2019年高考文科数学导数及其应用分类汇编
- 格式:docx
- 大小:703.72 KB
- 文档页数:13
2019年高考数学真题分类汇编专题19:导数在函数中的应用(综合题)一、解答题(共12题;共110分)1.(15分)设函数 f(x)=(x −a)(x −b)(x −c),a,b,c ∈R 、 f ′(x) 为f (x )的导函数.(1)(5分)若a =b =c ,f (4)=8,求a 的值;(2)(5分)若a ≠b ,b =c ,且f (x )和 f ′(x) 的零点均在集合 {−3,1,3} 中,求f (x )的极小值;(3)(5分)若 a =0,0<b ⩽1,c =1 ,且f (x )的极大值为M ,求证:M ≤ 427.2.(10分)已知实数a≠0,设函数f (x )=alnx+ √x +1 .x>0 (1)(5分)当a=- 34时,求函数f (x )的单调区间(2)(5分)对任意x ∈[ 1e 2 ,+∞)均有f (x )≤ √x2a ,求a 的取值范围3.(5分)设函数 f(x)=lnx −a(x −1)e x ,其中 a ∈R .(Ⅰ)若 a ≤0 ,讨论 f(x) 的单调性;(Ⅱ)若 0<a <1e,(i )证明 f(x) 恰有两个零点(ii )设 x 为 f(x) 的极值点, x 1 为 f(x) 的零点,且 x 1>x 0 ,证明 3x 0−x 1>2 .4.(5分)设函数 f(x)=e x cosx, g(x) 为 f(x) 的导函数.(Ⅰ)求 f(x) 的单调区间;(Ⅱ)当 x ∈[π4,π2] 时,证明 f(x)+g(x)(π2−x)⩾0 ;(Ⅲ)设 x n 为函数 u(x)=f(x)−1 在区间 (2m +π4,2mπ+π2) 内的零点,其中 n ∈N ,证明 2nπ+π2−x n <e −2nπsinx 0−cosx 0. 5.(10分)已知函数 f(x)=2x 3−ax 2+2 .(1)(5分)讨论 f(x) 的单调性;(2)(5分)当0<a <3时,记 f(x) 在区间[0,1]的最大值为M ,最小值为m ,求 M −m 的取值范围.6.(10分)已知函数f (x )=2x 3-ax 2+b.(1)(5分)讨论f (x )的单调性;(2)(5分)是否存在a ,b ,使得f (x )在区间[0,1]的最小值为-1且最大值为1?若存在,求出a,b的所有值;若不存在,说明理由。
2011-2019新课标文科高考《函数与导数》一、选择题【 2019 新课标10.20.3)】 3.已知a log20.2, b 2 ,c0.2 ,则(A .a b cB .a c b C.c a b 【答案】 B【 2019 新课标1sin x x】 5.函数 f(x)=2在 [ —π,π]的图像大致为cos x xA .B .C. D .【答案】D【 2019新课标 2 】 6.设 f(x) 为奇函数,且当xx≥0时, f(x)= e 1,则当x1x xA .eB .e1C .e1【答案】D【2019 新课标 2 】 10.曲线 y=2sinx+cosx 在点 ( π,–1)处的切线方程为(A .x y 1 0 B .2 x y 2 1 0 C.2 x y 2 1 0 D .x y 1 0【答案】 Cy x x x1, ae 处的切线方程【 2019新课标3】 7.已知曲线a在点e lnA. a e, b1B. a e, b 1C. a e 1 ,b 1【答案】C【详解】f x 是 R 的偶函数,f log 31f log 3 4 .43 f x 在 (0, +∞)单调递减, f log 3 42,又 log 3 4 1 2 23 21f 22f 23f log 3,故选 C .4【点睛】本题主要考查函数的奇偶性、单调性,考查学生转化与化归及分析问题力.【 2018 新课标 1 】6 .设函数3 2f ( x) x ( a 1) xax . 若 f ( x) 为奇函数,处的切线方程为()A . y2 x B . yxC . y2 x D .【答案】 D【 2018 新课标】 12.设函数A . (, 1] B .【答案】 D2 x,x ≤ 0, 1) f (2f ( x )则满足 f (x1,x 0,(0,)C . ( 1,0)D .xx【 2018 新课标 2 】 3.函数ee)f (x )x 2的图象大致为(【 2018 新课标 3 】 9.函数y x4x2 2 的图像大致为()【答案】 D【 2017 新课标 1 】 9.已知函数 f ( x )ln x ln(2x),则(C)A . f ( x)在( 0,2)单调递增B .f (x )在( 0,2 )单C. y= f (x )的图像关于直线x=1 对称 D . y= f (x)的图像关【 2017 新课标 2 】 8. 函数f ( x)ln( x 2的单调递增区间是(2 x 8)A.(-,-2)B. (-,-1)C.(1, +)D. (4, +)2【解析】由 x ﹣ 2x﹣ 8> 0 得: x∈(﹣∞,﹣ 2)∪( 4, +∞),令 t=x2﹣ 2x ﹣ 8,则 y=lnt ,∵ x∈(﹣∞,﹣ 2)时, t=x2﹣ 2x ﹣ 8为减x ∈( 4 , +∞)时, t=x 2﹣ 2x ﹣ 8 为增函数;y=lnt 为增函数,故函数 f ( x) =ln ( x2﹣ 2x ﹣ 8)的单调递增区间是(4, +∞),故选:【 2017 新课标 3 】 7. 函数y1x sin x的部分图像大致为(D 2xB .C.【 2017 新课标 3 】 12. 已知函数2x 1x 1f ( x ) x 2 x a(e e ) 有唯一111A B C D 1【 2016新 1 】( 12)若函数 f ( x)x -1a sin x 在, sin2 x3是(C)( A )1,1 (B)1,111( D )1( C)3,1,333y=10 lg【 2016新 2 】10. 下列函数中,其定域和域分与函数( D)( A ) y=x( B) y=lg xx( D )y ( C) y=2【解析】 y 10lg x x ,定域与域均0,,只有 D 足,故【 2016新 2 】 12. 已知函数f(x) ( x∈ R)足 f(x)=f(2-x),若函数m交点( x1,y 1), (x2,y2 ),⋯,(x m,y m),x i =(B)i 1(A)0(B)m(C) 2m(D) 4m 【解析】因 y f ( x), y| x 2 2 x 3| 都关于x 1 称,所以它交点偶数,其和2mm ,当 m 奇数,其和m11 m ,222421【 2016新 3 】( 7)已知a 2 3 , b33 , c 25 3,(A)(A)b<a<c(B) a<b<c(C) b<c<a(D) c<a<b 【2016 新 3 】( 4)某旅游城市向游客介本地的气温情况,制了一年中各月平均最高气温和平均最低气温的雷达 .中 A 点表示十月的平均最高气温15℃, B 点表示四月的平均最低气温5℃ .下面叙述不正确的是( D )( A )各月的平均最低气温都在0℃以上( B )七月的平均温差比一月的平均温差大1B. (,1(1,) C. (11) D.A. ( ,1))3,333[解析 ] 因为函数 f ( x)ln(1x )12 , 是偶函数, x[ 0,)时函x1f ( x) f ( 2 x 1)x 2 x1,2(2 x211.故x1) , 解得x3【 2015新课标 2 】 11.如图,长方形的边AB=2 , BC=1,O是 AB 的中P 沿着边 BC,CD, 与 DA 运动,记∠ BOP=x ,将动点P 到 A,B 两点的距和表示为函数 f (x ),则 f(x) 的图像大致为(B)Y Y Y2222O ππ3π πX O ππ3π πππ 3 ππXXO424424244CA B[解析 ] 如图,当点P 在 BC 上时,∵DBOP= x,PB=tan x,PA=4+ t2时取得最大值 15 PA+ PB= tan x + 4 + tan x ,当x4定点作椭圆,显然,当点 P 在 C,D 之间移动时 PA+PB< 15 B.,以 A .又函数【 2014 新课标 1 】5. 设函数 f ( x ), g( x ) 的定义域为R ,且 f (x )是奇函列结论中正确的是(C)A. f ( x) g ( x) 是偶函数B.| f ( x) | g ( x) 是奇函数C. f ( x) | g ( x) | 是奇函数D.| f ( x) g ( x ) | 是奇函数【参考答案】:设 F ( x) f ( x) g ( x) ,则 F ( x) f ( x) g ( x) ,∵当 a 0时, x,20; x2,0 , f ( x) 0; x0, , f ( x)aa要使 f ( x) 有唯一的零点24 ,a x0且 x0>0,只需 f (2) 0 ,即aa[解析 2]由已知a0 , f ( x )=ax32有唯一的正零点,等价于3 x11,则问题又等价于a33t有唯一的正零根有唯一的正零根,令 t tx有唯一的交点且交点在在y 轴右侧,记f (t)33t , f (t )2 t3tt, 1 , f (t)0; t1,1, f (t )0; , t1,, f (t )0,正零根,只需a f ( 1) 2 ,选C【 2014新课标 2 】 3. 函数f x在 x x0处导数存在,若p : f( x0 )点,则(C)( A )p是q的充分必要条件( B )p是q的充分条件,但不是( C)p是q的必要条件,但不是q 的充分条件( D )p既不是q的充分条件,也不是q 的必要条件【 2014新课标 2 】( 11)若函数 f ( x)kx ln x 在区间(1,+)单调( D )( A ), 2(B), 1(C)2,(D)1,【 2013 新课标 1 】 12.已知函数f(x) =20,若x 2 x, xln( x1), x0.|f(x)|≥ax,则a的取值范围是( D ).A . ( -∞, 0)B . (-∞, 1)C . [ - 2,1]D . [ - 2,0]【解析】可画出|f(x)| 的图象如图所示.当 a> 0 时, y= ax 与 y = |f(x)| 恒有公共点,所以排除B, C;【 2013 新课标 2 】 11.已知函数3 2f(x) = x + ax + bx + c ,下列结论中错误A . ? x 0 ∈ R , f(x 0)= 0B .函数 y = f(x) 的图像是中心对称图形C .若 x 0 是 f(x) 的极小值点,则 f(x) 在区间 ( -∞, x 0)单调递减D .若 x 0 是 f(x) 的极值点,则 f ′0 )= 0(x [解析 ] 若 x 0 是 f(x) 的极小值点,则 y = f(x) 的图像大致如下图所示,则在 (-∞, x 0)上不单调,故C 不正确.【 2013 新课标 2 】 12. 若存在正数 x 使 2x(x - a)< 1 成立,则 a 的取值范围是 ( D).A . ( -∞,+ ∞ )B . (- 2,+ ∞ )C . (0,+ ∞ )D . (- 1,+ ∞)1xx[解析 ] 由题意可得, a x1,该函数2(x > 0).令 f(x) = x2可知 f(x) 的值域为 (- 1,+ ∞),故 a >- 1 时,存在正数 x 使原不等式成【 2012 新课标 1 】 11.当 0< x ≤1xlog a x ,则 a 的取值范围是时, 42A . (0 ,2) B . ( 222, 1)C . (1 , 2 )D . ( 2 , 2)a1[解析 ] :由指数函数与对数函数的图像知11,解得 0alog a4 22【 2012 新课标 2 】 2.函数 yx1( x1)的反函数为(A)21( x 0)B . y x221( x 0)DA . y x 1( x 1) C . yx【解析】由yx1x12x21,而 x1,故 yyy21( x0) ,故选答案Ay x1【 2012新课标 2 】 11.已知x ln, y log 5 2 ,z e 2 ,则(【 2011新课标1】 (5) 下面四个条件中,使a b 成立的充分而不必要的条2233( A )a>b 1( B )a>b 1( C)a>b( D )a>b【解析】即寻找命题P ,使 P a b ,且 a b 推不出 P ,逐项验证知可【 2011 新课标1】(10)设 f( x ) 是周期为2的奇函数,当0x 1 时,f ((A)(A) -1(B)11(D)1 24(C)24【解析】由f( x ) 是周期为 2 的奇函数 ,利用周期性和奇偶性得:f (5f (5f (111(111 )2)) f ( )2)2 222222【 2011新课标2】 3.下列函数中,既是偶函数又在( 0,+)单调递增A .y x3B .y | x | 1C .y x21D .y 2 [解析 ] 可以直接判断: A 是奇函数, B 是偶函数,又是(0, +∞)的【 2011新课标2】 10.在下列区间中,函数f(x)=e x+4x-3 的零点所在的A .(1,0)B.(0,1)C.(1,1) D .(1,3)444224[解析 ] :只需验证端点值,凡端点值异号就是答案. 故选 C.【 2011新课标2】 12.已知函数y = f (x) 的周期为2,当 x ∈ [-1,1] 时 f 的图像与函数y = |lgx| 的图像的交点共有(A)A . 10 个B. 9 个C. 8 个 D . 1 个[解析 ] :本题可用图像法解,易知共10 个交点,故选 A.1二、填空题【 2019 新课标 1 】 13.曲线y 3(x 2x) e x在点(0,0)处的切线方程为【答案】y=3x【 2018新课标1】 13.已知函数 f ( x )log 2 ( x 2a) .若 f (3) 1 ,则 a 【答案】 -7【 2018新课标2】 13.曲线y2ln x 在点(1,0)处的切线方程为_____【答案】 y=2x –2【 2018新课标3】 16.已知函数f x ln12x 1 , f a 4 ,x【答案】 -2【 2016新课标3】( 16)已知 f (x) 为偶函数,当x0 时, f ( x)x e(1,2) 处的切线方程式__ y 2 x ________【 2015新课标1】( 14)已知函数f(x)=ax 3 +x+1的图像在点(1, f(1) a= 1.【 2015新课标2】( 13)已知函数 f (x)ax 3 2 x的图像过点( - 1,【 2015新课标2】( 16)已知曲线y x ln x 在点(1,1)处的切线与曲y ax 2(a2)x1相切,则 a8。
2019年高考数学(文)试题分类汇编函数与导数一. 选择题:1.(全国一1)函数y = D ) A .{|1}x x ≤B .{|0}x x ≥C .{|10}x x x ≥或≤D .{|01}x x ≤≤2.(全国一2)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( A )3.(全国一4)曲线324y x x =-+在点(13),处的切线的倾斜角为( B ) A .30°B .45°C .60°D .120°4.(全国一8)若函数()y f x =的图象与函数1y =的图象关于直线y x =对称,则()f x =( A ) A .22e x -B .2e xC .21e x +D .2+2e x5.(全国二4)函数1()f x x x=-的图像关于( C ) A .y 轴对称B . 直线x y -=对称C . 坐标原点对称D . 直线x y =对称6.(全国二5)若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( C ) A .a <b <c B .c <a <b C . b <a <c D . b <c <a7.(全国二7)设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ( A ) A .1B .12C .12-D .1-8.(安徽卷6)函数2()(1)1(0)f x x x =-+≤的反函数为CA .B .C .D .A .1()11(1)f x x x -=--≥B . 1()11(1)f x x x -=+-≥C .1()11(2)f x x x -=--≥D . 1()11(2)f x x x -=--≥9.(安徽卷9).设函数1()21(0),f x x x x=+-< 则()f x ( A )A .有最大值B .有最小值C .是增函数D .是减函数10.(北京卷2)若372log πlog 6log 0.8a b c ===,,,则( A ) A .a b c >>B .b a c >>C .c a b >>D .b c a >>11.(北京卷5)函数2()(1)1(1)f x x x =-+<的反函数为( B ) A .1()11(1)f x x x -=+-> B .1()11(1)f x x x -=--> C .1()11(1)f x x x -=+-≥D .1()11(1)f x x x -=--≥12.(福建卷11)如果函数y=f (x )的图象如右图,那么导函数y=f (x )的图象可能是A13.(广东卷8) 命题“若函数()log (0,1)a f x x a a =>≠在其定义域内是减函数,则log 20a <”的逆否命题是( A )A 、若log 20a ≥,则函数()log (0,1)a f x x a a =>≠在其定义域内不是减函数B 、若log 20a <,则函数()log (0,1)a f x x a a =>≠在其定义域内不是减函数C 、若log 20a ≥,则函数()log (0,1)a f x x a a =>≠在其定义域内是减函数D 、若log 20a <,则函数()log (0,1)a f x x a a =>≠在其定义域内是减函数14.(广东卷9)设a R ∈,若函数x y e ax =+,x R ∈,有大于零的极值点,则( A )A 、1a <-B 、1a >-C 、1a e <-D 、1a e>-15.(海南卷4)设()ln f x x x =,若0'()2f x =,则0x =( B )A. 2eB. eC. ln 22D. ln 216.(湖北卷6)已知()f x 在R 上是奇函数,且2(4)(),(0,2)()2,(7)f x f x x f x x f +=∈==当时,则 AA.-2B.2C.-98D.9817.(湖北卷8) 函数1()1f x n x =+ DA.(,4][2,)-∞-+∞B. (4,0)(0,1)-⋃C.[4,0)(0,1]-D.[4,0)(0,1]-⋃18.(福建卷4)函数f (x )=x 3+sin x +1(x ∈R),若f (a )=2,则f (-a )的值为B A.3 B.0 C.-1 D.-2 19.(湖南卷4)函数)0()(2≤=x x x f 的反函数是( B ))0()(.1≥=-x x x f A )0()(.1≥-=-x x x fB)0()(.1≤--=-x x x fC )0()(.21≤-=-x x x fD20.(湖南卷6)下面不等式成立的是( A )A .322log 2log 3log 5<<B .3log 5log 2log 223<<C .5log 2log 3log 232<<D .2log 5log 3log 322<< 21.(江西卷3)若函数()y f x =的定义域是[0,2],则函数(2)()1f xg x x =-的定义域是B A .[0,1] B .[0,1) C . [0,1)(1,4]U D .(0,1) 22.(江西卷4)若01x y <<<,则CA .33y x <B .log 3log 3x y <C .44log log x y <D .11()()44x y <23.(江西卷12)已知函数2()2(4)4f x x m x m =+-+-,()g x mx =,若对于任一实数x ,()f x 与()g x 的值至少有一个为正数,则实数m 的取值范围是CA . [4,4]-B .(4,4)-C . (,4)-∞D .(,4)-∞- 24.(辽宁卷2)若函数(1)()y x x a =+-为偶函数,则a =( C )25.(辽宁卷6)设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为04π⎡⎤⎢⎥⎣⎦,,则点P 横坐标的取值范围为( A )A .112⎡⎤--⎢⎥⎣⎦,B .[]10-,C .[]01,D .112⎡⎤⎢⎥⎣⎦, 27.(辽宁卷8)将函数21x y =+的图象按向量a 平移得到函数12x y +=的图象,则( A ) A .(11)=--,aB .(11)=-,aC .(11)=,aD .(11)=-,a28.(山东卷3)函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( A )29.(山东卷4)给出命题:若函数()y f x =是幂函数,则函数()y f x =的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( C ) A .3 B .2 C .1 D .030.(山东卷5)设函数2211()21x x f x x x x ⎧-⎪=⎨+->⎪⎩,,,,≤则1(2)f f ⎛⎫⎪⎝⎭的值为( A ) A .1516B .2716-C .89D .1831.(山东卷12)已知函数()log (21)(01)x a f x b a a =+->≠,的图象如图所示,则a b ,满足的关系是( A ) A .101a b -<<<B .101b a -<<<C .101b a -<<<-D .1101a b --<<<32.(陕西卷7)已知函数3()2x f x +=,1()f x -是()f x 的反函数,若16mn =(m n ∈+R ,),则11()()f m f n --+的值为( D )xxA .B .C .D .x33.(陕西卷11)定义在R 上的函数()f x 满足()()()2f x y f x f y xy +=++(x y ∈R ,),(1)2f =,则(2)f -等于( A )A .2B .3C .6D .934.(四川卷2)函数()1ln 212y x x ⎛⎫=+>- ⎪⎝⎭的反函数是( C )(A)()112x y e x R =-∈ (B)()21x y e x R =-∈(C)()()112xy e x R =-∈ (D)()21xy e x R =-∈35.(四川卷9)函数()f x 满足()()213f x f x ⋅+=,若()12f =,则()99f =( C ) (A)13 (B)2 (C)132 (D)21336.(天津卷3)函数14)y x =≤≤的反函数是( A ) A .2(1)(13)y x x =-≤≤ B .2(1)(04)y x x =-≤≤ C .21(13)y x x =-≤≤D .21(04)y x x =-≤≤37.(天津卷10)设1a >,若对于任意的[]2x a a ∈,,都有2y a a ⎡⎤∈⎣⎦,满足方程log log 3a a x y +=,这时a 的取值的集合为( B )A .{}12a a <≤B .{}2a a ≥C .{}23a a ≤≤D .{}23,38.(重庆卷6)函数1210-=xy(0<x ≤1)反函数是D(A)1)10y x => (B)y x >110)(C) y =110<x ≤)1 (D) y =110<x ≤)139.(重庆卷7)函数f (x 的最大值为B(A)25(B)12(C)2(D)140.(重庆卷12)函数f (x(0≤x ≤2π)的值域是C(A)[-11,44](B)[-11,33] (C)[-11,22](D)[-22,33]二. 填空题:1.(安徽卷13)函数2()f x =的定义域为 .[3,)+∞2.(北京卷13)如图,函数()f x 的图象是折线段ABC ,其中A B C ,,的坐标分别为(04)(20)(64),,,,,,则((0))f f = ;函数()f x 在1x =处的导数(1)f '= .3.(北京卷14)已知函数2()cos f x x x =-,对于ππ22⎡⎤-⎢⎥⎣⎦,上的任意12x x ,,有如下条件:①12x x >; ②2212x x >; ③12x x >.其中能使12()()f x f x >恒成立的条件序号是 .②4.(湖北卷13)方程223x x -+=的实数解的个数为 . 25.(湖南卷15)设[]x 表示不超x 的最大整数,(如[]145,22=⎥⎦⎤⎢⎣⎡=)。
2019年高考数学题分类汇编函数与导数一、选择题1.【2019·全国卷Ⅰ(理3,文5)】设函数()f x ,()g x 的定义域都为R ,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是( )A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数【答案】C2. 【2019·全国卷Ⅰ(理6)】如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为( ) 【答案】C3. 【2019·全国卷Ⅰ(理11,文12)】已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为( )A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)【答案】B4. 【2019·全国卷Ⅱ(理8)】设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x ,则a = A. 0 B. 1 C. 2 D. 3 【答案】 D【解析】..3.2)0(,0)0(.11-)(),1ln(-)(D a f f x a x f x ax x f 故选联立解得且==′=∴+=′∴+=Θ 5【2019·全国卷Ⅱ(理12)】设函数()3sin x f x mπ=.若存在()f x 的极值点0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围是( )A. ()(),66,-∞-⋃∞B. ()(),44,-∞-⋃∞C.()(),22,-∞-⋃∞D.()(),14,-∞-⋃∞ 【答案】C 。
2019年导数及其应用真题汇编(文数)1.【2019年高考全国Ⅱ卷文数】曲线y =2sin x +cos x 在点(π,-1)处的切线方程为A .10x y --π-=B .2210x y --π-=C .2210x y +-π+=D .10x y +-π+= 【答案】C 【解析】2cos sin ,y x x '=-π2cos πsin π2,x y =∴=-=-'则2sin cos y x x =+在点(,1)π-处的切线方程为(1)2()y x --=--π,即2210x y +-π+=. 2.【2019年高考全国Ⅲ卷文数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-,B .a=e ,b =1C .1e 1a b -==,D .1e a -=,1b =-【答案】D 【解析】∵e ln 1,xy a x '=++∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-.3.【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则A .a <–1,b <0B .a <–1,b >0C .a >–1,b <0D .a >–1,b >0【答案】C 【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x, 则y =f (x )﹣ax ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣bx 3(a +1)x 2+ax ﹣ax ﹣bx 3(a +1)x 2﹣b ,2(1)y x a x =+-',当a +1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增, 则y =f (x )﹣ax ﹣b 最多有一个零点,不合题意;当a +1>0,即a >﹣1时,令y ′>0得x ∈(a +1,+∞),此时函数单调递增, 令y ′<0得x ∈[0,a +1),此时函数单调递减,则函数最多有2个零点.根据题意,函数y =f (x )﹣ax ﹣b 恰有3个零点⇔函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点, 如图:∴ <0且 ><, 解得b <0,1﹣a >0,b >(a +1)3, 则a >–1,b <0.故选C .4.【2019年高考全国Ⅰ卷文数】曲线23()e xy x x =+在点(0)0,处的切线方程为____________. 【答案】30x y -= 【解析】223(21)e 3()e 3(31)e ,xxxy x x x x x '=+++=++ 所以切线的斜率0|3x k y ='==,则曲线23()e xy x x =+在点(0,0)处的切线方程为3y x =,即30x y -=.5.【2019年高考天津文数】曲线cos 2xy x =-在点(0,1)处的切线方程为__________. 【答案】220x y +-= 【解析】∵1sin 2y x '=--,∴01|sin 0212x y ='=---=,故所求的切线方程为112y x -=-,即220x y +-=.6.【2019年高考江苏】在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线0x y +=的距离的最小值是 ▲ . 【答案】4 【解析】由4(0)y x x x =+>,得241y x'=-, 设斜率为1-的直线与曲线4(0)y x x x =+>切于004(,)x x x +, 由20411x -=-得0x =0x =,∴曲线4(0)y x x x=+>上,点P 到直线0x y +=4=.7.【2019年高考江苏】在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 ▲ . 【答案】(e, 1) 【解析】设点()00,A x y ,则00ln y x =. 又1y x'=, 当0x x =时,01y x '=, 则曲线ln y x =在点A 处的切线为0001()y y x x x -=-, 即00ln 1xy x x -=-, 将点()e,1--代入,得00e1ln 1x x ---=-, 即00ln e x x =,考察函数()ln H x x x =,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >, 且()ln 1H x x '=+,当1x >时,()()0,H x H x '>单调递增, 注意到()e e H =,故00ln e x x =存在唯一的实数根0e x =, 此时01y =, 故点A 的坐标为()e,1.8.【2019年高考全国Ⅰ卷文数】已知函数f (x )=2sin x -x cos x -x ,f ′(x )为f (x )的导数.(1)证明:f ′(x )在区间(0,π)存在唯一零点;(2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围.【解析】(1)设()()g x f x '=,则()cos sin 1,()cos g x x x x g x x x '=+-=.当π(0,)2x ∈时,()0g x '>;当π,π2x ⎛⎫∈ ⎪⎝⎭时,()0g x '<,所以()g x 在π(0,)2单调递增,在π,π2⎛⎫⎪⎝⎭单调递减. 又π(0)0,0,(π)22g g g ⎛⎫=>=-⎪⎝⎭,故()g x 在(0,π)存在唯一零点. 所以()f x '在(0,π)存在唯一零点.(2)由题设知(π)π,(π)0f a f =…,可得a ≤0.由(1)知,()f x '在(0,π)只有一个零点,设为0x ,且当()00,x x ∈时,()0f x '>;当()0,πx x ∈时,()0f x '<,所以()f x 在()00,x 单调递增,在()0,πx 单调递减.又(0)0,(π)0f f ==,所以,当[0,π]x ∈时,()0f x …. 又当0,[0,π]a x ∈…时,ax ≤0,故()f x ax …. 因此,a 的取值范围是(,0]-∞.9.【2019年高考全国Ⅱ卷文数】已知函数()(1)ln 1f x x x x =---.证明:(1)()f x 存在唯一的极值点;(2)()=0f x 有且仅有两个实根,且两个实根互为倒数. 【解析】(1)()f x 的定义域为(0,+∞).11()ln 1ln x f x x x x x-'=+-=-. 因为ln y x =单调递增,1y x=单调递减,所以()f x '单调递增,又(1)10f '=-<,1ln 41(2)ln 2022f -'=-=>,故存在唯一0(1,2)x ∈,使得()00f x '=.又当0x x <时,()0f x '<,()f x 单调递减;当0x x >时,()0f x '>,()f x 单调递增. 因此,()f x 存在唯一的极值点.(2)由(1)知()0(1)2f x f <=-,又()22e e 30f =->,所以()0f x =在()0,x +∞内存在唯一根x α=.由01x α>>得011x α<<.又1111()1ln 10f f αααααα⎛⎫⎛⎫=---==⎪ ⎪⎝⎭⎝⎭,故1α是()0f x =在()00,x 的唯一根. 综上,()0f x =有且仅有两个实根,且两个实根互为倒数.10.【2019年高考天津文数】设函数()ln (1)e x f x x a x =--,其中a ∈R .(1)若a ≤0,讨论()f x 的单调性; (2)若10ea <<, (i )证明()f x 恰有两个零点;(ii )设0x 为()f x 的极值点,1x 为()f x 的零点,且10x x >,证明0132x x ->. 【解析】(1)解:由已知,()f x 的定义域为(0,)+∞,且211e ()e (1)e x x xf ax x a a x x x-⎡⎤=-+-=⎣'⎦. 因此当a ≤0时,21e 0x ax ->,从而()0f x '>,所以()f x 在(0,)+∞内单调递增.(2)证明:(i )由(Ⅰ)知21e ()xax f x x-'=.令2()1e x g x ax =-,由10e a <<, 可知()g x 在(0,)+∞内单调递减,又(1)1e 0g a =->,且221111ln 1ln 1ln 0g a a a a a ⎛⎫⎛⎫⎛⎫=-=-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故()0g x =在(0,)+∞内有唯一解,从而()0f x '=在(0,)+∞内有唯一解,不妨设为0x ,则011l n x a<<.当()00,x x ∈时,()0()()0g x g x f x x x'=>=,所以()f x 在()00,x 内单调递增;当()0,x x ∈+∞时,()0()()0g x g x f x x x'=<=,所以()f x 在()0,x +∞内单调递减,因此0x 是()f x 的唯一极值点.令()ln 1h x x x =-+,则当1x >时,1()10h'x x=-<,故()h x 在(1,)+∞内单调递减,从而当1x >时,()(1)0h x h <=,所以ln 1x x <-.从而ln 1111111ln ln ln ln 1e ln ln ln 1ln 0a f a h a a a a a a ⎛⎫⎛⎫⎛⎫=--=-+=< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,又因为()0(1)0f x f >=,所以()f x 在0(,)x +∞内有唯一零点.又()f x 在()00,x 内有唯一零点1,从而,()f x 在(0,)+∞内恰有两个零点.(ii )由题意,()()010,0,f x f x '=⎧⎪⎨=⎪⎩即()012011e 1,ln e ,1x x ax x a x ⎧=⎪⎨=-⎪⎩从而1011201ln e x x x x x --=,即102011ln e 1x x x x x -=-.因为当1x >时,ln 1x x <-,又101x x >>,故()102012011e 1x x x x x x --<=-,两边取对数,得1020ln e ln x x x -<,于是()10002ln 21x x x x -<<-, 整理得0132x x ->.11.【2019年高考全国Ⅲ卷文数】已知函数32()22f x x ax =-+.(1)讨论()f x 的单调性;(2)当0<a <3时,记()f x 在区间[0,1]的最大值为M ,最小值为m ,求M m -的取值范围. 【解析】(1)2()622(3)f x x ax x x a '=-=-. 令()0f x '=,得x =0或3ax =. 若a >0,则当(,0),3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当0,3a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在(,0),,3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减;若a =0,()f x 在(,)-∞+∞单调递增;若a <0,则当,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当,03a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在,03a ⎛⎫⎪⎝⎭单调递减.(2)当03a <<时,由(1)知,()f x 在0,3a ⎛⎫ ⎪⎝⎭单调递减,在,13a ⎛⎫ ⎪⎝⎭单调递增,所以()f x 在[0,1]的最小值为32327a a f ⎛⎫=-+ ⎪⎝⎭,最大值为(0)=2f 或(1)=4f a -.于是 3227a m =-+,4,02,2,2 3.a a M a -<<⎧=⎨≤<⎩所以332,02,27,2 3.27a a a M m a a ⎧-+<<⎪⎪-=⎨⎪≤<⎪⎩当02a <<时,可知3227a a -+单调递减,所以M m -的取值范围是8,227⎛⎫⎪⎝⎭. 当23a ≤<时,327a 单调递增,所以M m -的取值范围是8[,1)27.综上,M m -的取值范围是8[,2)27. 12.【2019年高考北京文数】已知函数321()4f x x x x =-+. (1)求曲线()y f x =的斜率为1的切线方程; (2)当[2,4]x ∈-时,求证:6()x f x x -≤≤;(3)设()|()()|()F x f x x a a =-+∈R,记()F x 在区间[2,4]-上的最大值为M (a ),当M (a )最小时,求a 的值.【解析】(1)由321()4f x x x x =-+得23()214f x x x '=-+. 令()1f x '=,即232114x x -+=,得0x =或83x =.又(0)0f =,88()327f =,所以曲线()y f x =的斜率为1的切线方程是y x =与88273y x -=-,即y x =与6427y x =-.(2)令()(),[2,4]g x f x x x =-∈-.由321()4g x x x =-得23()24g'x x x =-. 令()0g'x =得0x =或83x =.(),()g'x g x 的情况如下:所以()g x 的最小值为6-,最大值为0. 故6()0g x -≤≤,即6()x f x x -≤≤. (3)由(2)知,当3a <-时,()(0)|(0)|3M F g a a a ≥=-=->; 当3a >-时,()(2)|(2)|63M F a g a a ≥-=--=+>; 当3a =-时,()3M a =. 综上,当()M a 最小时,3a =-.13.【2019年高考浙江】已知实数0a ≠,设函数()=ln 0.f x a x x +>(1)当34a =-时,求函数()f x 的单调区间;(2)对任意21[,)ex ∈+∞均有()2f x a ≤ 求a 的取值范围. 注:e=2.71828…为自然对数的底数.【解析】(1)当34a =-时,3()ln 04f x x x =-+>.3()4f 'x x =-+=所以,函数()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由1(1)2f a≤,得04a <≤.当04a <≤时,()2f x a ≤等价于22ln 0x a a--≥.令1t a=,则t ≥.设()22ln ,g t t x t =≥则2()2ln g t t x=.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭≤()2ln g t g x ≥=.记1()ln ,7p x x x =≥,则1()p'x x =-==.故所以,()(1)0p x p ≥=.因此,()2()0g t g p x ≥=≥.(ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,()g t g =….令211()(1),,e 7q x x x x ⎡⎤=++∈⎢⎥⎣⎦,则()10q'x =>,故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫⎪⎝⎭….由(i )得,11(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭. 所以,()<0q x .因此()0g t g =>….由(i )(ii )知对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,),()0t g t ∈+∞…,即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()2f x a ….综上所述,所求a 的取值范围是0,4⎛ ⎝⎦. 14.【2019年高考江苏】设函数()()()(),,,f x x a x b x c a b c =---∈R 、()f 'x 为f (x )的导函数.(1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{3,1,3}-中,求f (x )的极小值;(3)若0,01,1a b c =<=…,且f (x )的极大值为M ,求证:M ≤427. 【答案】(1)2a =;(2)见解析;(3)见解析.【解析】(1)因为a b c ==,所以3()()()()()f x x a x b x c x a =---=-. 因为(4)8f =,所以3(4)8a -=,解得2a =. (2)因为b c =,所以2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-, 从而2()3()3a b f 'x x b x +⎛⎫=-- ⎪⎝⎭.令()0f 'x =,得x b =或23a bx +=. 因为2,,3a ba b +都在集合{3,1,3}-中,且a b ≠, 所以21,3,33a b a b +===-.此时2()(3)(3)f x x x =-+,()3(3)(1)f 'x x x =+-. 令()0f 'x =,得3x =-或1x =.列表如下:所以()f x 的极小值为2(1)(13)(13)32f =-+=-.(3)因为0,1a c ==,所以32()()(1)(1)f x x x b x x b x bx =--=-++,2()32(1)f 'x x b x b =-++.因为01b <≤,所以224(1)12(21)30b b b ∆=+-=-+>, 则()f 'x 有2个不同的零点,设为()1212,x x x x <.由()0f 'x =,得12x x ==.列表如下:所以()f x 的极大值()1M f x =. 解法一:()321111(1)M f x x b x bx ==-++()221111211(1)[32(1)]3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭()2321(1)(1)227927b b b b b --+++=++23(1)2(1)(1)2272727b b b b +-+=-+(1)24272727b b +≤+≤.因此427M ≤. 解法二:因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-. 令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭. 令()0g'x =,得13x =.列表如下:所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭. 所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤. 【名师点睛】本题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.。
专题04导数及其应用历年考题细目表解答题2013导数综合问题2013年新课标1文科20解答题2012导数综合问题2012年新课标1文科21解答题2011导数综合问题2011年新课标1文科21解答题2010导数综合问题2010年新课标1文科21历年高考真题汇编1.【2019年新课标1文科05】函数f(x)在[﹣π,π]的图象大致为()A.B.C.D.【解答】解:∵f(x),x∈[﹣π,π],∴f(﹣x)f(x),∴f(x)为[﹣π,π]上的奇函数,因此排除A;又f(),因此排除B,C;故选:D.2.【2018年新课标1文科06】设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x【解答】解:函数f(x)=x3+(a﹣1)x2+ax,若f(x)为奇函数,可得a=1,所以函数f(x)=x3+x,可得f′(x)=3x2+1,曲线y=f(x)在点(0,0)处的切线的斜率为:1,则曲线y=f(x)在点(0,0)处的切线方程为:y=x.故选:D.3.【2017年新课标1文科08】函数y的部分图象大致为()A.B.C.D.【解答】解:函数y,可知函数是奇函数,排除选项B,当x时,f(),排除A,x=π时,f(π)=0,排除D.故选:C.4.【2017年新课标1文科09】已知函数f(x)=lnx+ln(2﹣x),则()A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称【解答】解:∵函数f(x)=lnx+ln(2﹣x),∴f(2﹣x)=ln(2﹣x)+lnx,即f(x)=f(2﹣x),即y=f(x)的图象关于直线x=1对称,故选:C.5.【2016年新课标1文科09】函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.【解答】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D.6.【2016年新课标1文科12】若函数f(x)=x sin2x+a sin x在(﹣∞,+∞)单调递增,则a的取值范围是()A.[﹣1,1] B.[﹣1,] C.[,]D.[﹣1,]【解答】解:函数f(x)=x sin2x+a sin x的导数为f′(x)=1cos2x+a cos x,由题意可得f′(x)≥0恒成立,即为1cos2x+a cos x≥0,即有cos2x+a cos x≥0,设t=cos x(﹣1≤t≤1),即有5﹣4t2+3at≥0,当t=0时,不等式显然成立;当0<t≤1时,3a≥4t,由4t在(0,1]递增,可得t=1时,取得最大值﹣1,可得3a≥﹣1,即a;当﹣1≤t<0时,3a≤4t,由4t在[﹣1,0)递增,可得t=﹣1时,取得最小值1,可得3a≤1,即a.综上可得a的范围是[,].另解:设t=cos x(﹣1≤t≤1),即有5﹣4t2+3at≥0,由题意可得5﹣4+3a≥0,且5﹣4﹣3a≥0,解得a的范围是[,].故选:C.7.【2014年新课标1文科12】已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞) B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)【解答】解:∵f(x)=ax3﹣3x2+1,∴f′(x)=3ax2﹣6x=3x(ax﹣2),f(0)=1;①当a=0时,f(x)=﹣3x2+1有两个零点,不成立;②当a>0时,f(x)=ax3﹣3x2+1在(﹣∞,0)上有零点,故不成立;③当a<0时,f(x)=ax3﹣3x2+1在(0,+∞)上有且只有一个零点;故f(x)=ax3﹣3x2+1在(﹣∞,0)上没有零点;而当x时,f(x)=ax3﹣3x2+1在(﹣∞,0)上取得最小值;故f()3•1>0;故a<﹣2;综上所述,实数a的取值范围是(﹣∞,﹣2);故选:D.8.【2013年新课标1文科09】函数f(x)=(1﹣cos x)sin x在[﹣π,π]的图象大致为()A.B.C.D.【解答】解:由题意可知:f(﹣x)=(1﹣cos x)sin(﹣x)=﹣f (x),故函数f(x)为奇函数,故可排除B,又因为当x∈(0,π)时,1﹣cos x>0,sin x>0,故f(x)>0,可排除A,又f′(x)=(1﹣cos x)′sin x+(1﹣cos x)(sin x)′=sin2x+cos x﹣cos2x=cos x﹣cos2x,故可得f′(0)=0,可排除D,故选:C.9.【2010年新课标1文科04】曲线y=x3﹣2x+1在点(1,0)处的切线方程为()A.y=x﹣1 B.y=﹣x+1 C.y=2x﹣2 D.y=﹣2x+2【解答】解:验证知,点(1,0)在曲线上∵y=x3﹣2x+1,y′=3x2﹣2,所以k=y′|x﹣1=1,得切线的斜率为1,所以k=1;所以曲线y=f(x)在点(1,0)处的切线方程为:y﹣0=1×(x﹣1),即y=x﹣1.故选:A.10.【2019年新课标1文科13】曲线y=3(x2+x)e x在点(0,0)处的切线方程为.【解答】解:∵y=3(x2+x)e x,∴y'=3e x(x2+3x+1),∴当x=0时,y’=3,∴y=3(x2+x)e x在点(0,0)处的切线斜率k=3,∴切线方程为:y=3x.故答案为:y=3x.11.【2017年新课标1文科14】曲线y=x2在点(1,2)处的切线方程为.【解答】解:曲线y=x2,可得y′=2x,切线的斜率为:k=2﹣1=1.切线方程为:y﹣2=x﹣1,即:x﹣y+1=0.故答案为:x﹣y+1=0.12.【2015年新课标1文科14】已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线过点(2,7),则a=.【解答】解:函数f(x)=ax3+x+1的导数为:f′(x)=3ax2+1,f′(1)=3a+1,而f(1)=a+2,切线方程为:y﹣a﹣2=(3a+1)(x﹣1),因为切线方程经过(2,7),所以7﹣a﹣2=(3a+1)(2﹣1),解得a=1.故答案为:1.13.【2012年新课标1文科13】曲线y=x(3lnx+1)在点(1,1)处的切线方程为.【解答】解:求导函数,可得y′=3lnx+4,当x=1时,y′=4,∴曲线y=x(3lnx+1)在点(1,1)处的切线方程为y﹣1=4(x﹣1),即y=4x﹣3.故答案为:y=4x﹣3.14.【2019年新课标1文科20】已知函数f(x)=2sin x﹣x cos x﹣x,f′(x)为f(x)的导数.(1)证明:f′(x)在区间(0,π)存在唯一零点;(2)若x∈[0,π]时,f(x)≥ax,求a的取值范围.【解答】解:(1)证明:∵f(x)=2sin x﹣x cos x﹣x,∴f′(x)=2cos x﹣cos x+x sin x﹣1=cos x+x sin x﹣1,令g(x)=cos x+x sin x﹣1,则g′(x)=﹣sin x+sin x+x cos x=x cos x,当x∈(0,)时,x cos x>0,当x时,x cos x<0,∴当x时,极大值为g()0,又g(0)=0,g(π)=﹣2,∴g(x)在(0,π)上有唯一零点,即f′(x)在(0,π)上有唯一零点;(2)由(1)知,f′(x)在(0,π)上有唯一零点x0,使得f′(x0)=0,且f′(x)在(0,x0)为正,在(x0,π)为负,∴f(x)在[0,x0]递增,在[x0,π]递减,结合f(0)=0,f(π)=0,可知f(x)在[0,π]上非负,令h(x)=ax,作出图示,∵f(x)≥h(x),a≤0,∴a的取值范围是(﹣∞,0].15.【2018年新课标1文科21】已知函数f(x)=ae x﹣lnx﹣1.(1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间;(2)证明:当a时,f(x)≥0.【解答】解:(1)∵函数f(x)=ae x﹣lnx﹣1.∴x>0,f′(x)=ae x,∵x=2是f(x)的极值点,∴f′(2)=ae20,解得a,∴f(x)e x﹣lnx﹣1,∴f′(x),当0<x<2时,f′(x)<0,当x>2时,f′(x)>0,∴f(x)在(0,2)单调递减,在(2,+∞)单调递增.(2)证明:当a时,f(x)lnx﹣1,设g(x)lnx﹣1,则,由0,得x=1,当0<x<1时,g′(x)<0,当x>1时,g′(x)>0,∴x=1是g(x)的最小值点,故当x>0时,g(x)≥g(1)=0,∴当a时,f(x)≥0.16.【2017年新课标1文科21】已知函数f(x)=e x(e x﹣a)﹣a2x.(1)讨论f(x)的单调性;(2)若f(x)≥0,求a的取值范围.【解答】解:(1)f(x)=e x(e x﹣a)﹣a2x=e2x﹣e x a﹣a2x,∴f′(x)=2e2x﹣ae x﹣a2=(2e x+a)(e x﹣a),①当a=0时,f′(x)>0恒成立,∴f(x)在R上单调递增,②当a>0时,2e x+a>0,令f′(x)=0,解得x=lna,当x<lna时,f′(x)<0,函数f(x)单调递减,当x>lna时,f′(x)>0,函数f(x)单调递增,③当a<0时,e x﹣a>0,令f′(x)=0,解得x=ln(),当x<ln()时,f′(x)<0,函数f(x)单调递减,当x>ln()时,f′(x)>0,函数f(x)单调递增,综上所述,当a=0时,f(x)在R上单调递增,当a>0时,f(x)在(﹣∞,lna)上单调递减,在(lna,+∞)上单调递增,当a<0时,f(x)在(﹣∞,ln())上单调递减,在(ln(),+∞)上单调递增,(2)①当a=0时,f(x)=e2x>0恒成立,②当a>0时,由(1)可得f(x)min=f(lna)=﹣a2lna≥0,∴lna≤0,∴0<a≤1,③当a<0时,由(1)可得:f(x)min=f(ln())a2ln()≥0,∴ln(),∴﹣2a<0,综上所述a的取值范围为[﹣2,1]17.【2016年新课标1文科21】已知函数f(x)=(x﹣2)e x+a(x﹣1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.【解答】解:(Ⅰ)由f(x)=(x﹣2)e x+a(x﹣1)2,可得f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),①当a≥0时,由f′(x)>0,可得x>1;由f′(x)<0,可得x<1,即有f(x)在(﹣∞,1)递减;在(1,+∞)递增(如右上图);②当a<0时,(如右下图)若a,则f′(x)≥0恒成立,即有f (x)在R上递增;若a时,由f′(x)>0,可得x<1或x>ln(﹣2a);由f′(x)<0,可得1<x<ln(﹣2a).即有f(x)在(﹣∞,1),(ln(﹣2a),+∞)递增;在(1,ln(﹣2a))递减;若a<0,由f′(x)>0,可得x<ln(﹣2a)或x>1;由f′(x)<0,可得ln(﹣2a)<x<1.即有f(x)在(﹣∞,ln(﹣2a)),(1,+∞)递增;在(ln(﹣2a),1)递减;(Ⅱ)①由(Ⅰ)可得当a>0时,f(x)在(﹣∞,1)递减;在(1,+∞)递增,且f(1)=﹣e<0,x→+∞,f(x)→+∞;当x→﹣∞时f(x)>0或找到一个x<1使得f(x)>0对于a>0恒成立,f(x)有两个零点;②当a=0时,f(x)=(x﹣2)e x,所以f(x)只有一个零点x=2;③当a<0时,若a时,f(x)在(1,ln(﹣2a))递减,在(﹣∞,1),(ln(﹣2a),+∞)递增,又当x≤1时,f(x)<0,所以f(x)不存在两个零点;当a时,在(﹣∞,ln(﹣2a))单调增,在(1,+∞)单调增,在(1n(﹣2a),1)单调减,只有f(ln(﹣2a))等于0才有两个零点,而当x≤1时,f(x)<0,所以只有一个零点不符题意.综上可得,f(x)有两个零点时,a的取值范围为(0,+∞).18.【2015年新课标1文科21】设函数f(x)=e2x﹣alnx.(Ⅰ)讨论f(x)的导函数f′(x)零点的个数;(Ⅱ)证明:当a>0时,f(x)≥2a+aln.【解答】解:(Ⅰ)f(x)=e2x﹣alnx的定义域为(0,+∞),∴f′(x)=2e2x.当a≤0时,f′(x)>0恒成立,故f′(x)没有零点,当a>0时,∵y=e2x为单调递增,y单调递增,∴f′(x)在(0,+∞)单调递增,又f′(a)>0,假设存在b满足0<b<ln时,且b,f′(b)<0,故当a>0时,导函数f′(x)存在唯一的零点,(Ⅱ)由(Ⅰ)知,可设导函数f′(x)在(0,+∞)上的唯一零点为x0,当x∈(0,x0)时,f′(x)<0,当x∈(x0,+∞)时,f′(x)>0,故f(x)在(0,x0)单调递减,在(x0,+∞)单调递增,所欲当x=x0时,f(x)取得最小值,最小值为f(x0),由于0,所以f(x0)2ax0+aln2a+aln.故当a>0时,f(x)≥2a+aln.19.【2014年新课标1文科21】设函数f(x)=alnx x2﹣bx(a≠1),曲线y=f(x)在点(1,f(1))处的切线斜率为0,(1)求b;(2)若存在x0≥1,使得f(x0),求a的取值范围.【解答】解:(1)f′(x)(x>0),∵曲线y=f(x)在点(1,f(1))处的切线斜率为0,∴f′(1)=a+(1﹣a)×1﹣b=0,解得b=1.(2)函数f(x)的定义域为(0,+∞),由(1)可知:f(x)=alnx,∴.①当a时,则,则当x>1时,f′(x)>0,∴函数f(x)在(1,+∞)单调递增,∴存在x0≥1,使得f(x0)的充要条件是,即,解得;②当a<1时,则,则当x∈时,f′(x)<0,函数f(x)在上单调递减;当x∈时,f′(x)>0,函数f(x)在上单调递增.∴存在x0≥1,使得f(x0)的充要条件是,而,不符合题意,应舍去.③若a>1时,f(1),成立.综上可得:a的取值范围是.20.【2013年新课标1文科20】已知函数f(x)=e x(ax+b)﹣x2﹣4x,曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4.(Ⅰ)求a,b的值;(Ⅱ)讨论f(x)的单调性,并求f(x)的极大值.【解答】解:(Ⅰ)∵f(x)=e x(ax+b)﹣x2﹣4x,∴f′(x)=e x(ax+a+b)﹣2x﹣4,∵曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4∴f(0)=4,f′(0)=4∴b=4,a+b=8∴a=4,b=4;(Ⅱ)由(Ⅰ)知,f(x)=4e x(x+1)﹣x2﹣4x,f′(x)=4e x(x+2)﹣2x﹣4=4(x+2)(e x),令f′(x)=0,得x=﹣ln2或x=﹣2∴x∈(﹣∞,﹣2)或(﹣ln2,+∞)时,f′(x)>0;x∈(﹣2,﹣ln2)时,f′(x)<0∴f(x)的单调增区间是(﹣∞,﹣2),(﹣ln2,+∞),单调减区间是(﹣2,﹣ln2)当x=﹣2时,函数f(x)取得极大值,极大值为f(﹣2)=4(1﹣e﹣2).21.【2012年新课标1文科21】设函数f(x)=e x﹣ax﹣2.(Ⅰ)求f(x)的单调区间;(Ⅱ)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值.【解答】解:(I)函数f(x)=e x﹣ax﹣2的定义域是R,f′(x)=e x ﹣a,若a≤0,则f′(x)=e x﹣a≥0,所以函数f(x)=e x﹣ax﹣2在(﹣∞,+∞)上单调递增.若a>0,则当x∈(﹣∞,lna)时,f′(x)=e x﹣a<0;当x∈(lna,+∞)时,f′(x)=e x﹣a>0;所以,f(x)在(﹣∞,lna)单调递减,在(lna,+∞)上单调递增.(II)由于a=1,所以,(x﹣k) f′(x)+x+1=(x﹣k)(e x﹣1)+x+1故当x>0时,(x﹣k)f′(x)+x+1>0等价于k(x>0)①令g(x),则g′(x)由(I)知,当a=1时,函数h(x)=e x﹣x﹣2在(0,+∞)上单调递增,而h(1)<0,h(2)>0,所以h(x)=e x﹣x﹣2在(0,+∞)上存在唯一的零点,故g′(x)在(0,+∞)上存在唯一的零点,设此零点为α,则有α∈(1,2)当x∈(0,α)时,g′(x)<0;当x∈(α,+∞)时,g′(x)>0;所以g(x)在(0,+∞)上的最小值为g(α).又由g′(α)=0,可得eα=α+2所以g(α)=α+1∈(2,3)由于①式等价于k<g(α),故整数k的最大值为2.22.【2011年新课标1文科21】已知函数f(x),曲线y=f(x)在点(1,f(1))处的切线方程为x+2y﹣3=0.(Ⅰ)求a、b的值;(Ⅱ)证明:当x>0,且x≠1时,f(x).【解答】解:(I).由于直线x+2y﹣3=0的斜率为,且过点(1,1)所以解得a=1,b=1(II)由(I)知f(x)所以考虑函数,则所以当x≠1时,h′(x)<0而h(1)=0,当x∈(0,1)时,h(x)>0可得;当从而当x>0且x≠1时,23.【2010年新课标1文科21】设函数f(x)=x(e x﹣1)﹣ax2(Ⅰ)若a,求f(x)的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.【解答】解:(I)a时,f(x)=x(e x﹣1)x2,(e x﹣1)(x+1)令f′(x)>0,可得x<﹣1或x>0;令f′(x)<0,可得﹣1<x <0;∴函数的单调增区间是(﹣∞,﹣1),(0,+∞);单调减区间为(﹣1,0);(II)f(x)=x(e x﹣1﹣ax).令g(x)=e x﹣1﹣ax,则g'(x)=e x﹣a.若a≤1,则当x∈(0,+∞)时,g'(x)>0,g(x)为增函数,而g(0)=0,从而当x≥0时g(x)≥0,即f(x)≥0.若a>1,则当x∈(0,lna)时,g'(x)<0,g(x)为减函数,而g(0)=0,从而当x∈(0,lna)时,g(x)<0,即f(x)<0.综合得a的取值范围为(﹣∞,1].另解:当x=0时,f(x)=0成立;当x>0,可得e x﹣1﹣ax≥0,即有a的最小值,由y=e x﹣x﹣1的导数为y′=e x﹣1,当x>0时,函数y递增;x<0时,函数递减,可得函数y取得最小值0,即e x﹣x﹣1≥0,x>0时,可得1,则a≤1.考题分析与复习建议本专题考查的知识点为:导数的概念及运算,导数与函数的单调性、极值、最值,导数与函数的综合问题.历年考题主要以选择填空或解答题题型出现,重点考查的知识点为:导数的运算,导数与函数的单调性、极值、最值,导数与函数的综合问题,预测明年本考点题目会比较稳定.备考方向以知识点导数的运算,导数与函数的单调性、极值、最值,导数与函数的综合问题,为重点较佳。
专题04 导数及其应用(解答题)1.【2019年高考全国Ⅰ卷文数】已知函数f (x )=2sin x -x cos x -x ,f ′(x )为f (x )的导数.(1)证明:f ′(x )在区间(0,π)存在唯一零点; (2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围.2.【2019年高考全国Ⅱ卷文数】已知函数()(1)ln 1f x x x x =---.证明:(1)()f x 存在唯一的极值点;(2)()=0f x 有且仅有两个实根,且两个实根互为倒数.3.【2019年高考天津文数】设函数()ln (1)e x f x x a x =--,其中a ∈R .(Ⅰ)若a ≤0,讨论()f x 的单调性; (Ⅱ)若10ea <<, (i )证明()f x 恰有两个零点;(ii )设0x 为()f x 的极值点,1x 为()f x 的零点,且10x x >,证明0132x x ->. 4.【2019年高考全国Ⅲ卷文数】已知函数32()22f x x ax =-+.(1)讨论()f x 的单调性;(2)当0<a <3时,记()f x 在区间[0,1]的最大值为M ,最小值为m ,求M m -的取值范围. 5.【2019年高考北京文数】已知函数321()4f x x x x =-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程; (Ⅱ)当[2,4]x ∈-时,求证:6()x f x x -≤≤;(Ⅲ)设()|()()|()F x f x x a a =-+∈R ,记()F x 在区间[2,4]-上的最大值为M (a ),当M (a )最小时,求a 的值.6.【2019年高考浙江】已知实数0a ≠,设函数()=ln 0.f x a x x +>(1)当34a =-时,求函数()f x 的单调区间;(2)对任意21[,)ex ∈+∞均有()f x ≤ 求a 的取值范围. 注:e=2.71828…为自然对数的底数.7.【2019年高考江苏】设函数()()()(),,,f x x a x b x c a b c =---∈R 、()f 'x 为f (x )的导函数. (1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{3,1,3}-中,求f (x )的极小值; (3)若0,01,1a b c =<=…,且f (x )的极大值为M ,求证:M ≤427. 8.【2018年高考全国Ⅲ卷文数】已知函数21()e xax x f x +-=.(1)求曲线()y f x =在点(0,1)-处的切线方程; (2)证明:当1a ≥时,()e 0f x +≥.9.【2018年高考全国Ⅰ卷文数】已知函数()e ln 1xf x a x =--.(1)设2x =是()f x 的极值点,求a ,并求()f x 的单调区间; (2)证明:当1ea ≥时,()0f x ≥. 10.【2018年高考全国Ⅱ卷文数】已知函数()()32113f x x a x x =-++. (1)若3a =,求()f x 的单调区间;(2)证明:()f x 只有一个零点.11.【2018年高考北京文数】设函数2()[(31)32]e x f x ax a x a =-+++.(Ⅰ)若曲线()y f x =在点(2,(2))f 处的切线斜率为0,求a ; (Ⅱ)若()f x 在1x =处取得极小值,求a 的取值范围.12.【2018年高考天津文数】设函数123()=()()()f x x t x t x t ---,其中123,,t t t ∈R ,且123,,t t t 是公差为d 的等差数列.(I )若20,1,t d ==求曲线()y f x =在点(0,(0))f 处的切线方程; (II )若3d =,求()f x 的极值;(III )若曲线()y f x =与直线2()y x t =---d 的取值范围.13.【2018年高考浙江】已知函数f (x ln x .(Ⅰ)若f (x )在x =x 1,x 2(x 1≠x 2)处导数相等,证明:f (x 1)+f (x 2)>8−8ln2;(Ⅱ)若a ≤3−4ln2,证明:对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点.14.【2018年高考江苏】某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.15.【2018年高考江苏】记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f xg x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”. (1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由.16.【2017年高考全国Ⅰ卷文数】已知函数()f x =e x (e x −a )−a 2x .(1)讨论()f x 的单调性;(2)若()0f x ≥,求a 的取值范围.17.【2017年高考全国Ⅱ卷文数】设函数2()(1)e x f x x =-.(1)讨论()f x 的单调性;(2)当0x ≥时,()1f x ax ≤+,求a 的取值范围.18.【2017年高考全国Ⅲ卷文数】已知函数()2(1)ln 2x ax a x f x =+++.(1)讨论()f x 的单调性; (2)当a ﹤0时,证明3()24f x a≤--.19.【2017年高考浙江】已知函数f (x )=(x e x -(12x ≥). (1)求f (x )的导函数;(2)求f (x )在区间1[+)2∞,上的取值范围.20.【2017年高考北京文数】已知函数()e cos x f x x x =-.(Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)求函数()f x 在区间π[0,]2上的最大值和最小值.21.【2017年高考天津文数】设,a b ∈R ,||1a ≤.已知函数32()63(4)f x x x a a x b =---+,()e ()x g x f x =.(Ⅰ)求()f x 的单调区间;(Ⅱ)已知函数()y g x =和e x y =的图象在公共点(x 0,y 0)处有相同的切线,(i )求证:()f x 在0x x =处的导数等于0;(ii )若关于x 的不等式()e x g x ≤在区间00[1,1]x x -+上恒成立,求b 的取值范围.22.【2017年高考山东文数】已知函数()3211,32f x x ax a =-∈R . (Ⅰ)当a =2时,求曲线()y f x =在点()()3,3f 处的切线方程;(Ⅱ)设函数()()()cos sin g x f x x a x x =+--,讨论()g x 的单调性并判断有无极值,有极值时求出极值.23.【2017年高考江苏】已知函数32()1(0,)f x x ax bx a b =+++>∈R 有极值,且导函数()'f x 的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b 关于a 的函数关系式,并写出定义域; (2)证明:23>b a ;(3)若()f x ,()'f x 这两个函数的所有极值之和不小于72-,求a 的取值范围.1.【答案】(1)见解析;(2)(],0a ∈-∞.【解析】(1)设()()g x f x '=,则()cos sin 1,()cos g x x x x g x x x '=+-=. 当π(0,)2x ∈时,()0g x '>;当π,π2x ⎛⎫∈ ⎪⎝⎭时,()0g x '<,所以()g x 在π(0,)2单调递增,在π,π2⎛⎫⎪⎝⎭单调递减. 又π(0)0,0,(π)22g g g ⎛⎫=>=-⎪⎝⎭,故()g x 在(0,π)存在唯一零点. 所以()f x '在(0,π)存在唯一零点.(2)由题设知(π)π,(π)0f a f =…,可得a ≤0.由(1)知,()f x '在(0,π)只有一个零点,设为0x ,且当()00,x x ∈时,()0f x '>;当()0,πx x ∈时,()0f x '<,所以()f x 在()00,x 单调递增,在()0,πx 单调递减.又(0)0,(π)0f f ==,所以,当[0,π]x ∈时,()0f x …. 又当0,[0,π]a x ∈„时,ax ≤0,故()f x ax …. 因此,a 的取值范围是(,0]-∞.【名师点睛】本题考查利用导数讨论函数零点个数、根据恒成立的不等式求解参数范围的问题.对于此类端点值恰为恒成立不等式取等的值的问题,通常采用构造函数的方式,将问题转变成函数最值与零之间的比较,进而通过导函数的正负来确定所构造函数的单调性,从而得到最值. 2.【答案】(1)见解析;(2)见解析.【解析】(1)()f x 的定义域为(0,+∞).11()ln 1ln x f x x x x x-'=+-=-. 因为ln y x =单调递增,1y x=单调递减,所以()f x '单调递增,又(1)10f '=-<,1ln 41(2)ln 2022f -'=-=>,故存在唯一0(1,2)x ∈,使得()00f x '=.又当0x x <时,()0f x '<,()f x 单调递减;当0x x >时,()0f x '>,()f x 单调递增. 因此,()f x 存在唯一的极值点.(2)由(1)知()0(1)2f x f <=-,又()22e e 30f =->,所以()0f x =在()0,x +∞内存在唯一根x α=.由01x α>>得011x α<<.又1111()1ln 10f f αααααα⎛⎫⎛⎫=---==⎪ ⎪⎝⎭⎝⎭,故1α是()0f x =在()00,x 的唯一根. 综上,()0f x =有且仅有两个实根,且两个实根互为倒数.【名师点睛】本题主要考查导数的应用,通常需要对函数求导,用导数的方法研究函数的单调性、极值,以及函数零点的问题,属于常考题型.3.【答案】(Ⅰ)()f x 在(0,)+∞内单调递增.;(Ⅱ)(i )见解析;(ii )见解析.【解析】(Ⅰ)解:由已知,()f x 的定义域为(0,)+∞,且211e ()e (1)e x x xf ax x a a x x x-⎡⎤=-+-=⎣'⎦. 因此当a ≤0时,21e 0x ax ->,从而()0f x '>,所以()f x 在(0,)+∞内单调递增.(Ⅱ)证明:(i )由(Ⅰ)知21e ()xax f x x-'=.令2()1e x g x ax =-,由10e a <<, 可知()g x 在(0,)+∞内单调递减,又(1)1e 0g a =->,且221111ln 1ln 1ln 0g a a a a a ⎛⎫⎛⎫⎛⎫=-=-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故()0g x =在(0,)+∞内有唯一解,从而()0f x '=在(0,)+∞内有唯一解,不妨设为0x ,则011ln x a<<.当()00,x x ∈时,()0()()0g x g x f x x x'=>=,所以()f x 在()00,x 内单调递增;当()0,x x ∈+∞时,()0()()0g x g x f x x x'=<=,所以()f x 在()0,x +∞内单调递减,因此0x 是()f x 的唯一极值点.令()ln 1h x x x =-+,则当1x >时,1()10h'x x=-<,故()h x 在(1,)+∞内单调递减,从而当1x >时,()(1)0h x h <=,所以ln 1x x <-.从而ln 1111111ln ln ln ln 1e ln ln ln 1ln 0a f a h a a a a a a ⎛⎫⎛⎫⎛⎫=--=-+=< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,又因为()0(1)0f x f >=,所以()f x 在0(,)x +∞内有唯一零点.又()f x 在()00,x 内有唯一零点1,从而,()f x 在(0,)+∞内恰有两个零点.(ii )由题意,()()010,0,f x f x '=⎧⎪⎨=⎪⎩即()012011e 1,ln e ,1x x ax x a x ⎧=⎪⎨=-⎪⎩从而1011201ln e x x x x x --=,即102011ln e 1x x x x x -=-.因为当1x >时,ln 1x x <-,又101x x >>,故()102012011e 1x x x x x x --<=-,两边取对数,得1020ln e ln x x x -<,于是()10002ln 21x x x x -<<-,整理得0132x x ->.【名师点睛】本小题主要考查导数的运算、不等式证明、运用导数研究函数的性质等基础知识和方法.考查函数思想、化归与转化思想.考查综合分析问题和解决问题的能力. 4.【答案】(1)见详解;(2)8[,2)27. 【解析】(1)2()622(3)f x x ax x x a '=-=-. 令()0f x '=,得x =0或3ax =. 若a >0,则当(,0),3a x ⎛⎫∈-∞+∞⎪⎝⎭U 时,()0f x '>;当0,3a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在(,0),,3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减;若a =0,()f x 在(,)-∞+∞单调递增; 若a <0,则当,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭U 时,()0f x '>;当,03a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在,03a ⎛⎫⎪⎝⎭单调递减.(2)当03a <<时,由(1)知,()f x 在0,3a ⎛⎫ ⎪⎝⎭单调递减,在,13a ⎛⎫ ⎪⎝⎭单调递增,所以()f x 在[0,1]的最小值为32327a a f ⎛⎫=-+ ⎪⎝⎭,最大值为(0)=2f 或(1)=4f a -.于是 3227a m =-+,4,02,2,2 3.a a M a -<<⎧=⎨≤<⎩所以332,02,27,2 3.27a a a M m a a ⎧-+<<⎪⎪-=⎨⎪≤<⎪⎩当02a <<时,可知3227a a -+单调递减,所以M m -的取值范围是8,227⎛⎫⎪⎝⎭.当23a ≤<时,327a 单调递增,所以M m -的取值范围是8[,1)27.综上,M m -的取值范围是8[,2)27. 【名师点睛】这是一道常规的导数题目,难度比往年降低了不少.考查函数的单调性,最大值、最小值的计算.5.【答案】(Ⅰ)y x =与6427y x =-;(Ⅱ)见解析;(Ⅲ)3a =-. 【解析】(Ⅰ)由321()4f x x x x =-+得23()214f x x x '=-+.令()1f x '=,即232114x x -+=,得0x =或83x =.又(0)0f =,88()327f =,所以曲线()y f x =的斜率为1的切线方程是y x =与88273y x -=-,即y x =与6427y x =-.(Ⅱ)令()(),[2,4]g x f x x x =-∈-.由321()4g x x x =-得23()24g'x x x =-. 令()0g'x =得0x =或83x =.(),()g'x g x 的情况如下:所以()g x 的最小值为6-,最大值为0. 故6()0g x -≤≤,即6()x f x x -≤≤. (Ⅲ)由(Ⅱ)知,当3a <-时,()(0)|(0)|3M F g a a a ≥=-=->; 当3a >-时,()(2)|(2)|63M F a g a a ≥-=--=+>; 当3a =-时,()3M a =. 综上,当()M a 最小时,3a =-.【名师点睛】本题主要考查利用导函数研究函数的切线方程,利用导函数证明不等式的方法,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.6.【答案】(1)()f x 的单调递增区间是()3,+∞,单调递减区间是()0,3;(2)0,4⎛ ⎝⎦. 【解析】(1)当34a =-时,3()ln 04f x x x =->.3()4f 'x x =-=, 所以,函数()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞). (2)由1(1)2f a≤,得0a <≤当04a <≤时,()f x ≤2ln 0x -≥. 令1t a=,则t ≥.设()22ln ,g t t x t =≥则2()2ln g t t x =-.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭≤()2ln g t g x ≥=.记1()ln ,7p x x x =≥,则1()p'x x =-==.故所以,()(1)0p x p ≥=.因此,()2()0g t g p x ≥=≥.(ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,()g t g =…令211()(1),,e 7q x x x x ⎡⎤=++∈⎢⎥⎣⎦, 则()10q'x=+>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫⎪⎝⎭„.由(i )得,11(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭. 所以,()<0q x .因此()0g t g =>….由(i )(ii )知对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,),()0t g t ∈+∞…,即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()f x „.综上所述,所求a 的取值范围是4⎛ ⎝⎦.【名师点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用. 7.【答案】(1)2a =;(2)见解析;(3)见解析.【解析】(1)因为a b c ==,所以3()()()()()f x x a x b x c x a =---=-. 因为(4)8f =,所以3(4)8a -=, 解得2a =. (2)因为b c =,所以2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-, 从而2()3()3a b f 'x x b x +⎛⎫=-- ⎪⎝⎭.令()0f 'x =,得x b =或23a bx +=. 因为2,,3a ba b +都在集合{3,1,3}-中,且a b ≠, 所以21,3,33a b a b +===-.此时2()(3)(3)f x x x =-+,()3(3)(1)f 'x x x =+-. 令()0f 'x =,得3x =-或1x =.列表如下:所以()f x 的极小值为2(1)(13)(13)32f =-+=-.(3)因为0,1a c ==,所以32()()(1)(1)f x x x b x x b x bx =--=-++,2()32(1)f 'x x b x b =-++.因为01b <≤,所以224(1)12(21)30b b b ∆=+-=-+>, 则()f 'x 有2个不同的零点,设为()1212,x x x x <.由()0f 'x =,得121133b b x x ++==.列表如下:所以()f x 的极大值()1M f x =. 解法一:()321111(1)M f x x b x bx ==-++()221111211(1)[32(1)]3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭()2321(1)(1)227927b b b b b --+++=++23(1)2(1)(1)2272727b b b b +-+=-+(1)24272727b b +≤+≤.因此427M ≤. 解法二:因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-. 令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭.令()0g'x =,得13x =.列表如下:所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭. 所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤. 【名师点睛】本题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.8.【答案】(1)210x y --=;(2)见解析.【解析】(1)2(21)2()exax a x f x -+-+'=,(0)2f '=. 因此曲线()y f x =在点(0,1)-处的切线方程是210x y --=. (2)当1a ≥时,21()e (1e )e x x f x x x +-+≥+-+.令21()1ex g x x x +=+-+,则1()21ex g x x +'=++.当1x <-时,()0g x '<,()g x 单调递减;当1x >-时,()0g x '>,()g x 单调递增; 所以()g x (1)=0g ≥-.因此()e 0f x +≥.【名师点睛】本题考查函数与导数的综合应用,第一问由导数的几何意义可求出切线方程,第二问当1a ≥时,21()e (1e)e x x f x x x +-+≥+-+,令21()1e x g x x x +=+-+,求出()g x 的最小值即可证明.9.【答案】(1)在(0,2)单调递减,在(2,+∞)单调递增;(2)见解析.【解析】(1)f (x )的定义域为(0)+∞,,f ′(x )=a e x –1x. 由题设知,f ′(2)=0,所以a =212e . 从而f (x )=21e ln 12e x x --,f ′(x )=211e 2e x x-. 当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以f (x )在(0,2)单调递减,在(2,+∞)单调递增.(2)当a ≥1e 时,f (x )≥e ln 1exx --.设g (x )=e ln 1e x x --,则e 1()e x g x x'=-.当0<x <1时,g′(x )<0;当x >1时,g′(x )>0.所以x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0. 因此,当1ea ≥时,()0f x ≥. 【名师点睛】该题考查的是有关导数的应用问题,涉及的知识点有导数与极值、导数与最值、导数与函数的单调性的关系以及证明不等式问题,在解题的过程中,首先要确定函数的定义域,之后根据导数与极值的关系求得参数值,之后利用极值的特点,确定出函数的单调区间,第二问在求解的时候构造新函数,应用不等式的传递性证得结果.10.【答案】(1)在(–∞,3-3++∞)单调递增,在(3-3+减;(2)见解析.【解析】(1)当a =3时,f (x )=3213333x x x ---,f ′(x )=263x x --.令f ′(x )=0解得x =3-x =3+当x ∈(–∞,3-3++∞)时,f ′(x )>0;当x ∈(3-,3+ f ′(x )<0.故f (x )在(–∞,3-3++∞)单调递增,在(3-,3+(2)由于210x x ++>,所以()0f x =等价于32301x a x x -=++.设()g x =3231x a x x -++,则g ′(x )=2222(23)(1)x x x x x ++++≥0,仅当x =0时g ′(x )=0, 所以g (x )在(–∞,+∞)单调递增.故g (x )至多有一个零点,从而f (x )至多有一个零点.又f (3a –1)=22111626()0366a a a -+-=---<, f (3a +1)=103>,故f (x )有一个零点. 综上,f (x )只有一个零点.【名师点睛】(1)用导数求函数单调区间的步骤如下:①确定函数的定义域;②求导数;③由(或)解出相应的的取值范围,当时,在相应区间上是增函数;当时,在相应区间上是减增函数.(2)本题第二问重在考查零点存在性问题,解题的关键在于将问题转化为求证函数有唯一零点,可先证明其单调,再结合零点存在性定理进行论证. 11.【答案】(Ⅰ)12a =;(Ⅱ)(1,)+∞. 【解析】(Ⅰ)因为2()[(31)32]e xf x ax a x a =-+++, 所以2()[(1)1]e xf x ax a x '=-++.2(2)(21)e f a '=-,由题设知(2)0f '=,即2(21)e 0a -=,解得12a =. (Ⅱ)方法一:由(Ⅰ)得2()[(1)1]e (1)(1)e x xf x ax a x ax x '=-++=--.若a >1,则当1(,1)x a∈时,()0f x '<; 当(1,)x ∈+∞时,()0f x '>. 所以()f x 在x =1处取得极小值.若1a ≤,则当(0,1)x ∈时,110ax x -≤-<, 所以()0f x '>.所以1不是()f x 的极小值点. 综上可知,a 的取值范围是(1,)+∞. 方法二:()(1)(1)e xf x ax x '=--. (1)当a =0时,令()0f x '=得x =1.(),()f x f x '随x 的变化情况如下表:∴()f x 在x =1处取得极大值,不合题意. (2)当a >0时,令()0f x '=得121,1ax x ==. ①当12x x =,即a =1时,2()(1)e 0xf x x '=-≥,∴()f x 在R 上单调递增, ∴()f x 无极值,不合题意.②当12x x >,即0<a <1时,(),()f x f x '随x 的变化情况如下表:∴()f x 在x =1处取得极大值,不合题意.③当12x x <,即a >1时,(),()f x f x '随x 的变化情况如下表:∴()f x 在x =1处取得极小值,即a >1满足题意. (3)当a <0时,令()0f x '=得121,1ax x ==. (),()f x f x '随x 的变化情况如下表:∴()f x 在x =1处取得极大值,不合题意. 综上所述,a 的取值范围为(1,)+∞.【名师点睛】导数类问题是高考数学中的必考题,也是压轴题,主要考查的形式有以下四个:①考查导数的几何意义,涉及求曲线切线方程的问题;②利用导数证明函数的单调性或求单调区间问题;③利用导数求函数的极值、最值问题;④关于不等式的恒成立问题.解题时需要注意以下两个方面:①在求切线方程问题时,注意区别在某一点和过某一点解题步骤的不同;②在研究单调性及极值、最值问题时常会涉及分类讨论的思想,要做到不重不漏;③不等式的恒成立问题属于高考中的难点,要注意问题转换的等价性.12.【答案】(I )x +y =0;(II )函数f (x )的极大值为f (x )的极小值为−;(III )d 的取值范围为(,)-∞+∞U .【解析】(Ⅰ)解:由已知,可得f (x )=x (x −1)(x +1)=x 3−x ,故()f x '=3x 2−1, 因此f (0)=0,(0)f '=−1,又因为曲线y =f (x )在点(0,f (0))处的切线方程为y −f (0)=(0)f '(x −0), 故所求切线方程为x +y =0. (Ⅱ)解:由已知可得f (x )=(x −t 2+3)(x −t 2)(x −t 2−3)=(x −t 2)3−9(x −t 2)=x 3−3t 2x 2+(3t 22−9)x −t 23+9t 2.故()f x '=3x 2−6t 2x +3t 22−9.令()f x '=0,解得x =t 2x =t 2 当x 变化时,()f x ',f (x )的变化如下表:所以函数f (x )的极大值为f (t 2)=(3−9×(f (x )的极小值为f (t 2)3−9×−(Ⅲ)解:曲线y =f (x )与直线y =−(x −t 2)−有三个互异的公共点等价于关于x 的方程(x −t 2+d )(x −t 2)(x −t 2−d )+(x −t 2=0有三个互异的实数解,令u =x −t 2,可得u 3+(1−d 2)u .设函数g (x )=x 3+(1−d 2)xy =f (x )与直线y =−(x −t 2)−y =g (x )有三个零点.()g'x =3x 3+(1−d 2).当d 2≤1时,()g'x ≥0,这时()g x 在R 上单调递增,不合题意. 当d 2>1时,()g'x =0,解得x 1=x 2.易得,g (x )在(−∞,x 1)上单调递增,在[x 1,x 2]上单调递减,在(x 2,+∞)上单调递增.g (x )的极大值g (x 1)=g(+. g (x )的极小值g (x 2)=g)=−3221)9d -+ 若g (x 2)≥0,由g (x )的单调性可知函数y =g (x )至多有两个零点,不合题意.若2()0,g x <即322(1)27d ->,也就是||d >,此时2||d x >,(||)||0,g d d =+>且312||,(2||)6||2||0d x g d d d -<-=--+<-<,从而由()g x 的单调性,可知函数()y g x =在区间1122(2||,),(,),(,||)d x x x x d -内各有一个零点,符合题意.所以,d的取值范围是(,)-∞+∞U .【名师点睛】本小题主要考查导数的运算、导数的几何意义、运用导数研究函数的性质等基础知识和方法,考查函数思想和分类讨论思想,考查综合分析问题和解决问题的能力. 13.【答案】(Ⅰ)见解析;(Ⅱ)见解析.【解析】(Ⅰ)函数f (x)的导函数1()f x x'=, 由12()()f x f x ''=1211x x =, 因为12x x ≠12=.=≥ 因为12x x ≠,所以12256x x >.由题意得121212()()ln ln ln()f x f x x x x x +==.设()ln g x x =,则1()4)4g x x'=, 所以所以g (x )在[256,+∞)上单调递增, 故12()(256)88ln 2g x x g >=-, 即12()()88ln 2f x f x +>-. (Ⅱ)令m =()e a k -+,n =21()1a k++,则 f (m )–km –a >|a |+k –k –a ≥0, f (n )–kn –a <)a n k n-≤)n k <0, 所以,存在x 0∈(m ,n )使f (x 0)=kx 0+a ,所以,对于任意的a ∈R 及k ∈(0,+∞),直线y =kx +a 与曲线y =f (x )有公共点. 由f (x )=kx +a 得ln x a k x-=.设()h x =则22ln )1)((12x ag x x x a x h '=--+--+=, 其中(n )l g x x -=. 由(Ⅰ)可知g (x )≥g (16),又a ≤3–4ln2, 故–g (x )–1+a ≤–g (16)–1+a =–3+4ln2+a ≤0,所以h′(x)≤0,即函数h(x)在(0,+∞)上单调递减,因此方程f(x)–kx–a=0至多1个实根.综上,当a≤3–4ln2时,对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.【名师点睛】本题主要考查函数的单调性,导数的运算及其应用,同时考查逻辑思维能力和综合应用能力.14.【答案】(1)矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ)平方米,sinθ的取值范围是[14,1];(2)当θ=π6时,能使甲、乙两种蔬菜的年总产值最大.【解析】(1)连结PO并延长交MN于H,则PH⊥MN,所以OH=10.过O作OE⊥BC于E,则OE∥MN,所以∠COE=θ,故OE=40cosθ,EC=40sinθ,则矩形ABCD的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ),△CDP的面积为12×2×40cosθ(40–40sinθ)=1600(cosθ–sinθcosθ).过N作GN⊥MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10.令∠GOK=θ0,则sinθ0=14,θ0∈(0,π6).当θ∈[θ0,π2]时,才能作出满足条件的矩形ABCD,所以sinθ的取值范围是[14,1].答:矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ)平方米,sinθ的取值范围是[14,1].(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k(k>0),则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ–sinθcosθ)=8000k(sinθcosθ+cosθ),θ∈[θ0,π2 ].设f(θ)=sinθcosθ+cosθ,θ∈[θ0,π2 ],则222()cos sin sin (2sin sin 1)(2sin 1)(sin 1)f θθθθθθθθ'=--=-+-=--+. 令()=0f θ',得θ=π6, 当θ∈(θ0,π6)时,()0f θ'>,所以f (θ)为增函数; 当θ∈(π6,π2)时,()0f θ'<,所以f (θ)为减函数, 因此,当θ=π6时,f (θ)取到最大值. 答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大. 【名师点睛】本小题主要考查三角函数的应用、用导数求最值等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力. 15.【答案】(1)见解析;(2)e2;(3)见解析. 【解析】(1)函数f (x )=x ,g (x )=x 2+2x -2,则f ′(x )=1,g ′(x )=2x +2. 由f (x )=g (x )且f ′(x )= g ′(x ),得222122x x x x ⎧=+-⎨=+⎩,此方程组无解, 因此,f (x )与g (x )不存在“S ”点.(2)函数21f x ax =-(),()ln g x x =, 则12f x ax g x x'='=(),(). 设x 0为f (x )与g (x )的“S ”点,由f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),得200001ln 12ax x ax x ⎧-=⎪⎨=⎪⎩,即200201ln 21ax x ax ⎧-=⎪⎨=⎪⎩,(*) 得01ln 2x =-,即120e x -=,则1221e 22(e )a -==. 当e2a =时,120e x -=满足方程组(*),即0x 为f (x )与g (x )的“S ”点.因此,a 的值为e 2. (3)对任意a >0,设32()3h x x x ax a =--+.因为(0)0(1)1320h a h a a =>=--+=-<,,且h (x )的图象是不间断的,所以存在0x ∈(0,1),使得0()0h x =.令03002e (1)x x b x =-,则b >0.函数2e ()()xb f x x a g x x=-+=,,则2e (1)()2()x b x f x x g x x-'=-=′,. 由f (x )=g (x )且f ′(x )=g ′(x ),得22e e (1)2xx b x a x b x x x ⎧-+=⎪⎪⎨-⎪-=⎪⎩,即00320030202e e (1)2e (1)2e (1)x x xx x x a x x x x x x x ⎧-+=⋅⎪-⎪⎨-⎪-=⋅⎪-⎩,(**) 此时,0x 满足方程组(**),即0x 是函数f (x )与g (x )在区间(0,1)内的一个“S 点”. 因此,对任意a >0,存在b >0,使函数f (x )与g (x )在区间(0,+∞)内存在“S 点”.【名师点睛】本小题主要考查利用导数研究初等函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.16.【答案】(1)当0a =时,)(x f 在(,)-∞+∞单调递增;当0a >时,()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增;当0a <时,()f x 在(,ln())2a -∞-单调递减,在(ln(),)2a-+∞单调递增;(2)34[2e ,1]-.【解析】(1)函数()f x 的定义域为(,)-∞+∞,22()2e e (2e )(e )xx x x f x a a a a '=--=+-,①若0a =,则2()e xf x =,在(,)-∞+∞单调递增. ②若0a >,则由()0f x '=得ln x a =.当(,ln )x a ∈-∞时,()0f x '<;当(ln ,)x a ∈+∞时,()0f x '>,故()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增.③若0a <,则由()0f x '=得ln()2ax =-.当(,ln())2a x ∈-∞-时,()0f x '<;当(ln(),)2a x ∈-+∞时,()0f x '>,故()f x 在(,ln())2a -∞-单调递减,在(ln(),)2a -+∞单调递增.(2)①若0a =,则2()e xf x =,所以()0f x ≥.②若0a >,则由(1)得,当ln x a =时,()f x 取得最小值,最小值为2(ln )ln f a a a =-.从而当且仅当2ln 0a a -≥,即1a ≤时,()0f x ≥.③若0a <,则由(1)得,当ln()2a x =-时,()f x 取得最小值,最小值为23(ln())[ln()]242a a f a -=--.从而当且仅当23[ln()]042aa --≥,即342e a ≥-时()0f x ≥.综上,a 的取值范围为34[2e ,1]-.【名师点睛】本题主要考查导数两大方面的应用:(1)函数单调性的讨论:运用导数知识来讨论函数单调性时,首先考虑函数的定义域,再求出()f x ',由()f x '的正负,得出函数()f x 的单调区间;(2)函数的最值(极值)的求法:由确认的单调区间,结合极值点的定义及自变量的取值范围,得出函数()f x 的极值或最值.17.【答案】(1)在(,1-∞--和(1)-++∞单调递减,在(11---单调递增;(2)[1,)+∞. 【解析】(1)2()(12)e xf x x x '=--.令()0f x '=得1x x =--=-当(,1x ∈-∞--时,()0f x '<;当(11x ∈--+时,()0f x '>;当(1)x ∈-+∞时,()0f x '<.所以()f x 在(,1-∞-和(1)-++∞单调递减,在(11---+单调递增.(2)()(1+)(1)e x f x x x =-.当a ≥1时,设函数h (x )=(1−x )e x ,h′(x )= −x e x <0(x >0),因此h (x )在[0,+∞)单调递减,而h (0)=1, 故h (x )≤1,所以f (x )=(x +1)h (x )≤x +1≤ax +1.当0<a <1时,设函数g (x )=e x −x −1,g ′(x )=e x −1>0(x >0),所以g (x )在[0,+∞)单调递增,而g (0)=0,故e x ≥x +1.当0<x <1时,2()(1)(1)f x x x >-+,22(1)(1)1(1)x x ax x a x x -+--=---,取0x =,则2000000(0,1),(1)(1)10,()1x x x ax f x ax ∈-+--=>+故.当0a ≤时,取051,2x -=则0(0,1),x ∈20000()(1)(1)11f x x x ax >-+=>+. 综上,a 的取值范围是[1,+∞).【名师点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.18.【答案】(1)当0≥a 时,)(x f 在),0(+∞单调递增;当0<a 时,)(x f 在)21,0(a -单调递增,在),21(+∞-a单调递减;(2)详见解析【解析】(1)()f x 的定义域为(0,+),()()1211()221x ax f x ax a x x++'=+++=. 若0a ≥,则当(0)x ∈+∞,时,()0f x '>,故()f x 在(0,+)单调递增. 若0a <,则当1(0,)2x a ∈-时,()0f x '>;当1()2x a ∈-+∞,时,()0f x '<.故()f x 在1(0,)2a-单调递增,在1()2a-+∞,单调递减. (2)由(1)知,当0a <时,()f x 在12x a=-取得最大值,最大值为 111()ln()1224f a a a-=---. 所以3()24f x a ≤--等价于113ln()12244a a a ---≤--,即11ln()1022a a-++≤. 设()ln 1g x x x =-+,则1()1g x x '=-.当(0,1)x ∈时,()0g x '>;当x ∈(1,+)时,()0g x '<.所以()g x 在(0,1)单调递增,在(1,+)单调递减.故当x =1时()g x 取得最大值,最大值为g (1)=0.所以当x >0时,()0g x ≤.从而当a <0时,11ln()1022a a -++≤,即3()24f x a≤--. 【名师点睛】利用导数证明不等式的常见类型及解题策略:(1)构造差函数()()()h x f x g x =-.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.19.【答案】(1)1())2x f x x -'=>;(2)121[0,e ]2-.【解析】(1)因为(1x '-=-,(e )e x x'--=-,所以()(1(x xf x x --'=--1)2x =>.(2)由()0xf x -'==,解得1x =或52x =.因为又21()1)e 02x f x -=≥, 所以f (x )在区间1[,)2+∞上的取值范围是121[0,e ]2-.【名师点睛】本题主要考查导数两大方面的应用:(一)函数单调性的讨论:运用导数知识来讨论函数单调性时,首先考虑函数的定义域,再求出()f'x ,由()f'x 的正负,得出函数()f x 的单调区间;(二)函数的最值(极值)的求法:由单调区间,结合极值点的定义及自变量的取值范围,得出函数()f x 的极值或最值.20.【答案】(Ⅰ)1y =;(Ⅱ)最大值为1;最小值为π2-.【解析】(Ⅰ)因为()e cos x f x x x =-,所以()e (cos sin )1,(0)0xf x x x f ''=--=.又因为(0)1f =,所以曲线()y f x =在点(0,(0))f 处的切线方程为1y =.(Ⅱ)设()e (cos sin )1x h x x x =--,则()e (cos sin sin cos )2e sin x xh x x x x x x '=---=-. 当π(0,)2x ∈时,()0h x '<, 所以()h x 在区间π[0,]2上单调递减.所以对任意π(0,]2x ∈有()(0)0h x h <=,即()0f x '<. 所以函数()f x 在区间π[0,]2上单调递减.因此()f x 在区间π[0,]2上的最大值为(0)1f =,最小值为ππ()22f =-. 【名师点睛】这道导数题并不难,比一般意义上的压轴题要简单很多,第二问比较有特点的是需要两次求导数,因为通过()f x '不能直接判断函数的单调性,所以需要再求一次导数,设()()h x f x '=,再求()h x ',一般这时就可求得函数()h x '的零点,或是()0h x '>(()0h x '<)恒成立,这样就能知道函数()h x 的单调性,再根据单调性求其最值,从而判断()y f x =的单调性,最后求得结果.21.【答案】(Ⅰ)递增区间为(,)a -∞,(4,)a -+∞,递减区间为(),4a a -;(Ⅱ)(ⅰ)见解析,(ⅱ)[7],1-.【解析】(Ⅰ)由324()63()f x x a x x a b =--+-,可得2()3123()3()((44))f 'x x a x a a x x a -=---=--,令()0f 'x =,解得x a =或4x a =-.由||1a ≤,得4a a <-. 当x 变化时,()f 'x ,()f x 的变化情况如下表:所以,()f x 的单调递增区间为(,)a -∞,(4,)a -+∞,单调递减区间为(),4a a -.(Ⅱ)(i )因为()e (()())xx x g'f f 'x =+,由题意知000()e ()ex x x x g g'⎧=⎪⎨=⎪⎩, 所以0000000()e e e (()())ex x xx f f f x 'x x ⎧=⎪⎨+=⎪⎩,解得00()1()0f 'x x f =⎧⎨=⎩.所以,()f x 在0x x =处的导数等于0.(ii )因为()e xg x ≤,00[11],x x x ∈-+,由e 0x >,可得()1f x ≤.又因为0()1f x =,0()0f 'x =,故0x 为()f x 的极大值点,由(Ⅰ)知0x a =. 另一方面,由于||1a ≤,故14a a +<-,由(Ⅰ)知()f x 在(,)1a a -内单调递增,在(),1a a +内单调递减, 故当0x a =时,()()1f f x a ≤=在[1,1]a a -+上恒成立,从而()e xg x ≤在00,[11]x x -+上恒成立.由32()63()14a a f a a a a b =---+=,得32261b a a =-+,11a -≤≤.令32()261t x x x =-+,[1,1]x ∈-,所以2()612t'x x x =-,令()0t'x =,解得2x =(舍去),或0x =. 因为(1)7t -=-,(1)3t =-,(0)1t =, 故()t x 的值域为[7],1-. 所以,b 的取值范围是[7],1-.【名师点睛】本题考查导数的应用,属于中档问题,第一问的关键是根据条件判断两个极值点的大小,从而避免讨论;第二问要注意切点是公共点,切点处的导数相等,求b 的取值范围的关键是得出0x a =,然后构造函数进行求解.22.【答案】(Ⅰ)390x y --=,(Ⅱ)见解析.【解析】(Ⅰ)由题意2()f x x ax '=-,所以,当2a =时,(3)0f =,2()2f x x x '=-, 所以(3)3f '=,因此,曲线()y f x =在点(3,(3))f 处的切线方程是3(3)y x =-, 即390x y --=.(Ⅱ)因为()()()cos sin g x f x x a x x =+--, 所以()()cos ()sin cos g x f x x x a x x ''=+---,()()sin x x a x a x =--- ()(sin )x a x x =--, 令()sin h x x x =-, 则()1cos 0h x x '=-≥, 所以()h x 在R 上单调递增,因为(0)0h =,所以,当0x >时,()0h x >;当0x <时,()0h x <. (1)当0a <时,()()(sin )g x x a x x '=--,当(,)x a ∈-∞时,0x a -<,()0g x '>,()g x 单调递增; 当(,0)x a ∈时,0x a ->,()0g x '<,()g x 单调递减; 当(0,)x ∈+∞时,0x a ->,()0g x '>,()g x 单调递增. 所以当x a =时()g x 取到极大值,极大值是31()sin 6g a a a =--, 当0x =时()g x 取到极小值,极小值是(0)g a =-. (2)当0a =时,()(sin )g x x x x '=-,当(,)x ∈-∞+∞时,()0g x '≥,()g x 单调递增;所以()g x 在(,)-∞+∞上单调递增,()g x 无极大值也无极小值. (3)当0a >时,()()(sin )g x x a x x '=--,当(,0)x ∈-∞时,0x a -<,()0g x '>,()g x 单调递增; 当(0,)x a ∈时,0x a -<,()0g x '<,()g x 单调递减; 当(,)x a ∈+∞时,0x a ->,()0g x '>,()g x 单调递增. 所以当0x =时()g x 取到极大值,极大值是(0)g a =-; 当x a =时()g x 取到极小值,极小值是31()sin 6g a a a =--. 综上所述:当0a <时,函数()g x 在(,)a -∞和(0,)+∞上单调递增,在(,0)a 上单调递减,函数既有极大值,又有极小值,极大值是31()sin 6g a a a =--,极小值是(0)g a =-; 当0a =时,函数()g x 在(,)-∞+∞上单调递增,无极值;当0a >时,函数()g x 在(,0)-∞和(,)a +∞上单调递增,在(0,)a 上单调递减,函数既有极大值,又有极小值,极大值是(0)g a =-,极小值是31()sin 6g a a a =--. 【名师点睛】(1)求函数f (x )极值的步骤:①确定函数的定义域;②求导数f ′(x );③解方程f ′(x )=0,求出函数定义域内的所有根;④检验f ′(x )在f ′(x )=0的根x 0左右两侧值的符号,如果左正右负,那么f (x )在x 0处取极大值,如果左负右正,那么f (x )在x 0处取极小值.(2)若函数y =f (x )在区间(a ,b )内有极值,那么y =f (x )在(a ,b )内绝不是单调函数,即在某区间上单调函数没有极值.23.【答案】(1)2239a b a=+,定义域为(3,)+∞;(2)见解析;(3)(36],. 【解析】(1)由32()1f x x ax bx =+++,得222()323()33a a f x x axb x b '=++=++-.当3a x =-时,()f x '有极小值23ab -.因为()f x '的极值点是()f x 的零点.所以33()1032793a a a abf -=-+-+=,又0a >,故2239a b a=+.因为()f x 有极值,故()=0f x '有实根,从而231(27)039a b a a-=-≤,即3a ≥.当3a =时,()>0(1)f x x '≠-,故()f x 在R 上是增函数,()f x 没有极值;当3a >时,()=0f x '有两个相异的实根1x 2x列表如下:故()f x 的极值点是12,x x .从而3a >.因此2239a b a=+,定义域为(3,)+∞.(2)由(129. 设23()=9t g t t +,则22223227()=99t g t t t-'-=.当()2t ∈+∞时,()0g t '>,从而()g t 在)+∞上单调递增.因为3a >,所以>故(g g因此2>3b a .(3)由(1)知,()f x 的极值点是12,x x ,且1223x x a +=-,22212469a b x x -+=.从而323212111222()()11f x f x x ax bx x ax bx +=+++++++2222121122121212(32)(32)()()23333x x x ax b x ax b a x x b x x =++++++++++ 346420.279a ab ab -=-+=记()f x ,()f x '所有极值之和为()h a ,因为()f x '的极值为221339a b a a-=-+,所以213()=9h a a a -+,3a >.因为223()=09h a a a '--<,于是()h a 在(3,)+∞上单调递减. 因为7(6)=2h -,于是()(6)h a h ≥,a .故6,.因此a的取值范围为(36]【名师点睛】涉及函数的零点问题、方程解的个数问题、函数图象的交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.。
(十六)导数及其应用1.导数概念及其几何意义(1)了解导数概念的实际背景.(2)理解导数的几何意义.2.导数的运算(1)能根据导数定义求函数y=C(C为常数),的导数.(2)能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.•常见基本初等函数的导数公式:•常用的导数运算法则:法则1:法则2:法则3:3.导数在研究函数中的应用(1)了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).(iii)设a<0,若e2a≥-,则由(1)知,()f x在()1,+∞单调递增.又当1x≤时,()f x<0,故()f x不存在两个零点;若e 2a <-,则由(1)知,()f x 在()()1,ln 2a -单调递减,在单调递增.又当1x ≤时()f x <0,故()f x 不存在两个零点.综上,a 的取值范围为()0,+∞.【名师点睛】本题第(1)问是用导数研究函数单调性,对含有参数的函数单调性的确定,通常要根据参数进行分类讨论,要注意分类讨论的原则:互斥、无漏、最简;第(2)问是求参数取值范围,由于这类问题常涉及导数、函数、不等式等知识,越来越受到高考命题者的青睐,解决此类问题的思路是构造适当的函数,利用导数研究函数的单调性或极值破解.考向二 利用导数研究函数的极值问题样题3 已知函数,若在区间()0,3内存在极值点,则实数a 的取值范围是A .()0,3B .1,22⎛⎫ ⎪⎝⎭C .D .【答案】C【名师点睛】本题考查导数在求函数极值中的应用,比较21a a -与的大小,进行讨论. 样题4 已知函数.(1)当1x =时,()f x 有极小值196-,求实数,b c ; (2)设,当()0,1x ∈时,在()g x 图象上任意一点P 处的切线的斜率为k ,若1k <,求实数b 的取值范围.【答案】(1)12b =,2c =-;(2)(],0-∞.(2),∴, 221x bx +<对一切01x <<恒成立,∴122x b x <-对一切01x <<恒成立. 又122x y x =-在()0,1上为减函数,,∴0b ≤.。
2019年高考文科数学考点梳理之导数的概念及计算和导数的应用汇编考点11 导数的概念及计算1.导数概念及其几何意义 (1)了解导数概念的实际背景. (2)理解导数的几何意义. 2.导数的运算(1)能根据导数定义求函数y =C (C 为常数),21,,y x y x y x===的导数. (2)能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数. • 常见基本初等函数的导数公式:1()0();(),n n C C x nx n -+''==∈N 为常数; (sin )cos ;(cos )sin x x x x ''==-;(e )e ;()ln (0,1)x x x x a a a a a ''==>≠且;11(ln );(log )log e(0,1)a a x x a a x x''==>≠且. • 常用的导数运算法则:法则1:()()()()u x v x u x v x ±'⎡⎦'⎤±⎣'=.法则2:()()()()()()·u x v x u x v x u x v x ⎡⎤⎣⎦'''=+.法则3:2()()()()()[](()0)()()u x u x v x u x v x v x v x v x ''-'=≠.一、导数的概念 1.平均变化率函数()y f x =从1x 到2x 的平均变化率为2121()()f x f x x x --,若21x x x ∆=-,2()y f x ∆=-1()f x ,则平均变化率可表示为y x∆∆.2.瞬时速度一般地,如果物体的运动规律可以用函数()s s t =来描述,那么,物体在时刻t 的瞬时速度v 就是物体在t 到t t +∆这段时间内,当t ∆无限趋近于0时,st∆∆无限趋近的常数. 3.瞬时变化率4.导数的概念一般地,函数()y f x =在0x x =处的瞬时变化率是0000()()limlim x x f x +x f x yx x∆→∆→∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =',即00()l i mx yf x x ∆→∆'==∆000()()lim x f x +x f x x∆→∆-∆.【注】函数()y f x =在0x x =处的导数是()y f x =在0x x =处的瞬时变化率. 5.导函数的概念如果函数()y f x =在开区间(a ,b )内的每一点都是可导的,则称()f x 在区间(a ,b )内可导.这样,对开区间(a ,b )内的每一个值x ,都对应一个确定的导数()f x ',于是在区间(a ,b )内()f x '构成一个新的函数,我们把这个函数称为函数()y f x =的导函数(简称导数),记为()f x '或y ',即()f x y ''==0()()li mx f x +x f x x∆→∆-∆.二、导数的几何意义函数()y f x =在0x x =处的导数0()f x '就是曲线()y f x =在点00(,())x f x 处的切线的斜率k ,即0000()()()limx f x +x f x k f x x∆→∆-'==∆.【注】曲线的切线的求法:若已知曲线过点P (x 0,y 0),求曲线过点P 的切线,则需分点P (x 0,y 0)是切点和不是切点两种情况求解.(1)当点P (x 0,y 0)是切点时,切线方程为y −y 0=f ′(x 0)(x −x 0); (2)当点P (x 0,y 0)不是切点时,可分以下几步完成:第一步:设出切点坐标P ′(x 1,f (x 1));第二步:写出过P ′(x 1,f (x 1))的切线方程为y −f (x 1)=f ′ (x 1)(x −x 1); 第三步:将点P 的坐标(x 0,y 0)代入切线方程求出x 1;第四步:将x 1的值代入方程y −f (x 1)=f ′(x 1)(x −x 1),可得过点P (x 0,y 0)的切线方程. 三、导数的计算1.基本初等函数的导数公式2.导数的运算法则(1)()()()()u x v x u x v x ±'⎡⎦'⎤±⎣'=.(2)()()()()()()·u x v x u x v x u x v x ⎡⎤⎣⎦'''=+.(3)2()()()()()[](()0)()()u x u x v x u x v x v x v x v x ''-'=≠. 3.复合函数的导数复合函数y=f (g (x ))的导数和函数y=f (u ),u=g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.考向一 导数的计算1.导数计算的原则和方法(1)原则:先化简解析式,使之变成能用八个求导公式求导的函数的和、差、积、商,再求导. (2)方法:①连乘积形式:先展开化为多项式的形式,再求导;②分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导; ③对数形式:先化为和、差的形式,再求导; ④根式形式:先化为分数指数幂的形式,再求导;⑤三角形式:先利用三角函数公式转化为和或差的形式,再求导. 2.求复合函数的导数的关键环节和方法步骤 (1)关键环节:①中间变量的选择应是基本函数结构; ②正确分析出复合过程;③一般是从最外层开始,由外及里,一层层地求导; ④善于把一部分表达式作为一个整体; ⑤最后结果要把中间变量换成自变量的函数. (2)方法步骤:①分解复合函数为基本初等函数,适当选择中间变量; ②求每一层基本初等函数的导数;③每层函数求导后,需把中间变量转化为自变量的函数.典例1 求下列函数的导函数:(1)42356y x x x --=+; (2)21y x x=+; (3)2cos y x x =; (4)tan y x =.【名师点睛】熟记基本初等函数的求导公式,导数的四则运算法则是正确求导数的基础.(1)运用基本初等函数求导公式和运算法则求函数()y f x =在开区间(a ,b )内的导数的基本步骤: ①分析函数()y f x =的结构和特征;②选择恰当的求导公式和运算法则求导;③整理得结果.(2)对较复杂的函数求导数时,先化简再求导.如对数函数的真数是根式或分式时,可用对数的性质将真数转化为有理式或整式求解更为方便;对于三角函数,往往需要利用三角恒等变换公式,将函数式进行化简,使函数的种类减少,次数降低,结构尽量简单,从而便于求导.1.已知函数2()22(1(1))f x x x f f ++'=,则()2f '的值为A .2-B .0C .4-D .6-考向二 导数的几何意义求曲线y =f (x )的切线方程的类型及方法(1)已知切点P (x 0, y 0),求y =f (x )过点P 的切线方程:求出切线的斜率f ′(x 0),由点斜式写出方程; (2)已知切线的斜率为k ,求y =f (x )的切线方程:设切点P (x 0, y 0),通过方程k =f ′(x 0)解得x 0,再由点斜式写出方程;(3)已知切线上一点(非切点),求y =f (x )的切线方程:设切点P (x 0, y 0),利用导数求得切线斜率f ′(x 0),再由斜率公式求得切线斜率,列方程(组)解得x 0,最后由点斜式或两点式写出方程.(4)若曲线的切线与已知直线平行或垂直,求曲线的切线方程时,先由平行或垂直关系确定切线的斜率,再由k =f ′(x 0)求出切点坐标(x 0, y 0),最后写出切线方程. (5)①在点P 处的切线即是以P 为切点的切线,P 一定在曲线上.②过点P 的切线即切线过点P ,P 不一定是切点.因此在求过点P 的切线方程时,应首先检验点P 是否在已知曲线上.典例2 已知函数2ln y x x =.(1)求这个函数的图象在1x =处的切线方程;(2)若过点()0,0的直线l 与这个函数图象相切,求直线l 的方程. 【解析】(1)2ln y x x x '=+, 当1x =时,0,1y y '==,∴这个函数的图象在1x =处的切线方程为1y x =-.【规律总结】求切线方程的步骤: (1)利用导数公式求导数. (2)求斜率. (3)写出切线方程.注意导数为0和导数不存在的情形.2.已知函数,则函数的图象在处的切线方程为A .B .C .D .1.函数在处的导数是A .0B .1C .D .2.已知函数的导函数是,且,则实数的值为A .B .C .D .13.设函数的导函数记为,若,则A .-1B .C .1D .34.已知函数的图象如图,是的导函数,则下列数值排序正确的是A .B .C .D .5.已知过曲线e xy =上一点()00,P x y 作曲线的切线,若切线在y 轴上的截距小于0,则0x 的取值范围是A .()0,+∞BC .()1,+∞D .()2,+∞6.已知是函数的导函数,且对任意的实数都有(是自然对数的底数),,则A .B .C .D .7.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:300()2t M t M -=,其中0M 为0t =时铯137的含量,已知30t =时,铯137含量的变化率为10ln 2-(太贝克/年),则(60)M = A .5太贝克 B .75ln 2太贝克 C .150ln 2太贝克 D .150太贝克8.设过曲线(为自然对数的底数)上任意一点处的切线为,总存在过曲线上一点处的切线,使得,则实数的取值范围为 A . B . C .D .9,则(1)f '=__________. 10.已知函数的导函数为,且满足,则_________.11.曲线的切线方程为,则实数的值为_________.12.曲线250xy x y -+-=在点()1,2A 处的切线与两坐标轴所围成的三角形的面积为_________. 13.求下列函数的导数:(1)21cos xy x +=; (2)()3ln xy x x =⋅-.14.已知函数()32f x x bx cx d =+++的图象过点()0,2P ,且在点()()1,1M f --处的切线方程为670x y -+=.(1)求()1f -和()1f '-的值;(2)求函数()f x 的解析式.1.(2018新课标全国Ⅰ文科)设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x =2.(2016山东文科)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是 A .y =sin x B .y =ln x C .y =e xD .y =x 33.(2016四川文科)设直线l 1,l 2分别是函数f (x )=ln 01,ln ,1x x x x -<<⎧⎨>⎩,图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是 A .(0,1) B .(0,2) C .(0,+∞)D .(1,+ ∞)4.(2018天津文科)已知函数f (x )=e xln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为__________. 5.(2018新课标全国Ⅱ文科)曲线2ln y x =在点(1,0)处的切线方程为__________.6.(2017天津文科)已知a ∈R ,设函数()ln f x ax x =-的图象在点(1,(1)f )处的切线为l ,则l 在y 轴上的截距为___________.7.(2017北京文科节选)已知函数()e cos x f x x x =-. (Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程;8.(2017山东文科节选)已知函数()3211,32f x x ax a =-∈R . (Ⅰ)当a =2时,求曲线()y f x =在点()()3,3f 处的切线方程;9.(2017天津文科节选)设,a b ∈R ,||1a ≤.已知函数32()63(4)f x x x a a x b =---+,()e ()x g x f x =. (Ⅱ)已知函数()y g x =和e x y =的图象在公共点(x 0,y 0)处有相同的切线, (i )求证:()f x 在0x x =处的导数等于0;10.(2017浙江节选)已知函数f (x )=(x e x -(12x ≥). (Ⅰ)求f (x )的导函数;2.【答案】C【解析】∵,∴,∴,又,∴所求切线方程为,即.故选C.1.【答案】C【解析】因为,故选C.2.【答案】B【解析】,选B.3.【答案】D【解析】根据题意,得,由,得,化简可得,即,故选D.4.【答案】C【解析】结合函数的图象可知过点的切线的倾斜角较大,过点的切线的倾斜角较小,又因为过点的切线的斜率,过点的切线的斜率,直线的斜率,故,应选C.5.【答案】C【解析】因为()0e xk f x'==,所以切线方程为()00e xy y x x-=-,即()00e ex xy x x-=-,令0x=得()01e xy x=-,截距小于0时,()01e0xy x=-<,解得1x>,故选C.6.【答案】D【解析】令G (x )=()exf x ,则G ′(x )==2x -2,可设G (x )=x 2+c ,∵G (0)=f (0)=1,∴c =1.∴f (x )=(x 2+1)ex故选D.8.【答案】C【解析】因为切线,的切点分别为而,所以.因为,所以(.因为,所以,因此,选C .9.【答案】12.【解析】 1x =,得()()111f f ='-',解得 10.【答案】【解析】求导得,把代入得,解得.11.【答案】212.【答案】496【解析】由250xy x y -+-=,得()52x y f x x +==+,∴()()232f x x -='+,∴()113f '=-, ∴曲线在点()1,2A 处的切线方程为()1213y x -=--. 令0x =,得73y =;令0y =,得7x =. ∴切线与两坐标轴所围成的三角形的面积为17497236S =⨯⨯=. 13.【解析】(1()()()24sin 1cos 2x x x x x --+⋅=3sin 2cos 2x x x x++=-. (2)()()()3ln 3ln xxy x x x x '⋅⋅''=-+-()13ln3ln 31x x x x x ⎛⎫=⋅⋅-+⋅- ⎪⎝⎭13ln3ln ln31x x x x ⎛⎫=-+- ⎪⎝⎭.14.【解析】(1)∵()f x 在点()()1,1M f --处的切线方程为670x y -+=,故点()()1,1f --在切线670x y -+=上,且切线斜率为6,得()11f -=且()16f '-=.(2)∵()f x 过点()0,2P ,∴2d =,∵()32f x x bx cx d =+++,∴2()32f x x bx c '=++,由()16f '-=得326b c -+=,又由()11f -=,得11b c d -+-+=,联立方程得232611d b c b c d =-+==-+-+⎧⎪⎨⎪⎩,解得332b c d ⎧=-=-=⎪⎨⎪⎩,故()32332f x x x x =--+.1.【答案】D 【解析】因为函数是奇函数,所以,解得,所以,,所以,所以曲线在点处的切线方程为,化简可得,故选D.【名师点睛】该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果. 2.【答案】A【解析】当sin y x =时,cos y x '=,cos 0cos 1⋅π=-,所以在函数sin y x =的图象上存在两点,使条件成立,故A 正确;函数3ln ,e ,x y x y y x ===的导数值分别为10,e 0,x y y y x'''=>=>=230x ≥,不符合题意,故选A . 3.【答案】A【解析】设111222(,ln ),(,ln )P x x P x x -(不妨设121,01x x ><<),则由导数的几何意义易得切线12,l l 的斜率分别为121211,.k k x x ==-由已知得12122111,1,.k k x x x x =-∴=∴=∴切线1l 的方程为1111ln ()y x x x x -=-,切线2l 的方程为2221ln ()y x x x x +=--,即1111ln ()y x x x x -=--.分别令0x =得11(0,1ln ),(0,1ln ).A x B x -++又1l 与2l 的交点为2111221121(,ln ).11x x P x x x -+++211122112111,||||1,01211PABA B P PABx x x S y y x S x x +>∴=-⋅=<=∴<<++△△,故选A.4.【答案】e【解析】由函数的解析式可得,则.即的值为e.【名师点睛】本题主要考查导数的运算法则,基本初等函数的导数公式等知识,意在考查学生的转化能力和计算求解能力. 5.【答案】y =2x –2 【解析】由,得.则曲线在点处的切线的斜率为,则所求切线方程为,即.【名师点睛】求曲线在某点处的切线方程的步骤:①求出函数在该点处的导数值即为切线斜率;②写出切线的点斜式方程;③化简整理. 6.【答案】1【解析】由题可得(1)f a =,则切点为(1,)a ,因为1()f x a x'=-,所以切线l 的斜率为(1)1f a '=-,切线l 的方程为(1)(1)y a a x -=--,令0x =可得1y =,故l 在y 轴上的截距为1.【名师点睛】本题考查导数的几何意义,属于基础题型,函数()f x 在点0x 处的导数0()f x '的几何意义是曲线()y f x =在点00(,)P x y 处的切线的斜率,切线方程为000()()y y f x x x '-=-.解题时应注意:求曲线切线时,要分清在点P 处的切线与过点P 的切线的不同,没切点应设出切点坐标,建立方程组进行求解.7.【解析】(Ⅰ)因为()e cos x f x x x =-,所以()e (cos sin )1,(0)0x f x x x f ''=--=. 又因为(0)1f =,所以曲线()y f x =在点(0,(0))f 处的切线方程为1y =.9.【解析】(II )(i )因为()e (()())xx x g'f f 'x =+,由题意知000()e ()exx x x g g'⎧=⎪⎨=⎪⎩,所以0000000()e e e (()())ex x xx f f f x 'x x ⎧=⎪⎨+=⎪⎩,解得00()1()0f 'x x f =⎧⎨=⎩. 所以,()f x 在0x x =处的导数等于0. 10.【解析】(Ⅰ)因为(1x '=,(e )e x x '--=-,所以()(1(x xf x x --'=-1)2xx -=>.考点12 导数的应用1.导数在研究函数中的应用(1)了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次). 2.生活中的优化问题 会利用导数解决某些实际问题.一、导数与函数的单调性一般地,在某个区间(a ,b )内:(1)如果()0f x '>,函数f (x )在这个区间内单调递增; (2)如果()0f x '<,函数f (x )在这个区间内单调递减; (3)如果()=0f x ',函数f (x )在这个区间内是常数函数.注意:(1)利用导数研究函数的单调性,要在函数的定义域内讨论导数的符号;(2)在某个区间内,()0f x '>(()0f x '<)是函数f (x )在此区间内单调递增(减)的充分条件,而不是必要条件.例如,函数3()f x x =在定义域(,)-∞+∞上是增函数,但2()30f x x '=≥.(3)函数f (x )在(a ,b )内单调递增(减)的充要条件是()0f x '≥(()0f x '≤)在(a ,b )内恒成立,且()f x '在(a ,b )的任意子区间内都不恒等于0.这就是说,在区间内的个别点处有()0f x '=,不影响函数f (x )在区间内的单调性. 二、利用导数研究函数的极值和最值 1.函数的极值一般地,对于函数y =f (x ),(1)若在点x =a 处有f ′(a )=0,且在点x =a 附近的左侧()0f 'x <,右侧()0f 'x >,则称x=a 为f (x )的极小值点,()f a 叫做函数f (x )的极小值.(2)若在点x =b 处有()f 'b =0,且在点x=b 附近的左侧()0f 'x >,右侧()0f 'x <,则称x=b 为f (x )的极大值点,()f b 叫做函数f (x )的极大值.(3)极小值点与极大值点通称极值点,极小值与极大值通称极值. 2.函数的最值函数的最值,即函数图象上最高点的纵坐标是最大值,图象上最低点的纵坐标是最小值,对于最值,我们有如下结论:一般地,如果在区间[,]a b 上函数()y f x =的图象是一条连续不断的曲线,那么它必有最大值与最小值.设函数()f x 在[,]a b 上连续,在(,)a b 内可导,求()f x 在[,]a b 上的最大值与最小值的步骤为: (1)求()f x 在(,)a b 内的极值;(2)将函数()f x 的各极值与端点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值.3.函数的最值与极值的关系(1)极值是对某一点附近(即局部)而言,最值是对函数的定义区间[,]a b 的整体而言;(2)在函数的定义区间[,]a b 内,极大(小)值可能有多个(或者没有),但最大(小)值只有一个(或者没有);(3)函数f (x )的极值点不能是区间的端点,而最值点可以是区间的端点; (4)对于可导函数,函数的最大(小)值必在极大(小)值点或区间端点处取得. 三、生活中的优化问题生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.导数是求函数最值问题的有力工具.解决优化问题的基本思路是:考向一 利用导数研究函数的单调性1.利用导数判断或证明一个函数在给定区间上的单调性,实质上就是判断或证明不等式()0f x '>(()0f x '<)在给定区间上恒成立.一般步骤为: (1)求f ′(x );(2)确认f ′(x )在(a ,b )内的符号;(3)作出结论,()0f x '>时为增函数,()0f x '<时为减函数.注意:研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论. 2.在利用导数求函数的单调区间时,首先要确定函数的定义域,解题过程中,只能在定义域内讨论,定义域为实数集R 可以省略不写.在对函数划分单调区间时,除必须确定使导数等于零的点外,还要注意在定义域内的不连续点和不可导点.3.由函数()f x 的单调性求参数的取值范围的方法(1)可导函数在某一区间上单调,实际上就是在该区间上()0f x '≥(或()0f x '≤)(()f x '在该区间的任意子区间内都不恒等于0)恒成立,然后分离参数,转化为求函数的最值问题,从而获得参数的取值范围;(2)可导函数在某一区间上存在单调区间,实际上就是()0f x '>(或()0f x '<)在该区间上存在解集,这样就把函数的单调性问题转化成了不等式问题;(3)若已知()f x 在区间I 上的单调性,区间I 中含有参数时,可先求出()f x 的单调区间,令I 是其单调区间的子集,从而可求出参数的取值范围.4.利用导数解决函数的零点问题时,一般先由零点的存在性定理说明在所求区间内至少有一个零点,再利用导数判断在所给区间内的单调性,由此求解.典例1 已知函数,其中.(1)函数的图象能否与轴相切?若能,求出实数,若不能,请说明理由;(2)讨论函数的单调性.(2)由于,当时,,当时,,单调递增,当时,,单调递减;当时,由得或,①当时,,当时,,单调递增,当时,,单调递减,当,,单调递增;②当时,,单调递增;③当时,,当时,,单调递增,当时,,单调递减,当时,,单调递增.综上,当时,在上是减函数,在上是增函数;当时,在上是增函数,在上是减函数;当时,在上是增函数;当时,在上是增函数,在上是减函数.典例2 设函数2()e ln x f x a x =-.(1)讨论()f x 的导函数()f x '的零点的个数; (2)证明:当0a >时,2()2lnf x a a a≥+. 【解析】(1)()f x 的定义域为(0+),¥,2()=2e (0)x af x x x¢->. 当0a £时,()0f x ¢>,()f x ¢没有零点; 当0a >时,因为2=e x y 单调递增,ay x=-单调递增,所以()f x ¢在(0+),¥上单调递增. 又()0f a ¢>,当b 满足04a b <<且14b <时,()0f b ¢<,故当0a >时,()f x ¢存在唯一零点.(2)由(1),可设()f x ¢在(0+),¥上的唯一零点为0x . 当0(0)x x ,Î时,()0f x ¢<;当0(+)x x ,违时,()0f x ¢>. 故()f x 在0(0)x ,上单调递减,在0(+)x ,¥上单调递增,所以当0x x =时,()f x 取得最小值,最小值为0()f x . 由于0202e=0x a x -,所以02000022()=e ln 2ln 2ln 2xa f x a x ax a a a x a a -=++?(当且仅当0022aax x =,即012x =时,等号成立).故当0a >时,2()2lnf x a a a?.1(1)当1a =时,求()y f x =在0x =处的切线方程;(2)若函数()f x 在[]1,1-上单调递减,求实数a 的取值范围.考向二 利用导数研究函数的极值和最值1.函数极值问题的常见类型及解题策略(1)函数极值的判断:先确定导数为0的点,再判断导数为0的点的左、右两侧的导数符号. (2)求函数()f x 极值的方法: ①确定函数()f x 的定义域. ②求导函数()f x '. ③求方程()0f x '=的根.④检查()f x '在方程的根的左、右两侧的符号,确定极值点.如果左正右负,那么()f x 在这个根处取得极大值;如果左负右正,那么()f x 在这个根处取得极小值;如果()f x '在这个根的左、右两侧符号不变,则()f x 在这个根处没有极值.(3)利用极值求参数的取值范围:确定函数的定义域,求导数()f x ',求方程()0f x '=的根的情况,得关于参数的方程(或不等式),进而确定参数的取值或范围. 2.求函数f (x )在[a ,b ]上最值的方法(1)若函数f (x )在[a ,b ]上单调递增或递减,f (a )与f (b )一个为最大值,一个为最小值. (2)若函数f (x )在区间(a ,b )内有极值,先求出函数f (x )在区间(a ,b )上的极值,与f (a )、f (b )比较,其中最大的一个是最大值,最小的一个是最小值.(3)函数f (x )在区间(a ,b )上有唯一一个极值点时,这个极值点就是最大(或最小)值点. 注意:(1)若函数中含有参数时,要注意分类讨论思想的应用.(2)极值是函数的“局部概念”,最值是函数的“整体概念”,函数的极值不一定是最值,函数的最值也不一定是极值.要注意利用函数的单调性及函数图象直观研究确定. 3.利用导数解决不等式恒成立问题的“两种”常用方法:(1)分离参数法:将原不等式分离参数,转化为不含参数的函数的最值问题,利用导数求该函数的最值,根据要求得所求范围.一般地,()f x a ≥恒成立,只需min ()f x a ≥即可;()f x a ≤恒成立,只需max ()f x a ≤即可.(2)函数思想法:将不等式转化为某含待求参数的函数的最值问题,利用导数求该函数的极值(最值),然后构建不等式求解.典例3 已知函数21()e 2xf x ax x =-+. (1)当1a >-时,试判断函数()f x 的单调性;(2)若1e a <-,求证:函数()f x 在[1,)+∞上的最小值小于12.(2)由(1)知()f 'x 在[1,)+∞上单调递增, 因为1e a <-,所以()e 110f 'a =-+<,所以存在(1,)t ∈+∞,使得()0f 't =,即e 0t t a -+=,即e t a t =-, 所以函数()f x 在[1,)t 上单调递减,在(,)t +∞上单调递增,所以当[1,)x ∈+∞时222min 111()()e e (e )e (1)222t t t t f f t at t t t t t x t ==-+=-+-=-+,令21()e (1)2x h x x x =-+,1x >,则()(1e )0x h'x x =-<恒成立,所以函数()h x 在(1,)+∞上单调递减,所以211()e(11)122h x <-+⨯=, 所以211e (1)22tt t -+<,即当[1,)x ∈+∞时min 1()2x f <, 故函数()f x 在[1,)+∞上的最小值小于12. 典例4 已知函数,.(1)若曲线与曲线在它们的交点处的公共切线为,求,,的值;(2)当时,若,,求的取值范围.【解析】(1)设它们的公共交点的横坐标为,则.,则,①;,则,②.由②得,由①得.将,代入得,∴,.(2)由,得,即在上恒成立,令,则,其中在上恒成立,∴在上单调递增,在上单调递减,则,∴.故的取值范围是.2.已知函数()1 lnf x a x xx=+-,其中a为实常数.(1)若12x=是()f x的极大值点,求()f x的极小值;(2)若不等式1lna xb xx-≤-对任意52a-≤≤,122x≤≤恒成立,求的最小值.考向三(导)函数图象与单调性、极值、最值的关系1.导数与函数变化快慢的关系:如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化得快,这时函数的图象就比较“陡峭”(向上或向下);反之,函数的图象就“平缓”一些.2.导函数为正的区间是函数的增区间,导函数为负的区间是函数的减区间,导函数图象与x 轴的交点的横坐标为函数的极值点.典例 5 设函数2()f x ax bx c =++(a ,b ,c ∈R ),若函数()e x y f x =在1x =-处取得极值,则下列图象不可能为()y f x =的图象是【答案】D【解析】2()e ()e e [(2)]x x x y f x f x ax a b x b c ''=+=++++,因为函数()e x y f x =在1x =-处取得极值,所以1x =-是2(2)0ax a b x b c ++++=的一个根,整理可得c a =,所以2()f x ax bx a =++,对称轴对于A,由图可得0,(0)0,(1)0a f f >>-=,适合题意; 对于B,由图可得0,(0)0,(1)0a f f <<-=,适合题意;对于C, 对于D, D.3.已知函数的导函数的图象如图所示,则函数A .有极大值,没有最大值B .没有极大值,没有最大值C .有极大值,有最大值D .没有极大值,有最大值考向四生活中的优化问题1.实际生活中利润最大,容积、面积最大,流量、速度最大等问题都需要利用导数来求解相应函数的最大值.若在定义域内只有一个极值点,且在极值点附近左增右减,则此时唯一的极大值就是最大值. 2.实际生活中用料最省、费用最低、损耗最小、最节省时间等问题都需要利用导数求解相应函数的最小值.用料最省、费用最低问题出现的形式多与几何体有关,解题时根据题意明确哪一项指标最省(往往要从几何体的面积、体积入手),将这一指标表示为自变量x的函数,利用导数或其他方法求出最值,但一定要注意自变量的取值范围.典例 6 如图,点为某沿海城市的高速公路出入口,直线为海岸线,,,是以为圆心,半径为的圆弧型小路.该市拟修建一条从通往海岸的观光专线CP PQ-,其中为上异于的一点,与平行,设.(1)证明:观光专线CP PQ-的总长度随的增大而减小;(2)已知新建道路的单位成本是翻新道路CP的单位成本的2倍.当取何值时,观光专线CP PQ-的修建总成本最低?请说明理由.【解析】(1)由题意,,所以π3CPθ=-,又,所以观光专线的总长度为,,因为当时,,所以在上单调递减,即观光专线CP PQ-的总长度随的增大而减小.(2)设翻新道路的单位成本为,则总成本,,,令,得,因为,所以, 当时,;当时,.所以,当时,最小.答:当时,观光专线CP PQ -的修建总成本最低.4.某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r 米,高为h 米,体积为V 立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率). (1)将V 表示成r 的函数V (r ),并求该函数的定义域;(2)讨论函数V (r )的单调性,并确定r 和h 为何值时该蓄水池的体积最大.1.已知函数()()2e e ln exf x f x '=-(e 是自然对数的底数),则()f x 的极大值为 A .2e-1 B .C .1D .2ln22.已知函数,则的单调递减区间为A .B .C .和D .和3.函数在闭区间上的最大值,最小值分别是A .B .C .D .4.设定义在上的函数的导函数满足,则 A .B .C .D .5.若函数在上有最小值,则的取值范围为A .B .C .D .6.已知函数()22,2e 2,2x x xx f x x x ⎧+>⎪=⎨⎪+≤⎩,函数有两个零点,则实数的取值范围为A .B .C .D .7.已知函数f (x )=ax 3+bx 2+cx ,其导函数y =f ′(x )的图象经过点(1,0),(2,0),如图所示,则下列说法中不正确的序号是________.①当x =时函数取得极小值; ②f (x )有两个极值点; ③当x =2时函数取得极小值;④当x =1时函数取得极大值.8.已知函数.若函数在定义域内不是单调函数,则实数的取值范围是__________. 9.定义在上的函数满足,则当时,与的大小关系为__________.(其中为自然对数的底数)10.用一张16cm 10cm ⨯的长方形纸片,经过折叠以后,糊成了一个无盖的长方体形纸盒,则这个纸盒的最大容积是_________3cm .11.已知函数3()f x ax bx c =++在2x =处取得极值16c -. (1)求a 、b 的值;(2)若()f x 有极大值28,求()f x 在[3,3]-上的最小值.12.如图,有一块半圆形空地,开发商计划建一个矩形游泳池ABCD 及其矩形附属设施EFGH ,并将剩余空地进行绿化,园林局要求绿化面积应最大化.其中半圆的圆心为O ,半径为R ,矩形的一边AB 在直径上,点C 、D 、G 、H 在圆周上,E 、F 在边CD BOC θ∠=.(1)记游泳池及其附属设施的占地面积为()fθ,求()f θ的表达式;(2)当cos θ为何值时,能符合园林局的要求?13.设函数.(1)讨论函数的单调性; (2)若,且在区间上恒成立,求的取值范围.14.设.(1)在上单调,求的取值范围; (2)已知在处取得极小值,求的取值范围.15.已知函数.(1)若曲线的切线经过点,求的方程;(2)若方程有两个不相等的实数根,求的取值范围.1.(2016四川文科)已知a 为函数()3–12f x x x =的极小值点,则a =A .–4B .–2C .4D .22.(2017浙江)函数y=f (x )的导函数()y f x '=的图象如图所示,则函数y=f (x )的图象可能是3.(2016新课标全国Ⅰ文科)若函数1()sin2sin 3f x x x a x =-+在(,)-∞+∞上单调递增,则a 的取值范围是 A .[1,1]-B .1[1,]3-C .11[,]33-D .1[1,]3--4.(2017浙江)已知函数f (x )=(x e x -(12x ≥). (1)求f (x )的导函数;。
专题03 导数及其应用1.【2019年高考全国Ⅱ卷文数】曲线y =2sin x +cos x 在点(π,-1)处的切线方程为A .10x y --π-=B .2210x y --π-=C .2210x y +-π+=D .10x y +-π+=【答案】C【解析】2cos sin ,y x x '=-Q π2cos πsin π2,x y =∴=-=-'则2sin cos y x x =+在点(,1)π-处的切线方程为(1)2()y x --=--π,即2210x y +-π+=. 故选C .【名师点睛】本题考查利用导数工具研究曲线的切线方程,渗透了直观想象、逻辑推理和数学运算素养.采取导数法,利用函数与方程思想解题.学生易在非切点处直接求导数而出错,首先证明已知点是否为切点,若是切点,可以直接利用导数求解;若不是切点,设出切点,再求导,然后列出切线方程. 2.【2019年高考全国Ⅲ卷文数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==,D .1e a -=,1b =-【答案】D【解析】∵e ln 1,xy a x '=++∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-. 故选D .【名师点睛】本题求解的关键是利用导数的几何意义和点在曲线上得到含有a ,b 的等式,从而求解,属于常考题型.3.【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则 A .a <–1,b <0 B .a <–1,b >0 C .a >–1,b <0 D .a >–1,b >0【答案】C【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x ,则y =f (x )﹣ax ﹣b 最多有一个零点; 当x ≥0时,y =f (x )﹣ax ﹣bx 3(a +1)x 2+ax ﹣ax ﹣bx 3(a +1)x 2﹣b ,2(1)y x a x =+-',当a +1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增, 则y =f (x )﹣ax ﹣b 最多有一个零点,不合题意;当a +1>0,即a >﹣1时,令y ′>0得x ∈(a +1,+∞),此时函数单调递增, 令y ′<0得x ∈[0,a +1),此时函数单调递减,则函数最多有2个零点.根据题意,函数y =f (x )﹣ax ﹣b 恰有3个零点⇔函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点, 如图:∴0且,解得b <0,1﹣a >0,b (a +1)3,则a >–1,b <0. 故选C .【名师点睛】本题考查函数与方程,导数的应用.当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣bx 3(a +1)x 2﹣b ,利用导数研究函数的单调性,根据单调性画出函数的草图,从而结合题意可列不等式组求解.4.【2019年高考全国Ⅰ卷文数】曲线23()e xy x x =+在点(0)0,处的切线方程为____________. 【答案】30x y -=【解析】223(21)e 3()e 3(31)e ,x x x y x x x x x '=+++=++ 所以切线的斜率0|3x k y ='==,则曲线23()e xy x x =+在点(0,0)处的切线方程为3y x =,即30x y -=.【名师点睛】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,而导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求. 5.【2019年高考天津文数】曲线cos 2xy x =-在点(0,1)处的切线方程为__________. 【答案】220x y +-=【解析】∵1sin 2y x '=--, ∴01|sin 0212x y ='=---=,故所求的切线方程为112y x -=-,即220x y +-=.【名师点睛】曲线切线方程的求法:(1)以曲线上的点(x 0,f (x 0))为切点的切线方程的求解步骤: ①求出函数f (x )的导数f ′(x ); ②求切线的斜率f ′(x 0);③写出切线方程y -f (x 0)=f ′(x 0)(x -x 0),并化简.(2)如果已知点(x 1,y 1)不在曲线上,则设出切点(x 0,y 0),解方程组0010010()()y f x y y f x x x=⎧⎪-⎨'=⎪-⎩得切点(x 0,y 0),进而确定切线方程.6.【2019年高考江苏】在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线0x y +=的距离的最小值是 ▲ . 【答案】4 【解析】由4(0)y x x x =+>,得241y x'=-, 设斜率为1-的直线与曲线4(0)y x x x=+>切于0004(,)x x x +, 由20411x -=-得0x =0x =,∴曲线4(0)y x x x=+>上,点P 到直线0x y +=4=.故答案为4.【名师点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法,利用数形结合和转化与化归思想解题.7.【2019年高考江苏】在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 ▲ . 【答案】(e, 1)【解析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值,可得切点坐标. 设点()00,A x y ,则00ln y x =. 又1y x'=, 当0x x =时,01y x '=, 则曲线ln y x =在点A 处的切线为0001()y y x x x -=-, 即00ln 1xy x x -=-, 将点()e,1--代入,得00e1ln 1x x ---=-, 即00ln e x x =,考察函数()ln H x x x =,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >, 且()ln 1H x x '=+,当1x >时,()()0,H x H x '>单调递增, 注意到()e e H =,故00ln e x x =存在唯一的实数根0e x =,此时01y =, 故点A 的坐标为()e,1.【名师点睛】导数运算及切线的理解应注意的问题:一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.8.【2019年高考全国Ⅰ卷文数】已知函数f (x )=2sin x -x cos x -x ,f ′(x )为f (x )的导数.(1)证明:f ′(x )在区间(0,π)存在唯一零点; (2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围. 【答案】(1)见解析;(2)(],0a ∈-∞.【解析】(1)设()()g x f x '=,则()cos sin 1,()cos g x x x x g x x x '=+-=.当π(0,)2x ∈时,()0g x '>;当π,π2x ⎛⎫∈ ⎪⎝⎭时,()0g x '<,所以()g x 在π(0,)2单调递增,在π,π2⎛⎫⎪⎝⎭单调递减. 又π(0)0,0,(π)22g g g ⎛⎫=>=-⎪⎝⎭,故()g x 在(0,π)存在唯一零点. 所以()f x '在(0,π)存在唯一零点.(2)由题设知(π)π,(π)0f a f =…,可得a ≤0.由(1)知,()f x '在(0,π)只有一个零点,设为0x ,且当()00,x x ∈时,()0f x '>;当()0,πx x ∈时,()0f x '<,所以()f x 在()00,x 单调递增,在()0,πx 单调递减.又(0)0,(π)0f f ==,所以,当[0,π]x ∈时,()0f x …. 又当0,[0,π]a x ∈„时,ax ≤0,故()f x ax …. 因此,a 的取值范围是(,0]-∞.【名师点睛】本题考查利用导数讨论函数零点个数、根据恒成立的不等式求解参数范围的问题.对于此类端点值恰为恒成立不等式取等的值的问题,通常采用构造函数的方式,将问题转变成函数最值与零之间的比较,进而通过导函数的正负来确定所构造函数的单调性,从而得到最值.9.【2019年高考全国Ⅱ卷文数】已知函数()(1)ln 1f x x x x =---.证明:(1)()f x 存在唯一的极值点;(2)()=0f x 有且仅有两个实根,且两个实根互为倒数.【答案】(1)见解析;(2)见解析.【解析】(1)()f x 的定义域为(0,+∞).11()ln 1ln x f x x x x x-'=+-=-. 因为ln y x =单调递增,1y x=单调递减,所以()f x '单调递增,又(1)10f '=-<,1ln 41(2)ln 2022f -'=-=>,故存在唯一0(1,2)x ∈,使得()00f x '=.又当0x x <时,()0f x '<,()f x 单调递减;当0x x >时,()0f x '>,()f x 单调递增. 因此,()f x 存在唯一的极值点.(2)由(1)知()0(1)2f x f <=-,又()22e e 30f =->,所以()0f x =在()0,x +∞内存在唯一根x α=. 由01x α>>得011x α<<.又1111()1ln 10f f αααααα⎛⎫⎛⎫=---==⎪ ⎪⎝⎭⎝⎭,故1α是()0f x =在()00,x 的唯一根. 综上,()0f x =有且仅有两个实根,且两个实根互为倒数.【名师点睛】本题主要考查导数的应用,通常需要对函数求导,用导数的方法研究函数的单调性、极值,以及函数零点的问题,属于常考题型.10.【2019年高考天津文数】设函数()ln (1)e x f x x a x =--,其中a ∈R .(1)若a ≤0,讨论()f x 的单调性; (2)若10ea <<, (i )证明()f x 恰有两个零点;(ii )设0x 为()f x 的极值点,1x 为()f x 的零点,且10x x >,证明0132x x ->. 【答案】(1)()f x 在(0,)+∞内单调递增.;(2)(i )见解析;(ii )见解析. 【解析】(1)解:由已知,()f x 的定义域为(0,)+∞,且211e ()e (1)e x x xf ax x a a x x x-⎡⎤=-+-=⎣'⎦. 因此当a ≤0时,21e 0x ax ->,从而()0f x '>,所以()f x 在(0,)+∞内单调递增.(2)证明:(i )由(Ⅰ)知21e ()xax f x x-'=.令2()1e x g x ax =-,由10e a <<, 可知()g x 在(0,)+∞内单调递减,又(1)1e 0g a =->,且221111ln 1ln 1ln 0g a a a a a ⎛⎫⎛⎫⎛⎫=-=-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故()0g x =在(0,)+∞内有唯一解,从而()0f x '=在(0,)+∞内有唯一解,不妨设为0x ,则011lnx a <<.当()00,x x ∈时,()0()()0g x g x f x x x'=>=,所以()f x 在()00,x 内单调递增;当()0,x x ∈+∞时,()0()()0g x g x f x x x'=<=,所以()f x 在()0,x +∞内单调递减,因此0x 是()f x 的唯一极值点.令()ln 1h x x x =-+,则当1x >时,1()10h'x x=-<,故()h x 在(1,)+∞内单调递减,从而当1x >时,()(1)0h x h <=,所以ln 1x x <-.从而ln 1111111ln ln ln ln 1e ln ln ln 1ln 0a f a h a a a a a a ⎛⎫⎛⎫⎛⎫=--=-+=< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,又因为()0(1)0f x f >=,所以()f x 在0(,)x +∞内有唯一零点.又()f x 在()00,x 内有唯一零点1,从而,()f x 在(0,)+∞内恰有两个零点.(ii )由题意,()()010,0,f x f x '=⎧⎪⎨=⎪⎩即()012011e 1,ln e ,1x x ax x a x ⎧=⎪⎨=-⎪⎩从而1011201ln e x x x x x --=,即102011ln e 1x x x x x -=-.因为当1x >时,ln 1x x <-,又101x x >>,故()102012011e 1x x x x x x --<=-,两边取对数,得1020ln e ln x x x -<,于是()10002ln 21x x x x -<<-,整理得0132x x ->.【名师点睛】本小题主要考查导数的运算、不等式证明、运用导数研究函数的性质等基础知识和方法.考查函数思想、化归与转化思想.考查综合分析问题和解决问题的能力. 11.【2019年高考全国Ⅲ卷文数】已知函数32()22f x x ax =-+.(1)讨论()f x 的单调性;(2)当0<a <3时,记()f x 在区间[0,1]的最大值为M ,最小值为m ,求M m -的取值范围. 【答案】(1)见详解;(2)8[,2)27. 【解析】(1)2()622(3)f x x ax x x a '=-=-. 令()0f x '=,得x =0或3ax =. 若a >0,则当(,0),3a x ⎛⎫∈-∞+∞⎪⎝⎭U 时,()0f x '>;当0,3a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在(,0),,3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减;若a =0,()f x 在(,)-∞+∞单调递增;若a <0,则当,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭U 时,()0f x '>;当,03a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在,03a ⎛⎫⎪⎝⎭单调递减.(2)当03a <<时,由(1)知,()f x 在0,3a ⎛⎫ ⎪⎝⎭单调递减,在,13a ⎛⎫ ⎪⎝⎭单调递增,所以()f x 在[0,1]的最小值为32327a a f ⎛⎫=-+ ⎪⎝⎭,最大值为(0)=2f 或(1)=4f a -.于是 3227a m =-+,4,02,2,2 3.a a M a -<<⎧=⎨≤<⎩所以332,02,27,2 3.27a a a M m a a ⎧-+<<⎪⎪-=⎨⎪≤<⎪⎩当02a <<时,可知3227a a -+单调递减,所以M m -的取值范围是8,227⎛⎫⎪⎝⎭.当23a ≤<时,327a 单调递增,所以M m -的取值范围是8[,1)27.综上,M m -的取值范围是8[,2)27. 【名师点睛】这是一道常规的导数题目,难度比往年降低了不少.考查函数的单调性,最大值、最小值的计算.12.【2019年高考北京文数】已知函数321()4f x x x x =-+. (1)求曲线()y f x =的斜率为1的切线方程; (2)当[2,4]x ∈-时,求证:6()x f x x -≤≤;(3)设()|()()|()F x f x x a a =-+∈R ,记()F x 在区间[2,4]-上的最大值为M (a ),当M (a )最小时,求a 的值.【答案】(1)y x =与6427y x =-;(2)见解析;(3)3a =-. 【解析】(1)由321()4f x x x x =-+得23()214f x x x '=-+.令()1f x '=,即232114x x -+=,得0x =或83x =.又(0)0f =,88()327f =,所以曲线()y f x =的斜率为1的切线方程是y x =与88273y x -=-,即y x =与6427y x =-.(2)令()(),[2,4]g x f x x x =-∈-.由321()4g x x x =-得23()24g'x x x =-. 令()0g'x =得0x =或83x =.(),()g'x g x 的情况如下:所以()g x 的最小值为6-,最大值为0. 故6()0g x -≤≤,即6()x f x x -≤≤. (3)由(2)知,当3a <-时,()(0)|(0)|3M F g a a a ≥=-=->; 当3a >-时,()(2)|(2)|63M F a g a a ≥-=--=+>; 当3a =-时,()3M a =. 综上,当()M a 最小时,3a =-.【名师点睛】本题主要考查利用导函数研究函数的切线方程,利用导函数证明不等式的方法,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.13.【2019年高考浙江】已知实数0a ≠,设函数()=ln 0.f x a x x +>(1)当34a =-时,求函数()f x 的单调区间;(2)对任意21[,)ex ∈+∞均有()f x ≤ 求a 的取值范围. 注:e=2.71828…为自然对数的底数.【答案】(1)()f x 的单调递增区间是()3,+∞,单调递减区间是()0,3;(2)0,4⎛ ⎝⎦.【解析】(1)当34a =-时,3()ln 04f x x x =->.3()4f 'x x =-+=所以,函数()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由1(1)2f a≤,得04a <≤.当04a <≤时,()f x ≤2ln 0x -≥.令1t a=,则t ≥.设()22ln ,g t t x t =≥则2()2ln g t t x=.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭≤()2ln g t g x ≥=.记1()ln ,7p x x x =≥,则1()p'x x ===.故所以,()(1)0p x p ≥=.因此,()2()0g t g p x ≥=≥.(ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,()g t g =….令211()(1),,e 7q x x x x ⎡⎤=++∈⎢⎥⎣⎦,则()10q'x =+>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫ ⎪⎝⎭„.由(i )得,11(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭. 所以,()<0q x .因此()0g t g =>….由(i )(ii )知对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,),()0t g t ∈+∞…,即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()f x „.综上所述,所求a 的取值范围是⎛ ⎝⎦. 【名师点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.14.【2019年高考江苏】设函数()()()(),,,f x x a x b x c a b c =---∈R 、()f 'x 为f (x )的导函数.(1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{3,1,3}-中,求f (x )的极小值;(3)若0,01,1a b c =<=„,且f (x )的极大值为M ,求证:M ≤427. 【答案】(1)2a =;(2)见解析;(3)见解析.【解析】(1)因为a b c ==,所以3()()()()()f x x a x b x c x a =---=-. 因为(4)8f =,所以3(4)8a -=,解得2a =. (2)因为b c =,所以2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-, 从而2()3()3a b f 'x x b x +⎛⎫=-- ⎪⎝⎭.令()0f 'x =,得x b =或23a bx +=. 因为2,,3a ba b +都在集合{3,1,3}-中,且a b ≠, 所以21,3,33a b a b +===-.此时2()(3)(3)f x x x =-+,()3(3)(1)f 'x x x =+-. 令()0f 'x =,得3x =-或1x =.列表如下:所以()f x 的极小值为2(1)(13)(13)32f =-+=-.(3)因为0,1a c ==,所以32()()(1)(1)f x x x b x x b x bx =--=-++,2()32(1)f 'x x b x b =-++.因为01b <≤,所以224(1)12(21)30b b b ∆=+-=-+>, 则()f 'x 有2个不同的零点,设为()1212,x x x x <.由()0f 'x =,得121133b b x x +-++==.列表如下:所以()f x 的极大值()1M f x =. 解法一:()321111(1)M f x x b x bx ==-++()221111211(1)[32(1)]3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭ ()2321(1)(1)227927b b b b b --+++=++23(1)2(1)(1)2((1)1)272727b b b b b b +-+=-+-+(1)24272727b b +≤+≤.因此427M ≤. 解法二:因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-. 令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭. 令()0g'x =,得13x =.列表如下: x 1(0,)3131(,1)3()g'x +–()g xZ极大值]所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭.所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤. 【名师点睛】本题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.15.【河北省武邑中学2019届高三第二次调研考试数学】函数的单调减区间是A .B .C .,D .【答案】A 【解析】,令,解得:.故选A .【名师点睛】本题考查了函数的单调性,考查导数的应用,是一道基础题.16.【江西省新八校2019届高三第二次联考数学】若3()3()21f x f x x x +-=++对x ∈R 恒成立,则曲线()y f x =在点()()1,1f 处的切线方程为 A .5250x y +-= B .10450x y +-= C .540x y += D .204150x y --=【答案】B【解析】()()3321f x f x x x +-=++Q ……①,()()3321f x f x x x ∴-+=--+……②,联立①②,解得()31124f x x x =--+,则()2312f x x '=--, ()11511244f ∴=--+=-,()351122f '=--=-,∴切线方程为:()55142y x +=--,即10450x y +-=. 故选B.【名师点睛】本题考查利用导数的几何意义求解在某一点处的切线方程,关键是能够利用构造方程组的方式求得函数的解析式.17.【云南省玉溪市第一中学2019届高三第二次调研考试数学】函数2l ()n f x x x =的最小值为A .1e- B .1e C .12e-D .12e【答案】C【解析】由题得(0,)x ∈+∞,()2ln (2ln 1)f x x x x x x '=+=+, 令2ln 10x +=,解得12ex -=,则当12(0,e )x -∈时,()f x 为减函数,当12(e ,)x -∈+∞时,()f x 为增函数, 所以12e x -=处的函数值为最小值,且121(e )2ef -=-. 故选C.【名师点睛】本题考查用导数求函数最值,解此类题首先确定函数的定义域,其次判断函数的单调性,确定最值点,最后代回原函数求得最值.18.【四川省内江市2019届高三第三次模拟考试数学】若函数存在单调递增区间,则的取值范围是 A .1,1e ⎛⎫- ⎪⎝⎭B .1,e ⎛⎫-+∞ ⎪⎝⎭C .()1,-+∞D .1,e ⎛⎫-∞ ⎪⎝⎭【答案】B【解析】()ln f x ax x '=+, ∴()0f x '>在x ∈()0+∞,上成立, 即ax+ln x >0在x ∈()0+∞,上成立,即a ln xx->在x ∈()0+∞,上成立. 令g (x )ln x x =-,则g ′(x )21ln xx -=-,∴g (x )ln xx =-在(0,e )上单调递减,在(e ,+∞)上单调递增,∴g (x )ln x x =-的最小值为g (e )=1e -,∴a >1e-.故选B .【名师点睛】本题考查学生利用导数研究函数的单调性及转化化归思想的运用,属中档题. 19.【山西省太原市2019届高三模拟试题(一)数学】已知定义在上的函数满足,且,则的解集是 A .B .C .D .【答案】A 【解析】令=在上单调递减,且故等价为,即,故,即x <,则所求的解集为.故选A.【名师点睛】本题考查导数与单调性的应用,构造函数的思想,考查分析推理能力,是中档题. 20.【河南省焦作市2019届高三第四次模拟考试数学】已知,,,则的大小关系为 A . B . C .D .【答案】D【解析】依题意,得3ln3ln 33a ==,1lne e e b -==,3ln2ln888c ==.令,所以.所以函数在上单调递增,在上单调递减, 所以,且,即,所以. 故选D.【名师点睛】本题主要考查了利用导数判断函数的单调性,构造出函数()ln xf x x=是解题的关键,属于中档题.21.【安徽省毛坦厂中学2019届高三校区4月联考数学】已知,若关于的不等式恒成立,则实数的取值范围是A .1,e ⎛⎫-∞ ⎪⎝⎭B .(),0-∞C .1,e ⎡⎫+∞⎪⎢⎣⎭D .1,e ⎛⎫+∞ ⎪⎝⎭【答案】D【解析】由()0f x <恒成立得ln 1e xx a +>恒成立,设()ln 1e x x h x +=,则()1ln 1e xx x h x -='-. 设()1ln 1g x x x =--,则()2110g x x x'=--<恒成立,在上单调递减, 又,当时,,即;当时,,即, 在上单调递增,在上单调递减,,.故选D.【名师点睛】本题考查利用导数求函数的最值,不等式恒成立问题,分离参数是常见的方法,属于中档题.22.【辽宁省丹东市2019届高三总复习质量测试】若1x =是函数()3221()(1)33f x x a x a a x =++-+-的极值点,则a 的值为 A .-2 B .3 C .-2或3D .-3或2【答案】B 【解析】()()()()32222113(3)(132)f x x a x a a f x x x a x a a '=++-=++-+-⇒+-, 由题意可知(1)0f '=,即()212(1)303a a a a +-=+⇒-=+或2a =-,当3a =时,()222()2(1)389(9)(1)f x x a x a a x x x x +-'=++-=+-=+-,当1x >或9x <-时,()0f x '>,函数单调递增;当91x -<<时,()0f x '<,函数单调递减, 显然1x =是函数()f x 的极值点;当2a =-时,()2222()232(111))(0a a f x x a x x x x +-=-++=-=+-≥', 所以函数()f x 是R 上的单调递增函数,没有极值,不符合题意,舍去. 故3a =. 故选B .【名师点睛】本题考查了已知函数的极值,求参数的问题.本题易错的地方是求出a 的值,没有通过单调性来验证1x =是不是函数的极值点,也就是说使得导函数为零的自变量的值,不一定是极值点.23.【黑龙江省大庆市第一中学2019届高三下学期第四次模拟(最后一卷)考试】已知奇函数()f x 是定义在R 上的可导函数,其导函数为()f x ',当0x >时,有()()22f x xf x x '>+,则不等式()()()22018+2018420x f x f +-<+的解集为A .(),2016-∞-B .()2016,2012--C .(),2018-∞-D .()2016,0-【答案】A【解析】设()()2g x x f x =,因为()f x 为R 上的奇函数,所以()()()()22g x x f x x f x -=--=-, 即()g x 为R 上的奇函数对()g x 求导,得()()()2f g f x x x x x '=+'⎡⎤⎣⎦, 而当0x >时,有()()220f x xf x x '>+≥,故0x >时,()0g x '>,即()g x 单调递增, 所以()g x 在R 上单调递增,则不等式()()()22018+2018420x f x f +-<+即()()()22018+201842x f x f +<--, 即()()()22018+201842x f x f +<, 即()()20182g x g +<,所以20182x +<,解得2016x <-. 故选A.【名师点睛】本题考查构造函数解不等式,利用导数求函数的单调性,函数的奇偶性,题目较综合,有一定的技巧性,属于中档题.24.【重庆西南大学附属中学校2019届高三第十次月考数学】曲线21()ln 2f x x x x =+在点(1(1))f ,处的切线与直线10ax y --=垂直,则a =________. 【答案】12-【解析】因为21()ln 2f x x x x =+,所以()ln 1f x x x '=++, 因此,曲线21()ln 2f x x x x =+在点(1(1))f ,处的切线斜率为(1)112k f '==+=, 又该切线与直线10ax y --=垂直,所以12a =-. 故答案为12-. 【名师点睛】本题主要考查导数在某点处的切线斜率问题,熟记导数的几何意义即可求解,属于常考题型.25.【河南省新乡市2019届高三下学期第二次模拟考试数学】已知函数在上单调递增,则的取值范围是__________. 【答案】【解析】由题意知在上恒成立,则,令,()()1e xg x x +'=,知在上单调递增,则的最小值为,故.故答案为.【名师点睛】对于恒成立或者有解求参的问题,常用方法有:变量分离,参变分离,转化为函数最值问题;或者直接求函数最值,使得函数最值大于或者小于0;或者分离成两个函数,使得一个函数恒大于或小于另一个函数.26.【广东省深圳市高级中学2019届高三适应性考试(6月)数学】已知函数22,0,()e ,0,x x x f x x ⎧≤=⎨>⎩若方程2[()]f x a =恰有两个不同的实数根12,x x ,则12x x +的最大值是______.【答案】3ln 22-【解析】作出函数()f x 的图象如图所示,由()2f x a =⎡⎤⎣⎦,可得(),1f x a a =>, 即1a >,不妨设12x x < ,则2212e x x a =(1)a t t =>,则12,ln 2tx x t ==, 12ln 2t x x t ∴+=-令()ln 2t g t t =-42()t g t -'= ∴当18t <<时,()0g t '>,()g t 在()1,8上单调递增;当8t >时,()0g t '<,()g t 在()8,+∞上单调递减,∴当8t =时,()g t 取得最大值,为(8)ln823ln22g =-=-.故答案为3ln 22-.【名师点睛】本题主要考查方程的根与图象交点的关系,考查了利用导数判断函数的单调性以及求函数的极值与最值,属于难题.求函数()f x 的极值与最值的步骤:(1)确定函数的定义域;(2)求导数()f x ';(3)解方程()0,f x '=求出函数定义域内的所有根;(4)判断()f x '在()0f x '=的根0x 左右两侧值的符号,如果左正右负(左增右减),那么()f x 在0x 处取极大值,如果左负右正(左减右增),那么()f x 在0x 处取极小值.(5)如果只有一个极值点,则在该点处取得极值也是最值;(6)如果求闭区间上的最值还需要比较端点处的函数值与极值的大小.27.【山东省烟台市2019届高三3月诊断性测试(一模)数学】已知函数4211()42f x x ax =-,a ∈R . (1)当1a =时,求曲线()f x 在点(2,(2))f 处的切线方程;(2)设函数2()(22)e e ()xg x x x a f x =-+--,其中e 2.71828...=是自然对数的底数,讨论()g x 的单调性并判断有无极值,有极值时求出极值. 【答案】(1)6100x y --=;(2)当0a ≤时,()g x 在(,)-∞+∞上单调递增,无极值;当0a >时,()g x 在(,-∞和)+∞单调递增,在(单调递减,极大值为2e(2)e4g a =+,极小值为2e (4g a =-+. 【解析】(1)由题意3()f x x ax '=-,所以当1a =时,(2)2f =,(2)6f '=,因此曲线()y f x =在点(2,(2))f 处的切线方程是26(2)y x -=-, 即6100x y --=.(2)因为2()(22)e e ()xg x x x a f x =-+--, 所以2()(22)e (22)e e '()xxg x x x x a f x '=-+-+--232()e e()()(e e )x x x a x ax x a x =---=--,令()e e xh x x =-,则()e e xh x '=-,令()0h x '=得1x =,当(,1)x ∈-∞时,()0h x '<,()h x 单调递减, 当(1,)x ∈+∞时,()0h x '>,()h x 单调递增, 所以当1x =时,min ()(1)0h x h ==, 也就说,对于x ∀∈R 恒有()0h x ≥. 当0a ≤时,2()()()0g x x a h x '=-≥,()g x 在(,)-∞+∞上单调递增,无极值;当0a >时,令()0g x '=,可得x =当x <x >2()()()0g x x a h x '=-≥,()g x 单调递增,当x <<()0g x '<,()g x 单调递减,因此,当x =()g x 取得极大值2e(2)e4g a =+;当x a =时,()g x 取得极小值2e ()(22)e4ag a a a =-++. 综上所述:当0a ≤时,()g x 在(,)-∞+∞上单调递增,无极值;当0a >时,()g x 在(,)a -∞-和(,)a +∞上单调递增,在(,)a a -上单调递减, 函数既有极大值,又有极小值, 极大值为2e()(22)e 4ag a a a --=++, 极小值为2e ()(22)e4ag a a a =-++. 【名师点睛】本题考查了函数的单调性,极值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.28.【陕西省2019届高三第三次联考数学】已知函数,,.(1)求函数的极值点;(2)若恒成立,求的取值范围.【答案】(1)极大值点为,无极小值点.(2). 【解析】(1)()ln f x x ax =-的定义域为,, 当时,,所以在上单调递增,无极值点;当时,解得,解得,所以在上单调递增,在上单调递减,所以函数有极大值点,为,无极小值点.(2)由条件可得恒成立,则当时,恒成立,令,则,令,则当时,,所以在上为减函数.又,所以在上,;在上,.所以在上为增函数,在上为减函数,所以,所以.【名师点睛】对于函数恒成立或者有解求参的问题,常用方法有:变量分离,参变分离,转化为函数最值问题;或者直接求函数最值,使得函数最值大于或者小于0;或者分离成两个函数,使得一个函数恒大于或小于另一个函数.29.【山东省济宁市2019届高三二模数学】已知函数.(1)若函数在上单调递减,求实数的取值范围;(2)若,求的最大值.【答案】(1);(2).【解析】(1)由题意知,在上恒成立,所以在上恒成立.令,则,所以在上单调递增,所以,所以.(2)当时,.则,令,则,所以在上单调递减.由于,,所以存在满足,即.当时,,;当时,,.所以在上单调递增,在上单调递减.所以,因为,所以,所以,所以.【名师点睛】本题主要考查利用导数研究函数的单调性,最值,零点存在性定理及其应用,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力. 30.【福建省2019年三明市高三毕业班质量检查测试】已知函数有两个极值点,.(1)求的取值范围; (2)求证:. 【答案】(1);(2)见解析.【解析】(1)因为,所以,令,则, 当时,不成立; 当时,2ex xa =, 令()ex x g x =, 所以()1ex xg x ='-,当时,,当时,, 所以在上单调递增,在上单调递减,又因为()11eg =, 当时,,当时,,因此,当210ea <<时,有2个极值点,即的取值范围为.(2)由(1)不妨设,且12122e 2e x x ax ax ==⎧⎪⎨⎪⎩,所以,所以,要证明,只要证明,即证明2211122ln x x x x x x ⎛⎫<-⎪⎝⎭,设21(1)x t t x =>, 即要证明在上恒成立,记()12ln (1)h t t t t t=-+>,()()222221212110t t t h t t t t t ---+-='=--=<, 所以在区间上单调递减, 所以,即,即.【名师点睛】本题主要考查导数的应用,通常需要对函数求导,利用导数的方法研究函数的单调性、最值等即可,属于常考题型.31.【北京市西城区2019届高三4月统一测试(一模)数学】设函数,其中.(1)当为偶函数时,求函数的极值;(2)若函数在区间上有两个零点,求的取值范围. 【答案】(1)极小值,极大值;(2)或.【解析】(1)由函数是偶函数,得,即对于任意实数都成立,所以.此时,则.由,解得. 当x 变化时,与的变化情况如下表所示:↘极小值 ↗极大值↘所以在,上单调递减,在上单调递增. 所以有极小值,极大值.(2)由,得.所以“在区间上有两个零点”等价于“直线与曲线,有且只有两个公共点”.对函数求导,得.由,解得,.当x变化时,与的变化情况如下表所示:0 0所以在,上单调递减,在上单调递增.又因为,,,,所以当或时,直线与曲线,有且只有两个公共点. 即当或时,函数在区间上有两个零点.【名师点睛】利用函数零点的情况求参数值或取值范围的方法:(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象问题,从而构建不等式求解.。
历年(2019-2023)全国高考数学真题分项(导数及其应用)汇编考点一 导数的运算1.【多选】(2022•新高考Ⅰ)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x ='.若3(2)2f x -,(2)g x +均为偶函数,则( ) A .(0)0f =B .1()02g -=C .(1)f f -=(4)D .(1)g g -=(2)考点二 利用导数研究曲线上某点切线方程2.(2021•新高考Ⅰ)若过点(,)a b 可以作曲线x y e =的两条切线,则( ) A .b e a <B .a e b <C .0b a e <<D .0a b e <<3.(2022•新高考Ⅰ)若曲线()x y x a e =+有两条过坐标原点的切线,则a 的取值范围是 . 4.(2022•新高考Ⅱ)曲线||y ln x =过坐标原点的两条切线的方程为 , .5.(2021•新高考Ⅱ)已知函数()|1|x f x e =-,10x <,20x >,函数()f x 的图象在点1(A x ,1())f x 和点2(B x ,2())f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 的取值范围是 . 考点三 利用导数研究函数的单调性6.(2023•新高考Ⅱ)已知函数()x f x ae lnx =-在区间(1,2)上单调递增,则a 的最小值为( ) A .2eB .eC .1e -D .2e -7.(2023•新高考Ⅰ)已知函数()()x f x a e a x =+-. (1)讨论()f x 的单调性;(2)证明:当0a >时,3()22f x lna >+. 8.(2022•浙江)设函数()(0)2ef x lnx x x=+>. (Ⅰ)求()f x 的单调区间;(Ⅱ)已知a ,b R ∈,曲线()y f x =上不同的三点1(x ,1())f x ,2(x ,2())f x ,3(x ,3())f x 处的切线都经过点(,)a b .证明:(ⅰ)若a e >,则0b f <-(a )1(1)2ae<-;(ⅱ)若0a e <<,123x x x <<,则2213211266e a e ae e x x a e --+<+<-. (注: 2.71828e =⋯是自然对数的底数) 9.(2022•新高考Ⅱ)已知函数()ax x f x xe e =-. (1)当1a =时,讨论()f x 的单调性; (2)当0x >时,()1f x <-,求a 的取值范围; (3)设*n N ∈(1)ln n +>+.10.(2021•新高考Ⅱ)已知函数2()(1)x f x x e ax b =--+. (Ⅰ)讨论()f x 的单调性;(Ⅱ)从下面两个条件中选一个,证明:()f x 恰有一个零点.①2122e a <…,2b a >; ②102a <<,2b a …. 11.(2021•浙江)设a ,b 为实数,且1a >,函数2()()x f x a bx e x R =-+∈. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若对任意22b e >,函数()f x 有两个不同的零点,求a 的取值范围;(Ⅲ)当a e =时,证明:对任意4b e >,函数()f x 有两个不同的零点1x ,2x ,满足22122blnb e x x e b>+.(注: 2.71828e = 是自然对数的底数) 12.(2021•新高考Ⅰ)已知函数()(1)f x x lnx =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且blna alnb a b -=-,证明:112e a b<+<. 13.(2020•海南)已知函数1()x f x ae lnx lna -=-+.(1)当a e =时,求曲线()y f x =在点(1,f (1))处的切线与两坐标轴围成的三角形的面积; (2)若()1f x …,求a 的取值范围.14.(2019•浙江)已知实数0a ≠,设函数()f x alnx =+0x >. (Ⅰ)当34a =-时,求函数()f x 的单调区间;(Ⅱ)对任意21[x e∈,)+∞均有()2f x a …,求a 的取值范围. 注: 2.71828e =⋯为自然对数的底数.考点四 利用导数研究函数的极值15.【多选】(2023•新高考Ⅱ)若函数2()(0)b cf x alnx a x x =++≠既有极大值也有极小值,则( ) A .0bc >B .0ab >C .280b ac +>D .0ac <16.【多选】(2022•新高考Ⅰ)已知函数3()1f x x x =-+,则( ) A .()f x 有两个极值点 B .()f x 有三个零点C .点(0,1)是曲线()y f x =的对称中心D .直线2y x =是曲线()y f x =的切线17.(2023•新高考Ⅱ)(1)证明:当01x <<时,2sin x x x x -<<;(2)已知函数2()cos (1)f x ax ln x =--,若0x =为()f x 的极大值点,求a 的取值范围.考点五 利用导数研究函数的最值18.(2022•新高考Ⅰ)已知函数()x f x e ax =-和()g x ax lnx =-有相同的最小值. (1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.参考答案考点一 导数的运算1.【多选】(2022•新高考Ⅰ)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x ='.若3(2)2f x -,(2)g x +均为偶函数,则( ) A .(0)0f =B .1()02g -=C .(1)f f -=(4)D .(1)g g -=(2)【过程解析】3(2)2f x - 为偶函数,∴可得33(2)(2)22f x f x -=+,()f x ∴关于32x =对称,令54x =,可得3535(2(2)2424f f -⨯=+⨯,即(1)f f -=(4),故C 正确; (2)g x + 为偶函数,(2)(2)g x g x ∴+=-,()g x 关于2x =对称,故D 不正确; ()f x 关于32x =对称,32x ∴=是函数()f x 的一个极值点, ∴函数()f x 在3(2,)t 处的导数为0,即33()()022g f ='=,又()g x ∴的图象关于2x =对称,53((022g g ∴==,∴函数()f x 在5(2,)t 的导数为0,52x ∴=是函数()f x 的极值点,又()f x 的图象关于32x =对称,5(2∴,)t 关于32x =的对称点为1(2,)t ,由52x =是函数()f x 的极值点可得12x =是函数()f x 的一个极值点,11(()022g f ∴='=, 进而可得17()()022g g ==,故72x =是函数()f x 的极值点,又()f x 的图象关于32x =对称,7(2∴,)t 关于32x =的对称点为1(2-,)t ,11()()022g f ∴-='-=,故B 正确; ()f x 图象位置不确定,可上下移动,即每一个自变量对应的函数值不是确定值,故A 错误. 解法二:构造函数法,令()1sin f x x π=-,则3(2)1cos 22f x x π-=+,则()()cosg x f x x ππ='=-,(2)cos(2)cos g x x x πππππ+=-+=-, 满足题设条件,可得只有选项BC 正确, 故选:BC .考点二 利用导数研究曲线上某点切线方程2.(2021•新高考Ⅰ)若过点(,)a b 可以作曲线x y e =的两条切线,则( ) A .b e a <B .a e b <C .0b a e <<D .0a b e <<【过程解析】法一:函数x y e =是增函数,0x y e '=>恒成立, 函数的图象如图,0y >,即切点坐标在x 轴上方, 如果(,)a b 在x 轴下方,连线的斜率小于0,不成立. 点(,)a b 在x 轴或下方时,只有一条切线. 如果(,)a b 在曲线上,只有一条切线; (,)a b 在曲线上侧,没有切线;由图象可知(,)a b 在图象的下方,并且在x 轴上方时,有两条切线,可知0a b e <<. 故选:D .法二:设过点(,)a b 的切线横坐标为t ,则切线方程为()t t y e x t e =-+,可得(1)t b e a t =+-,设()(1)f t a t =+-,可得()()t f t e a t '=-,(,)t a ∈-∞,()0f t '>,()f t 是增函数, (,)t a ∈+∞,()0f t '<,()f t 是减函数,因此当且仅当0a b e <<时,上述关于t 的方程有两个实数解,对应两条切线. 故选:D .3.(2022•新高考Ⅰ)若曲线()x y x a e =+有两条过坐标原点的切线,则a 的取值范围是 . 【过程解析】()x x y e x a e '=++,设切点坐标为0(x ,00())x x a e +, ∴切线的斜率000()x x k e x a e =++,∴切线方程为000000()(())()x x x y x a e e x a e x x -+=++-,又 切线过原点,000000()(())()x x x x a e e x a e x ∴-+=++-, 整理得:2000x ax a +-=,切线存在两条,∴方程有两个不等实根,∴△240a a =+>,解得4a <-或0a >,即a 的取值范围是(-∞,4)(0-⋃,)+∞, 故答案为:(-∞,4)(0-⋃,)+∞.4.(2022•新高考Ⅱ)曲线||y ln x =过坐标原点的两条切线的方程为 , . 【过程解析】当0x >时,y lnx =,设切点坐标为0(x ,0)lnx , 1y x '=,∴切线的斜率01k x =, ∴切线方程为0001()y lnx x x x -=-, 又 切线过原点,01lnx ∴-=-, 0x e ∴=,∴切线方程为11()y x e e-=-,即0x ey -=,当0x <时,()y ln x =-,与y lnx =的图像关于y 轴对称, ∴切线方程也关于y 轴对称, ∴切线方程为0x ey +=,综上所述,曲线||y ln x =经过坐标原点的两条切线方程分别为0x ey -=,0x ey +=,故答案为:0x ey -=,0x ey +=.5.(2021•新高考Ⅱ)已知函数()|1|x f x e =-,10x <,20x >,函数()f x 的图象在点1(A x ,1())f x 和点2(B x ,2())f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 的取值范围是 . 【过程解析】当0x <时,()1x f x e =-,导数为()x f x e '=-, 可得在点1(A x ,_11)x e -处的斜率为_11x k e =-, 切线AM 的方程为_1_11(1)()x x y e e x x --=--,令0x =,可得_1_111x x y e x e =-+,即_1_11(0,1)x x M e x e -+, 当0x >时,()1x f x e =-,导数为()x f x e '=, 可得在点2(B x ,_21)x e -处的斜率为_22x k e =,令0x =,可得_2_221x x y e x e =--,即_2_22(0,1)x x N e x e --,由()f x 的图象在A ,B 处的切线相互垂直,可得_1_2121x x k k e e =-⋅=-, 即为120x x +=,10x <,20x >,所以2||1(0,1)||x AM BN e ===∈.故答案为:(0,1).考点三 利用导数研究函数的单调性6.(2023•新高考Ⅱ)已知函数()x f x ae lnx =-在区间(1,2)上单调递增,则a 的最小值为( ) A .2eB .eC .1e -D .2e -【过程解析】对函数()f x 求导可得,1()x f x ae x'=-, 依题意,10x ae x -…在(1,2)上恒成立,即1x a xe…在(1,2)上恒成立,设1(),(1,2)x g x x xe =∈,则22()(1)()()()x x x x x e xe e x g x xe xe -++'==-, 易知当(1,2)x ∈时,()0g x '<, 则函数()g x 在(1,2)上单调递减, 则11()(1)max a g x g e e-===….故选:C . 7.(2023•新高考Ⅰ)已知函数()()x f x a e a x =+-. (1)讨论()f x 的单调性;(2)证明:当0a >时,3()22f x lna >+. 【过程解析】(1)()()x f x a e a x =+-, 则()1x f x ae '=-,①当0a …时,()0f x '<恒成立,()f x 在R 上单调递减,②当0a >时,令()0f x '=得,1x lna=, 当1(,)x ln a ∈-∞时,()0f x '<,()f x 单调递减;当1(x ln a ∈,)+∞时,()0f x '>,()f x 单调递增,综上所述,当0a …时,()f x 在R 上单调递减;当0a >时,()f x 在1(,)ln a -∞上单调递减,在1(ln a,)+∞上单调递增.证明:(2)由(1)可知,当0a >时,2111()(()1min f x f ln a a ln a lna a a a==+-=++,要证3()22f x lna >+,只需证23122a lna lna ++>+,只需证2102a lna -->, 设g (a )212a lna =--,0a >, 则g '(a )21212a a a a -=-=, 令g '(a )0=得,2a =,当(0,)2a ∈时,g '(a )0<,g (a)单调递减,当(2a ∈,)+∞时,g '(a )0>,g (a )单调递增,所以g (a)11(022222g ln ln =--=->…, 即g (a )0>, 所以2102a lna -->得证, 即3()22f x lna >+得证. 8.(2022•浙江)设函数()(0)2ef x lnx x x=+>. (Ⅰ)求()f x 的单调区间;(Ⅱ)已知a ,b R ∈,曲线()y f x =上不同的三点1(x ,1())f x ,2(x ,2())f x ,3(x ,3())f x 处的切线都经过点(,)a b .证明:(ⅰ)若a e >,则0b f <-(a )1(1)2ae<-;(ⅱ)若0a e <<,123x x x <<,则2213211266e a e ae e x x a e --+<+<-. (注: 2.71828e =⋯是自然对数的底数) 【过程解析】(Ⅰ) 函数()(0)2ef x lnx x x=+>, ∴2212()22e x ef x x x x -'=-+=,(0)x >, 由22()02x e f x x -'=>,得2ex >,()f x ∴在(2e ,)+∞上单调递增; 由22()02x ef x x -'=<,得02e x <<,()f x ∴在(0,)2e 上单调递减. (Ⅱ)()i 证明: 过(,)a b 有三条不同的切线,设切点分别为1(x ,1())f x ,2(x ,2())f x ,3(x ,3())f x ,()()()i i i f x b f x x a ∴-='-,(1i =,2,3),∴方程()()()f x b f x x a -='-有3个不同的根,该方程整理为21()()022e ex a lnx b x x x ----+=,设21()()()22e eg x x a lnx b x x x=----+,则223231111()()()()22e e e g x x a x e x a x x x x x x x'=-+-+--+=---, 当0x e <<或x a >时,()0g x '<;当e x a <<时,()0g x '>, ()g x ∴在(0,)e ,(,)a +∞上为减函数,在(,)e a 上为增函数, ()g x 有3个不同的零点,g ∴(e )0<且g (a )0>,21()()022e e e a lne b e e e ∴----+<,且21()()022e ea a lnab a a a----+>, 整理得到12a b e <+且()2eb lna f a a>+=, 此时,12a b e <+,且()2e b lna f a a >+=,此时,1()(1)1()02222a a e e b f a lna lna b e e a a ---<+-+--+>, 整理得12a b e <+,且()2e b lna f a a>+=, 此时,b f -(a )113(1)1()2222222a a e a elna lna e e a e a--<+-+-+=--,设μ(a )为(,)e +∞上的减函数,μ∴(a )3022elne e<--=, ∴10()(1)2ab f a e<-<-. ()ii 当0a e <<时,同()i 讨论,得:()g x 在(0,)a ,(,)e +∞上为减函数,在(,)a e 上为增函数, 不妨设123x x x <<,则1230x a x e x <<<<<,()g x 有3个不同的零点,g ∴(a )0<,且g (e )0>,21()()022e e e a lne b e e e ∴----+>,且21()022e e a a lna b a a a----+<, 整理得122a ab lna e e+<<+, 123x x x << ,1230x a x e x ∴<<<<<,2()12a e eag x lnx b x x+=-+-+ , 设,(0,1)e a t m x e ==∈,则方程2102a e ealnx b x x+-+-+=即为:202a e a t t lnt b e e +-+++=,即为2(1)02mm t t lnt b -++++=, 记123123,,e e et t t x x x ===, 则1t ,2t ,3t 为2(1)02m m t t lnt b -++++=有三个不同的根, 设31311x t e k t x a ==>>,1am e =<, 要证:2213211266e a e ae e x x a e --+<+<-, 即证132266e a e e at t e a e--+<+<-, 即证:213132(13)(12)236()m m m t t m m t t --++--<+,而2111(1)02m m t t lnt b -++++=,且2333(1)02m m t t lnt b -++++=, ∴22131313()(1)()02m lnt lnt t t m t t -+--+-=, ∴131313222lnt lnt t t m m t t -+--=-⨯-, ∴即证21313132(13)(12)36()lnt lnt m m m m t t m t t ---+-⨯<-+,即证1132313()(13)(12)072t t t lnt m m m t t +--++>-,即证2(1)(13)(12)0172k lnk m m m k +--++>-, 记(1)(),11k lnkk k k ϕ+=>-,则211()(2)0(1)k k lnk k kϕ=-->-, ()k ϕ∴在(1,)+∞为增函数,()()k m ϕϕ∴>,∴22(1)(13)(12)(1)(13)(12)172172k lnk m m m m lnm m m m k m +--++--++>+--, 设2(1)(13)(12)()72(1)m m m m m lnm m ω---+=++,01m <<, 则2322322(1)(3204972)(1)(33)()072(1)72(1)m m m m m m x m m m m ω---+-+'=>>++,()m ω∴在(0,1)上是增函数,()m ωω∴<(1)0=, 2(1)(13)(12)072(1)m m m m lnm m ---+∴+<+,即2(1)(13)(12)0172m lnm m m m m +--++>-, ∴若0a e <<,123x x x <<,则2213211266e a e ae e x x a e --+<+<-. 9.(2022•新高考Ⅱ)已知函数()ax x f x xe e =-. (1)当1a =时,讨论()f x 的单调性; (2)当0x >时,()1f x <-,求a 的取值范围; (3)设*n N ∈(1)ln n +>+.【过程解析】(1)当1a =时,()(1)x x x f x xe e e x =-=-,()(1)x x x f x e x e xe '=-+=,0x e > ,∴当(0,)x ∈+∞时,()0f x '>,()f x 单调递增;当(,0)x ∈-∞时,()0f x '<,()f x 单调递减.(2)令()()11(0)ax x g x f x xe e x =+=-+>, ()1f x <- ,()10f x +<, ()(0)0g x g ∴<=在0x >上恒成立, 又()ax ax x g x e axe e '=+-,令()()h x g x =',则()()(2)ax ax ax x ax ax x h x ae a e axe e a e axe e '=++-=+-, (0)21h a ∴'=-,①当210a ->,即12a >,存在0δ>,使得当(0,)x δ∈时,()0h x '>,即()g x '在(0,)δ上单调递增. 因为()(0)0g x g '>'=,所以()g x 在(0,)δ内递增,所以()1f x >-,这与()1f x <-矛盾,故舍去;②当210a -…,即12a …, ()(1)ax ax x ax x g x e axe e ax e e '=+-=+-,若10ax +…,则()0g x '<,所以()g x 在[0,)+∞上单调递减,()(0)0g x g =…,符合题意. 若10ax +>,则1111(1)(1)2222()0x ln x x x axaxxax ln ax xxx g x e axe e ee eeee +++++'=+-=---=剟,所以()g x 在(0,)+∞上单调递减,()(0)0g x g =…,符合题意. 综上所述,实数a 的取值范围是12a …. 另解:()f x 的导数为()(1)(0)ax x f x ax e e x '=+->,①当1a …时,()(1)0ax x ax x x f x ax e e e ex e e '=+->--=…,所以()f x 在(0,)+∞递增,所以()1f x >-,与题意矛盾;②当0a …时,()10ax x x f x e e e '--<剟, 所以()f x 在(0,)+∞递减,所以()1f x <-,满足题意;.③当102a <…时,11122211()(1)[(1)]22x x x x f x x e e e x e '+-=+-….设121()(1)(0)2x G x x e x =+->,1211()022x G x e '=-<,则()G x 在(0,)+∞递减,所以()0G x <,12()()0x f x e G x '=<,所以()f x 在(0,)+∞递减,所以()1f x <-,满足题意;④当112a <<时,(1)()[(1)]ax a x f x e ax e -'=+-,令(1)()(1)a x H x ax e -=+-,则()()ax f x e H x '=,(1)()(1)a x H x a a e -'=+-,可得()H x '递减,(0)21H a '=-,所以存在00x >,使得0()0H x '=.当0(0,)x x ∈时,()0H x '>, ()H x 在0(0,)x 递增,此时()0H x >,所以当0(0,)x x ∈时,()()0ax f x e H x '=>,()f x 在0(0,)x 递增,所以()1f x >-,与题意矛盾. 综上可得,a 的取值范围是(-∞,1]2.(3)由(2)可知,当12a =时,12()1(0)x x f x xe e x =-<->,令*1(1)()x ln n N n=+∈得,111(1)(1)21(1)1ln n n ln e e n +++⋅-<-,整理得,11(10ln n n+<,∴11(1ln n >+,∴1()n ln n +>,∴11231((...(1)12n nk k k n ln ln ln n k n ==++>=⨯⨯⨯=+∑,...(1)ln n +>+.另解:运用数学归纳法证明. 当1n =时,左边22ln ==>成立.假设当(1,*)n k k k N =∈…...(1)ln k ++>+.当1n k =+...(2)ln k +>+,只要证(1)(2)ln k ln k ++>+,21(2)(1)(1)11k ln k ln k lnln k k +>+-+==+++. 可令11t k =+,则(0t ∈,1]2(1)ln t >+,再令2x x =∈,则需证明12(2x lnx x x ->∈.构造函数1()2()((1g x lnx x x x =--∈,22211()1(1)0g x x x x'=--=--<,可得()g x 在(1上递减, 则()g x g <(1)0=,所以原不等式成立, 即1n k =+...(2)ln k ++>+成立....(1)ln n +>+成立.10.(2021•新高考Ⅱ)已知函数2()(1)x f x x e ax b =--+. (Ⅰ)讨论()f x 的单调性;(Ⅱ)从下面两个条件中选一个,证明:()f x 恰有一个零点.①2122e a <…,2b a >; ②102a <<,2b a …. 【过程解析】(Ⅰ)2()(1)x f x x e ax b =--+ ,()(2)x f x x e a '=-,①当0a …时,当0x >时,()0f x '>,当0x <时,()0f x '<,()f x ∴在(,0)-∞上单调递减,在(0,)+∞上单调递增,②当0a >时,令()0f x '=,可得0x =或(2)x ln a =,()i 当102a <<时,当0x >或(2)x ln a <时,()0f x '>,当(2)0ln a x <<时,()0f x '<,()f x ∴在(-∞,(2))ln a ,(0,)+∞上单调递增,在((2)ln a ,0)上单调递减, 1()2ii a =时, ()(1)0x f x x e '=-… 且等号不恒成立,()f x ∴在R 上单调递增,()iii 当12a >时, 当0x <或(2)x ln a >时,()0f x '>,当0(2)x ln a <<时,()0f x '<,()f x 在(,0)-∞,((2)ln a ,)+∞上单调递增,在(0,(2))ln a 上单调递减. 综上所述:当0a … 时,()f x 在(,0)-∞上单调递减;在(0,)+∞上 单调递增;当102a << 时,()f x 在(-∞,(2))ln a 和(0,)+∞上单调递增;在((2)ln a ,0)上单调递减; 当12a = 时,()f x 在R 上单调递增; 当12a >时,()f x 在(,0)-∞和((2)ln a ,)+∞ 上单调递增;在(0,(2))ln a 上单调递减. (Ⅱ)证明:若选①,由 (Ⅰ)知,()f x 在(,0)-∞上单调递增,(0,(2))ln a 单调递减,((2)ln a ,)+∞ 上()f x 单调递增.注意到((1)0,(0)1210f ef b a =-<=->->.()f x ∴ 在( 上有一个零点; 22((2))((2)1)222(2)222(2)(2(2))f ln a ln a a a ln a b aln a a aln a a aln a ln a =-⋅-⋅+>--+=-,由2122e a <… 得0(2)2ln a <…,(2)(2(2))0aln a ln a ∴-…, ((2))0f ln a ∴>,当0x … 时,()((2))0f x f ln a >…,此时()f x 无零点.综上:()f x 在R 上仅有一个零点.另解:当1(2a ∈,22e 时,有(2)(0ln a ∈,2],而(0)1210f b a =->-=,于是2((2))((2)1)2(2)f ln a ln a a aln a b =-⋅-+(2)(2(2))(2)0ln a a ln a b a =-+->,所以()f x 在(0,)+∞没有零点,当0x <时,(0,1)x e ∈,于是2()()0b f x ax b f a <-+⇒-<,所以()f x 在(,0)上存在一个零点,命题得证.若选②,则由(Ⅰ)知:()f x 在(-∞,(2))ln a 上单调递增, 在((2)ln a ,0)上单调递减,在(0,)+∞ 上单调递增.22((2))((2)1)222(2)222(2)(2(2))f ln a ln a a aln a b aln a a aln a a aln a ln a =--+--+=-…,102a <<,(2)0ln a ∴<,(2)(2(2))0aln a ln a ∴-<,((2))0f ln a ∴<, ∴当0x … 时,()((2))0f x f ln a <…,此时()f x 无零点.当0x > 时,()f x 单调递增,注意到(0)1210f b a =--<…,取c =21b a << ,∴1c >>,又易证1c e c >+,∴22221()(1)(1)(1)(1)11111102c f c c e ac b c c ac b a c b c b b b =--+>-+-+=-+->+-=-++-=>,()f x ∴在(0,)c 上有唯一零点,即()f x 在(0,)+∞上有唯一零点.综上:()f x 在R 上有唯一零点. 11.(2021•浙江)设a ,b 为实数,且1a >,函数2()()x f x a bx e x R =-+∈. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若对任意22b e >,函数()f x 有两个不同的零点,求a 的取值范围;(Ⅲ)当a e =时,证明:对任意4b e >,函数()f x 有两个不同的零点1x ,2x ,满足22122blnb e x x e b>+.(注: 2.71828e = 是自然对数的底数) 【过程解析】(Ⅰ)()x f x a lna b '=-,①当0b …时,由于1a >,则0x a lna >,故()0f x '>,此时()f x 在R 上单调递增;②当0b >时,令()0f x '>,解得b lnlna x lna >,令()0f x '<,解得blnlna x lna <,∴此时()f x 在(,b lnlna lna -∞单调递减,在(,)b lnlna lna+∞单调递增;综上,当0b …时,()f x 的单调递增区间为(,)-∞+∞;当0b >时,()f x 的单调递减区间为(,)blnlna lna-∞,单调递增区间为(,)blnlna lna+∞;(Ⅱ)注意到x →-∞时,()f x →+∞,当x →+∞时,()f x →+∞,由(Ⅰ)知,要使函数()f x 有两个不同的零点,只需()(0min blnlna f x f lna=<即可,∴20b blnlnlna lna a b e lna lna-⋅+<对任意22b e >均成立,令b ln lna t lna =,则20t a bt e -+<,即20tlna e bt e -+<,即20bln lna b ln lna e b e lna-⋅+<,即20bln blna b e lna lna -⋅+<,∴20bb b lne lna lna-⋅+<对任意22b e >均成立, 记22(),2bg b b b lne lna b e lna =-⋅+>,则1()1()()b lna g b ln b ln lna lnb lna b lna'=-+⋅⋅=-, 令g '(b )0=,得b lna =,①当22lnae >,即22e a e >时,易知g (b )在2(2e ,)lna 单调递增,在(,)lna +∞单调递减,此时g (b )22()1(1)0g lna lna lna ln e lna lna e =-⋅+=⋅+>…,不合题意;②当22lna e …,即221e a e <…时,易知g (b )在2(2e ,)+∞单调递减,此时2222222222()(2)2222[(2)()]e g b g e e e ln e lna e e ln e ln lna e lna lna <=-⋅+=--+, 故只需22[22()]0ln ln lna lna -+-+…,即2()222lna ln lna ln ++…,则2lna …,即2a e …; 综上,实数a 的取值范围为(1,2]e ;(Ⅲ)证明:当a e =时,2()x f x e bx e =-+,()x f x e b '=-,令()0f x '=,解得4x lnb =>, 易知22222422()()433(13)0lnb min f x f lnb e b lnb e b blnb e b b e e b e e e e ==-⋅+=-+<-+=-<-=-<,()f x ∴有两个零点,不妨设为1x ,2x ,且12x lnb x <<, 由2222()0x f x e bx e =-+=,可得222x e e x b b=+,∴要证22122blnb e x x e b >+,只需证2122x e blnb x b e >,只需证22122x b lnb e x e >, 而222222222222()20e eb b e e f e e e e e e e b=-+=-<-<,则212e x b <, ∴要证22122x b lnbe x e>,只需证2x e blnb >,只需证2()x ln blnb >, 而()222221(())()()(4)404ln blnb f ln blnb e bln blnb e blnb bln blnb e blnb bln b e b ln e e bln =-+=-+<-+=⋅+=-<,2()x ln blnb ∴>,即得证.12.(2021•新高考Ⅰ)已知函数()(1)f x x lnx =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且blna alnb a b -=-,证明:112e a b<+<. 【过程解析】(1)解:由函数的过程解析式可得()11f x lnx lnx '=--=-,(0,1)x ∴∈,()0f x '>,()f x 单调递增,(1,)x ∈+∞,()0f x '<,()f x 单调递减, 则()f x 在(0,1)单调递增,在(1,)+∞单调递减.(2)证明:由blna alnb a b -=-,得111111ln ln a a b b b a -+=-,即1111(1)(1)ln ln a a b b-=-, 由(1)()f x 在(0,1)单调递增,在(1,)+∞单调递减, 所以()max f x f =(1)1=,且f (e )0=, 令11x a =,21x b=,则1x ,2x 为()f x k = 的两根,其中(0,1)k ∈. 不妨令1(0,1)x ∈,2(1,)x e ∈,则121x ->,先证122x x <+,即证212x x >-,即证211()()(2)f x f x f x =<-, 令()()(2)h x f x f x =--,则()()(2)(2)[(2)]h x f x f x lnx ln x ln x x '='+'-=---=--在(0,1)单调递减, 所以()h x h '>'(1)0=, 故函数()h x 在(0,1)单调递增,1()h x h ∴<(1)0=.11()(2)f x f x ∴<-,122x x ∴<+,得证.同理,要证12x x e +<, (法一)即证211x e x <<-, 根据(1)中()f x 单调性, 即证211()()()f x f x f e x =>-, 令()()()x f x f e x ϕ=--,(0,1)x ∈, 则()[()]x ln x e x ϕ'=--,令0()0x ϕ'=, 0(0,)x x ∈,()0x ϕ'>,()x ϕ单调递增,0(x x ∈,1),()0x ϕ'<,()x ϕ单调递减,又0x e <<时,()0f x >,且f (e )0=,故0lim ()0x x ϕ+→=, ϕ(1)f =(1)(1)0f e -->,()0x ϕ∴>恒成立, 12x x e +<得证,(法二)12()()f x f x =,1122(1)(1)x lnx x lnx -=-, 又1(0,1)x ∈,故111lnx ->,111(1)x lnx x ->,故12112222(1)(1)x x x lnx x x lnx x +<-+=-+,2(1,)x e ∈, 令()(1)g x x lnx x =-+,()1g x lnx '=-,(1,)x e ∈, 在(1,)e 上,()0g x '>,()g x 单调递增, 所以()g x g <(e )e =,即222(1)x lnx x e -+<,所以12x x e +<,得证, 则112e a b<+<. 13.(2020•海南)已知函数1()x f x ae lnx lna -=-+. (1)当a e =时,求曲线()y f x =在点(1,f (1))处的切线与两坐标轴围成的三角形的面积; (2)若()1f x …,求a 的取值范围.【过程解析】(1)当a e =时,()1x f x e lnx =-+, 1()x f x e x∴'=-, f ∴'(1)1e =-, f (1)1e =+,∴曲线()y f x =在点(1,f (1))处的切线方程为(1)(1)(1)y e e x -+=--,当0x =时,2y =,当0y =时,21x e -=-, ∴曲线()y f x =在点(1,f (1))处的切线与两坐标轴围成的三角形的面积1222211S e e =⨯⨯=--. (2)方法一:由()1f x …,可得11x ae lnx lna --+…,即11x lna e lnx lna -+-+…, 即11x lna lnx e lna x lnx x e lnx -+++-+=+…, 令()t g t e t =+, 则()10t g t e '=+>,()g t ∴在R 上单调递增, (1)()g lna x g lnx +- …1lna x lnx ∴+-…, 即1lna lnx x -+…, 令()1h x lnx x =-+, 11()1xh x x x-∴'=-=, 当01x <<时,()0h x '>,函数()h x 单调递增, 当1x >时,()0h x '<,函数()h x 单调递减,()h x h ∴…(1)0=,0lna ∴…, 1a ∴…,故a 的范围为[1,)+∞.方法二:由()1f x …可得11x ae lnx lna --+…,0x >,0a >, 即11x ae lnx lna ---…,设()1x g x e x =--,()10x g x e ∴'=->恒成立,()g x ∴在(0,)+∞单调递增, ()(0)1010g x g ∴>=--=, 10x e x ∴-->, 即1x e x >+,再设()1h x x lnx =--, 11()1x h x x x-∴'=-=, 当01x <<时,()0h x '<,函数()h x 单调递减, 当1x >时,()0h x '>,函数()h x 单调递增,()h x h ∴…(1)0=,10x lnx ∴--…, 即1x lnx -…1x e x -∴…,则1x ae ax -…,此时只需要证ax x lna -…, 即证(1)x a lna --…,当1a …时, (1)0x a lna ∴->>-恒成立,当01a <<时,(1)0x a lna -<<-,此时(1)x a lna --…不成立, 综上所述a 的取值范围为[1,)+∞.方法三:由题意可得(0,)x ∈+∞,(0,)a ∈+∞, 11()x f x ae x-∴'=-, 易知()f x '在(0,)+∞上为增函数,①当01a <<时,f '(1)10a =-<,11111((1)0aa f ae a a e a--'=-=->,∴存在01(1,x a∈使得0()0f x '=,当0(1,)x x ∈时,()0f x '<,函数()f x 单调递减,()f x f ∴<(1)1a lna a =+<<,不满足题意,②当1a …时,10x e ->,0lna >,1()x f x e lnx -∴-…,令1()x g x e lnx -=-,11()x g x e x-∴'=-, 易知()g x '在(0,)+∞上为增函数, g ' (1)0=,∴当(0,1)x ∈时,()0g x '<,函数()g x 单调递减,当(1,)x ∈+∞时,()0g x '>,函数()g x 单调递增,()g x g ∴…(1)1=, 即()1f x …,综上所述a 的取值范围为[1,)+∞.方法四:1()x f x ae lnx lna -=-+ ,0x >,0a >, 11()x f x ae x-∴'=-,易知()f x '在(0,)+∞上为增函数, 1x y ae -= 在(0,)+∞上为增函数,1y x=在0,)+∞上为减函数, 1x y ae -∴=与1y x=在0,)+∞上有交点, ∴存在0(0,)x ∈+∞,使得01001()0x f x ae x -'=-=, 则0101x ae x -=,则001lna x lnx +-=-,即001lna x lnx =--, 当0(0,)x x ∈时,()0f x '<,函数()f x 单调递减, 当0(x x ∈,)+∞时,()0f x '>,函数()f x 单调递增,0100()()x f x f x ae lnx lna -∴=-+ (000000011)1211lnx x lnx lnx x x x =-+--=-+-… ∴000120lnx x x --… 设1()2g x lnx x x=--,易知函数()g x 在(0,)+∞上单调递减,且g (1)1010=--=,∴当(0x ∈,1]时,()0g x …,0(0x ∴∈,1]时,000120lnx x x --…, 设()1h x x lnx =--,(0x ∈,1],1()10h x x ∴'=--<恒成立, ()h x ∴在(0,1]上单调递减,()h x h ∴…(1)1110ln =--=,当0x →时,()h x →+∞,01lna ln ∴=…,1a ∴….方法五:()1f x …等价于11x ae lnx lna --+…,该不等式恒成立.当1x =时,有1a lna +…,其中0a >. 设g (a )1a lna =+-,则g '(a )110a=+>, 则g (a )单调递增,且g (1)0=. 所以若1a lna +…成立,则必有1a …. ∴下面证明当1a …时,()1f x …成立.设()1x h x e x =--,()1x h x e ∴'=-,()h x ∴在(,0)-∞单调递减,在(0,)+∞单调递增,()(0)1010h x h ∴=--=…,10x e x ∴--…,即1x e x +…,把x 换成1x -得到1x e x -…,1x lnx - …,1x lnx ∴-….11()1x x f x ae lnx lna e lnx x lnx --∴=-+--厖?,当1x =时等号成立.综上,1a …. 14.(2019•浙江)已知实数0a ≠,设函数()f x alnx =+0x >. (Ⅰ)当34a =-时,求函数()f x 的单调区间; (Ⅱ)对任意21[x e∈,)+∞均有()f x …a 的取值范围.注: 2.71828e =⋯为自然对数的底数.【过程解析】(1)当34a =-时,3()4f x lnx =-+,0x >,3()4f x x '=-+= ∴函数()f x 的单调递减区间为(0,3),单调递增区间为(3,)+∞.(2)由f (1)12a …,得04a <…,当0a <…时,()f x …20lnx --…,令1t a=,则t …,设()22g t t lnx =,t …,则2()2g t t lnx=,()i 当1[7x ∈,)+∞,则()2g x g lnx =--…,记()p x lnx =--,17x …,则1()p x x '--==, 列表讨论:()2()2()0g t g p x p x ∴==厖.()ii 当211[,7x e ∈时,()g t g =…,令()(1)q x x =++,21[x e ∈,17,则()10q x'=+>,故()q x 在21[e ,1]7上单调递增,1()(7q x q ∴…,由()i 得11()()7777q p p =-<-(1)0=,()0q x ∴<,()0g t g ∴=>…,由()()i ii 知对任意21[x e ∈,)+∞,t ∈,)+∞,()0g t …,即对任意21[x e∈,)+∞,均有()f x …综上所述,所求的a 的取值范围是(0.考点四 利用导数研究函数的极值15.【多选】(2023•新高考Ⅱ)若函数2()(0)b c f x alnx a x x =++≠既有极大值也有极小值,则( ) A .0bc > B .0ab > C .280b ac +> D .0ac <【过程解析】函数定义域为(0,)+∞, 且223322()a b c ax bx c f x x x x x --'=--=, 由题意,方程()0f x '=即220ax bx c --=有两个正根,设为1x ,2x , 则有120b x x a+=>,1220c x x a -=>,△280b ac =+>, 0ab ∴>,0ac <,20ab ac a bc ∴⋅=<,即0bc <.故选:BCD .16.【多选】(2022•新高考Ⅰ)已知函数3()1f x x x =-+,则( ) A .()f x 有两个极值点B .()f x 有三个零点C .点(0,1)是曲线()y f x =的对称中心D .直线2y x =是曲线()y f x =的切线【过程解析】2()31f x x '=-,令()0f x '>,解得3x <或3x >,令()0f x '<,解得33x <<,()f x ∴在(,)-∞+∞上单调递增,在(上单调递减,且99(0,(03939f f +--=>=>, ()f x ∴有两个极值点,有且仅有一个零点,故选项A 正确,选项B 错误;又33()()112f x f x x x x x +-=-+-++=,则()f x 关于点(0,1)对称,故选项C 正确;假设2y x =是曲线()y f x =的切线,设切点为(,)a b ,则23122a a b⎧-=⎨=⎩,解得12a b =⎧⎨=⎩或12a b =-⎧⎨=-⎩, 显然(1,2)和(1,2)--均不在曲线()y f x =上,故选项D 错误.故选:AC .17.(2023•新高考Ⅱ)(1)证明:当01x <<时,2sin x x x x -<<; (2)已知函数2()cos (1)f x ax ln x =--,若0x =为()f x 的极大值点,求a 的取值范围.【过程解析】(1)证明:设2()sin g x x x x =--,(0,1)x ∈,则()12cos g x x x '=--,()2sin 0g x x ∴''=-+<,()g x ∴'在(0,1)上单调递减,()(0)0g x g ∴'<'=,()g x ∴在(0,1)上单调递减,()(0)0g x g ∴<=,即2sin 0x x x --<,(0,1)x ∈,2sin x x x ∴-<,(0,1)x ∈,设()sin h x x x =-,(0,1)x ∈,则()1cos 0h x x '=->,()h x ∴在(0,1)上单调递增,()(0)0h x h ∴>=,(0,1)x ∈,即sin 0x x ->,(0,1)x ∈,sin x x ∴<,(0,1)x ∈,综合可得:当01x <<时,2sin x x x x -<<;(2)解:22()sin 1x f x a ax x '=-+- ,222222()cos (1)x f x a ax x +∴''=-+-, 且(0)0f '=,2(0)2f a ''=-+,①若2()20f x a ''=->,即a <<时,易知存在10t >,使得1(0,)x t ∈时,()0f x ''>,()f x ∴'在1(0,)t 上单调递增,()(0)0f x f ∴'>'=,()f x ∴在1(0,)t 上单调递增,这显然与0x =为函数的极大值点相矛盾,故舍去;②若2()20f x a ''=-<,即a <a >存在20t >,使得2(x t ∈-,2)t 时,()0f x ''<,()f x ∴'在2(t -,2)t 上单调递减,又(0)0f '=,∴当20t x -<<时,()0f x '>,()f x 单调递增;当20x t <<时,()0f x '<,()f x 单调递减,满足0x =为()f x 的极大值点,符合题意;③若2()20f x a ''=-=,即a =()f x 为偶函数,∴只考虑a =的情况,此时22())1x f x x '=+-,(0,1)x ∈时, 2221()22(1)011x f x x x x x '>-+=->--, ()f x ∴在(0,1)上单调递增,与显然与0x =为函数的极大值点相矛盾,故舍去.综合可得:a 的取值范围为(-∞,⋃,)+∞.考点五 利用导数研究函数的最值18.(2022•新高考Ⅰ)已知函数()x f x e ax =-和()g x ax lnx =-有相同的最小值.(1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.【过程解析】(1)()f x 定义域为R ,()x f x e ax =- ,()x f x e a '∴=-,若0a …,则()0f x '>,()f x 无最小值,故0a >,当()0f x '=时,x lna =,当x lna <时,()0f x '<,函数()f x 在(,)lna -∞上单调递减,当x lna >时,()0f x '>,函数()f x 在(,)lna +∞上单调递增,故()()min f x f lna a alna ==-,()g x 的定义域为(0,)+∞,()g x ax lnx =- ,1()g x a x'∴=-, 令()0g x '=,解得1x a =, 当10x a <<时,()0g x '<,函数()g x 在1(0,)a 上单调递减, 当1x a >时,()0g x '>,函数()g x 在1(a,)+∞上单调递增, 故()1min g x lna =+,函数()x f x e ax =-和()g x ax lnx =-有相同的最小值1a alna lna ∴-=+,0a > ,1a alna lna ∴-=+化为101a lna a --=+, 令1()1x h x lnx x -=-+,0x >, 则222211(1)121()(1)(1)(1)x x x h x x x x x x x +--+'=-=-=+++, 0x > ,221()0(1)x h x x x +'∴=>+恒成立, ()h x ∴在(0,)+∞上单调递增,又h (1)0=,h ∴(a )h =(1),仅有此一解, 1a ∴=.(2)证明:由(1)知1a =,函数()x f x e x =-在(,0)-∞上单调递减,在(0,)+∞上单调递增, 函数()g x x lnx =-在(0,1)上单调递减,在(1,)+∞上单调递增,设()()()2(0)x u x f x g x e x lnx x =-=-+>, 则1()22x x u x e e x'=-+>-,当1x …时,()20u x e '->…, 所以函数()u x 在(1,)+∞上单调递增,因为u (1)20e =->,所以当1x …时,()u x u …(1)0>恒成立,即()()0f x g x ->在1x …时恒成立, 所以1x …时,()()f x g x >,。
专题03 导数及其应用1.【2019年高考全国Ⅱ卷文数】曲线y =2sin x +cos x 在点(π,-1)处的切线方程为A .10x y --π-=B .2210x y --π-=C .2210x y +-π+=D .10x y +-π+=2.【2019年高考全国Ⅲ卷文数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==,D .1e a -=,1b =-3.【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则 A .a <–1,b <0 B .a <–1,b >0 C .a >–1,b <0D .a >–1,b >04.【2019年高考全国Ⅰ卷文数】曲线23()e xy x x =+在点(0)0,处的切线方程为____________.5.【2019年高考天津文数】曲线cos 2xy x =-在点(0,1)处的切线方程为__________. 6.【2019年高考江苏】在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线0x y +=的距离的最小值是 ▲ .7.【2019年高考江苏】在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 ▲ .8.【2019年高考全国Ⅰ卷文数】已知函数f (x )=2sin x -x cos x -x ,f ′(x )为f (x )的导数.(1)证明:f ′(x )在区间(0,π)存在唯一零点; (2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围.9.【2019年高考全国Ⅱ卷文数】已知函数()(1)ln 1f x x x x =---.证明:(1)()f x 存在唯一的极值点;(2)()=0f x 有且仅有两个实根,且两个实根互为倒数.10.【2019年高考天津文数】设函数()ln (1)e x f x x a x =--,其中a ∈R .(1)若a ≤0,讨论()f x 的单调性; (2)若10ea <<, (i )证明()f x 恰有两个零点;(ii )设0x 为()f x 的极值点,1x 为()f x 的零点,且10x x >,证明0132x x ->.11.【2019年高考全国Ⅲ卷文数】已知函数32()22f x x ax =-+.(1)讨论()f x 的单调性;(2)当0<a <3时,记()f x 在区间[0,1]的最大值为M ,最小值为m ,求M m -的取值范围.12.【2019年高考北京文数】已知函数321()4f x x x x =-+. (1)求曲线()y f x =的斜率为1的切线方程; (2)当[2,4]x ∈-时,求证:6()x f x x -≤≤;(3)设()|()()|()F x f x x a a =-+∈R ,记()F x 在区间[2,4]-上的最大值为M (a ),当M (a )最小时,求a 的值.13.【2019年高考浙江】已知实数0a ≠,设函数()=ln 0.f x a x x +>(1)当34a =-时,求函数()f x 的单调区间;(2)对任意21[,)ex ∈+∞均有()f x ≤ 求a 的取值范围. 注:e=2.71828…为自然对数的底数.14.【2019年高考江苏】设函数()()()(),,,f x x a x b x c a b c =---∈R 、()f 'x 为f (x )的导函数.(1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{3,1,3}-中,求f (x )的极小值; (3)若0,01,1a b c =<=,且f (x )的极大值为M ,求证:M ≤427.15.【河北省武邑中学2019届高三第二次调研考试数学】函数f(x)=x 2−2lnx 的单调减区间是A .(0,1]B .[1,+∞)C .(−∞,−1]∪(0,1]D .[−1,0)∪(0,1]16.【江西省新八校2019届高三第二次联考数学】若3()3()21f x f x x x +-=++对x ∈R 恒成立,则曲线()y f x =在点()()1,1f 处的切线方程为A .5250x y +-=B .10450x y +-=C .540x y +=D .204150x y --=17.【云南省玉溪市第一中学2019届高三第二次调研考试数学】函数2l ()n f x x x =的最小值为A .1e- B .1e C .12e-D .12e18.【四川省内江市2019届高三第三次模拟考试数学】若函数f(x)=12ax 2+xlnx −x 存在单调递增区间,则a 的取值范围是 A .1,1e ⎛⎫- ⎪⎝⎭B .1,e ⎛⎫-+∞ ⎪⎝⎭C .()1,-+∞D .1,e ⎛⎫-∞ ⎪⎝⎭19.【山西省太原市2019届高三模拟试题(一)数学】已知定义在(0,+∞)上的函数f(x)满足xf ′(x)−f(x)<0,且f(2)=2,则f (e x )−e x >0的解集是 A .(−∞,ln2) B .(ln2,+∞) C .(0,e 2)D .(e 2,+∞)20.【河南省焦作市2019届高三第四次模拟考试数学】已知a =ln √33,b =e −1,c =3ln28,则a,b,c 的大小关系为 A .b <c <a B .a >c >b C .a >b >cD .b >a >c21.【安徽省毛坦厂中学2019届高三校区4月联考数学】已知f (x )=lnx +1−ae x ,若关于x 的不等式f (x )<0恒成立,则实数a 的取值范围是 A .1,e ⎛⎫-∞ ⎪⎝⎭B .(),0-∞C .1,e ⎡⎫+∞⎪⎢⎣⎭D .1,e ⎛⎫+∞ ⎪⎝⎭22.【辽宁省丹东市2019届高三总复习质量测试】若1x =是函数()3221()(1)33f x x a x a a x =++-+-的极值点,则a 的值为 A .-2 B .3 C .-2或3D .-3或223.【黑龙江省大庆市第一中学2019届高三下学期第四次模拟(最后一卷)考试】已知奇函数()f x 是定义在R 上的可导函数,其导函数为()f x ',当0x >时,有()()22f x xf x x '>+,则不等式()()()22018+2018420x f x f +-<+的解集为A .(),2016-∞-B .()2016,2012--C .(),2018-∞-D .()2016,0-24.【重庆西南大学附属中学校2019届高三第十次月考数学】曲线21()ln 2f x x x x =+在点(1(1))f ,处的切线与直线10ax y --=垂直,则a =________.25.【河南省新乡市2019届高三下学期第二次模拟考试数学】已知函数f(x)=e x −alnx 在[1,2]上单调递增,则a 的取值范围是__________.26.【广东省深圳市高级中学2019届高三适应性考试(6月)数学】已知函数22,0,()e ,0,x x x f x x ⎧≤=⎨>⎩若方程2[()]f x a =恰有两个不同的实数根12,x x ,则12x x +的最大值是______.27.【山东省烟台市2019届高三3月诊断性测试(一模)数学】已知函数4211()42f x x ax =-,a ∈R . (1)当1a =时,求曲线()f x 在点(2,(2))f 处的切线方程;(2)设函数2()(22)e e ()xg x x x a f x =-+--,其中e 2.71828...=是自然对数的底数,讨论()g x 的单调性并判断有无极值,有极值时求出极值.28.【陕西省2019届高三第三次联考数学】已知函数f(x)=lnx−ax,g(x)=x2,a∈R.(1)求函数f(x)的极值点;(2)若f(x)≤g(x)恒成立,求a的取值范围.29.【山东省济宁市2019届高三二模数学】已知函数f(x)=lnx−xe x+ax(a∈R).(1)若函数f(x)在[1,+∞)上单调递减,求实数a的取值范围;(2)若a=1,求f(x)的最大值.30.【福建省2019年三明市高三毕业班质量检查测试】已知函数f(x)=e x(e x−ax+a)有两个极值点x1,x2.(1)求a的取值范围;(2)求证:2x1x2<x1+x2.31.【北京市西城区2019届高三4月统一测试(一模)数学】设函数f(x)=m e x−x2+3,其中m∈R.(1)当f(x)为偶函数时,求函数ℎ(x)=xf(x)的极值;(2)若函数f(x)在区间[−2 , 4]上有两个零点,求m的取值范围.。
2019年高考数学真题分类汇编 专题19:导数在函数中的应用(综合题)1.(2019•江苏)设函数'()()()(),,,,()f x x a x b x c a b c R f x =---∈为f (x )的导函数. (1)若a=b=c ,f (4)=8,求a 的值;(2)若a≠b ,b=c ,且()f x 和'()f x 的零点均在集合{}3,1,3-中,求()f x 的极小值;(3)若0,01,1a b c =<≤=,且f (x )的极大值为M ,求证:M≤427. 【答案】 (1)解:因为a=b=c ,所以3()()()()()f x x a x b x c x a =---=- 因为,所以,解得(2)解:因为 ,所以 ,从而 .令,得 或 .因为 ,都在集合中,且,所以 .此时 ,.令,得 或 .列表如下:所以的极小值为(3)解:因为 ,所以,.因为,所以,则有2个不同的零点,设为.由,得.列表如下:所以的极大值.解法一:.因此.解法二:因为,所以.当时,.令,则.令 ,得 .列表如下:所以当 时, 取得极大值,且是最大值,故.所以当时,,因此【考点】利用导数研究函数的极值,不等式的证明【解析】【分析】利用已知条件a=b=c , f (4)=8,求出 的值。
(1)利用求导的方法判断函数的单调性,再结合a≠b , b=c , 且f (x )和的零点均在集合中,从而求出函数的极值。
(2)利用两种方法证出M≤,第一种方法是利用求导的方法判断函数的单调性,从而求出函数的极值,再利用均值不等式求最值的方法结,且f (x )的极大值为M , 从而证出M≤ ;第二种方法利用求导的方法判断函数的单调性,从而求出函数的极值,从而求出函数的最值从而证出当时,因此。
2.(2019•浙江)已知实数a≠0,设函数f (x )。
(1)当a=34-时,求函数f (x )的单调区间;(2)对任意x∈[21e ,+∞)均有f (x ,求a 的取值范围。
导数及其应用
1.【2019年高考全国Ⅱ卷文数】曲线y =2sin x +cos x 在点(π,-1)处的切线方程为
A .10x y --π-=
B .2210x y --π-=
C .2210x y +-π+=
D .10x y +-π+= 【答案】C
【解析】2cos sin ,y x x '=-π2cos πsin π2,x y =∴=-=-'
则2sin cos y x x =+在点(,1)π-处的切线方程为(1)2()y x --=--π,即2210x y +-π+=. 故选C .
2.【2019年高考全国Ⅲ卷文数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-,
B .a=e ,b =1
C .1e 1a b -==,
D .1e a -=,1b =-
【答案】D
【解析】∵e ln 1,x y a x '=++
∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=,
将(1,1)代入2y x b =+,得21,1b b +==-.
故选D . 3.【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),03
2x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则
A .a <–1,b <0
B .a <–1,b >0
C .a >–1,b <0
D .a >–1,b >0
【答案】C
【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x =b 1−a ,
则y =f (x )﹣ax ﹣b 最多有一个零点;
当x ≥0时,y =f (x )﹣ax ﹣b =13x 3−12(a +1)x 2+ax ﹣ax ﹣b =13x 3−12(a +1)x 2﹣b ,
2(1)y x a x =+-',
当a +1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增,
则y =f (x )﹣ax ﹣b 最多有一个零点,不合题意;
当a +1>0,即a >﹣1时,令y ′>0得x ∈(a +1,+∞),此时函数单调递增,
令y ′<0得x ∈[0,a +1),此时函数单调递减,则函数最多有2个零点.
根据题意,函数y =f (x )﹣ax ﹣b 恰有3个零点⇔函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点,
如图:
∴b 1−a <0且{−b >0
13(a +1)3−12(a +1)(a +1)2−b <0
,
解得b <0,1﹣a >0,b >−16(a +1)3,
则a >–1,b <0.
故选C .
4.【2019年高考全国Ⅰ卷文数】曲线23()e x y x x =+在点(0)0,处的切线方程为____________.
【答案】30x y -=
【解析】223(21)e 3()e 3(31)e ,x x x y x x x x x '=+++=++
所以切线的斜率0|3x k y ='==,
则曲线23()e x y x x =+在点(0,0)处的切线方程为3y x =,即30x y -=.
5.【2019年高考天津文数】曲线cos 2x
y x =-在点(0,1)处的切线方程为__________.。