巧数线段角长方形和正方形
- 格式:pptx
- 大小:85.38 KB
- 文档页数:8
巧数图形巧数图形数图形包括:数线段、数角、数长方形、数正方形、数三角形等,这看似简单,其实其中学问可大了.为了能准确地数出结果,我们必须有次序、有条理地数,既不能遗漏,也不能重复.只要我们掌握了数的方法,就能数得又对又快.例1.下图中有多少条线段?(1)思路分析:每条线段均有两个端点,可以根据左端点进行分类.以A为左端点的线段为AB、AC,共有2条;以B点为左端点的线段为BC,只有1条;以C点为左端点的线段不存在.因此共有2+1=3(条).答:图中共有3条线段.(2)这题中左端点是A的线段有:AB、AC、AD、AE,共有4条;左端点是B的线段有BC、BD、BE,共有3条;左端点是C的线段有C D、CE,共有2条;左端点是D的线段有DE;左端点是E的线段不存在.所以共有4+3+2+1=10(条).答:图中共有10条线段.例2.数出下面图中共有多少条线段?思路分析:线段有一个重要特征:线段都是笔直的.所以我们在数的时候,必须将这幅图分成四个部分,每一部分分别采用以线段左端点分类数的方法,然后把四部分算得结果加起来.例题解答:第一部分从A到E共有4+3+2+1=10条线段.第二部分从G到J共有4+3+2+1=10条线段.第三部分是FG一条线段.第四部分是JK一条线段.10+10+1+1=22(条)答:这幅图共有22条线段.方法指导:数线段可以根据左端点将线段分类,数出每一类有多少条线段,然后再相加得出线段的总的条数.例3.一条线段上共有10个点,以这10个点为端点的不同线段共有多少条?思路分析:将这条线段上的10个点从左到右依次标为、、…、、以为左端点的线段为、、、、、、、、共有9条;为左端点的线段为、、、…、,共有8条;…;以为左端点的线段为,只有1条;以为左端点的线段不存在.因此,共有线段:9+8+…+3+2+1=(9+1)×9÷2=45(条)答:一共有45条线段.方法指导:一般地,如果线段上有几个点(其中n是大于或等于2的自然数),那么以这n个点为端点的线段共有:(n-1)+(n-2)+…+3+2+1=n×(n-1)÷2例4.下面图形中有几个角?思路分析:数角的个数为了不遗漏、不重复,也需要按一定的顺序去数,可以采用与数线段相同的方法.以OA为一边的角有:∠AOB、∠AOC、∠AOD,共3个;以OB为一边的角有:∠BOC、∠BOD,共2个.以OC为一边的角有:∠COD,只有1个.3+2+1=6(个)答:图中共有6个角.例5.数出下面图中共有多少个三角形?思路分析:数三角形个数的方法与数线段的方法差不多.以AB为边的三角形有:△ABD、△ABE、△ABC,共有3个.以AD为边的三角形有:△ADE、△ADC,共有2个.以AE为边的三角形有:△AEC,只有1个.所以,图中一共有三角形:3+2+1=6(个).我们还可以发现,可以抓住底边BC来考虑,底边BC中所包含的每一条线段都恰好对应一个三角形.底边左端点是B的三角形共有△BDA、△BEA、△BCA三个.底边左端点是D的三角形共有△DEA、△DCA两个.底边左端点是E的三角形只有△ECA一个.所以一共有三角形:3+2+1=6(个).方法指导:数角的个数和三角形个数这些基本图形时,所采用的方法与数线段的方法相同.即角的个数=射线数×(射线数-1)÷2.即三角形个数就是底边上的线段数.例6.数一数图中共有多少个三角形?思路分析:我们可以将这幅图分成三个部分来数,即下面三幅图.在△ABC中,一共有5+4+3+2+1=15(个)三角形,在△ABD中,一共有5+4+3+2+1=15(个)三角形;在△BDC中,一共有5个三角形.15+15+5=35(个)答:图中共有35个三角形.例7.图中共有多少个不同的三角形?思路分析:将本题分成(1)、(2)两部分来数:第(1)部分中共有三角形:3+2+1=6(个);第(2)部分中共有3+2+1=6(个)三角形.所以,共有三角形6+6=12(个).例8.数出下图中共有多少个三角形?思路分析:这题我们可以采用按基本图形组合的方法来数.把图中最小的一个三角形看作基本图形.由一个基本三角形构成的三角形共有8个;由两个基本三角形构成的三角形共有4个;由四个基本三角形构成的三角形共有4个.因此:8+4+4=16(个),所以,图中共有16个三角形.例9.数出下面图形中共有多少个三角形?思路分析:这题采用把其中最小的三角形作为一个基本图形,然后分类相加的方法.由一个基本三角形构成的三角形共有9个;由四个基本三角形构成的三角形共有3个;由九个基本三角形构成的三角形只有1个.因此9+3+1=13(个),所以,图形中共有13个三角形.例10.下面两幅图中各有多少个长方形?思路分析:(1)中长方形都是竖向的,可以利用对应的方法来数.因为每个长方形都和底边上的一条线段对应,因此用数长边上的线段条数来数长方形的个数.所以,图中长方形共有4+3+2+1=10(个).(2)我们可用按基本图形组合的方法来数.由一个基本长方形构成的长方形共有6个;由两个基本长方形构成的长方形共有7个;由三个基本长方形构成的长方形共有2个;由四个基本长方形构成的长方形共有2个;由六个基本长方形构成的长方形有1个;所以,图中共有长方形6+7+2+2+1=18(个).本题还可以结合数线段的方法,这题中长方形的长被分成了3段,线段总数为3+2+1=6条,宽被分成了2段,线段总数为2+1=3 (条).由此可见,长方形的个数=6×3=18(个).于是,可以整理出数长方形个数的方法:长方形的个数等于原长方形长上的线段数乘以宽上的线段数.例11.数出各图中正方形的个数.思路分析:(1)中最基本的正方形有9个,即边长为1的正方形有9个(9=3×3);由4个基本正方形组成的正方形,即边长为2的正方形有4个(4=2×2);由9个基本正方形组成的正方形,即边长为3的正方形有1个(1=1×1)所以共有正方形9+4+1=14(个).(2)中边长为1的正方形有16个,即16=4×4;边长为2的正方形有9个,即9=3×3;边长为3的正方形有4个,即4=2×2;边长为4的正方形有1个,即1=1×1.所以共有正方形有16+9+4+1=30(个).因此,如果一个正方形的各边被分成几个等份,那么正方形的个数便是1×1+2×2+3×3+…+n×n.方法指导:正确数出图形的个数,首先要弄清图形中包含的基本图形是什么,有多少个.然后再从各图形中所包含基本图形的个数多少出发,依次数出它们的个数,并求出它们的和是多少.有些图形被分成了几个部分,可以先从各部分的基本图形出发,数出所含图形的个数,再求各部分的总和.例12.图中共有多少个正方形?思路分析:将正方形分类,将每一类的总数相加,就可得到所有正方形的个数.由两块小三角形构成的正方形有4个;由四块小三角形构成的正方形有4个;由八块小三角形构成的正方形有1个;由十六块小三角形构成的正方形有1个.由一、三、五、七、六、九、十、十一、十二、十三、十四、十五块小三角形不能构成正方形.所以,图中共有4+4+1+1=10(个)正方形.例13.数出图中共有多少个正方形?思路分析:根据正方形边长的大小,我们将它们分成四类:第1类:边长为1的正方形有24个;第2类:边长为2的正方形有13个;第3类:边长为3的正方形有4个;第4类:边长为4的正方形有1个.所以图中共有24+13+4+1=42(个)正方形.这题如果把四条边长多出的8个小正方形去掉,很容易得出共有1×1+2×2+3×3+4×4=30(个)正方形,添上了去掉的小正方形后,这8个小正方形还能再和其他图形组成4个新的正方形.所以,图中共有30+8+4=42(个)正方形.例14.下图中共有多少个长方形?思路分析:我们可以先将大长方形中的5小块编上号:这5块都是符合要求的长方形.然后数由两小块拼成的长方形,共有4个,即①+②,②+③,③+④,④+⑤;再数由三小块拼成的长方形,共有2个,即①+③+④,③+④+⑤;没有由四小块拼成的长方形;最后数由5小块拼成的长方形只有最大的一个.所以,图中共有5+4+2+1=12(个)长方形.例15.数出下图中共有多少个三角形?思路分析:首先将大三角形中六小块分别编上号.通过观察,我们可以发现这6小块中,④和⑤不是三角形,因此,由一块形成的三角形有4个;由两块拼成的三角形有5个,即分别是①+②,①+③,③+④,②+④,⑤+⑥;由三块拼成的三角形有两个,分别为①+③+⑤,②+④+⑥;由四块拼成的三角形有1个,即是①+②+③+④;没有由五块拼成的三角形;由六块拼成的三角形有1个,即最大的三角形.所以,图中三角形一共有4+5+2+1+1=13(个).方法指导:数长方形、正方形、三角形以及一些不规则的图形都可以采用编号数图形的方法,就是将原来图中的每一小块都编上号,先看每一小块是否符合要求的图形,接着数由两个小块相拼成的图形中有几个是符合要求的图形,再依次数由三小块、四小块……拼成的图形中各有几个是符合要求的图形,最后将每一步数得的结果加起来.。
二年级奥数:巧数图形体系所属体系板块:第三级上能力培养:分类思考、数形结合思想体系对接:第一级下《有趣的平面图形》第三级下《飞速图形计数》预热知识一、分类法1、打枪法2、恰含法3、分大小【例】下图你能数出多少条线段?【例】下图共有多少个长方形?【解析】分类法(打枪法)【解析】分类数(恰含法)总:4+3+2+1=10(个)总:3+2+1=6(个)答:共10个。
答:共6个。
【例】下图你能数出多少个正方形?【解析】分类数(大小)1个小正方形:4个4个小正方形:1个总:4+1=5(个)答:共5个。
二、巧数图形(分层数)1、总数=每层个数相加每层个数=上层个数+看得见【例】下图中的小方块有几个?【解析】巧数图形(分层数)总:1+4+5=10(个)答:有10个。
课前思考1、正方形如何计数呢?2、小方块如何计数呢?3、如何利用学过的乘法来进行计数?4、一年级秋季要求背的1-10的三角形数还记得吗?数数中的枚举知识点精讲知识点总结一、数字:0、1、2、3、4、5、6、7、8、9(共10个)数:由数字组成的(无数个)二、组数(最高位不为0)1.确定几位数2.确定从哪位开始写注:①“比”后为目标②“相差”:2种情况3.确定顺序(从小到大/从大到小)4.有无特殊要求反序数下降数(上升数)例题精讲1.根据条件组数——有序的排列(例2)你能根据下面的要求,写出所有符合条件的两位数吗?(1)十位上的数字比个位上的数字大2;(2)十位上的数字与个位上的数字相差2。
解析:(1)先确定要题目要求我们写的是两位数,再确定从哪一位开始写——通过比较,发现先写出“比”字后面的,再写前面的思考起来更容易,所以一般我们把“比”字后面的当做是目标。
在这里也就是“个位上的数字”为目标,先写出来个位可能是几,再寻找十位上比个位上大2的数字即可组成我们需要的两位数。
个位上可能是:0、1、2、3、4、5、6、7、8、9。
而十位上最大是9,十位上的数字比个位上的数字大2,所以个位上最大是7。
数线段家庭作业题
1、四年级二班有50个人,如果每两个人握一次手,那么全班共握手多少次?
2、数出下面的图形中各有几个三个角形。
3、数一数,下图中有多少个长方形?
4、数一数,下图中有多少条线段?
5、数一数,下图中有多少个三角形?
6、数一数,下图中有多少条线段?
7、数一数,下图中有多少个三角形?
8
参考答案:
答案分别是:1题:21条。
2题:28个。
3题:90个。
4题:8个。
5题:13个。
6题:16条。
7题:12个。
8题:16个。
家庭作业
1.下列图形各有几条线段
2.数出下面图中共有多少条线段?
A B C D
3. 数出下面图中共有多少条线段?
4. 数出下面图中共有多少条线段?
5.在一条线段上有10个点(包括两端点),则这条线段上一共有()条线段。
第十一章 巧数图形知识导航小朋友们,在日常生活和学习中,我们经常会碰到由线段、三角形、四边形等组成的图形,你想学会数这些图形的方法吗?数图形,初看很容易,只要数一数就能得出结果。
其实,并不那么容易。
由于几何图形千变万化,错综复杂,要想准确数出图形中所包含的某一种几何图形的个数,首先一定要仔细观察,分析比较,掌握有条理、有次序地数图形的方法;其次要做到不重复、不遗漏。
要想不重复、不遗漏地数出线段、角、三角形、长方形等图形的个数,那就必须有次序、有条理地数,数中发现规律,以便得到正确的结果。
数图形时,我们通常采用枚举法,可以是按顺序数,也可以是分类数,把所要计数的对象一一列举出来。
首先,我们可以从数基本图形的个数入手;然后,我们再数出由基本图形组成的新图形的个数;最后求出它们的和即可。
数图形的常用方法和技巧如下:不同的图形特别是规则图形,其数法还是有径可循的。
图解思维训练题例1 数出下图中共有几条线段?图解思路我们先来学习几种数图形的不同方法,这些方法在以后的题目中要经常用到,且要灵活运用。
方法一 我们知道,每条线段都有2个端点。
相邻两个端点之间的线段为1条基本线段。
下面我们先来数出由1条基本线段组成的线段,共有5条,分别是AB、BC、CD、DE、EF如下图所示。
由2条基本线段组成的线段有4条,分别是AC、BD、CE、DF,如下图。
由3条基本线段组成的线段有3条,分别是AD、BE、CF,如下图。
由4条基本线段组成的线段有2条,分别是AE、BF,如下图。
最后由5条基本线段组成的线段,只有1条是AF,如下图。
最后将所有线段相加就是线段总条数。
方法二 按左边的端点变化来数,先数以A为左端点的线段有AB、AC、AD、AE、AF,共有5条。
如下图。
以B为左端点的线段有BC、BD、BE、BF,共有4条。
如下图。
以C为左端点的线段有CD、CE、CF,共有3条。
如下图。
以D为左端点的线段有DE、DF,共有2条。
如下图。
巧数图形教案学而思精品文档巧数图形教案学而思:一、规则图形线段角 1. 分类数2. 公式法基本线段数依次加到1.端点,1,基本线段数一数下图中一共有多少条线段,? ? ? ?方法1: 方法2:恰含1条:4条基本线段有4条,所以从4开始加恰含2条:??、??、??条,3,2,1,10恰含3条:???、???条恰含4条:???? 1条注:肩并肩手拉手的规则图形都能用公式总数:4,3,2,1,10 法,关键是找火车头。
二、多层图形1. 多层三角形每层个数×层数,总数数一数图中有多少个三角形,每层个数:3,2,1,层数:2层总数:6×2,1 一共12个。
1 / 11精品文档2. 多层长方形每层个数× 层数 , 总数× , 总数数一数下图中一共有多少个长方形,每层个数:3,2,1,6层数:2,1,3总数:6×3,1一共18个。
三、不规则图形按方向分类分类数按大小分类按方向分类下图中有多少个三角形, ?、?、?、?、?、?6个??、??、??个???、???、???、???、???、???个?????? 1个6,3,6,1,1 一共16个。
:1. 下面图中给出的五个点之间,每两个点之间画一2 / 11精品文档条线段,一共可以画出多少条线段,2. 数一数图中有多少个正方形,3. 数一数下图中一共有多少个三角形,4. 数一数,图中共有个长方形,个三角形,条线段。
:本讲讲的是数图形的方法,根据不同类型的图形有不同的巧妙方法,同学们要仔细辨认图形种类,像是规则图形和多层图形都是有巧妙方法的;如果是不规则图形,那么一定要注意分类,数的时候思路要清楚,这样才不会数错。
二年级数学思维训练数图形教案11、使学生学会解决数线段的问题,掌握有序分类图形的方法。
增强学生应用数学的意识。
2、通过活动,培养学生的口头表达能力、初步的观察推理能力和探究问题的能力。
进一步培养学生的发散思维和创新能力。
第六讲角(巧数图形的个数)例题精讲
例1. 数一数右图中有多少条线段。
例2. 数一数右图中有几个角。
O 例3.数一数右图中共有多少个三角形。
例4. 数一数右图中有多少个三角形。
同步练习
2. 下图中,一共有()个角。
3. 下图中,大大小小的长方形一共有()个。
4. 数一数下图共有几条线段。
5. 下图中有()个三角形。
()条()条()条
()条
()条
b c
6. 下图中有多少个不同的正方形?
7. 在下面点子图上,以这些点为顶点的正方形可画几个?
···
···
···
8. 再添一条线段,使下图中三角形的个数为12,想一想,应该怎样添呢?
9. 数一数包含涂色的正方形有多少个?
10. 数一数图中三角形的个数。
拓展提高
1. 在一线段上任取21个点(包括两端点),则一共有( )条线段。
2. 下图一共有( )条线段。
3. 数一数,下列图中一共有( )个角。
4. 一条直线上共有50个点,可以数出( )条线段。
5. 从一点引出10条射线,可以数出(
)个小于180º的角。
6. 平面上有10个点,没有三点在一条直线上的情况。
这些点可以连成( )条线段。
7. 下图中有几个三角形?
8. 数一数图中长方形的个数。
巧数特殊长方形一、题目分析题目:如下图,在一个6×6的正方形格内有两个小三角形。
请研究,至少包含一个小三角形的在内的长方形有多少个(正方形是特殊的长方形)。
这是一道五年级的数图形的数学奥数题。
在小学阶段,低、中、高年级的孩子都面对过数图形的问题。
数图形不是“数”而是图形的计数问题,图形计数是研究一个图形中包含基本图形个数,数出某种图形的个数是一类有趣的数学问题。
怎样数图形的个数才能做到不重不漏,全部数出来呢?其实最常见的方法就是分类数,也就是“分类计数”。
二、题目解法题目:如下图,在一个6×6的正方形格内有两个小三角形。
请研究,至少包含一个小三角形的在内的长方形有多少个(正方形是特殊的长方形)。
【解法一】枚举法。
孩子们最常用的办法就是直接数方格。
包含小三角形的占一个方格的长方形有2个,包含小三角形的占2个方格的长方形有8个,包含小三角形的占3个方格的长方形有9个······包含小三角形的占30个方格的长方形有4个,包含小三角形的占36个方格的长方形有1个,共2+8+9+······+4+1=196(个)。
这样根据所占方格个数来数,很容易漏数或者重复数,并且很费时费力。
【解法二】从长与宽方向的边来考虑:包含左上角△的长方向的边数:长度为1的1条,长度为2的2条,长度为3的2条,长度为4的2条,长度为5的2条,长度为6的1条,共1+2+2+2+2+1=10(条);包含左上角△的宽方向的边数:长度为1的1条,长度为2的2条,长度为3的2条,长度为4的2条,长度为5的2条,长度为6的1条,共1+2+2+2+2+1=10(条)。
共可以围成包含△的长方形10×10=100(个)。
同样方法可以得出包含右下角△的长方向的边数共1+2+2+2+2+1=10(条);宽方向的边数共1+2+3+3+2+1=12(条),共可围成包含△的长方形10×12=120(个)。
第一讲巧数图形小朋友们,我们数学课上学习了四边形,你还记得他们的特点吗你们是不是做过下面的这种题:图中共有()个平行四边形这属于我们奥数里边的一个专题:巧数图形,你能快速的数出来吗有没有什么巧妙的办法呢现在让我们一起看一下吧。
一、数线段例1数出右图中共有多少条线段。
方法一:找规律数线段。
共有3+2+1=6(条)。
方法二:分类数线段。
共有3+2+1=6(条)。
例2.数出右面图中共有多少条线段解析:线段有一个重要特征:线段都是笔直的.所以我们在数的时候,必须将这幅图分成四个部分,每一部分分别采用以线段左端点分类数的方法,然后把四部分算得结果加起来.第一部分从A到E共有4+3+2+1=10条线段.第二部分从G到J共有4+3+2+1=10条线段.第三部分是FG一条线段.第四部分是JK一条线段. 10+10+1+1=22(条)例3.一条线段上共有10个点,以这10个点为端点的不同线段共有多少条分析:一条线段上有10个点,那么我们先把线段画出来因此,共有线段:9+8+…+3+2+1=(9+1)×9÷2=45(条)总结:1、找规律数线段:一般地,如果线段上有几个点(其中n是大于或等于2的自然数),那么以这n个点为端点的线段共有:(n-1)+(n-2)+…+3+2+1=n×(n-1)÷2;2、分类数线段练习:下列图形中各有多少条线段(3)二、数角例4.右面图形中有几个角分析方法和数线段相同练习()个角()个角三、数三角形例5.数出下面图中共有多少个三角形方法一数三角形个数的方法与数线段的方法差不多.方法二我们可以发现,可以抓住底边BC来考虑,底边BC中所包含的每一条线段都恰好对应一个三角形.底边左端点是B的三角形共有△BDA、△BEA、△BCA三个.底边左端点是D的三角形共有△DEA、△DCA两个.底边左端点是E的三角形只有△ECA一个.所以一共有三角形:3+2+1=6(个).方法三我们把图中△ABC、△ACD、△ADE看作基本三角形:由1个基本三角形构成的三角形有△ABC、△ACD、△ADE;由2个基本三角形构成的三角形有△ABD、△ACE;由3个基本三角形构成的三角形有△ABE。
如何巧数图形
1、数线段 1 2 3 4 1 2 3 4 …… n
线段条数:1+2+3+4=10(条) 线段条数:1+2+3+……+n
2、数角
角的个数:1+2+3+4=10(个) 角的个数:1+2+3+……+n
3、数三角形
三角形个数: 1+2+3+4=10(个) 三角形个数: 1+2=3(个) 三角形个数: 1+2+3+4=10 3×2=6(个) 10×4=40(个) 数多层三角形的方法:三角形的个数=一层的个数×层数
4、数长方形、平行四边形
长方形个数:1+2+3+4+5=15(个)
1+2+3+4+5=15 1+2+3+4+5+6=21
长方形个数:15×6=90(个) 平行四边形个数:21×10=210(个)
我们在数角、三角形、长方形、平行四边形的过程中,我们不难发现,当一个图形的组成有一定规律时,我们可以按规律来计数,如果没有明显的规律我们就按一定的顺序数(先一个一个、再两个两个地数的……),这样才能做到不重复、不遗漏。
1 2 3 4 1 2 3 ……
n 1 2 3 4
1 2
2层 1 2 3 4 5 1+2+3=6 1+2+3+4=10
5、数不规则图形。
(1+2+3+4+5+6)×(1+2+3)+(1+2+3)×(1+2+3+4)-(1+2+3)×(1+2+3)=150。
三年级奥数第五讲巧数图形
一、知识要点
数图形要根据图形的特点,按照一定的顺序有条理地来数,分类是数图形的一种重要方法,合理有序的分类可以大大地节省我们数的时间,也能使我们做到不重复、不遗漏。
二、例题精讲
例1 数出下图中有多少条线段。
分析图1中,基本线段2条,两条组成的有1条,因此,图中的线段共有2+1=3(条)图2中的线段共有3+2+1=6条。
图3中共有4+3+2+1=10条不同的线段。
例2 数一数下图中各有多少个三角形?
分析这个图形由5个基本三角形组成,由2个基本三角形组成的图形有4个,由3个基本三角形组成的图形有3个,由4个基本三角形组成的图形有2个,由5个基本三角形组成的图形有1个,合起来一共有5+4+3+2+1=15(个)
策略小结: 数图形的个数时,总是从最基本的图形开始数起,接着由两个基本图形组成的图形,依次类推。
三、巩固练习:
1.数出下列图形中有多少条线段。
有()条线段
2、
有()个三角形
四、拓展与提高
1、
有()个三角形
2分别数出图中各图里的长方形(包括正方形)的个数。
3、图中有多少个小于180°的角?
分析解答:
以A、B、C、D、E、F为顶点的角:各有3个,共6×3=18(个);
以O为顶点的角:单个的角6个,由两个角构成的角有6个,
共12个;
因此小于180°的角共有:18+12=30(个)
答:图中有30个小于180°的角.。
第十六周巧妙求和(二)专题简析:某些问题,可以转化为求若干个数的和,在解决这些问题时,同样要先判断是否求某个等差数列的和。
如果是等差数列求和,才可用等差数列求和公式。
在解决自然数的数字问题时,应根据题目的具体特点,有时可考虑将题中的数适当分组,并将每组中的数合理配对,使问题得以顺利解决。
例1:刘俊读一本长篇小说,他第一天读30页,从第二天起,他每天读的页数都前一天多3页,第11天读了60页,正好读完。
这本书共有多少页?分析与解答:根据条件“他每天读的页数都比前一天多3页”可以知道他每天读的页数是按一定规律排列的数,即30、33、36、……57、60。
要求这本书共多少页也就是求出这列数的和。
这列数是一个等差数列,首项=30,末项=60,项数=11,因此可以很快得解:(30+60)×11÷2=495(页)想一想:如果把“第11天”改为“最后一天”该怎样解答?练习一1,刘师傅做一批零件,第一天做了30个,以的每天都比前一天多做2个,第15天做了48个,正好做完。
这批零件共有多少个?2,胡茜读一本故事书,她第一天读了20页,从第二天起,每天读的页数都比前一天多5页。
最后一天读了50页恰好读完,这本书共有多少页?3,丽丽学英语单词,第一天学会了6个,以后每天都比前一天多学1个,最后一天学会了16个。
丽丽在这些天中学会了多少个英语单词?例2:30把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试几次?分析与解答:开第一把锁时,如果不凑巧,试了29把钥匙还不行,那所剩的一把就一定能把它打开,即开第一把锁至多需要试29次;同理,开第二把锁至多需试28次,开第三把锁至多需试27次……等打开第29把锁,剩下的最后一把不用试,一定能打开。
所以,至多需试29+28+27+…+2+1=(29+1)×29÷2=435(次)。
练习二1,有80把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?2,有一些锁的钥匙搞乱了,已知至多要试28次,就能使每把锁都配上自己的钥匙。
第一讲巧数图形数出某种图形的个数是一类有趣的图形问题。
数图形虽然很简单,但重复计数和遗漏是经常出现的错误,在细心的同时还要掌握一定的方法和技巧。
几何中的计数问题包括:数线段、数角、数长方形、数正方形、数三角形、数综合图形等。
通过这一讲的学习,可以帮助我们养成按照一定顺序去观察、去思考问题的良好习惯,同时提高我们通过观察、思考去探寻事物规律的能力。
要想有条理、不重复、不遗漏地数出所要图形的个数,最常用的方法就是分类数。
一、数线段我们把直线上两点间的部分称为线段,这两个点称为线段的端点.线段是组成三角形、正方形、长方形、多边形等最基本的元素。
因此,观察图形中的线段,探寻线段与线段之间、线段与其他图形之间的联系,对于了解图形、分析图形是很重要的。
例1、数一数,图中有多少条线段?分析与解:如果我们按照一定的顺序从左往右数,就会发现:以A点为共同端点的线段有:AB AC AD AE AF 5条;以B点为共同端点的线段有:BC BD BE BF 4条;以C点为共同左端点的线段有:CD CE CF 3条;以D点为共同左端点的线段有:DE DF 2条;以E点为共同左端点的线段有:EF 1条;总数为:5+4+3+2+1=15条。
用图示法表示更为直观明了,如右图。
想一想:①由例1可知,一条线段AF上有六个点,就有:总数=5+4+3+2+1条线段。
由此猜想如下规律(见右图):……………………还可以一直找下去,并且通过实际去按顺序数,经过验证后,能从中得出这样一个结论:当一个图形中包含的所有线段都在同一条直线上时,线段总条数是从1开始的一串连续自然数之和,其中最大的自然数比图形中的总端点数少1.②如果我们把相邻两点间的线段叫做基本线段,那么线段的总条数也是从1开始的一串连续自然数之和,其中最大的自然数等于基本线段的条数(见下图)。
基本线段数线段总条数……………………是不是存在这样的规律,同学们可以自己再举些例子试试看。
数长方形个数是学生经常会遇到的问题,如何巧数长方形以避免重复或遗漏呢?可以设计这样的教学。
一、重策略,巧变化,从简入手1.数基本图形。
(1)数一数,一共有几个长方形?预设1:5个(只数基本图形)。
预设2:10个(无序遗漏)。
预设3:15个(正确有序)。
(2)说说你是怎么想的?预设:先数小长方形有5个,再数两个长方形组成的长方形有4个,三个组成的有3个,四个组成的有2个,五个组成的有1个,一共15个。
5+4+3+2+1=15。
(3)观察图形和算式之间有什么联系?预设:有几个最小图形,第一个加数就是几,后面的加数依次少一,直到“1”。
小结:最小图形,即“基本图形”。
先数基本图形(第一个加数),再数两个拼一起的图形(第二个加数),以此类推,有序地数,确保不重不漏。
2.数抽象线段。
(1)仔细观察基本图形和拼起来的图形,你有什么发现?还能通过数什么,来得到长方形的数量?预设:还能数底边的线段。
这些长方形的宽都相等,一条线段就代表一个长方形。
(2)如果有n 条最短线段(基本图形),一共会有多少条线段?预设:n +(n -1)+……+2+1。
二、寻规律,拓思路,化繁为简1.两层的长方形怎么数呢?预设1:(5+4+3+2+1)×2=30。
预设2:(5+4+3+2+1)×3=45。
追问:算式中的“2”和“3”分别表示什么?预设1:表示有两层。
预设2:表示有三层。
上面一层,下面一层,还有上下两层组成的长方形也有一层。
2.怎么用一个算式表示呢?预设:2+1=3。
师:仔细观察,你有什么发现?预设:有点像一层的列式。
预设:也能用数线段的方法计算有几层。
把两层长方形的长和宽都看成线段,分别数出长方形的长和宽各有几条线段,然后相乘就是长方形的数量。
3.拓展:多层的长方形能利用今天所学的方法,数出有几个长方形吗?三年级的学生缺乏数图形的策略及技巧。
通过巧数长方形,帮助学生建立有序的思想和图形转换的思想,再通过拓展,达到举一反三的目的。