基于优势关系下的模糊粗糙集模型
- 格式:pdf
- 大小:370.43 KB
- 文档页数:10
粗糙集理论与模糊集理论的异同及结合应用引言:在现实生活和学术研究中,我们经常面临着信息不完备、模糊和不确定的情况。
为了更好地处理这些问题,粗糙集理论和模糊集理论应运而生。
本文将探讨粗糙集理论和模糊集理论的异同,并探讨它们如何结合应用于实际问题中。
一、粗糙集理论粗糙集理论是由波兰学者Pawlak于1982年提出的一种数学工具,用于处理信息不完备和不确定的问题。
粗糙集理论的核心思想是通过分析决策属性和条件属性之间的关系,进行信息的粗糙度度量和信息的约简。
粗糙集理论的主要特点是能够处理不完备和不确定的信息,具有较强的可解释性和可操作性。
二、模糊集理论模糊集理论是由日本学者石原和田原于1973年提出的,用于处理模糊和不确定的问题。
模糊集理论的核心思想是引入隶属度函数来描述事物的模糊性,通过模糊集的运算和推理,对模糊信息进行处理和分析。
模糊集理论的主要特点是能够处理模糊和不确定的信息,具有较强的灵活性和适应性。
三、粗糙集理论与模糊集理论的异同1. 异同之处:(1)描述方式:粗糙集理论通过信息的分区和约简来描述信息的粗糙度,而模糊集理论通过隶属度函数来描述事物的模糊性。
(2)处理方式:粗糙集理论通过分析属性之间的关系来进行信息的约简,而模糊集理论通过模糊集的运算和推理来进行信息的处理和分析。
(3)可解释性:粗糙集理论具有较强的可解释性,能够直观地描述信息的粗糙度,而模糊集理论具有较强的灵活性,能够处理更加复杂的模糊信息。
2. 结合应用:粗糙集理论和模糊集理论在实际问题中可以相互结合,以充分发挥各自的优势。
例如,在医学诊断中,可以使用模糊集理论来描述病情的模糊性,同时使用粗糙集理论来进行信息的约简,从而提高诊断的准确性和可解释性。
在金融风险评估中,可以使用粗糙集理论来处理不完备的信息,同时使用模糊集理论来描述风险的模糊性,从而更好地评估风险的大小和影响。
结论:粗糙集理论和模糊集理论是两种有效的数学工具,用于处理信息不完备、模糊和不确定的问题。
粗糙集理论与模糊集理论的比较及其优势分析引言:在现实生活中,我们经常遇到一些模糊的问题,这些问题无法用确定的数值来描述。
为了解决这类问题,数学家们提出了粗糙集理论和模糊集理论。
本文将对这两种理论进行比较,并分析它们各自的优势。
一、粗糙集理论粗糙集理论是由波兰数学家Pawlak于1982年提出的,它主要用于处理信息不完全和不确定的问题。
粗糙集理论的核心思想是通过区分属性之间的重要性,将信息进行分类和划分。
粗糙集理论的主要特点是能够处理不完全信息和不确定性,适用于处理大量数据。
粗糙集理论的优势:1. 理论简单易懂:粗糙集理论的基本概念简单明了,易于理解和应用。
它不依赖于特定的领域知识,适用于各种领域的问题分析。
2. 数据处理能力强:粗糙集理论可以处理大量的数据,通过分类和划分,可以将复杂的问题简化为易于处理的子问题。
3. 可解释性强:粗糙集理论的结果可以通过决策规则的形式进行解释,使人们能够理解和接受结果。
二、模糊集理论模糊集理论是由日本数学家庆应大学的石原教授于1965年提出的,它主要用于处理模糊和不确定的问题。
模糊集理论的核心思想是通过模糊隶属度来描述事物之间的相似性和接近程度。
模糊集理论的主要特点是能够处理不确定性和模糊性,适用于处理模糊的问题。
模糊集理论的优势:1. 能够处理模糊信息:模糊集理论可以有效地处理模糊和不确定的信息,将不确定性量化为模糊隶属度,使问题的处理更加准确和可靠。
2. 灵活性强:模糊集理论的灵活性使其适用于各种领域的问题分析。
它可以灵活地调整模糊隶属度的取值范围,以适应不同的问题需求。
3. 数学理论成熟:模糊集理论已经成为一门独立的数学理论,具有严密的数学基础和丰富的应用经验。
三、粗糙集理论与模糊集理论的比较1. 理论基础:粗糙集理论是基于信息不完全和不确定性的处理,而模糊集理论是基于模糊和不确定性的处理。
两者的理论基础有所不同。
2. 处理能力:粗糙集理论主要用于处理大量数据的分类和划分,而模糊集理论主要用于处理模糊和不确定的信息。
为什么粗糙集理论在大数据分析中具备优势
粗糙集理论是一种基于模糊集合理论的数据分析方法,它在大数据分析中具备
一定的优势。
本文将从三个方面探讨为什么粗糙集理论在大数据分析中具备优势。
首先,粗糙集理论能够处理不完备和不确定的数据。
在大数据分析中,数据的
不完备性和不确定性是常见的问题。
粗糙集理论通过模糊集合的概念,将数据集划分为精确和不精确的部分,从而克服了数据不完备性和不确定性带来的挑战。
通过粗糙集理论,我们可以对数据进行有效的分类和聚类,提取出有用的信息。
其次,粗糙集理论能够处理大规模的数据集。
在大数据时代,数据集的规模越
来越大,传统的数据分析方法往往无法处理如此庞大的数据。
而粗糙集理论通过简化数据集,将复杂的问题转化为简单的问题,从而大大减少了计算的复杂性。
通过粗糙集理论,我们可以在较短的时间内对大规模数据进行有效的分析和挖掘。
最后,粗糙集理论能够发现数据中的潜在规律和隐藏信息。
在大数据中,往往
存在着大量的隐含信息和潜在规律,这些信息和规律对于决策和预测具有重要意义。
而粗糙集理论通过对数据集的简化和约简,能够发现其中的重要特征和关联规则,从而揭示数据背后的潜在规律。
通过粗糙集理论,我们可以更好地理解和利用大数据,为决策提供科学依据。
综上所述,粗糙集理论在大数据分析中具备优势。
它能够处理不完备和不确定
的数据,处理大规模的数据集,并发现数据中的潜在规律和隐藏信息。
粗糙集理论的应用将为大数据分析提供更加有效和可靠的方法和工具。
未来,我们可以进一步深入研究和应用粗糙集理论,不断提升大数据分析的能力和水平。
理解粗糙集理论在模糊决策中的作用与优势在现代社会中,决策是一项非常重要的任务。
无论是在个人生活中还是在组织和企业的运营中,我们都需要做出各种各样的决策。
然而,由于信息的不完全性和不确定性,决策往往是一个复杂而困难的过程。
为了解决这个问题,人们提出了许多决策方法和理论。
其中,粗糙集理论作为一种基于模糊数学的决策方法,被广泛应用于各个领域,并取得了显著的成果。
粗糙集理论是由波兰数学家Pawlak于1982年提出的。
它通过将数据分成不同的等价类来处理不完全和不确定的信息。
这些等价类被称为粗糙集,它们可以帮助我们理解和描述数据的不确定性和模糊性。
粗糙集理论在模糊决策中的作用主要体现在以下几个方面。
首先,粗糙集理论可以帮助我们处理不完全信息。
在真实的决策问题中,我们往往无法获取到完整和准确的信息。
然而,粗糙集理论通过将数据分成不同的等价类,可以帮助我们从不完全信息中提取出有用的知识。
这种处理不完全信息的能力使得粗糙集理论在决策中具有独特的优势。
其次,粗糙集理论可以帮助我们处理模糊信息。
在现实生活中,我们常常会遇到一些模糊的情况。
例如,在评估一个人的能力时,我们可能无法准确地给出一个确定的评分。
然而,粗糙集理论可以通过将数据分成不同的等价类,将模糊信息转化为可处理的形式。
这种处理模糊信息的能力使得粗糙集理论在决策中具有重要的应用价值。
此外,粗糙集理论还可以帮助我们发现隐藏在数据中的规律和关联。
在现代社会中,我们面临着大量的数据,这些数据往往包含着丰富的信息。
然而,由于数据的复杂性和不确定性,我们往往很难从中发现有用的规律和关联。
粗糙集理论通过将数据分成不同的等价类,可以帮助我们发现隐藏在数据中的规律和关联。
这种发现规律和关联的能力使得粗糙集理论在决策中具有重要的应用潜力。
最后,粗糙集理论还可以帮助我们进行决策的优化。
在决策过程中,我们往往需要在多个决策方案之间进行选择。
然而,由于信息的不完全性和不确定性,我们往往很难确定最优的决策方案。
基于优势关系灰色粗糙集的能源消费评价分析作者:邹斌李侠温家武来源:《哈尔滨师范大学·自然科学学报》2013年第01期【摘要】在综合评价问题中,属性权重的确定一直是该领域的热点,综合灰色系统理论和基于优势关系的粗糙集理论的特点建立灰色粗糙集模型,提出一种新的综合评价赋权方法,使确定的权重更合理、精确.进而对华东地区六省一市的能源消费量进行了分析评价,希望为相关部门在能源分配方面提供一定的参考意见.【关键词】能源消费;灰色关联度;优势关系;属性重要性0 引言能源紧缺问题已经引起社会的广泛关注,能源的可持续发展是我国坚持科学发展观的重要体现.分析我国各个地区能源耗费总量与当今几种主要能源的关系及其变化趋势,在平衡能源结构方面有重要意义.对能源消费量做出综合评价,有利于优化能源结构.各指标的权重决定了其在综合评价中对综合评价值的影响大小,继而影响评价结果.确定权重的方法目前已经有很多,例如主成分分析法、神经网络法和德尔菲法等,但每一种方法都存在主观性和不确定等局限性.粗糙集理论[1-2]中的属性重要性概念现在被广泛用于客观权重的确定,也体现了一定的优越性[3].但经典粗糙集理论是基于等价关系建立起来的,要求研究的数据为离散型数据,这一要求使得经典粗糙集理论的运用具有一定的局限性.针对这一问题,该文引入优势关系[4-5]建立序信息系统,可直接用于处理连续型数据.在序信息系统中,基于优势关系根据属性重要性定义客观权重.而基于属性重要性确定的属性权重,其标准过于“粗糙”,单独地利用某个属性重要性概念作为确定权重的基础并不合理.邓聚龙教授在20世纪80年代创立的灰色系统理论,是一种研究小数据、贫信息不确定性问题的新方法[6].灰色系统是一种应用于不完全和非确定信息的数学工具.灰色系统理论以非确定的“小样本”系统为研究对象,其中部分信息是明确的,部分信息是不确定的,该理论主要是通过对确定的部分信息进行加工,对数据的分布特征和数量要求不高,就能对该非确定性系统的特征进行科学的描述.其中灰色关联度分析是通过比较数列的几何关系来描述不同指标间的关联程度,以灰色关联度确定权重,具有一定的合理性.粗糙集理论和灰色系统两种理论的共同之处在于它们均无需提供问题所需处理数据以外的任何经验信息[7].在优势关系粗糙集理论中基于分辨能力以属性重要性确定权重,在灰色系统中,以指标间的灰色关联度确定权重,有一定的互补作用.基于此,将两种理论的优点进行有机耦合,提出一种新的综合赋权法,来填补分别利用这两种方法的缺陷.该文建立优化模型通过加权将两类权重进行融合,并将此综合权重用于华东地区能源耗费量的综合分析中,最后得到综合评价结果.1 概念准备定义1[1] (序信息系统)在一个信息系统中,如果在某个属性值域上建立一个偏序关系,称这个属性为一个准则.当所有的属性都为准则时,该信息系统称为序信息系统.4 结束语该文基于优势关系粗糙集理论结合灰色关联度提出了一种新的综合评价赋权数的方法,用优势关系代替经典粗糙集理论中的等价关系,避免了原数据的离散化,保证了初始的信息量.灰色系统通过对小样本数据进行生成处理寻找规律,确定相关程度继而确定各指标的重要程度.该文将两种高效的软计算方法进行了融合,并以华东地区的能源消费量评价做了验证,取得了一定的效果.参考文献[1] 张文修,梁怡,吴伟志.信息系统与知识发现[M].北京:科学出版社,2003.[2] Pawlak Z.Rough set:theoretical aspects of reasoning about data[M].S.l.: Kluwer Academic Publishers, 1992.[3] 黄光明,张巍.基于Rough Set的综合评价方法研究[J].计算机工程与应用,2004, 40(2): 36-38.[4] Greco S,Matarazzo B,Slowinski R.Rough sets theory for multicriteria decision analysis [J]. European Journal of Operational Research,2001,129(1): 1-47.[5] Greco S, Matarazzo B, Slowinski R.Rough Approximation by dominance relations [J]. International Journal of Intelligent systems,2002,17(2): 153-171.[6] 周倜.灰色系统与粗糙集的比较研究[D].武汉理工大学,2008.2-3.[7] 毛军军,李侠,吴涛.基于粗集优势关系的属性赋权相对熵优势关系[J].计算机工程,2011(8):125-127.[8] 王小晟,吴顺祥.对几种处理不确定性信息的理论的比较研究[J].计算机工程与应用,2005(12):51-55.[9] 匡乐红,需林荣,刘宝琛.组合赋权法确定地质灾害危险性评价指标权重[J]. 地下空间与工程学报,2006,2(6):1063-1067.(责任编辑:黄永辉)。
粗糙集理论与模糊集理论的比较与优劣分析引言:在现代科学与技术的发展中,数据处理与决策分析是至关重要的一环。
而粗糙集理论和模糊集理论作为两种重要的数学工具,被广泛应用于数据挖掘、模式识别、决策支持等领域。
本文将对粗糙集理论和模糊集理论进行比较与优劣分析,以期更好地理解它们的特点和适用范围。
一、粗糙集理论粗糙集理论是由波兰学者Pawlak于1982年提出的,它是一种基于集合论的数学工具,用于处理不确定和不完备信息。
粗糙集理论主要包括近似集、约简和决策规则等概念。
其中,近似集是粗糙集理论的核心概念,它通过包含关系来描述对象之间的相似性。
粗糙集理论的主要优势在于能够处理不完备和不确定的数据,对于决策问题具有较好的解释性和可理解性。
二、模糊集理论模糊集理论是由日本学者康德拉克于1965年提出的,它是一种用于描述不确定性和模糊性的数学工具。
模糊集理论通过引入隶属度函数来描述对象与模糊集之间的关系。
模糊集理论的主要优势在于能够处理模糊和不确定的数据,对于决策问题具有较强的灵活性和适应性。
三、比较与优劣分析1. 表达能力:粗糙集理论和模糊集理论在表达能力上存在一定的差异。
粗糙集理论通过近似集的包含关系来描述对象之间的相似性,对于数据的精确度要求较高。
而模糊集理论通过隶属度函数来描述对象与模糊集之间的关系,对于数据的精确度要求相对较低。
因此,在处理精确数据时,粗糙集理论具有一定的优势;而在处理模糊数据时,模糊集理论更为适用。
2. 算法复杂度:粗糙集理论和模糊集理论在算法复杂度上也存在差异。
粗糙集理论的算法相对简单,主要包括近似集的计算和约简的求解等步骤。
而模糊集理论的算法相对复杂,需要进行隶属度函数的建模和模糊集的运算等操作。
因此,粗糙集理论在处理大规模数据时更为高效,而模糊集理论在处理复杂问题时更为灵活。
3. 应用领域:粗糙集理论和模糊集理论在应用领域上也有所差异。
粗糙集理论主要应用于数据挖掘、模式识别和决策支持等领域,其优势在于对数据的解释性和可理解性。
粗糙集理论与模糊集理论的对比与应用在现代科学和工程领域中,粗糙集理论和模糊集理论是两个重要的数学工具,用于处理不确定性和模糊性问题。
尽管两者都是处理模糊信息的方法,但它们在理论基础、表达能力和应用领域上存在一些差异。
首先,粗糙集理论是由波兰学者Pawlak于1982年提出的,它主要用于处理信息的不完全性和不确定性。
粗糙集理论的核心思想是基于特征的粗糙集和决策的粗糙集。
特征的粗糙集是指在给定条件下,某个对象的属性集合,而决策的粗糙集是指在给定条件下,某个对象的决策集合。
粗糙集理论通过计算特征的下近似和决策的上近似来描述不确定性信息。
粗糙集理论的优势在于它能够处理大规模数据和不完整数据,并且不需要先验知识。
相比之下,模糊集理论是由日本学者山下昌良于1965年提出的,它主要用于处理模糊性问题。
模糊集理论的核心思想是引入隶属度函数来描述元素与模糊集之间的隶属关系。
隶属度函数可以将元素映射到0到1之间的一个实数,表示元素在模糊集中的隶属程度。
模糊集理论通过模糊运算和模糊推理来处理模糊信息。
模糊集理论的优势在于它能够处理模糊和不确定性的信息,并且能够提供清晰的结果和决策。
在应用方面,粗糙集理论和模糊集理论都有广泛的应用领域。
粗糙集理论常用于数据挖掘、模式识别和决策支持系统等领域。
例如,在数据挖掘中,粗糙集理论可以帮助识别数据中的模式和规律。
在模式识别中,粗糙集理论可以用于特征选择和特征提取。
在决策支持系统中,粗糙集理论可以用于决策规则的生成和评估。
模糊集理论的应用领域包括模糊控制、模糊优化和模糊决策等。
例如,在模糊控制中,模糊集理论可以用于建立模糊规则和模糊推理,从而实现对模糊系统的控制。
在模糊优化中,模糊集理论可以用于处理带有模糊目标函数和约束条件的优化问题。
在模糊决策中,模糊集理论可以用于处理带有模糊决策变量和模糊偏好的决策问题。
总之,粗糙集理论和模糊集理论是两个重要的数学工具,用于处理不确定性和模糊性问题。
Fuzzy Rough Sets Based on DominanceRelationsXiaoyan ZhangDepartment of Mathematics and Information ScienceGuangdong Ocean UniversityZhanjiang, P. R. China 524088datongzhangxiaoyan@AbstractThis model for fuzzy rough sets is one of the most important parts in rough set theory.Moreover, it is based on an equivalence relation (indiscernibility relation). However,many systems are not only concerned with fuzzy sets, but also based on a dominancerelation because of various factors in practice. To acquire knowledge from the systems,construction of model for fuzzy rough sets based on dominance relations is verynecessary. The main aim to this paper is to study this issue. Concepts of the lower andthe upper approximations of fuzzy rough sets based on dominance relations areproposed. Furthermore, model for fuzzy rough sets based on dominance relations isconstructed, and some properties are discussed.Keywords: Rough sets; Dominance relations; fuzzy sets.1IntroductionThe rough set theory [10,11], proposed by Pawlak in the early 1980s, is an extension of set theory for the study of intelligent systems. It can serve as a new mathematical tool to soft computing, and deal with inexact, uncertain or vague information. Moreover, this theory has been applied successfully in discovering hidden patterns in data, recognizing partial or total dependencies in systems, removing redundant knowledge, and many others [7,12,13,15,16]. Since its introduction, the theory has received wide attention on the research areas in both of the real-life applications and the theory itself.Theory of fuzzy sets initiated by Zedeh [9] also provides useful ways of describing and modeling vagueness in ill-defined environment. Naturally, Doubois and Prade [8] combined fuzzy sets and rough sets. Attempts to combine these two theories lead to some new notions [1,5,7], and some progresses were made [2,3,4,5,6,14]. The combination involves many types of approximations and the construction of fuzzy rough sets give a good model for solving this problem [5]. However, most of systems are not only concerned with fuzzy data, but also based on a dominance relation because of various factors. In order to obtain the succinct knowledge from the systems, construction of model for fuzzy rough sets based on dominance relations is needed.The main aim of the paper is to discuss the issue. In present paper, a dominance relation is introduced and instead of the equivalence relation (discernibility relation) in the standard fuzzy rough set theory. The lower and the upper approximation of a fuzzy rough set based on dominance relations are proposed. Thus a model for fuzzy rough sets based on dominance relations is constructed, and some properties are studied. Finally, we conclude the paper and look ahead the further research.2 Preliminaries This section recalls necessary some concepts used in the paper. Detailed description can be found in [15]. Definition 2.1 Let U be a set called universe and let R be an equivalence relation (indiscernibility) on U .The pair (,)S U R =is called a Pawlak approximation space. Then for any non-empty subset X of U , the sets){:[]}R R X x U x X =∈⊆and(){:[]}R R X x U x X =∈∩≠∅are respectively, called the lower and the upper approximations of X in S , where []R x denotes theequivalence class of the relation R containing the elementx .X is said to be definable set, if())R X R X =. Otherwise X is said to be rough set. Pawlak approximation space (,)S U R = derivesmainly from an equivalence relation. However, there exist a great of systems based on dominance relations in practice.Definition 2.2 If we denote{(,):()(),}B i j l i l j l R x x U U f x f x a B ≤=∈×≤∀∈where B is subset of attributes set, and ()l f x is the value of attribute l a , then B R ≤ is referred to asdominance relation of information system S . Moreover, we denote approximation space based ondominance relations by (,)S U R ≤≤=.For any non-empty subset X of U , denote(){:[]}R R X x U x X ≤≤=∈⊆and){:[]}R R X x U x X ≤≤=∈∩≠∅R ≤and R ≤are r espectively said to be the lower and the upper approximations of X with respect to a dominance relation R ≤.If we denote[]{:(,)}{:()(),}i j i j B B j l i l j l x x U x x R x U f x f x a B ≤≤=∈∈=∈≤∀∈then the following properties of a dominance relation are trivial . Proposition Let B R ≤ be a dominance relation. (1)B R ≤ is reflexive and transitive, but not symmetric, so it isn't an equivalence relation generally.(2) If 12B B A ⊆⊆, then 21A B B R R R ≤≤≤⊆⊆.(3) If 12B B A ⊆⊆, then 21[][][]i A i B i B x x x ≤≤≤⊆⊆.(4) If[]j i B x x ≤∈, then [][]j B i B x x ≤≤⊆.Next, we will review some notions of fuzzy sets. The notion of fuzzy sets provides a convenient tool forrepresenting vague concepts by allowing partial membership. In fuzzy systems, a fuzzy set can be defined using standard set operators.Definition2.3 Let U be a finite and non-empty set called universe. A fuzzy set A of U is defined by a membership function:[0,1]A U →.The membership value may be interpreted in term of the membership degree. In generally, let ()F U denote the set of all fuzzy sets, i.e., the set of all functions from U to [0,1].From above description, we can find that a crisp set can be regarded as a generated fuzzy set in which the membership is restricted to the extreme points {0,1} of [0,1].Definition 2.4 Let ,()A B F U ∈. For any x U ∈, if ()()A x B X ≤ is true, then we say that B containA or A is contained byB , which denoted by A B ⊆.If both A B ⊆and B A ⊆ are all true, then we say A is equal to B , denoted by A B =. Empty set ∅denotes the fuzzy set whose mem bership function is 0, and set U denotes the fuzzy set whose membership function is 1.Let denote intersection, union of A and B by A B ∩, A B ∪ respectively. Moreover, denotecomplement ofA by A : or C A . Membership functions of these fuzzy sets are defined asA B ∩=()()A x B x ∧ =min{(),()}A x B x ; A B ∪=()()A x B x ∨ =max{(),()}A x B x ;1()C A A A x ==−:.There many properties of these operators in fuzzy sets which similar with crisp sets. Detailed description can be found easily.Definition 2.5 The λ-level set orλ-cut, denoted by A λ, A λof a fuzzy set A in U comprise all elementsof U whose degree membership in A are all greater than or equal to λ, where 0<λ≤1. In other words,{:()}A x U A x λλ=∈≥is a non-fuzzy set, and be called the λ-level set or λ-cut. Moreover, the set {:()0}x U A x ∈> is defined the supports of fuzzy set A , and denoted by supp A .3 Fuzzy rough sets based on dominance relationsModel for fuzzy rough sets is generalize d by the standard Pawlak approximation space, and it is concerned with fuzzy sets on universe U. But the model is still depended on an equivalence relation. In practice, most of systems are not only related to fuzzy sets, but also based on dominance relations. In order to deal with this problem, the model of fuzzy rough sets based on dominance relations is proposed. Definition 3.1 Let (,)S U R ≤≤= be an approximation space based on dominance relation R ≤. For a fuzzyset A of U , the lower and the upper approximation of A denoted by )R A ≤ and ()R A ≤, are definedrespectively, by two fuzzy sets, whose membership functions ar e)()min{():[]},R R A x A y y x x U ≤≤=∈∈and()()max{():[]},R R A x A y y x x U ≤≤=∈∈where []R x ≤ denotes the dominance class of the relation R ≤.Fuzzy setA is called fuzzy definable set, if R R ≤≤=. Otherwise, A is called fuzzy rough set. R ≤ iscalled positive field ofA in (,)S U R ≤≤=, and R ≤: is called negative field of A in (,)S U R ≤≤=. Inaddition, ()(())R A R A ≤≤∩: is called boundary of A in (,)S U R ≤≤=.It can be easily verified that ()R A ≤ and ()R A ≤ will become the lower and the upper approximation of standard approximation space based on dominance relation, when A is a crisp set. Theorem 3.1 Let(),)A F U R A ≤∈and ()R A ≤ be the lower and the upper approximation ofA respectively. The following always hold. (1) )()R A A R A ≤≤⊆⊆.(2) ()()();R A B R A R B ≤≤≤∪=∪())().R A B R A R B ≤≤≤∩=∩(3) ())();R A R B R A B ≤≤≤∪⊆∪()()()R A B R A R B ≤≤≤⊆I I .(4)()();()();R A R A R A R A ≤≤≤≤==::::(5) ();().R U U R ≤≤=∅=∅(6)()(());R A R R A ≤≤≤⊆ (())()R R A R A ≤≤≤⊆.(7) IfA B ⊆, then )()R A R B ≤≤⊆ and ()().R A R B ≤≤⊆Proof. We need only to prove one hand, the other hand is similar completely. (1) It is clear.(2) Since for x U ∀∈,()()R A B x ≤∪sup{()():[]}sup{()():[]}sup{():[]} sup{():[]})())() ()()R R R R A B y y x A y B y y x A y y x B y y x R A x R B x R A R B ≤≤≤≤≤≤≤≤=∪∈=∨∈=∈∨∈=∨=∪thus()()()R A B R A R B ≤≤≤∪=∪ (3) Since for x U ∀∈,(()())()R A R B x ≤≤∪)())()inf{():[]}inf{():[]}inf{()():[]}inf{()():[]})(),R R R R R A x R B x A y y x B y y x A y B y y x A B y y x R A B x ≤≤≤≤≤≤≤=∨=∈∨∈≤∨∈=∪∈=∪thus()()().R A R B R A B ≤≤≤∪⊆∪(4) Since for x U ∀∈,(~)()R A x ≤inf{(~)():[]}inf{1():[]}1sup{():[]}1)()~()(),R R R A y y x A y y x A y y x R A x R A x ≤≤≤≤≤=∈=−∈=−∈=−= thus )~().R A R A ≤≤=(5) Because of for any ,()1x U U x ∀∈=, we have()()inf{():[]}1R R U x U y y x ≤≤=∈=.Hence ()R U U ≤=.(6) According to Proposition 1, if[]R y x ≤∈ ,then. [][]R R y x ≤≤⊆ Thus())()R R A x ≤≤min{()():[]}min{min{():[]}:[]}min{min{():[]}:[]}min{():[]}()()R R R R R R R A y y x A z z y y x A z z x y x A z z x R A x ≤≤≤≤≤≤≤≤=∈=∈∈≥∈∈=∈= Hence ()(())R A R R A ≤≤≤⊆.(7) It is obvious from definitions. Definition 3.2 Let(,)S U R ≤≤=be an approximation space based dominance relation R ≤, and,()AB FU ∈.If ))R A R B ≤≤=, then we say that fuzzy set A is equal to fuzzy set B with respect to the lowerapproximation, which denoted by A B :. If()()R A R B ≤≤=, then we say that fuzzy set A is equal to fuzzy set B with respect to the upper approximation, which denoted by A B ;. If)()R A R B ≤≤=both ()()R A R B ≤≤= and, then we say that fuzzy set A is fuzzy rough equal to setB , which denoted by A B ≈.Theorem 3.2 Let(,)S U R ≤≤=be an approximation space based on dominance relation R ≤, and,()A B F U ∈. The following always hold.(1) A B : if and only if A B A ∩: and A B B ∩:. (2) A B ; if and only if A B A ∪;and A B B ∪;. (3) If 'A A ; and 'B B ;, then ''A B A B ∪∪;. (4) If 'A A : and 'B B :, then ''A B A B ∩∩:. (5) If A B ⊆and B ∅; , then A ∅;.(6) IfA B ⊆and A U : , then B U :.(7) If A ∅:or B ∅:, then A B ∩∅:.(8) If A U ;or B U ;, then A B U ∪;. (9) A U :if only if A U =.(10) A ∅; if and only if A =∅.Proof . They can be obtained at once from above definition.Definition 3.3 Let(,)S U R ≤≤= be an approximation space based on dominance relation R ≤. For()A F U ∈, the lower and the upper approximation with respect to parameters ,(01)αβαβ<≤≤,denoted by()R A α≤ and ()R A β≤, are defined by(){:()()}R A x U R A x αα≤≤=∈≥;(){:()()}R A x U R A x ββ≤≤=∈≥From above definition, we can know that ()R A α≤ is the crisp set of some elements of U whose degree of membership in A certainly are not less than α, ()R A β≤ is the crisp set of some elements of U whose degree of membership in A possibly are not less than β. Remark For ,[0,1]αβ∀∈,above definition ()R A α≤ and )R A β≤will become )R A ≤ and ()R A ≤respectively, when A is crisp set.In fact, ,[0,1]αβ∀∈, since A is a crisp set, thus ()[0,1]A x ∈. So we have)R A α≤{:()()}{:()()1}{:()()1,[]}{:[]}()R R x U R A x x U R A x x U R A y y x x U x A R A α≤≤≤≤≤≤=∈≥=∈==∈=∀∈=∈⊆= Similarly, we can show that )()R A R A β≤≤=, when A is crisp set.Theorem 3.3 Let(,)S U R ≤≤= be an approximation space based on dominance relation R ≤, and,()A B F U ∈. For ,(01)αβαβ<≤≤, we have(1) ))),R A B R A R B βββ≤≤≤∪=∪ ()()().R A B R A R B ααα≤≤≤∩=∩ (2)))),R A R B R A B ααα≤≤≤∪⊆∪ ()()().R A B R A R B βββ≤≤≤∩⊆∩(3) If A B ⊆, then ()(),R A R B ββ≤≤⊆ and ()()R A R B αα≤≤⊆.(4) )()R A R B αβ≤≤⊆.(5)1)~(),R A R A ββ≤≤−=1(~),~).R A R A αα≤≤−=Proof . It can be achieved obviously by definitions and Theorem 3.1.Definition 3.4 Let (,)S U R ≤≤=be an approximation space based dominance relation R ≤, and()A F U ∈. Roughness measure of A in S ≤, denoted by ()R A ρ≤, is be defined as|()|()1|()|R R A A R A ρ≤≤≤=−when |()|0R A ≤=,()0R A ρ≤= is ordered.Clearly, there is 0()1R A ρ≤≤≤. Moreover,()0R A ρ≤=, if A is definable fuzzy set.Definition 3.5 Let (,)S U R ≤≤= be an approximation space based dominance relation R ≤, and ()A F U ∈.Roughness measure with respect to parameters ,(01)αβαβ<≤≤ of A in S ≤ ,denoted by ,()R A αβρ≤, is be defined as,|()|()1|()|R R A A R A αβαβρ≤≤≤=−when |()|0R A β≤=, ,()0R A αβρ≤= is ordered.From the definition, we have easily following properties. Theorem 3.4 (1) ,0()1R A αβρ≤≤≤.(2) If β is fixed, then we have that |()|R A α≤ increases. Thus, ,()R A αβρ≤ is to increase, when αincreases.(3) If α is fixed, then we have that |()|R A β≤ is to decrease, when βincreases. Thus, ,()R A αβρ≤ is toincrease, when β increases.Theorem 3.5 If membership function of fuzzy set A is a constant, i.e., there exists 0δ> such that()A x δ= for all x U ∈, then we have ,()1R A αβρ≤= when ,(01)αβαβ<≤≤. Otherwise,,()0R A αβρ≤=.Proof. When ,(01)αβαβ<≤≤, it is clear that |()|R A α≤=∅ , |()|1R A β≤=. So ,()1R A αβρ≤=.Otherwise, there exist two cases.Case 1. When δβα<≤, we can know |()|R A α≤=|()|R A β≤=∅. So ,()0R A αβρ≤= is true.Case 2. When βαδ≤≤, we can know |()|R A α≤=|()|R A U β≤=. So from the definition,,()0R A αβρ≤= is true.Theorem 3.6 Let ,()A B F U ∈, and A B ⊆, ,(01)αβαβ<≤≤. Followings are true.(1) If ())RA RB ββ≤≤=, then ,,()()R R B A αβαβρρ≤≤≤.(2) If()()R A R B αα≤≤=, then ,,()()R R A B αβαβρρ≤≤≤.(3) If there exis ts 0r >, such that ()A x r ≥ is true for all x U ∈, then ,,()()R R B A αβαβρρ≤≤≤ holdswhen r β≥.(4) If there exists 0r >, such that ()A x r ≥ is true for all x U ∈, then ,,()()0R R A B αβαβρρ≤≤== holdswhen r α≤. Proof. Since A B ⊆, we have ()()R A R B ββ≤≤⊆ and ))R A R B αα≤≤⊆. Hence, (1) and (2) can beobtained. (3) Fromr β≥, we have ())R A R B U ββ≤≤== . So ()()R A R B ββ≤≤⊆ can be get by (1).(4) From r α≤, we have ()()R A R B U αα≤≤== and ()()R A R B U ββ≤≤==. Thus ,,()()0R R A B αβαβρρ≤≤==. ?Theorem 3.7 Let ,()A B F U ∈. If A B ≈, then ,,()()R R A B αβαβρρ≤≤= for ,(01)αβαβ<≤≤.Proof. It can be obtained at once by the definition.4 ConclusionsIt is well know that there exist most of systems, which are not only concerned with fuzzy sets but alsobased on dominance relations in practice. Therefore, it is meaningful to study the fuzzy rough set based on dominance relations. In this paper, we discussed this problem mainly. We introduced concepts of the lower and the upper approximations of fuzzy rough sets based on dominance relations, and constructed the model for fuzzy rough sets based on dominance relation additionally. Furthermore some properties are obtained. In next work, we will consider the information systems which are based on dominance relations and with fuzzy decisions.R e f e r e n c e s[1] Cornelis. C., Cock, M.D. and Kerre. E.E., Intuitionistic Fuzzy Rough Sets: At the Crossroads ofImperfect Knowledge, Expert Systems, Vol.20, No.5, pp.260-270, Nov. (2003).[2] Banerjee. M.,Miltra. S., Pal. S.K., Rough fuzzy MLP: knowledge encoding and classification, IEEETrans. Neural Network, No. 9, pp. 1203-1216, Nov., (1998)[3] Chakrabarty. K., Biswas. R., Nanda. S., Fuzziness in Rough Sets, Fuzzy Set and Systems, Vol.110,No.2, pp. 247-251, (2000).[4] Mordeson. J.N., Rough Sets Theory Applied to (Fuzzy) Ideal Theory, Fuzzy Sets and Systems, Vol.121,No. 2, pp. 315-324, (2001).[5] Radzikowska. A.M., Keere. E.E., A Comparative Study Rough Sets, Fuzzy Sets and Systems. Vol.126,No.6, pp. 137-156, (2002).[6] Sarkar. M., Rough-fuzzy Functions in Classi¯cation, Fuzzy Sets and Systems, Vol.132, No.3, pp.353-369, (2002).[7] Yao. Y.Y., Combination of Rough and Fuzzy Sets Based on -Level Sets, Rough Sets and Data Mining:Analysis for Imprecise Data, Lin. T.Y. and Cercone, N. (Ed.), Kluwer Academic, Boston, MA, pp. 301-321, (1997).[8] Dubois. D., Prade. H., Rough Fuzzy Sets and fuzzy Rough Sets, International Journal of GeneralSystems, Vol.17, No.1, pp. 191-208,(1990).[9] Zadeh. L.A., Fuzzy Sets, Information and Control, vol.8, pp. 338-353, (1965).[10] Pawlak. Z., Rough Sets, Int. J. Computer Information Sciences, Vol.11, pp. 145-172, (1982). [11]Pawlak. Z., Rough Sets-Theoretical Aspects to Reasoning about Data, Kluwer Academic Publisher,Boston, (1991).[12]Yao. Y.Y., Two Views of The Theory of Rough Sets in Finite Universes, International Journal ofApproximation Reasoning, Vpl.15, pp. 291-317, (1996).[13]Yao. Y.Y., Lin. T.Y., Generalization of Rough Sets Using Modal Logic, Intelligent Automation andSoft Computing, An International Journal, Vol.2, pp. 103-120,(1996).[14]Banerjee. M., Pal. S.K., Roughness of A Fuzzy Set, Information Sciences, Vol.93, No.1, pp. 235-264,(1996).[15]Zhang. W.X., Wu.W.Z., Liang.J.Y., Li.D.Y., Theory and Method of rough sets. Science Press, Beijing,(2001).[16]Zhang. W.X., Liang.Y., Wu.W.Z., Information Systems and Knowledge Discovery. Science Press,Beijing, (2003).基于优势关系下的模糊粗糙集模型 张晓燕 广东海洋大学理学院数学与信息科学系 广东 湛江 524088 Email: datongzhangxiaoyan@126.com 摘 要: 本文给出了基于优势关系下模糊粗糙集上、下近似的定义, 并进一步对其性质做了详细的研究, 从而建立了基于优势关系下的模糊粗糙集模型. 这对解决现实生活中存在的基于优势关系的信息系统提供了有力的理论根据. 关键词: 粗糙集; 模糊集; 优势关系; 信息系统. 。