5x =x -3得5x -x =-3 B.由7+x =3得x =3+7C.由2x +3-x =7得2x +x =7-3D.由2x -3=x +6得2x +x =6+32.解方程4x -2=3-x 时,正确的解答顺序是( C )①合并同类项,得5x =5;②移项,得4x +x =3+2;③两边都除以5,得x =1. A.①②③ B.③②① C.②①③ D.③①②3.有一篮苹果平均分给几个人.若每人分2个,则还余下2个苹果;若每人分3个,则还少7个苹果.设有x 个人分苹果,则可列方程为( D )A.3x +2=2x +7B.2x +2=3x +7C.3x -2=2x -7D.2x +2=3x -74.若式子x -5与2x -1的值相等,则x 的值是 -4 .5.某船顺流航行的速度为23 ,逆流航行的速度为19 ,则水流的速度为 2 .6.解下列方程:(1)4x +5=3x +3-2x ;(2)34x -2=3-14x . 解:(1) 移项,得 4x -3x +2x =3-5, 合并同类项,得 3x =-2, 系数化为1,得x =-23.(2)移项,得34x +14x =3+2,合并同类项,得 x =5. 拓展提升1.已知14a x +1b 4与9a 2x -1b 4是同类项,则x = 2 .2.如果4m -5的值与3m -9的值互为相反数,则m = 2 .第四环节课后小结3.3 解一元一次方程(二) 去括号与去分母第1课时 去括号学习目标掌握含有括号的一元一次方程的解法. 重点难点1.掌握用去括号的方法解一元一次方程.2.会列方程解应用题,建立方程思想. 学习过程第一环节 自主学习1.去括号:(1)2x -(x +10)= 2x -x -10 ; (2)5x +2(x -1)= 5x +2x -2 .2.某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2 000 kW·h(千瓦·时),全年用电15万kW·h ,这个工厂去年上半年每月平均用电是多少?解:设上半年每月平均用电x kW·h ,则下半年每月平均用电 (x -2 000) kW·h ; 上半年共用电 6x kW·h ,下半年共用电 6(x -2 000) kW·h. 根据全年用电15万kW·h ,列方程得 6x +6(x -2 000)=150 000 .去括号,得 6x +6x -12 000=150 000 , 移项,得 6x +6x =150 000+12 000 , 合并同类项,得 12x =162 000 , 系数化为1,得 x =135 00 .答:这个工厂去年上半年每月平均用电是 135 00 kW·h.第二环节 合作探究 1.解方程时的去括号和有理数运算中的去括号类似,都是运用 乘法的分配律 ,其方法:括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号 相同 ,括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号 相反 .2.解方程:(1)2x -(x +10)=5x +2(x -1); (2)3x -7(x -1)=3-2(x +3).解:(1)去括号得 2x -x -10=5x +2x -2 . 移项,得 2x -x -5x -2x =-2+10 . 合并同类项,得 -6x =8 .系数化为1,得 x =-43.(2)去括号,得 3x -7x +7=3-2x -6 . 移项,得 3x -7x +2x =3-6-7 . 合并同类项,得 -2x =-10 . 系数化为1,得 x =5 .温馨提示:解含有括号的一元一次方程的步骤:(1) 去括号 ;(2) 移项 ;(3) 合并同类项 ;(4) 系数化为1 .做一做,展示你的才能例 一艘船从甲码头到乙码头顺流行驶,用了2 h ;从乙码头返回甲码头逆流行驶,用了2.5 h.已知水流的速度是3 ,求船在静水中的平均速度.温馨提示:(1)顺水的速度= 静水速度 + 水流速度 ; (2)逆水的速度= 静水速度 - 水流速度 ;(3)顺水的速度 × 顺流时间 = 逆流速度 × 逆流时间.解:设船在静水中的平均速度为x ,则顺流速度为 2(x +3) ,逆流速度为 (x -3) ,由题意得: 2(x +3)=2.5(x -3) ,去括号,得 2x +6=2.5x -7.5 , 移项,得 2x -2.5x =-7.5-6 , 合并同类项,得 -0.5x =-13.5 , 系数化为1,得 x =27 .答:船在静水中的平均速度为 27 .第三环节 课堂检测基础闯关1.解方程2(x -3)-3(x -4)=5时,下列去括号正确的是( D ) A.2x -3-3x +4=5 B.2x -6-3x -4=5 C.2x -3-3x -12=5 D.2x -6-3x +12=52.若2(a +3)的值与4互为相反数,则a 的值为( C ) A.-1B.-72C.-5D.123.一架飞机在两城间飞行,顺风航行要5.5小时,逆风航行要6小时,风速为24千米/时,设飞机无风时的速度为每小时x 千米,则下列方程正确是( C )A.5.5(x -24)=6(x +24)B.x -245.5=x +246C.5.5(x +24)=6(x -24)D.2x 5.5+6=x 5.5-24 4.当x = 10 时,式子3(x -2)与2(2+x )的值相等.5.某市按如下规定收取每月煤气费:用煤气如果不超过60立方米,每立方米按1元收费,如果超过60立方米,超过部分按每月1.5元收费.已知12月份某用户的煤气费平均每立方米1.2元,那么12月份该用户用煤气 100 立方米.6.解下列方程:(1)7x +2(3x -3)=20; (2)(x +1)-2(x -1)=1-3x .解:(1)去括号得7x +6x -6=20, 移项、合并同类项得13x =26, 系数化为1,得x =2.(2)去括号得x +1-2x +2=1-3x , 移项,合并同类项得2x =-2, 系数化为1,得:x =-1. 拓展提升1.设P =2y -2,Q =2y +3且3P -Q =1,则y 的值是( B ) A.0.4 B.2.5 C.-0.4 D.-2.52.解方程:43⎣⎡⎦⎤32(x2-1)-3-2x =3. 解:去括号,得2(x2-1)-4-2x =3,x -2-4-2x =3,移项合并同类项,得-x =9, 系数化为1,得x =-9.第四环节 课后小结第2课时 去分母学习目标1.掌握含有分母的一元一次方程的解法.2.归纳解一元一次方程的步骤,体会转化思想的方法. 重点难点1.掌握去分母的方法,完善解一元一次方程的一般步骤.2.会列方程解决实际问题,提高分析问题和解决问题的能力. 学习过程第一环节 自主学习 1.解方程:(1)7x =6x -4;(2)y +1=12y ;(3)8-2()x -7=x -(x -4).解:(1)移项,得 7x -6x =-4 , 合并同类项,得 x =-4 . (2)移项,得 y -12y =-1 ,合并同类项,得 12y =-1 ,系数化为1,得 y =-2 .(3)去括号,得 8-2x +14=x -x +4 移项,得 -2x -x +x =4-8-14 , 合并同类项,得 -2x =-18 , 系数化为1,得 x =9 .2.英国伦敦博物馆保存着一部极其珍贵的文物——纸莎草文书,其中有如下一道著名的末知数的问题:一个数,它的三分之二、它的一半、它的七分之一、它的全部,加起来总共是33.设这个数为x ,可得方程 23x +12x +17x +x =33 .第二环节 合作探究1.去分母的方法:依据等式的性质2,方程两边各项都乘以所有分母的 最小公倍数 将分母去掉.2.解方程: x 2-x +63=1.温馨提示:先确定各分母的最小公倍数是 6 ,然后方程两边同乘以 6 ,注意等号右边的1不要漏乘.解:去分母,得 3x -2(x +6)=6 , 去括号,得 3x -2x -12=6 , 移项,得 3x -2x =6+12 , 合并同类项,得 x =18 .3.解一元一次方程的一般步骤是:(1)去分母;(2) 去括号 ;(3) 移项 ;(4)合并同类项;(5)系数化为1.做一做,展示你的才能例 解下列方程: (1)x +12-1=2+2-x 4;(2)3x +x -12=3-2x -13.解:(1)去分母,得 2(x +1)-4=8+(2-x ),去括号,得 2x +2-4=8+2-x , 移项,得 2x +x =8+2-2+4, 合并同类项,得 3x =12, 系数化为1,得 x =4.(2)去分母,得 18x +3(x -1)=18-2(2x -1), 去括号,得 18x +3x -3=18-4x +2, 移项,得 18x +3x +4x =18+2+3, 合并同类项,得 25x =23, 系数化为1,得x =2325.第三环节 课堂检测基础闯关1.解方程3y -14-1=2y +76,为了去分母应将方程两边同乘以( B )A.10B.12C.24D.62.在解方程x -12=1-2x +33时,去分母正确的是( C )A.3(x -1)=1-2(2+3x )B.3(x -1)=1+2(2x +3)C.3(x -1)=6-2(2x +3)D.3(x -1)=6+2(2x +3)3.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米.设A 港和B 港相距x 千米.根据题意,可列出的方程是( A )A.x 28=x24-3B.x 28=x24+3 C.x +226=x -226+3D.x -226=x +226-3 4.当x = 43 时,式子x +2与式子 8-x 2的值相等.5.当x = 5 时,式子x -14的值比2-x3的值大2.6.解下列方程: (1)x -32-4x +15=1.(2)x 2-5x +116=1+2x -43. 解:(1)去分母,得5x -15-8x -2=10, 移项合并同类项得-3x =27, 系数化为1,得x =-9.(2)去分母,得3x -5x -11=6+4x -8, 移项合并同类项,得-6x =9, 系数化为1,得x =-1.5. 拓展提升1.若关于x 的一元一次方程2x -k 3-x -3k2=1的解是x =-1,则k 的值是( B )A.27B.1C.-1311D.02.设a ,b ,c ,d 为有理数,现规定一种新的运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,则满足等式⎪⎪⎪⎪⎪⎪⎪⎪x 2 x +132 1=1的x 的值为 -10 .第四环节 课后小结3.4实际问题与一元一次方程第1课时产品配套问题与工程问题学习目标1.掌握产品配套问题、工程问题,能熟练地利用相等关系列方程.2.能利用一元一次方程解决产品配套问题和工程问题.重点难点根据题意找准等量关系,列一元一次方程解决产品配套问题和工程问题.学习过程第一环节自主学习问题:某车间有22名工人,每人每天可以生产1 200个螺钉或2 000个螺母.1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?解:设分配x名工人生产螺母,则(22-x) 人生产螺钉,每天生产螺母2000x个,每天生产螺钉 1 200(22-x) 个.根据螺母的个数是螺钉个数的2倍,列出方程2 000x=2×1 200(22-x) ,解得x=12 ,22-x=10 ,即应安排12 名工人生产螺母,10 名工人生产螺钉.第二环节合作探究1.解决配套问题时,关键是明确配套的物品之间的数量关系,它是列方程的依据.2.某服装车间有工人54人,每人每天可加工上衣8件,或裤子10条,应该怎样分配人数,才能使每天生产的上衣和裤子配套?设有x人做上衣,则做裤子的人数为(54-x) 人,根据题意,可列方程为8x=10(54-x) .3.解决工程问题时,常把总工作量看作1,其基本关系为:工作量=工作效率×工作时间,或工作量=人均效率×人数×时间,或各部分工作量之和等于工作总量.做一做,展示你的才能例整理一批图书,由一个人做要40 h完成.现计划由一部分人先做4 h,再增加2人和他们一起做8 h,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?温馨提示:如果把总工作量设为1,由一个人做要40 h完成,即一个人1 h能完成全部工作的140,x个人先做4 h完成的工作量为4x40,增加2人后再做8 h完成的工作量为8(x+2)40 ,这两个工作量之和等于总工作量. 解:设应先安排x人先做4 h,根据题意得:4x40+8(x+2)40 =1 .解方程,得4x+8(x+2)=40,4x+8x+16=40,12x=24,x =2.答:应先安排 2 人先做4 h.4.一项工程甲单独做要40天完成,乙单独做需要50天完成,甲先单独做4天,然后两人合作x 天完成这项工程,则可列的方程是( D )A.x 40+x 40+50=1B.440+x 40+50=1C.440+x50=1D.440+x 40+x50=1 第三环节 课堂检测基础闯关1.某车间有26名工人,每人每天可以生产800个螺钉或1 000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( C )A.2×1 000(26-x )=800xB.1 000(13-x )=800xC.1 000(26-x )=2×800xD.1 000(26-x )=800x2.某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,若设该班组要完成的零件任务为x 个,则可列方程为( C )A.x +12050-x 50+6=3B.x 50-x 50+6=3C.x 50-x +12050+6=3D.x +12050+6-x 50=3 3.某小组几名同学准备到图书馆整理一批图书,若一名同学单独做要40 h 完成.现在该小组全体同学一起先做8 h 后,有2名同学因故离开,剩下的同学再做4 h ,正好完成这项工作.假设每名同学的工作效率相同,问该小组共有多少名同学?若设该小组共有x 名同学,根据题意可列方程为8x 40+4(x -2)40=1 .4.某瓷器厂共有工人120人,每个工人一天能做200只茶杯或50只茶壶.如果8只茶杯和一只茶壶为一套,则安排 80 人生产茶杯可使每天生产的瓷器配套.5.将一批工业最新动态信息输入管理储存网络,甲独做需6 h ,乙独做需4 h ,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需115h 才能完成工作.6.某生产车间有60名工人生产太阳镜,1名工人每天可生产镜片200片或镜架50个.应如何分配工人生产镜片和镜架,才能使每天生产的产品配套?解:设x 人生产镜片,则(60-x )人生产镜架. 由题意得:200x =2×50×(60-x ), 解得x =20,则60-x =40.答:20人生产镜片,40人生产镜架,才能使每天生产的产品配套. 拓展提升在手工制作课上,老师组织七年级(2)班的学生用硬纸制作圆柱形茶叶筒.七年级(2)班共有学生50人,其中男生人数比女生人数少2人,并且每名学生每小时剪筒身40个或剪筒底120个.(1)七年级(2)班有男生、女生各多少人?(2)原计划男生负责剪筒底,女生负责剪筒身,要求一个筒身配两个筒底,那么每小时剪出的筒身与筒底能配套吗?如果不配套,那么男生应向女生支援多少人时,才能使每小时剪出的筒身与筒底相同.解:(1)设七年级(2)班有男生有x人,则女生有(x+2)人,由题意得:x+x+2=50,解得:x=24,则女生人数为:24+2=26(人),答:七年级(2)班有男生有24人,有女生26人;(2)男生剪筒底的数量:24×120=2 880(个),女生剪筒身的数量:26×40=1 040(个),因为一个筒身配两个筒底,1 880∶1 040≠2∶1,所以原计划男生负责箭筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套,设男生应向女生支援y人,由题意得:120(24-y)=(26+y)×40×2,解得:y=4,答:男生应向女生支援4人时,才能使每小时剪出的筒身与筒底相同.第四环节课后小结第2课时销售中的盈亏问题与球赛积分问题学习目标1.理解商品销售中所涉及进价、原价、售价、利润、打折、利润率这些基本量之间关系.2.结合球赛积分表,掌握从图表中获取信息的方法,培养观察与推理能力.3.能利用一元一次方程解决商品销售中的盈亏问题和球赛积分问题.重点难点设未知数,找等量关系,并会列出方程解决实际问题.学习过程第一环节自主学习1.某商品的进价是200元,售价是260元,则商品的利润是60 元,利润率是30 %.2.某商品进价是50元,利润率为20% ,则商品的利润是10 元.元,根据“进价+利润=售价”列方程,得x+0.2x=60,解得x=50.即商品的进价为50 元.第二环节合作探究1. 进价+利润=售价;利润=进价×利润率;利润率=商品利润商品进价×100%;售价=进价+利润=进价+进价×利润率=进价×(1+利润率).2.折扣问题:商品打几折,就是按原标价的百分之几十出售.3.一件商品按成本价提高40%后标价,再打8折(标价的80%)销售,售价为240元,设这件商品的进价为x元,根据题意,下面所列的方程正确的是( B )A.x·40%×80%=240B.x(1+40%)×80%=240C.240×40%×80%=xD.x·40%=240×80%4.球赛积分问题:比赛总场数=胜场数+负场数+平场数;比赛总积分=胜场积分+负场积分+平场积分.5.一足球邀请赛,勇士队在第一轮比赛中共赛了9场,得分17分.比赛规定胜一场得3分,平一场得1分,负一场得0分.勇士队在这一轮中只负了2场,那么这个队胜了 5 场.做一做,展示你的才能例一商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?解:设盈利25%的那件衣服的进价为x元,则它的商品利润是0.25x元,根据“商品售价=商品进价+商品利润”,列方程为:x+0.25x=60 ,解得:x=48 .类似地,设另一件衣服的进价为y元,则它的利润是-0.25y元,列方程是:y-0.25y=60 ,解得:y=80 .两件衣服的进价是x+y=128 元,而两件衣服的总售价是120 元,所以进价>售价(填<、>或=),由此可知,卖出这两件衣服总的盈亏情况是亏损8元.第三环节课堂检测基础闯关1.足球比赛的计分方法为:胜一场得3分,平一场得1分,负一场得0分,一个队共打了14场比赛,负了5场,得19分,设该队共平x场,则得方程( D )A.3x+9-x=19B.2(9-x)+x=19C.x(9-x)=19D.3(9-x)+x=192.肩背书包按进价提高50%标价,然后再按八折出售,这样商场每卖出一个书包就可赢利8元.设每个双肩背书包的进价是x元,根据题意列一元一次方程,正确的是( D )A.(1+50%)x-x=8B.50%x·80%-x=8C.(1+50%)x·80%=8D.(1+50%)x·80%-x=83.一件风衣,按成本价提高50%后标价,后因季节关系按标价的8折出售,每件卖180元,这件风衣的成本价是( A )A.150元B.80元C.100元D.120元4.2016年4月21日在深圳体育馆召开的第八届中国(深圳)国际茶业文化博览会上某茶商将甲、乙两种茶叶卖出,甲种茶叶卖出1 200元,盈利20%,乙种茶叶卖出1 200元,亏损20%,则此人在这次交易中是( D )A.盈利50元B.盈利100元C.亏损150元D.亏损100元5.某市中学生足球联赛规定:每队胜一场得3分,平一场得1分,负一场得0分,希望之星队前14场保持不败,共得34分,该队共平了 4 场.6.世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元.解:设《汉语成语大词典》的标价为x元,则《中华上下五千年》的标价为(150-x)元,依题意得:50%x+60%(150-x)=80,解得:x=100,则《中华上下五千年》的标价为150-100=50(元).答:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元.拓展提升AC米兰足球队在已赛过的20场比赛中,输了30%,平局占25%,该队还要赛若干场球,球迷发现,即使该队以后每场都没有踢赢,它也能保持30%胜场数,则该球队参赛场数共有多少场?解:设该球队参赛场数共有x场,由题意得30%x=20×(1-30%-25%),解得:x=30.答:该球队参赛场数共有30场.第四环节课后小结第3课时分段计费问题学习目标1.掌握分段计费问题,能熟练地利用相等关系列方程.2.能利用一元一次方程解决分段计费问题.重点难点根据题意找准等量关系,列一元一次方程解决分段计费问题.学习过程第一环节自主学习1.某服装商店出售一种优惠购物卡,花200元买这种卡后,凭卡可在这家商店按8折购物,下列情况买卡购物合算的是( D )A.购900元B.购500元C.购1 200元D.购1 000元2.某市出租车收费标准是:起步价7元(即行驶距离不超过3 km应付车费7元)超过3 km 以后,每增加1 km加收1.2元(不足1 km按1 km收费),某人乘出租车行驶了8.6 km,则应付车费14.2 元.第二环节合作探究1.优化方案问题可按下列步骤进行:(1)设未知数;(2)列式:列出各种方案的式子;(3)比较:可代入数值进行比较,也可将表示各方案的式子相减进行比较;(4)做出判断:根据以上的比较结果,确定最优方案.温馨提示:列方程解应用题的基本步骤:审题、设元、找出等量关系、列方程、解方程、检验和答.2.某校准备为毕业班学生制作一批纪念册,并且每人1册.甲公司提出:收设计费1 500元,另每册收取材料费5元;乙公司提出:不收设计费,每册收取材料费8元.张老师经过计算,发现两家公司收费一样,则该校今年毕业生有500 人.做一做,展示你的才能例某市移动通信公司推出两种手机卡,采用的收费标准见下表:(1)妈妈每月的通话时间累计一般在60分左右,爸爸每月的通话时间累计一般在200分左右,请你帮助他们分别选一种比较合算的手机卡,并通过计算说明你的理由.(2)想一想,通话在多少分钟时,两种标准所付话费相同?解:(1)妈妈用A卡每月的费用为:18+0.12×60=18+7.2=25.2(元),妈妈用B卡每月的费用为60×0.3=18(元),∵25.2>18,∴妈妈用B卡比较合算.爸爸用A卡每月的费用为18+0.12×200=18+24=42(元),爸爸用B卡每月的费用为0.3×200=60(元).∵42<60,∴爸爸用A卡比较合算.答:妈妈用B卡合算,爸爸用A卡比较合算,因为这样省钱.(2)设通话在x分钟时,两种标准所付话费相同,根据题意得18+0.12x=0.3x,解得x=100.答:通话100分钟时,两种话费相同.。
§5.9 一元一次方程导学案(附单元检测题)学习目标1.了解什么是方程,知道什么是一元一次方程。
2.充分体会字母表示数的优越性。
重点:知道什么一元一次方程。
难点:找出等量关系列出方程使用说明及学法指导:先自学课本78—79页内容,独立完成学案,然后小组讨论交流、展示。
一、导学:1、根据条件列出式子①比a大6的数:;②m的一半与8的差:;③y的3倍减去5:;④a的5倍与b的2倍的商:;2、根据条件列出等式:①比x大7的数等于8:;②y的一半与9的差为6:;③x的2倍比10大10:;④比a的3倍小5的数等于a与b的和:;二、合作探究:观察:上述四个等式有什么共同特点:;归纳:含有______的__________叫做方程。
探究:例1 根据下面实际问题中的数量关系,设未知数列出方程:(1)用一根长为24cm的铁丝围成一个正方形,正方形的边长为多少?解:设正方形的边长为x cm,列方程得:。
(2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?解:设x月后这台计算机的使用时间达到规定的检修时间2450小时;列方程得:。
(3)某校女生人数占全体学生数的52%,比男生多80人,这个学校有多少学生?解:设这个学校学生数为x,则女生数为,男生数为,依题意得方程:。
观察:观察方程:4x=24, 1700+150x=2450, 0.52x-(1-0.52)x=80,它们有什么共同特点?归纳:含有 未知数(元),并且未知数的次数都是 的方程叫做一元一次方程。
分析 中的 ,利用其中的 列出 ,是用数学解决实际问题的一种方法。
三、试一试:1、判断下列是不是一元一次方程,是打“√”,不是打“×”:①3+x =5;( ) ② 132=+-x ;( ) ③y x -=+6132; ( ) ④02=y ; ( ) ⑤1182->-x ; ( ) ⑥3+4x =8x ;( )2、环形跑道一周600米,沿跑道跑x 周可跑3000米,可列方程是:四、课堂检测:根据下列条件列出方程。
第三章 一元一次方程《3.1.1 一元一次方程》导学案NO :34一、学习目标1. 初步学习如何寻找问题中的相等关系,列出方程,了解方程的概念; 2.在对实际问题情景的分析过程中感受方程模型的意义。
二、自主学习1、请同学们阅读P78 至P79,然后用算术方法解此问题,列算式为 ; 然后用设未知数列方程的数学思想来解决此问题,设A,B 两地的路程为x 千米,可列方程为: 像上面含有未知数的等式,叫 (读三遍)。
2、自学P79,根据下列问题,设未知数并列出方程.(1)用一根长20cm 的铁丝围成一个正方形,正方形的边长是多少?分析:设正方形的边长为x (cm ),那么周长为 (cm ),列方程: . (2)某校女生占全体学生数的61℅,比男生多61个,这个学校有学生多少个?分析:设这个学校有学生x 个人,则女生数为 ,男生数为 ,列方程是 ; (3)一台计算机已使用1200小时,预计每月再使用123小时,经过多少月这台计算机的使用时间达到规定的检修时间2612小时?(自主分析并列出方程)像上面(1)、(2)、(3)所列的方程,只含有一个 数,并且未知数的次数都是 ,这样的方程叫做 元 次方程(读三遍)。
注意:“ 一元”是指一个未知数;“一次”是指未知数的指数是一次(理解)。
上面的分析过程归纳如下:(1)分析实际问题中的 关系,利用 关系列出方程(一元一次方程),是用数学解决实际问题的一种方法。
(2)列方程经历的几个步骤 A 、设 数;B 、找出题中的 关系; C 、列出含有未知数的等式——( )。
3、阅读P80,理解列方程是解决实际问题的一种重要方法,利用方程能够求出未知数。
当x =6时,4x 值是24。
这时,方程4x =24等号左右两边相等,所以x =6,叫做方程4x =24 的解;同样,当x=10时,2x+3=23,这时方程2x+3=23等号两边 相等,所以,x=10叫做方程2x+3=23的 ;像这样,解方程就是求出使方程中等号左右两边 的未知数的值,这个值就是方程的 (读三遍)。
七 年级 科目: 数学 主备人: 授课时间: 2020.11.9课题:3.1.1一元一次方程学习目标1、知道什么是方程,会判断一个数学式子是不是方程;2、能根据简单的实际问题列一元一次方程;3、会检验一个数是不是方程的解。
学习过程一、自学与指导(18分钟)活动一:学习方程的概念自学课本第78页内容,判断下列式子是不是方程,是打“√”,不是打“×”: ① 3+x ( ) ②3+4x=7( ) ③y x -=+6132( ) ④61=x( ) ⑤1082->-x ( ) ⑥ 132≠+-x ( ) 【小结】判断方程的方法( ) 活动二:根据下列问题,设未知数并列出方程1.用一根长24cm 的铁丝围成一个正方形,正方形的边长是多少?⑦2.一台计算机已使用1700h ,预计每月再使用150h ,经过多少月这台计算机的使用时间达到规定的检修时间2450h ?⑧3.某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?⑨【归纳】列方程时,要先设( )表示未知数,然后根据问题中的( ),写出含有未知数的( ),就能列出方程。
活动三:思考并得到一元一次方程的概念1.方程⑦、⑧、⑨有没有共同特点,有什么共同特点?2.观察方程⑦、⑧、⑨,得到一元一次方程的定义;活动四:思考x=6和x=7哪一个是方程4x=24的解?【归纳】解方程就是求出使方程中等号左右两边( )的值,这个值就是方程的( )。
二、展示与点拨(13分钟)活动五:同学们自己编造方程,小组内展示并检查对错,最后纠正1.编造两个方程:( )、( )。
2.编造两个一元一次方程:( )、( )。
活动六:同学们分小组展示本组的方程,并说一下出现的问题是如何解决的。
三、训练与总结(10分钟)1.判断下列数学式子①x+1,②0.5x-x ,③2x-3=7,④3x+2=2x-5, ⑤2x 2+3x-8=0,⑥x+2y=7,是方程的有 ,是一元一次方程的有 。
3.1.1一元一次方程教学设计(第一课时)一、教材分析方程是应用广泛的数学工具,是代数学的核心内容,在义务教育阶段的数学课程中占有重要地位。
本节课选自人教版数学七年级上册第三章第一节的内容,是一节引入课,本节课是结合学生已有学习经验,从算式到方程,继而对一元一次方程及方程的解实行了探究,让学生体验未知数参与运算的好处,用方程分析问题、解决问题,体会学习方程的意义和作用。
本节课是在承接小学学习的简易方程和刚刚学习的整式的加减的基础上实行学习的,同时又是后续学习二元一次方程、一元二次方程的重要基础。
所以,这节课在教材中起到了承上启下的作用。
二、学情分析学生前面已经学习了简单的方程及整式的内容,为本节课的学习做好了铺垫。
七年级的学生思维活跃,求知欲强,有比较强烈的自我意识,对观察、猜想、探索性的问题充满好奇,因而在教学素材的选择与表现方式以及学习活动的安排上力求设置学生感兴趣的并且具有挑战性的内容,让学生感受到数学来源于生活又回归生活实际,无形中产生浓厚的学习兴趣和探索热情。
七年级学生对于方程已经具备了一定的知识基础,但是对方程的理解还比较肤浅,缺乏理性的理解,而且学生正处于感性理解向理性理解过渡的时期,抽象思维水平有待提升,对于一元一次方程的概念教学要选择具体的问题情境,逐步抽象。
七年级的学生很想利用所学的知识解决问题,通过对几个问题的分析、探讨、相互交流,逐步培养学生的观察、探索、归纳等水平,提升对课本知识的使用水平,从而理解归纳一元一次方程的相关概念,在练习中巩固和熟悉一元一次方程。
三、教学目标1.知识与技能目标(1)掌握方程、一元一次方程的定义,知道什么是方程的解。
(2)体会字母表示数的好处,会根据实际问题的条件列方程,能检验出一个数值是否是方程的解。
2.过程与方法目标(1)通过将实际问题抽象成数学问题,分析实际问题中的数量关系,利用其中的相等关系列出方程,渗透数学建模的思想,理解到从算式到方程是数学的一种进步。
一元一次方程导学案【学习目标】1知道什么是方程,会判断一个数学式子是算式还是方程;2、能根据简单的实际问题列一元一次方程,并了解其步骤;3、会判断方程的解。
【学习重点】一元一次方程的含义。
【学习难点】根据简单的实际问题列一元一次方程。
课前自主学习(查阅教材和相关资料,完成下列内容)考点一.方程的概念1含有 ________________ 的等式叫方程。
考点二.一元一次方程的概念1. ___________ 只含有个未知数,未知数的次数都是_次的方程,叫做一元一次方程。
考点三.列方程遇到实际问题时,要先设字母表示, 然后根据问题中的, 最后写出含有未知数的_」就能列出方程.归纳:列方程解实际问题的步骤:第一步: __________________________ ,第二步:___________________ ,第三步:________ . ________考点四.解方程及方程的解的含义解方程就是求出使方程中等号左右两边__________________ 的_________ 的值,这个值就是方程的.【重要思想】1. 类比思想:算式与方程的对比2. 转化思想:把实际问题转化为数学问题,特别是方程问题.学练提升问题1:判断下列数学式子2X+1, 0.5X-X, 2x-3=7, 3x+2=2x-5 , 2x +3x-8=0,x+2y=7.是方程有, 是一元一次方程有________________【规律总结】【同步测控】1. 自己编造两个方程:____________ , . ______________________2. 自己编造两个一元一次方程:________ , . ________________________问题2.根据问题列方程:1. 用一根长24cm的铁丝未成一个正方形,正方形的变长是多少?2. 一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间他到规定的检修时间2450小时【规律总结】【同步测控】根据下列问题,设未知数,列出方程1. 环形跑道一周长400m,沿跑道跑多少周,可以跑3000m?2. 甲种铅笔每只0.3元,乙种铅笔铅笔每只0.6元,用9元钱买了两种铅笔共20支,两种铅笔各买了多少支?【规律总结】【同步测控】1. 一个梯形的下底比上底多2cm,高是5cm,面积是40cm2,求上底.2. x的2倍于10的和等于18;3. 比b的一半小7的数等于a与b的和;4. 把1400元奖学金按照两种奖项将给22名学生,其中一等奖每人200元,二等奖每人50元,获得一等奖的学生多少人?问题三、判断方程的根1. 判断下列各数X=1,x=2,x=-1,x=0.5. 那个是方程2x+3=5x-3的解?2. ________ 当x= 时,方程3x-5=1两边相等?等式性质导学案【学习目标】1、 了解等式的两条基本性质,并会用数学式子表示;2、 能利用等式的基本性质解简单的方程;【学习重点】理解等式的两条基本性质。
【学习难点】利用等式的基本性质解简单的方程。
课前自主学习(查阅教材和相关资料,完成下列内容) 考点一•等式的基本性质11. 等式两边 (或减)同一个数(或式子),结果仍 ______________________ ;2. 可以用数学语言表述为:女口果 a=b ,那么 a b= __________ ;3. 用数字验证等式的基本性质1:如① _______________________________________ ,② _________________________________ 。
考点二.等式的基本性质21. 等式两边乘 _____________ ,或除以同一个 ________________ ,结果仍相等;2. 可以用数学语言表述为:女口果 a=b ,那么 ac= ________ ;a如果a=b(c 丰0),那么一=b3. 用数字验证的基本性质 2:如① _______________________________________ ,② ___________________________________ 学练提升问题一.等式基本性质考查例1:利用等式基本性质解下列方程1(1) x+7=26;⑵-5x=20;(3) -x-5=4.3【规律总结】【同步测控】1. 利用等式基本性质解下列方程并检验 :(1) x-5=6;(2) 0.3x=45;冋题二:列等式表示运算律⑶2- 丄x=3;4⑷ 5x+4=0(1) 加法交换律; (2) 乘法交换律;(3) 分配率; (4) 加法结合律问题三、运用等式的基本性质解实际问题:例2.2001年1〜9月我国城镇居民可支配收入为5109元,比上年同期增长8.3%,上年同期收入为多少元?【规律总结】【同步测控】1. 种一批树苗,每人种10 棵,则剩6 棵树苗未种; 如果每人种12 棵, 则缺6 棵树苗. 有多少人种树?2. 一辆汽车已行驶了12000km,计划每月再行使800km,几个月后这辆汽车讲形势20800km?3. 圆环形状如图所示, 它的面积是200cm2, 外沿大圆的半径是1 0cm ,内沿小圆的半径是多少?【学习目标】1. 初步学会用合并同类项解一元一次方程;2. 会用移项解简单的一元一次方程;【学习重点】会用移项、合并同类项解简单的一元一次方程。
【学习难点】移项中的变号问题。
课前自主学习(查阅教材和相关资料,完成下列内容)考点一•同类项概念的考查:1. 含有相同的__________ ,并且相同字母的___________ 也相同的单项式,叫做同类项。
2. 请你举例说明什么是同类项。
考点二•合并同类项的考查:1. 合并同类项时,把___________ 相加减,字母和字母的指数.2. 合并同类项:(1) 2x-5x; (2) -3x+0.5x; (3) ? +逖-空2 2 3考点三.利用合并同类项解方程:例1.解方程7x-2.5x+3x-1.5x=-15 X 4-6 X 3.解:【规律总结】【同步测控】1. 通过合并同类项解下列方程(3) -3x+0.5x=10; (4) 7x-4.5x=2.5 X 3-5.(1) 5x-2x=9;⑵汽=7;考点四.移项的考查2例2.解方程:4( x- - ) =2.32 1解法1 : (1)根据等式性质_________ ,两边同__________,得:x-—=丄)3 22 2 12(2) 根据等式性质 ______ ,两边都加______________ ,即x- —+ — =一 + —,3 3 2 31 2也就是x= — + —2 3(3)得x=—.6解法2: (1)利用乘法分配律,去掉括号,得:4x- ______________ =2 ,8 8 8 —4(2) 两边同加____________ ,即4x- 一+- =2+-,得4x=一 ,3 3 3 3(3) 两边同除以___________________,(4) 得x= 7.62 2上面解法1中第二步,相当于把原方程左边的-土变为+ 土移到右边,这样就可以通过合并同类项解方程3 3像这样把等式一边的某项变号后移到另一边,就叫做移项•【规律总结】【同步测控】1. 移项(1)x-5=11; (2) 2x+5=x-2;【重要思想】2. 利用移项解方程:(1) 6x-7=4x -5 ; ⑶ 0.5x-3=x+2x-7.1 3(2) x-6 = x ;2 4(3) 3x+5=4x+1 (4) 9-3y=5y+5; 【规律总结】【学习目标】1. 进一步学习用合并同类项解一元一次方程;2. 学习分析问题找到相等关系,列出方程解决简单的实际问题;【学习重点】分析问题找到相等关系并列出方程。
【学习难点】找到相等关系并列出方程。
课前自主学习(查阅教材和相关资料,完成下列内容)考点一•合并同类项的考查:合并同类项时,把____________ 相加减,字母和字母的指数•考点二•移项的考查移项要考点三•根据实际问题列一元一次方程:例1.某校三年级共购买计算机140台,去年购买数量是前年的2倍,?今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?分析:设前年这个学校购买了x台计算机,已知去年购买数量是前年的2倍,那么去年购买—台,又知今年购买数量是去年的2倍,则今年购买了 ______________________ (即______ )台.题目中的相等关系为:三年共购买计算机140台,即:前年购买量+去年购买量+今年购买量= 140 列方程:____________________________________如何解这个方程呢?我的思路是:2x 表示2 X x, 4x表示4X x, x表示1X x.根据分配律,x+2x+4x= ( ___________________________________ ) x=7x.这样就可以把含x的项合并为一项(合并同类项),合并时要注意x的系数是1,不是0.解:【规律总结】列方程解应用题的一般步骤是:(1) _________________________________________ 设”用字母(例如X)表示问题的;(2)找”看清题意,分析题中及其关系,找出用来列方程的_ _(3) ____________________________________________________ 列”用字母的代数式表示相关的量,根据列岀方程;(4)解”:解方程;(5)验”:检查求得的值是否正确和符合实际情形,并写岀答案;(6)答”答出题目中所问的问题。
【同步测控】1•小帅种了一株树苗,开始时树苗高为40厘米,栽种后每周树苗长高15厘米,几周后树苗长高到100厘米?问题1.规律性问题例2.有一列数,按一定规律排列成1,-3,9,-27,81,-243, …,其中某三个数的和是-1701,这三个数各是多少?分析:(1)从符号和绝对值来看,这列数有什么规律?(2)如果设其中一个数为X,那么后面与他相邻的数是(3)本题的相等关系是:(4)可以列方程为:解:【规律总结】【同步测控】2.配制一种混凝土,水泥、沙、石子、水的质量比是 1 : 3:10:4,要配制这种混凝土360千克,各种原料分别需要多少千克?【规律总结】问题2、移动电话收费问题(1) 一个月内在本地通话200分和350分,按方式一需缴费多少元?按方式二呢?(2) 对于某个本地通话时间,会出现按两种计费方式收费一样多吗?【规律总结】【同步测控】3. 某乡改种玉米为优质杂粮后,今年农民人均收入比去年提高20%.今年人均收入比去年的1.5倍少1200元.这个乡去年农民人均收入是多少元?4. 某服装店出售一种优惠卡,花200元买这种卡后,凭卡可在这家服装店按8折购物•什么情况下买卡购物合算?【学习目标】1. 初步学习通过去括号解一元一次方程;2. 学习分析问题找到相等关系,列出方程解决简单的实际问题;【学习重点】利用去括号法则解一元一次方程。