钢筋混凝土受弯构件正截面承载力的计算
- 格式:doc
- 大小:488.00 KB
- 文档页数:14
第三章钢筋混凝土受弯构件正截面承载力计算受弯构件(bendingmember)是指截面上通常有弯矩和剪力共同作用而轴力可以忽视不计的构件。
钢筋混凝土受弯构件的主要形式是板(Slab)和梁(beam),它们是组成工程结构的基本构件,在桥梁工程中应用很广。
在荷载作用下,受弯构件的截面将承受弯矩M和V的作用。
因此设计受弯构件时,一般应满意下列两方面的要求:(1)由于弯矩M的作用,构件可能沿弯矩最大的截面发生破坏,当受弯构件沿弯矩最大的截面发生破坏时,破坏截面与构件轴线垂直,称为正截面破坏。
故需进行正截面承载力计算。
(2)由于弯矩M和剪力V的共同作用,构件可能沿剪力最大或弯矩和努力都较大的截面破坏,破坏截面与构件的轴线斜交,称为沿斜截面破坏,故需进行斜截面承载力计算。
为了保证梁正截面具有足够的承载力,在设计时除了适当的选用材料和截面尺寸外,必需在梁的受拉区配置足够数量的纵向钢筋,以承受因弯矩作用而产生的拉力;为了防止梁的斜截面破坏,必需在梁中设置肯定数量的箍筋和弯起钢筋,以承受由于剪力作用而产生的拉力。
第一节受弯构件的截面形式与构造一、钢筋混凝土板的构造板是在两个方向上(长、宽)尺度很大,而在另一方向上(厚度)尺寸相对较小的构件。
钢筋混凝土板可分为整体现浇板和预制板。
在施工场地现场搭支架、立模板、配置钢筋,然后就地浇筑混凝土的板称为整体现浇板。
通常这种板的截面宽度较大,在计算中常取单位宽度的矩形截面进行计算。
预制板是在预制厂和施工场地现场预先制好的板,板宽度一般掌握在Inl左右,由于施工条件好,预制板不仅能采纳矩形实心板,还能采纳矩形空心板,以减轻板的自重。
板的厚度h由截面上的最大弯矩和板的刚度要求打算,但是为了保证施工质量及耐久性的要求,《大路桥规》规定了各种板的最小厚度;行车道板厚度不小于IOOmm人行道板厚度,就地浇注的混凝土板不宜小于80mm,预制不宜小于60mm。
空心板桥的顶板和底板厚度,均不宜小于80mm。
第3章钢筋混凝土受弯构件正截面承载力的计算§1概述1、受弯构件(梁、板)的设计内容:图3-1①正截面受弯承载力计算:破坏截面垂直于梁的轴线,承受弯矩作用而破坏,叫做正截面受弯破坏。
②斜截面受剪承载力计算:破坏截面与梁截面斜交,承受弯剪作用而破坏,叫做斜截面受剪破坏。
③满足规范规定的构造要求:对受弯构件进行设计与校核时,应满足规范规定的要求。
比如最小配筋率、纵向2①板⑴板的形状与厚度:a.形状:有空心板、凹形板、扁矩形板等形式;它与梁的直观区别是高宽比不同,有时也将板叫成扁梁。
其计算与梁计算原理一样。
b.厚度:板的混凝土用量大,因此应注意其经济性;板的厚度通常不小于板跨度的1/35(简支)~1/40(弹性约束)或1/12(悬臂)左右;一般民用现浇板最小厚度60mm,并以10mm为模数(讲一下模数制);工业建筑现浇板最小厚度70mm。
⑵板的受力钢筋:单向板中一般仅有受力钢筋和分布钢筋,双向板中两个方向均为受力钢筋。
一般情况下互相垂直的两个方向钢筋应绑扎或焊接形成钢筋网。
当采用绑扎钢筋配筋时,其受力钢筋的间距:当板厚度h≤150mm时,不应大于200mm,当板厚度h﹥150mm时,不应大于1.5h,且不应大于250mm。
板中受力筋间距一般不小于70mm,由板中伸入支座的下部钢筋,其间距不应大于400mm,其截面面积不应小于跨中受力钢筋截面面积的1/3,其锚固长度l as不应小于5d。
板中弯起钢筋的弯起角不宜小于30°。
板的受力钢筋直径一般用6、8、10mm。
对于嵌固在砖墙内的现浇板,在板的上部应配置构造钢筋,并应符合下列规定:a. 钢筋间距不应大于200mm,直径不宜小于8mm(包括弯起钢筋在内),其伸出墙边的长度不应小于l1/7(l1为单向板的跨度或双向板的短边跨度)。
b. 对两边均嵌固在墙内的板角部分,应双向配置上部构造钢筋,其伸出墙边的长度不应小于l1/4。
c. 沿受力方向配置的上部构造钢筋,直径不宜小于6mm,且单位长度内的总截面面积不应小于跨中受力钢筋截面面积的1/3。
钢筋混凝土受弯构件正截面承载力简便计算摘要:一、引言二、钢筋混凝土受弯构件正截面承载力计算方法1.基本概念2.影响因素3.计算公式及步骤三、简便计算方法1.经验公式2.修正系数法3.截面分类法四、计算实例1.实例一2.实例二3.实例三五、结论与建议正文:一、引言钢筋混凝土受弯构件在我国建筑行业中有着广泛的应用,其正截面承载力计算一直是工程技术人员关注的问题。
为了简化计算过程,本文将介绍一种简便的计算方法,以提高工程实践中的工作效率。
二、钢筋混凝土受弯构件正截面承载力计算方法1.基本概念正截面承载力:指受弯构件在正截面上能承受的最大弯矩引起的内力。
影响因素:材料强度、截面尺寸、钢筋配置等。
2.影响因素(1)材料强度:包括混凝土抗压强度fc和钢筋抗拉强度fs。
(2)截面尺寸:截面宽度b、截面高度h。
(3)钢筋配置:包括钢筋直径d、钢筋间距s和钢筋数量n。
3.计算公式及步骤根据我国现行的设计规范,正截面承载力计算公式如下:c = fc * b * h * γcs = fs * d * (h - d / 2) * γs其中,Nc为混凝土截面承载力,Ns为钢筋截面承载力,γc和γs分别为混凝土和钢筋的截面折减系数。
三、简便计算方法1.经验公式根据工程实践经验,可得以下经验公式:c = 0.85 * fc * b * hs = 0.85 * fs * d * (h - d / 2)2.修正系数法针对不同钢筋直径和截面尺寸,采用修正系数进行计算。
3.截面分类法根据截面尺寸和钢筋配置,将受弯构件分为若干类别,各类别计算公式如下:(1)类别一:h / d ≤ 25c = 0.75 * fc * b * hs = 0.75 * fs * d * (h - d / 2)(2)类别二:25 < h / d ≤ 50c = 0.85 * fc * b * hs = 0.85 * fs * d * (h - d / 2)(3)类别三:h / d > 50c = 1.0 * fc * b * hs = 1.0 * fs * d * (h - d / 2)四、计算实例1.实例一某受弯构件,混凝土抗压强度fc = 20MPa,截面宽度b = 200mm,截面高度h = 300mm,钢筋直径d = 16mm,钢筋间距s = 200mm,钢筋数量n = 4。
第三章钢筋混凝土受弯构件正截面承载力计算第三章钢筋混凝土受弯构件正截面承载力计算第三章钢筋混凝土受弯构件正截面承载力计算第一节钢筋砼受弯构件的构造一、钢筋砼板的构造二、钢筋砼梁的构造一、钢筋砼板(reinforced concreteslabs)的构造1、钢筋砼板的分类:整体现浇板、预制装配式板。
2、截面形式小跨径一般为实心矩形截面。
跨径较大时常做成空心板。
如图所示。
3、板的厚度:根据跨径(span)内最大弯矩和构造要求确定,其最小厚度应有所限制:行车道板一般不小于100mm;人行道板不宜小于60mm(预制板)和80mm(现浇筑整体板)。
4、板的钢筋由主钢筋(即受力钢筋)和分布钢筋组成如图。
钢筋混凝土板桥构造图(1)主筋布置:布置在板的受拉区。
直径:行车道板:不小于10mm;人行道板:不小于8mm。
间距:间距不应大于200mm。
主钢筋间横向净距和层与层之间的竖向净距,当钢筋为三层及以下时,不应小于30mm,并不小于钢筋直径;当钢筋为三层以上时,不应小于40mm,并不小于钢筋直径的1.25倍。
净保护层:保护层厚度应符合下表规定。
序号构件类别环境条件ⅠⅡⅢ、Ⅳ1 基础、桩基承台⑴基坑底面有垫层或侧面有模板(受力钢筋)⑵基坑底面无垫层或侧面无模板465756852 墩台身、挡土结构、涵洞、梁、板、拱圈、拱上建筑(受力主筋)34453 人行道构件、栏杆(受力主筋)22534 箍筋22535 缘石、中央分隔带、护栏等行车道构件34456 收缩、温度、分布、防裂等表层钢筋15225梁构件,在不同环境条件下,保护层厚度值注:请点击<按扭Ⅰ,Ⅱ,Ⅲ&Ⅳ>,以查看不同保护层厚度值(2)分布钢筋(distribution steel bars):垂直于板内主钢筋方向上布置的构造钢筋称为分布钢筋作用:A、将板面上荷载更均匀地传递给主钢筋B、固定主钢筋的位置C、抵抗温度应力和混凝土收缩应力(shrinkage stress)布置:A、在所有主钢筋的弯折处,均应设置分布钢筋B、与主筋垂直C、设在主筋的内侧数量:截面面积不小于板截面面积的0.1%。
《混凝土结构设计原理》钢筋和混凝土受弯构件正截面承载力计算钢筋和混凝土受弯构件正截面承载力计算是混凝土结构设计中的一项重要内容。
正截面承载力是指构件在弯曲荷载作用下所能承受的最大力。
本文将介绍正截面承载力的计算方法。
首先,钢筋和混凝土受弯构件的截面主要由混凝土和钢筋两部分组成。
混凝土的承载能力主要通过压应力进行传递,而钢筋则主要通过拉应力进行传递。
因此,在计算正截面承载力时,需要分别考虑混凝土和钢筋的承载能力。
对于混凝土的承载能力计算,一般采用极限平衡法或材料应力-应变关系来进行。
在极限平衡法中,混凝土的弯曲承载能力可以通过下式计算:Mrd = φ × α × W × z × (d - α/z)其中,Mrd表示混凝土的弯曲承载能力;φ为混凝土材料的折减系数,考虑了实际使用中存在的各种因素;α为混凝土抗压区高度与截面有效高度之比;W为混凝土抗压区的受压区面积;z为抗压区重心到截面受拉边缘的距离;d为截面的有效高度。
对于钢筋的承载能力计算,可以通过以下公式进行:Md = As × fy × (d - a/2)其中,Md表示钢筋的弯曲承载能力;As为钢筋的截面面积;fy为钢筋的屈服强度;d为截面的有效高度;a为混凝土抗压区高度。
当混凝土和钢筋的弯曲承载能力相等时,构件达到破坏状态。
因此,可以根据混凝土和钢筋的承载能力计算结果,来确定构件的正截面承载力。
需要注意的是,以上计算过程中涉及到的参数如α、z、d、a等都需要根据具体情况进行确定。
这些参数的取值与构件的几何形状、材料特性、受力状态等密切相关。
因此,在进行正截面承载力计算时,需要进行充分的分析和计算,并根据相关规范和标准进行校核。
总结来说,钢筋和混凝土受弯构件正截面承载力的计算是一个综合考虑混凝土和钢筋材料特性、构件几何形状和受力状态的过程。
通过合理的参数选择和计算方法,可以得到结构构件的正截面承载力,为混凝土结构设计提供依据。
3 钢筋混凝土受弯构件正截面承载力计算3·1 概 述受弯构件是指主要承受弯矩和剪力为主的构件。
受弯构件是土木工程中应用数量最多,使用面最广的一类构件。
一般房屋中各种类型的楼盖和屋盖结构的梁、板以及楼梯和过梁;工业厂房中的屋面大梁、吊车粱、铁路、公路中的钢筋混凝土桥梁等都属于受弯构件。
此外,房屋结构中经常采用的钢筋混凝土框架的横梁虽然除承受弯矩和剪力外还承受轴向力(压力或拉力),但由于轴向力值通常较小,其影响可以忽略不计,因此框架横粱也常按受弯构件进行设计。
按极限状态进行设计的基本要求,对受弯构件需要进行下列计算和验算:1.承载能力极限状态计算,即截面强度计算在荷载作用下,受弯构件截面一般同时产生弯矩和剪力。
设计时既要满足构件的抗弯承载力要求,也要满足构件的抗剪承载力要求。
因此,必须分别对构件进行抗弯和抗剪强度计算。
在进行截面强度计算时,荷载效应(弯矩M和剪力V)通常是按弹性假定用结构力学方法计算;在某些连续梁、板中,荷载效应也可以按塑性设计方法求得。
本章主要是介绍受弯构件抗弯强度的计算方法。
2.正常使用极限状态验算受弯构件一般还需要按正常使用极限状态的要求进行变形和裂缝宽度的验算。
这方面的有关问题将在第八章中介绍。
除进行上述两类计算和验算外,还必须采取一系列构造措施,方能保正构件具有足够的强度和刚度,并使构件具有必要的耐久性。
在本章的3·2中将讨论梁板结构的一般构造。
3.2 梁板结构的一般构造1、梁板截面的型式与尺寸梁和板均为受弯构件,梁的截面高度一般都大于其宽度,而板的截面高度则远小于其宽度。
钢筋混凝土梁、板可分为预制梁、板和现浇梁、板两大类。
钢筋混凝土预制板的截面形式很多,最常用的有平板、槽形板和多孔板三种(图3-1)。
钢筋混凝土预制梁最常用的截面形式为矩形和T形(图3-2)。
有时为了降低层高将梁做成十字梁、花篮梁,将板搁支在伸出的翼缘上,使板的顶面与梁的顶面齐平。
钢筋混凝土现浇梁、板的形式也很多。
《混凝土结构设计原理》钢筋和混凝土受弯构件正截面承载力计算钢筋和混凝土受弯构件正截面承载力计算是结构设计中的一个重要部分,在实际工程中有着广泛的应用。
本文将介绍钢筋和混凝土受弯构件正截面承载力计算的原理和方法。
首先,正截面承载力计算主要涉及到两个方面:混凝土的承载力和钢筋的承载力。
混凝土的承载力主要包括混凝土本身的抗压强度和抗拉强度两个方面;钢筋的承载力主要包括钢筋的抗拉强度和屈服强度两个方面。
其次,正截面承载力计算的常用方法有弯矩优化法和极限平衡法。
弯矩优化法是指通过假设截面内部的混凝土和钢筋承受的应力分布,推导出正截面承载力的理论公式,并通过求解该公式来确定正截面承载力。
极限平衡法是指通过假设截面处于极限破坏状态,利用平衡方程推导出正截面承载力的上限,并通过比较上限值和实际载荷的大小来确定正截面承载力。
最后,具体进行正截面承载力计算时,需要根据受力情况确定正截面的受力模式。
一般情况下,正截面的受力模式可分为受压模式和受拉模式。
在受压模式下,混凝土为主要受力构件,钢筋主要起到约束混凝土的作用;在受拉模式下,钢筋为主要受力构件,混凝土主要起到传递受拉力的作用。
在受压模式下,可以通过计算混凝土的抗压承载力和钢筋的抗压承载力来确定正截面的承载力。
混凝土的抗压承载力可以通过抗压强度和截面积计算得到;钢筋的抗压承载力可以通过抗压强度和受压区域的钢筋面积计算得到。
在受拉模式下,可以通过计算混凝土和钢筋的抗拉承载力来确定正截面的承载力。
混凝土的抗拉承载力可以通过抗拉强度和截面积计算得到;钢筋的抗拉承载力可以通过抗拉强度和受拉区域的钢筋面积计算得到。
在实际工程中,还需要考虑正截面的变形性能。
正截面的变形性能主要包括截面的抗裂性能和抗挠性能。
抗裂性能可以通过计算混凝土和钢筋的抗裂承载力来进行评估;抗挠性能可以通过计算混凝土和钢筋的抗挠承载力来进行评估。
总结起来,钢筋和混凝土受弯构件正截面承载力的计算是一个综合考虑混凝土和钢筋两者抗压、抗拉承载力及变形性能的过程。
钢筋混凝土受弯构件正截面承载力简便计算正文:在钢筋混凝土结构设计中,受弯构件是一种常见的结构元素,其正截面承载力是设计中的关键参数之一。
正截面承载力的计算是评估构件的抗弯能力和安全性的基础,因此在设计中起着重要的作用。
本文将介绍钢筋混凝土受弯构件正截面承载力的简便计算方法,帮助读者更好地理解和应用。
1. 承载力计算的基本原理钢筋混凝土受弯构件的正截面承载力可以通过极限状态计算方法来评估。
其基本原理是根据构件的几何形状、材料性质和荷载作用下的应力分布,计算出构件的抗弯承载力。
在计算过程中,一般采用等效矩形应力分布假设来简化计算。
2. 等效矩形应力分布假设等效矩形应力分布假设是钢筋混凝土受弯构件计算的基础。
该假设认为在受弯构件的截面内,混凝土的应力分布可以近似为一个矩形。
在矩形应力分布中,混凝土的应力是一个线性递减的函数,而钢筋的应力则保持不变。
3. 正截面抗弯承载力计算公式根据等效矩形应力分布假设,可以得到钢筋混凝土受弯构件正截面的抗弯承载力计算公式。
常见的计算公式有多种,其中最常用的是弯矩-曲率法和应力-应变法。
- 弯矩-曲率法:根据截面的几何特性、材料特性和荷载情况,可以通过弯矩-曲率关系来计算截面的抗弯承载力。
具体计算公式如下:M = σs * As * d + σc * Ac * (d - x)其中,M为截面的弯矩,σs为钢筋应力,As为钢筋面积,d为截面的有效高度,σc为混凝土应力,Ac为混凝土面积,x为等效矩形应力分布中混凝土应力变为零的距离。
- 应力-应变法:根据混凝土和钢筋的应力-应变关系,可以分别计算出混凝土和钢筋的应力,然后将二者叠加得到截面的总应力。
具体计算公式如下:σ = σc + σs其中,σ为截面的总应力,σc和σs分别为混凝土和钢筋的应力。
4. 工程实例分析为了更好地理解和应用正截面承载力的简便计算方法,我们将通过一个具体的工程实例来进行分析。
假设有一根钢筋混凝土梁,截面尺寸为200mm×400mm,混凝土强度等级为C30,钢筋强度等级为HRB400。
第3章钢筋混凝土受弯构件正截面承载力的计算§1概述1、受弯构件(梁、板)的设计内容:图3-1①正截面受弯承载力计算:破坏截面垂直于梁的轴线,承受弯矩作用而破坏,叫做正截面受弯破坏。
②斜截面受剪承载力计算:破坏截面与梁截面斜交,承受弯剪作用而破坏,叫做斜截面受剪破坏。
③满足规范规定的构造要求:对受弯构件进行设计与校核时,应满足规范规定的要求。
比如最小配筋率、纵向2①板⑴板的形状与厚度:a.形状:有空心板、凹形板、扁矩形板等形式;它与梁的直观区别是高宽比不同,有时也将板叫成扁梁。
其计算与梁计算原理一样。
b.厚度:板的混凝土用量大,因此应注意其经济性;板的厚度通常不小于板跨度的1/35(简支)~1/40(弹性约束)或1/12(悬臂)左右;一般民用现浇板最小厚度60mm,并以10mm为模数(讲一下模数制);工业建筑现浇板最小厚度70mm。
⑵板的受力钢筋:单向板中一般仅有受力钢筋和分布钢筋,双向板中两个方向均为受力钢筋。
一般情况下互相垂直的两个方向钢筋应绑扎或焊接形成钢筋网。
当采用绑扎钢筋配筋时,其受力钢筋的间距:当板厚度h≤150mm时,不应大于200mm,当板厚度h﹥150mm时,不应大于1.5h,且不应大于250mm。
板中受力筋间距一般不小于70mm,由板中伸入支座的下部钢筋,其间距不应大于400mm,其截面面积不应小于跨中受力钢筋截面面积的1/3,其锚固长度l as不应小于5d。
板中弯起钢筋的弯起角不宜小于30°。
板的受力钢筋直径一般用6、8、10mm。
对于嵌固在砖墙内的现浇板,在板的上部应配置构造钢筋,并应符合下列规定:a. 钢筋间距不应大于200mm,直径不宜小于8mm(包括弯起钢筋在内),其伸出墙边的长度不应小于l1/7(l1为单向板的跨度或双向板的短边跨度)。
b. 对两边均嵌固在墙内的板角部分,应双向配置上部构造钢筋,其伸出墙边的长度不应小于l1/4。
c. 沿受力方向配置的上部构造钢筋,直径不宜小于6mm,且单位长度内的总截面面积不应小于跨中受力钢筋截面面积的1/3。
⑶板的分布钢筋:其作用是:a.分布钢筋的作用是固定受力钢筋;b.把荷载均匀分布到各受力钢筋上;c.承担混凝土收缩及温度变化引起的应力。
当按单向板设计时,除沿受力方向布置受力钢筋外,还应在垂直受力方向布置分布钢筋。
单位长度上分布钢筋的截面面积不应小于单位宽度上受力钢筋截面面积的15%,且不应小于该方向板截面面积的0.15%,分布钢筋的间距不宜大于250mm,直经不宜小于6mm,对于集中荷载较大的情况,分布钢筋的截面面积应适当增加,其间距不宜大于200mm,当按双向板设计时,应沿两个互相垂直的方向布置受力钢筋。
在温度和收缩应力较大的现浇板区域内尚应布置附加钢筋。
附加钢筋的数量可按计算或工程经验确定,并宜沿板的上,下表面布置。
沿一个方向增加的附加钢筋配筋率不宜小于0.2%,其直径不宜过大,间距宜取150~200mm,并应按受力钢筋确定该附加钢筋伸入支座的锚固长度。
⑷板中钢筋的保护层及有效高度:保护层厚度与环境条件及混凝土等级有关,在一般情况下,混凝土保护层取15mm,详见规范;有效高度是指受力钢筋形心到混凝土受压区外边缘的距离,用0h 表示,板通常取200-=h h mm 。
② 梁⑴梁的截面尺寸与形状:a.形状:有矩形、T 形、花篮形、工字型、L 形等多种,根据具体情况确定。
b.尺寸:用b ×h 来表示,b 表示梁截面的宽度,h 表示梁截面的高度,一般情况下b/h 在1/2~1/4之间,并且都应满足建筑模数要求;梁高h 根据工程经验,简支时不宜小于l /15,连续时不宜小于l /20;整体肋形楼盖的次梁及主梁截面最小高度不宜小于(l /15~l /20)和(l /8~l /12)。
截面高宽比(h /b ),对于矩形截面为(2~2.5),对于T 形截面为(2.5~4.0)。
为便于施工,截面尺寸可参照下列使用:梁宽b =120、150、180、200、220、250、300mm……以50mm 为模数; 梁高h =250、300、350……750、800、900mm……以100mm 为模数。
⑵梁内钢筋布置及种类:a.纵向受力钢筋:梁内纵向受力钢筋直径一般选用10—30mm ,若配不同直径的钢筋,直径相差以2mm 为宜,对于h ≥300mm 的梁,钢筋直径d ≥10mm ,对于h <300mm 梁,钢筋直径不宜小于6mm 。
伸入梁的支座范围内纵向受力钢筋数量,当梁寛为100mm 及以上时,不应少于二根;当梁寛小于100mm 时,可为一根。
b.箍筋:其作用是保证斜截面抗剪强度,固定纵向钢筋的位置,其具体做法及选择可按第4章。
c.弯起钢筋:为保证斜截面强度而设置的,一般可由纵向受力钢筋弯起而成,也可专门设置弯起钢筋。
具体做法详见第4章。
d.架立钢筋:用来固定箍筋位置,承受由于混凝土收缩及温差变化所产生的内应力。
e.腰筋(侧向构造钢筋):用以增强钢筋骨架的刚性,增强梁的抗扭能力,并承受侧面发生的内应力(温度变形等)。
f. 拉结筋:保证腰筋的稳定性,并能承受一定的侧向应力。
⑶梁内钢筋保护层(图):通常取25mm ,详见规范;梁内钢筋的位置排布及间距应满足规范规定,如下图所示。
⑷梁截面的有效高度:所谓梁截面的有效高度是指受拉钢筋的重心至混凝土受压区外边缘的垂直距离,它与受拉钢筋的直径及排放位置有关。
352520-≈--=h h h d(单排放置s 。
§2 单筋矩形截面钢筋混凝土梁的受力状态1、单筋与双筋截面的区分:仅在梁的受拉区配置纵向受拉钢筋的梁称为单筋梁;在受拉区和受压区都配置有纵向受力筋的梁称为双筋梁。
2、单筋矩形截面钢筋混凝土梁正截面受力三阶段:(适筋梁)① 第Ⅰ阶段—弹性工作阶段:从加载到即将开裂,弯矩从0到开裂弯矩,应力应变的发展与弯矩的关系,此时混凝土外边缘拉应变小于极限拉应变;② 第Ⅱ阶段—带裂缝工作阶段:从开裂弯矩(混凝土出现第一条裂缝)到钢筋屈服时的弯矩。
开裂处混凝土不再受拉,此时应力应变关系变化呈非线性。
③ 第Ⅲ阶段—破坏阶段:随着荷载的不断增大,裂缝继续增长并向上延伸,最后导致钢筋屈服、压区混凝土压碎而破坏。
综上所述,梁的最终破坏是由于钢筋的屈服,混凝土的压碎而破坏。
因此,梁的承载力主要决定于其混凝土的强度等级、钢筋的强度等级、配筋率及截面尺寸。
3、钢筋混凝土梁正截面的破坏形态① 配筋率ρ(经济配筋率):钢筋截面面积与梁截面的有效面积的比值称为配筋率,用0h b A s⨯=ρ表示,其中s A 为纵向受拉钢筋截面面积;b为梁宽;0h 为梁截面的有效高度。
根据经验,梁的经济配筋率在0.6%~1.5%之间.② 三类破坏形态⑴少筋梁:当梁内配置钢筋很少时,一旦梁上受拉区混凝土出现开裂,裂缝处钢筋应力突然增大到钢筋的屈服强度f y ,裂缝很宽,使梁产生很大挠度。
此时梁的承载能力略小于梁的开裂弯矩M cr ,其破坏是突然的,带有“脆性破坏”性质。
这类梁称之为“少筋梁”,工程中应严禁使用。
当钢筋混凝土梁开裂时只考虑受拉钢筋作用,梁的抗弯能力达到素混凝土梁的开裂弯矩M cr 时,其配筋率可称之为最小配筋率ρmin,若梁内实际配筋率ρ大于最小配筋率ρmin,可以防止“少筋梁破坏”。
《规范》规定,混凝土受弯构件中纵向受力钢筋的最小配筋百分率ρmin 取0.2和45f t /f y 中较大者。
⑵超筋梁:当梁内配置钢筋较多时,即ρ>ρmax,受拉区混凝土裂缝的开展受到钢筋的抑制作用,发展速度缓慢,而受压区混凝土的压应变将随荷载的增加而发展较快,当受压区最外缘处混凝土压应变达到极限压应变时而破坏。
破坏前,裂缝宽度小,梁的挠度小,梁内受拉钢筋应力小于屈服强度f y ,破坏无明显的预兆,属“脆性破坏”的性质。
此梁称之为“超筋梁”,在工程实践中应严禁使用该类梁。
因此,这类梁在破坏时,钢筋未达屈服,梁的破坏与其无关。
我们将钢筋屈服与混凝土压碎同时发生时的配筋率称为界限配筋率,以max ρ表梁称为平衡配筋梁。
⑶适筋梁:当梁内配置适量钢筋时,即ρmin≤ρ≤ρmax,梁的整个要能确定混凝土受压区合力大小及作用点位置不变即可。
① 合力大小相等; ② 作用点位置不变;③ 混凝土强度:在实际构件中,受压区混凝土应力是不均匀的;在进行结构设计时,根据等效矩形应力图原理,取其受压区高度为x ,平均压应力为平均压应力为α1f c ,当混凝土强度等级不超过C50时,α1取为1.0, 当混凝土强度等级为C80时, α1取为0.94,其间按线性内插法取用。
5、相对受压区高度ξ及其与配筋率ρ的关系① 相对受压区高度ξ(及其计算公式):定义正截面混凝土受压区高度x与有效高度0h 的比值:0h x =ξ② 相对界限受压区高度b ξ:处于界限破坏状态的梁正截面混凝土受压区高度x b 与截面有效高度h 0的比值ξb 表示,称之为相对界限受压区高度,《规范》按下式计算:cus y b E f εβξ+=11,上式cu ε=0.0033;1β 为系数,当混凝土强度等级不超过C50时,β1=0.8,当混凝土强度等级等于C80时,取74.01=β,其间按线性内插法取用。
③ 压区高度ξ与配筋率ρ的关系:由正截面上内力平衡条件可得:cyc sy f f bh f A f h x1010αραξ===,当构件处于界限破坏时,其相对受压区高度b ξξ=,相应的配筋率称之为最大配筋率(或界限配筋率)max ρ,maxρ与b ξ之间的关系为yc b f f1max αξρ=。
§3 单筋矩形截面梁正截面承载力计算 1、三个基本假定① 平截面假定② 不考虑混凝土的抗拉强度:全部拉力由纵向受拉钢筋承担; ③ 受压区混凝土的应力应变关系: 当εc ≤ε0时 ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--=nc c c f 011εεσ 当ε0<εc ≤εcu时 σc =f c)50(6012,--=k cu f n 5,010)50(5.0002.0-⨯-+=k cu f ε)10)50(0033.05,-⨯--=k cu cu f ε式中 c σ——对应于混凝土压应变为c ε时的混凝土压应力;0ε——对应于混凝土压应力刚达到c f 时的混凝土压应变,当计算的0ε值小于0.002时,应取为0.002;cu ε——正截面处于非均匀受压时的混凝土极限压应变,当计算的cu ε值大于0.0033时,应取0.0033;n ——系数,当计算的n 值大于2.0时,应取2.0;④ 钢筋应力取等于钢筋应变与其弹性模量的乘积,但其绝对值不应大于其强度设计值。
2、基本公式(图)及适用条件① 基本公式:由静力平衡条件得:∑=0N s y c A f bx f =1α ∑=0M )2( 01x h x b f M c -≤α或 )2(0x h A f M s y -≤式中 M——弯矩设计值;f y ——钢筋抗拉强度设计值;a s ——纵向受拉钢筋合力点至截面受拉边缘的距离。