当前位置:文档之家› 天然纤维素纤维混凝土标准(AC217)

天然纤维素纤维混凝土标准(AC217)

天然纤维素纤维混凝土标准(AC217)
天然纤维素纤维混凝土标准(AC217)

天然纤维素纤维混凝土验收标准

AC217

2003年七月一日生效

前言

ICC评估服务公司(ICC-ES)的评估报告是基于国际标准规范集和其他普遍采用的规范集的应用特性的基础上的,包括统一规范、BOCA国家规范和SBCCI标准规范。国际建筑规范中104.11节有如下规定:

本系列规范并不是要停止任何本规范没有指明的材料的使用和禁止任何本规范没

有指明的建筑设计和方法,如果这些材料、设计和方法已经获得了准用。这些取代

的材料、设计和方法应符合建筑官员认为的它们能够提供本系列规范的要求内容,并且这些材料、设计和方法对于本系列规范中提到的质量、强度、效用、耐火性、耐久度和安全性的要求至少是相等的。

在统一规范、国家规范和标准规范中也有相似的规定。

根据ICC-ES收集的公众反馈,本标准进行了深化和调整,并于如上述日期后生效。所有在生效日当天或者之后的日期发表或者修订的报告必须符合本标准,在生效日之前的发表的报告可以符合本标准或者早期版本的标准。如果此标准是前标准的升级版本,则当有技术改动时,在标准的空白处划一条竖实线(|),加号或删除符号于前标准。如果删除部分有技术改动则在删除符号上加上箭头(→)。本标准根据需要会进行修订。

当报告申请者提供可以证明取代标准能够达到或超过此文件中标准的水平,或者证明符合规范集中的性能特点,则ICC-ES可能会考虑取代标准。虽然某产品、材料、建筑种类或者方法符合本文件中的标准中的要求,或者已证明有效的取得标准达到了本文件中的标准的水平或者证明了符合规范集中的性能特点,但是,ICC-ES仍旧有权对某评估报告的发行或更新。

版权所有?2003

1.0 介绍

1.1 目的:本标准的目的在于为天然纤维素纤维取得ICC评估服务公司(ICC-ES)的验证而需要建立的。

1.2 范围:在混凝土中添加天然纤维素纤维,以此来减少增强混凝土和结构素混凝土的塑性收缩裂缝,和/或减少结构素混凝土板的收缩和温度裂缝。

1.2.1 对使用的纤维素纤维的数量、尺寸和种类应予于考虑,应根据本标准或者已注册的设计师签名、盖章和写上日期的工程评估,来外推其他数量、尺寸和种类的纤维。

1.2.2 纤维作为外加剂被用于其他任何应用规范要求的结构加固、抗收缩和温度增强和接缝处。

1.2.3 本标准不包括用于附于钢板露台建筑的的混凝土的纤维。

1.2.4 本标准不包括用于耐火性建筑中使用的纤维素纤维。

1.2.5 当纤维素纤维被用于混凝土地坪而需要经受摩擦和交通冲击(比如铲车),则纤维只能被用来减少塑性收缩裂缝。

1.3 参考标准:本标准中参考的标准都应与规范保持一致,相应的规范见表1。

1.3.1 规范:

1.3.1.1 2000国际建筑规范(IBC),国际规范委员会。

1.3.1.2 2000国际居住规范(IRC),国际规范委员会。

1.3.1.3 BOCA 国家建筑规范/1999(NBC)。

1.3.1.4 1999 建筑标准规范(SBC)。

1.3.1.5 1997 统一建筑规范(UBC)。

1.3.2 ASTM 国际标准:

1.3.

2.1 ASTM C 31(见表1),现场制作和养护混凝土试件的标准方法。

1.3.

2.2 ASTM C 39(见表1),圆柱体试件的抗压强度测试方法。

1.3.

2.3 ASTM C 78-02,混凝土抗折强度测试方法(使用简单梁3点加载法)。

1.3.

2.4 ASTM C 94(见表1),商品混凝土标准。

1.3.

2.5 ASTM C 172(见表1),新拌混凝土取样标准方法。

1.3.

2.6 ASTM C 192(见表1),实验室成型和养护试件的标准方法。

1.3.

2.7 ASTM C 234-91a,劈裂抗拉强度测试方法1。

1.3.

2.8 ASTM C 403-99,混凝土混合物凝结时间测试方法。

1.3.

2.9 ASTM C 494-99ae1,混凝土化学外加剂标准。

1.3.

2.10 ASTM C 470-02a,垂直成型圆柱体试件试模的标准。

1.3.

2.11 ASTM C 666-97,混凝土快速冻融测试标准方法。

1.3.

2.12 ASTM C 1018-97,纤维混凝土抗折强度和第一条裂缝出现时的强度测试方法(使用梁3点加载法)。

1.3.

2.13 ASTM C 1116-02 纤维混凝土和喷射混凝土标准。

1.3.

2.14 ASTM D 698-00a 标准作用力下压实土壤特性实验室测试方法。

1.3.

2.15 ASTM D 1557(见表1),修改过的作用力下压实土壤特性实验室测试方法。

1.3.

2.16 ASTM D 1695-96(2001),纤维素和纤维素派生词术语标准。

1.3.

2.17 ASTM D 6942-03,碱环境中纤维素纤维稳定性标准测试方法。

1.3.

2.18 ASTM E 136(见表1),材料在垂直管炉中750℃下性能测试标准方法。

1.3.3 美国混凝土协会(ACI)委员会报告:

1.3.3.1 ACI 305R-99,高温天气下混凝土施工标准。

1.3.3.2 ACI 318-(-99 IBC and IRC,-95NBC,SBC and UBC),结构混凝土建筑规范要求。

1.3.3.3 ACI 544.2R-89(1999),纤维混凝土性能测试方法。

1.3.3.4 ACI 544.1R-96,纤维混凝土国家美术报告。

1.4 定义:

1.4.1 掺合料:掺合料是指为了改变混凝土性能,在混凝土搅拌前或搅拌时添加的,除水、骨料和水泥之外的,作为混凝土组分的材料。

1.4.2 塑性收缩裂缝:塑性收缩裂缝是指新拌混凝土浇捣后处于塑性状态是混凝土表面出现的裂缝。

1.4.3 增强混凝土:定义同ACI 318。

1.4.4 结构素混凝土:定义同ACI 318。

1.4.5 收缩和温度裂缝:收缩和温度裂缝是指由于混凝土中水分的减少而导致混凝土长度或体积上的减小而引发应力下产生的开裂。

1.4.6 天然纤维素纤维:天然纤维素纤维是指成分为纯纤维或者部分为纤维素的纤维。纤维素是指自然条件下产生的有机聚合物。“天然”的意思是指,纤维原料取自于天然原材料(如树木等)并直接用于加工制造消费商品而非利用回收材料。更多的相关定义见ASTM D1695“纤维素和纤维素派生词术语标准”。

2.0 基本信息

2.1 概述:以下所列的信息需要提交:

2.1.1 产品描述:包括关于材料规格,纤维素纤维种类和来源,尺寸以及用零跨度抗拉强度测试方法测得的抗拉强度的完整信息。

2.1.2 使用说明:书面搅拌说明和使用掺量及产品包装

2.1.3 包装方法的描述和产品在工地上的识别。产品识别文件应包括评估报告的号码。

2.2 测试实验室:测试实验室应符合ICC-ES 对于测试报告中的验收标准(AC85)和ICC-ES 对于评估报告中的相关规定的4.2节。

2.3 测试报告:测试报告应符合AC85。

2.3.1 测试报告应包含以下内容:

2.3.1.1 纤维素纤维的种类和来源的描述(如硬木、软木、草本、大麻、棉花)。

2.3.1.2 测试步骤的描述。

2.3.1.3 通过与否的结论以及适用场合。

2.4 产品取样:产品取样应按照AC85中

3.0节。

3.0 测试和操作要求

3.1 概述:所用纤维的数量、尺寸和种类必须给予考虑,外推至其他数量、尺寸和种类的纤维素纤维必须要有证明。混凝土用的纤维素纤维评估报告可以分为以下种类:

3.1.1 纤维素纤维被应用于控制塑性收缩裂缝的增强混凝土和结构素混凝土时,根据IBC1907.12节的规定,纤维作为掺合料用于除其他任何结构增强、任何收缩和抗温增强措施的二次增强材料,或根据IBC1909.3节的规定,除接缝外的二次增强材料。

3.1.2 纤维素纤维被应用于结构素混凝土地坪为帮助减少收缩和温度裂缝时,根据纤维IBC1907.12节的规定,被用于除接缝外的二次增强材料。

3.2 测试要求:

3.2.1 根据3.1.1节,需要根据

4.1到4.6节(包含4.1和4.6节)的测试步骤取得测试结果。

3.2.2 根据3.1.2节,需要根据

4.1到4.7节(包含4.1和4.7节)的测试步骤取得测试结果。

4.0 测试方法

所有测试必须采用ASTM C 494中11节到15节关于搅拌的合适的方法。

4.1 混凝土抗折强度:本测试的目的是为了评估纤维素纤维的添加对混凝土的抗折强度是否有不利影响。

4.1.1 根据ASTM C 78进行比较测试。

4.1.2 取样和试验环境应符合ASTM C 1018中7.2节的要求。

4.1.3 每个测试对掺纤维的混凝土和未掺纤维的对比混凝土都需要成型3个试件。

4.1.4 合格条件:掺纤维的试件平均28天的抗折强度应等于未掺纤维的对比试件的平均强度,考虑到试验的离散性,试验数据允许有微小偏差。

4.2 混凝土抗压强度:本测试的目的是为了评估纤维素纤维的添加对混凝土的抗压强度是否有不利影响。

4.2.1 根据ASTM C 39进行比较测试。

4.2.2 每个测试对掺纤维的混凝土和未掺纤维的对比混凝土都需要成型3个试件。

4.2.3 合格条件:掺纤维的试件平均28天的抗压强度应等于未掺纤维的对比试件的平均强度,考虑到试验的离散性,试验数据允许有微小偏差。

4.3 冻融耐久性:本测试的目的是为了评估纤维素纤维的添加对混凝土的冻融耐久性是否有不利影响。

4.3.1 根据ASTM C 666中A步骤进行对比测试。

4.3.2每个测试对掺纤维的混凝土和未掺纤维的对比混凝土都需要成型3个试件。含气量应符合ASTM C 494中12.2.2节中所列的要求。

4.3.3 合格条件:掺纤维的试件平均耐久性指数应至少等于未掺纤维的对比试件的平均耐久性指数。冻融循环的次数应为300次或者直到纤维试件的平均相对MOE,再或者对比试件降到了初始弹性模量的60%,三者中任何一个到达,试验即停止。

4.3.4 根据ASTM C 666,为取代测试信息需要提供由ASTM C1116中21.4节冻融性能的一份记录。现场测试报告应由一个有资质的独立的机构提供,包括尺寸、数量、交易名称和纤维种类以及混凝土配合比设计。至少要提供三个不同地点的测试报告。

4.4 对劈裂抗拉强度的作用:(如果纤维使用在素混凝土地坪上,在此测试可以省略。)本测试的目的是为了评估纤维素纤维的添加对配筋混凝土的劈裂抗拉强度是否有不利影响。

4.4.1 根据ASTM C 234进行对比测试。对配筋的评估需要按照ASTM C 234中4.3节的要求。配筋混凝土养护时间应不少于26天。

4.4.2每个测试对掺纤维的混凝土和未掺纤维的对比混凝土都需要成型3个试件。

4.4.3 合格条件:掺纤维的试件对配筋的劈裂抗拉强度应等于或超过未掺纤维的对比试件的平均劈裂抗拉强度,考虑到试验的离散性,试验数据允许有微小偏差。

4.5 塑性收缩开裂:本测试的目的是表明纤维素纤维可以降低混凝土塑性收缩开裂。测试必须按照附录A中的方法进行,合格条件也列在附录A中。

4.6 与混凝土的相容性:本测试的目的是为了评估纤维素纤维在混凝土浆体中接触水分、碱性物质或者其他随有空气带入的物质以及化学外加剂时的长期的抗降解能力。

4.6.1 耐碱性测试步骤:根据ASTM D 6942进行测试。

4.6.2 测试条件:根据ASTM D 6942,试验将纤维分别放入装有标准氢氧化钙和1.0N 的氢氧化钠溶液的开发容器中,以1、3、7、14、21、28和35天为间隔进行测试。对每个样品进行抗拉强度的测试,取8个测值的平均值。

4.6.3 合格条件:ASTM D 6942 要求两种溶液浸泡下纤维的平均抗拉强度都不小于原强度的90%。

4.7 开裂后的性能:

4.7.1 概述:冲击试验是用于评估纤维素纤维混凝土在开裂后的整体性:

4.7.2 抗冲击能力:测试比较掺和不掺纤维素纤维的混凝土对抗冲击的能力。测试方法见附录B。

4.7.3 合格条件:掺纤维的混凝土养护7天和28天后,在破坏前经受的冲击次数都应超过未掺纤维的对比试件的40%。

4.8 不可燃性建筑材料(可选):

4.8.1 概述:根据ASTM E 136,建筑用天然纤维素纤维应具有不可燃的性能。

4.8.2 合格条件:掺天然纤维素纤维的混凝土试件应符合ASTM E 136。

5.0 质量控制

5.1 应提交符合ICC-ES关于天然纤维素纤维混凝土标准的质量控制手册。

5.2 标准并不要求有第三方的检查。

5.3 质量控制手册应能够判别纤维的天然性,“天然”性请参考1.4.6节内容。

6.0 评估报告认证

6.1 如果评估报告申请者/持有者在一个纤维生产商那里购买纤维,则需要提供一份申请者/持有者和纤维生产商之间的协议,即当生产商对纤维做了任何改变时都应该通知申请者/持有者,而申请者/持有者则应通知ICC-ES。

6.2 评估报告应包括项目工程师或建筑师对在此项目中使用这种纤维的许可。

6.3 对于结构素混凝土,评估报告应指明根据IBC 1909.3节要求,需要提供控制接缝。6.4 对于增强混凝土,评估报告应指明根据IBC 190

7.2节要求,需要提供结构增强和抗收缩和温度的增强措施。

6.5 每批混凝土信息书应由商品混凝土生产负责人的签名,并当规范管理处有要求时能够去报到。信息书除了按照ASTM C 94 16.1节上的要求内容外还应包括所添加纤维的种类和数量。

6.6 如果对其他种类的混凝土,如轻质混凝土,进行评估,则根据本标准对每个种类的混凝土进行测试后的结果都应提交。

Na=不适用

附录A 纤维素纤维混凝土在受限条件下塑性收缩裂缝的测试方法

A1.0 介绍

此测试方法用于比较掺纤维素纤维的混凝土板和未掺纤维的混凝土板的表面开裂情况。两种混凝土都被置于规定的足以达到混凝土开裂的环境中。两种混凝土也可以被置于预计的工作环境,经受这种环境下的温度和湿度,从而获得纤维素纤维混凝土和素混凝土在开裂方面的不同结果。

塑性收缩裂缝通过对每块试件样板表面的裂缝进行计量,以平方英寸为单位取得开裂量,此开裂量就代表混凝土板表面裂缝的计算面积。

纤维对收缩裂缝控制的效果以掺纤维素纤维的混凝土的开裂量占未掺纤维的对比混凝土的开裂量的百分比来表示,这两种混凝土在测试时是严格按照相同的干湿条件并同时测试。

开裂量以平方英寸为标准。此测试方法对给定混凝土拌合物通过固定或者真实模拟大气条件而改变纤维量来定量分析纤维的效果。因为许多其他因素,诸如水泥级别、集料级配合表层抹面等,都能影响混凝土开裂情况并且这些因素在试验中不能够被精确控制,所以此测试方法可能不适合多个实验室联合评估。

A2.0 方法概述

混凝土板试件成型刮平后,纤维混凝土板和对比混凝土板都被置于由电风扇产生的气流下。使用电风扇是为了在不同的混凝土试件表面通过相同的气流(见图A1)。混凝土试件上方安装透明板以使气流稳定并方便观测。

测试设备示意图见图A1,试件被置于最低蒸发量为0.2磅每平方英尺每小时(0.975kg/m2/h)的环境中。(见规范ACI305)

根据ACI305R的蒸发曲线,实验室对比试验的蒸发值取为大于等于某个固定值,如0.2磅每平方英尺每小时(0.975kg/m2/h)。蒸发率由一个面积为1平方英尺(0.0929 m2)的蒸发皿装水并在试验开始至结束进行实时监测(见注释1)。

注释1:本测试方法的一个首要决定因素是试件所处环境的水分蒸发量。因为混凝土试件不能保持稳定的水分蒸发率,所以本试验中水分蒸发量以蒸发皿中的测试为标准。

试验的干燥条件是为了诱导混凝土在体积减小时受到内部和外部的约束而产生收缩裂缝。测试在混凝土试件终凝时结束。终凝的判定按照ASTM C 403规范。

所有试件都必须被置于同样的条件下,并保持试件表面没有覆盖物。测试结束时对每块混凝土板的总的裂缝面积进行计量,以平方英寸为单位。

塑性收缩裂缝产生于混凝土凝结过程,从初凝到终凝。因为在这个塑性阶段很难对裂缝进行测量,所以所有的裂缝都是测试结束后进行的。

混凝土试件和检测蒸发皿都被置于为本测试定制的环境试验柜中(见图A1和A2)。

在成型混凝土板试件前,对实验室设备的空气干湿值进行快速测定以便确定试验需要的条件可以达到。

开裂量通过对每块混凝土板的裂缝数和每条裂缝的大致的长度和宽度进行测量计算。累计的裂缝面积就是基于对每块试件混凝土板计量的开裂量而取得的。纤维混凝土试件的开裂量占对比试件的开裂量的百分数即为纤维的使用效果。参考A6.0节,开裂的量化。

A3.0 设备

模子:矩形平板模,深4英寸(102mm),最小表面积为1.75英尺(0.16m2),矩形尺

寸为14英寸×22英尺(356mm×559mm),底部装有如图所示的约束凸起。模子的材质可以是金属、塑料或者夹板(见注释2)。模子底部的凸起单独用金属板制作,形状大小能够与模子相吻合(见图A2)。

注释2:采用吸水率低的夹板制模,可以得到轻质坚固的模子。

约束凸起:两个高为1.25英寸(31.7mm)的凸起分别位于模内距各端4英寸(102mm)的地方,给混凝土提供约束力。模子中央高2.5英寸(63.5mm)的凸起则作为塑性收缩裂缝的诱发带。

为了使混凝土试件脱模方便,对金属凸起板进行轻度上油,并对多余的油进行清除。同样对模子的内部也进行相同程度的上油。

电风扇:可调速,并能够在试件表面产生最小风速为10 mph(16.1 km/h)的气流。

传感器:温度、湿度和气流速度传感器用量测试混凝土试件周围的气流速和和试件本身的温度和湿度。

振动台:能够在12秒内振实混凝土试件板的最小频率的外部振动台。

监视蒸发皿:盛水后有效水面面积为1平方英尺(0.0929m2)±1%,放于混凝土试件顺气流方向的下游,并垂直于试件。蒸发皿的尺寸会影响蒸发速率。试验开始时加水(至少)至距皿口1/8英寸(3.2mm)处。推荐使用以下规格的蒸发皿:12英寸×12英寸×1英寸(305mm×305mm×25mm)或者8英寸×18英寸×1英寸(203mm×457mm×25mm)。

称量工具:天平或者台秤,用来称量蒸发皿,量程至少为5磅(2.2kg),要求精度为其量程的0.1%。

可选设备:台秤,称量试件板,量程至少为200磅(90.7kg),要求精度为其荷载重量的百分之一。

A4.0 取样、试件和试件组

总体要求:混凝土试件板要求厚度为4英寸(102mm)。当使用底部凸起成型试件时粗集料的最大粒径为3/4英寸(19mm)。

试件:试件根据ASTM C 192规范在实验室里成型。

试件组:每组试件个数最少为6个,其中3个为不掺纤维的对比试件,另外三个为除掺了试验要求的种类和数量的纤维外其他完全与对比试件相同的试件。对比试件可能用于对比不同系列的纤维增强混凝土试件。

A5.0 试验过程

在模子中成型混凝土,然后在振动台上振动并使混凝土大致与试模顶部齐平。每个试件表面用铁刮子刮平(刮三次)。每个试件振动时间为12秒,以避免混凝土发生离隙现象。

可选操作:在混凝土填入模子前,先对模子进行称量。混凝土入模后,清除溢出黏附的混凝土,然后对其进行称量。这样通过称量试验结束时整体重量就可以计算出试件在试验过程中水分的蒸发量。

纤维增强混凝土试件和对比试件都被置于指定的风扇气流位置(见示意图A1)。

将风扇速度调节到风速高于10mph(16.1km/h),记录打开风扇的时间。同时,确保所有的试件都处在相同的干湿条件下。对混凝土开裂情况的评估就是从这个时候开始的。

空气和混凝土试件的温度、相对湿度和气流速度都有位于试件上方4英寸(102mm)处的传感器测得,在记录初始值后每30分钟记录数据。每个试件表面的第一条裂缝产生的时间也被记录下来。

以30分钟为间隔的观测一直保持到混凝土终凝或者3个小时为止。对裂缝的测量在混凝土凝结硬化后开始。

装好水的蒸发皿在试验开始进行称量后,在试验过程中以30分钟为间隔进行实时称量。每次称量的数据精确到0.01磅(4.53g)。

注释3:试验过程中试验柜中的蒸发率应该始终保持在指定的水平,如果有偏差请立即调整到指定值。同时,蒸发皿在此期间也不能碰动。

试验进行到终凝完成或者三个小时后,记录空气数据,停止风扇,记录蒸发皿中的失水量。如果计算所得的蒸发速率小于0.2磅每平方英尺每小时(0.975kg/m2/h),则此次测试无效。

可选步骤:如果对混凝土试件也进行了称量,则计算出试件的质量损失。

A6.0 裂缝的计量

对试件表面的开裂面积进行测量,以平方英寸(mm2)为单位。

混凝土终凝结束后开始测量裂缝。测量时按顺序从一端到另一端逐条操作,并对测量过的裂缝用记号笔标记,以防止重复测量。每条裂缝的长度通过细线测量,即把细线沿着裂缝放在试件表面上,然后测量线的直线长度。用这种方法测量裂缝时,请掌握好布线测量的估计程度,尽量保持稳定,另外测量工具的读数也要保持前后一致。裂缝的平均宽度的测量方法如下,即对每条裂缝以最小1英寸(25.4mm)的间隔沿着裂缝方向测量裂缝此处的宽度并取此裂缝所有测得宽度数值的平均值(见注释4)。当所有测量结束,且所有裂缝被标记则本步骤完成。

注释4:进行裂缝测量时需使用裂缝比较仪或者裂缝显微镜。

在测量过程中,测试员关于估计阈值和工具读数的操作稳定性是非常重要的。每条裂缝的面积由测得的长度和平均宽度相乘所得,累加试件表面所有裂缝的面积即得此试件的总开裂面积。

A7.0 合格条件

试验结果应建立在平均试验结果基础之上,任何个人的罕见的试验结果请注明。

对于纤维素纤维在降低混凝土塑性收缩裂缝上,试验数据应该表明至少有50%的改善。A8.0 报告撰写

报告应包括以下几个部分:

*混凝土强度、单位重量和引气量(如果可行)

*用水量lb./yd3(kg/m3)、分级集料和纤维;液态外加剂oz./yd3(mL/m3)、水灰比和每组混凝土的塌落度。

*纤维体积百分数(%)和每次混凝土中使用的纤维种类。

*试件的厚度和尺寸大小。

*每个试件的开裂面积,以平方英寸(mm2)为单位。

*水分损失率,以磅每平方英尺(kg/ m2)为单位。

*相对于未掺纤维的对比试件的裂缝比:

裂缝面积(纤维混凝土试件)/裂缝面积(比较混凝土试件)×100%

*试件的质量损失(可选)。

*计算所得的每个试件的水分损失,以磅每平方英尺(kg/ m2)为单位(可选)。

图A1 试验装置示意图

图A2 试模详图

附录B 纤维素纤维混凝土抗冲击性能评估方法

B1.0 概述

本测试方法用于比较掺纤维素纤维和未掺纤维素纤维的混凝土试件的抗冲击性能。抗冲击性能由以下方面进行测试:(a)破坏试件的(最小)所需能量;(b)达到指定破坏程度所需要的“重复冲击”次数;(c)破坏程度。

B2.0 设备

落锤冲击试验设备包括:

B2.1 按照ASTM D 698或者ASTM D 1557标准,人工或者机械地把重4.54kg(10磅)的压缩锤和457mm(18英寸)的高度的落击装置。

B2.2 一个直径为63.5mm(2.5英寸)的硬化钢球。

B2.3 一个焊有4个凸片的平台(见图B1和B2)。

B2.4 符合ASTM C 31或C470的圆柱型模子,可以成型直径为152mm(6英寸)高为63.5mm±3mm(2.5英寸±0.125英寸)的圆柱型试件。

B3.0 测试过程

规定尺寸混凝土试件以外部振源振动的方式进行振实,振动的方法、频率、振幅和振动时间都应记录下来。试件63.5mm的厚度一次成型,以避免纤维定向性和纤维缺失面。模子成型厚度为63.5mm并自流平。

养护7天和28天后进行测试。对试件厚度进行记录,精确到1.6mm(1/16英寸)。记录的厚度取自于试件中心厚度测值和各直径对边测值的平均值。试件底部涂上一层薄薄的油脂,放置于试验平台上凸片内方,并使成型面朝上。试验平台应放置在混凝土地坪或者大混凝土块上。硬质钢球放于试件上方并于托架内。在试件和凸片之间填充泡沫橡胶,以便在试件出现第一条可见裂缝之前固定试件。

落锤安置在钢球的上方,并在其上方有足够的压力使落锤在试验过程中不从钢球上方弹出。落锤在457mm(18英尺)的高度落下,记录试件产生第一天可见裂缝和最终破坏的击落次数。当试件接触3个或4个基座平台上的凸片时即为试件的最终破坏,见图B1和B2。B4.0 取样,成型和测试组

B4.1 取样:对每种龄期和测试条件都成型5个试件。

B4.2 成型:试件按照ASTM C 192,标准实验室成型养护试件的标准成型试件。

B4.3 测试组:对于每个变量需要5个试件。成型两组试件,一组为未掺纤维的基准试件,另一组未掺纤维的试件。

B5.0 合格条件

试验结果以数据的平均值未准,任何个人的罕见的试验结果请注明。对于纤维素纤维在改善混凝土抗冲击性能上,试验数据应该表明至少在7天和在28天时都有40%的改善。

B6.0 报告撰写

除了AC 85标准上的要求外,报告还需要包含以下内容:

*所有不同变量的混凝土配合比设计。

*各组试件的纤维掺量。

*试件的厚度和直径。

*落锤的重量。

*第一条可见裂缝产生时落锤的击落次数。

*试件最终破坏时落锤的击落次数。

微晶纤维素USP

Microcrystalline Cellulose Cellulose [9004-34-6]. DEFINITION Microcrystalline Cellulose is purified, partially depolymerized cellulose prepared by treating alpha cellulose, obtained as a pulp from fibrous plant material, with mineral acids. IDENTIFICATION ? A. Procedure Iodinated zinc chloride solution: Dissolve 20 g of zinc chloride and 6.5 g of potassium iodide in 10.5 mL of water. Add 0.5 g of iodine, and shake for 15 min. Sample: 10 mg Analysis: Place the Sample on a watch glass, and disperse in 2 mL of Iodinated zinc chloride solution. Acceptance criteria: The substance takes on a violet-blue color. 氯化锌碘试液:取氯化锌20g、碘化钾6.5g,加水10.5ml。再加碘0.5g,振摇15min。 测定:取本品10mg,置表面皿上,加氯化锌碘试液2ml。 标准规定:应变为蓝紫色。 Change to read: ? B. Procedure Sample: 1.3 g of Microcrystalline Cellulose, accurately weighed to 0.1 mg Analysis: Transfer the Sample to a 125-mL conical flask. Add 25.0 mL of water and 25.0 mL of 1.0 M cupriethylenediamine hydroxide solution. Immediately purge the solution with nitrogen, insert the stopper, and shake on a wrist-action shaker, or other suitable mechanical shaker, until completely dissolved. Transfer an appropriate volume of the Sample solution to a calibrated number 150 Cannon-Fenske, or equivalent, viscometer. Allow the solution to equilibrate at 25 ±0.1 for NLT 5 min. Time the flow between the two marks on the viscometer, and record the flow time, t1, in s. 取本品1.3g,精密称定,置125mL具塞锥形瓶中,精密加入水25ml,再精密加入1mol/L 双氢氧化乙二胺铜溶液25ml,立即通入氮气以排除瓶中空气,密塞,强力振摇,使微晶纤维素溶解;取适量,置25±0.1℃水浴中,约5min后,移至刻度为150的坎农-芬斯克毛细管粘度计或同等的黏度计内(毛细管内径为0.7 ~1.0mm,选用适宜粘度计常数K1 ),照黏度测定法,于25±0.1℃水浴中测定。记录供试品溶液流经黏度计上下两刻度时的时间t1,按下式计算供试品溶液的运动黏度。 Calculate the kinematic viscosity, (KV)1, of the Microcrystalline Cellulose taken: 微晶纤维素的运动黏度(KV)1按下式计算: Result = t1 × k1 t1 = flow time (s) k1 = viscometer constant (see Viscosity—Capillary Methods 911 (CN 1-May-2015) ) Obtain the flow time, t2, for 0.5 M cupriethylenediamine hydroxide solutions using a number 100 Cannon-Fenske, or equivalent, viscometer.

GMP-微晶纤维素检验操作规程

1 目的 确定微晶纤维素检验的操作程序和方法,确保合格的微晶纤维素投入生产。 2 适用范围 适用于本厂质监科化验室对本厂生产所需的微晶纤维素的检验。 3 责任 化验员有责任按照本操作规程对生产所需的微晶纤维素进行检验、判定,并对检验结果负责。 4 内容 4.1仪器和设备 电热恒温干燥箱、马弗炉、药筛、分析天平、酸度计、锥形瓶、烧杯、称量瓶、坩埚、蒸发皿、比色管等。 4.2试剂及配制 4.2.1氯化锌碘试液 取氯化锌20g,加水10ml使溶解,加碘化钾2g溶解后,再加碘使饱和,即得。本液应置棕色玻璃瓶内保存。 4.2.2碘试液 可取用碘滴定液(0.1mol/L)。 4.2.3标准氯化钠溶液 称取氯化钠0.165g,精密称定,置1000ml量瓶中,加水适量使溶解并稀释至刻度,摇匀,作为贮备液。 临用前,精密吸取贮备液10ml,置100ml量瓶中,加水稀释至刻度,摇匀,即得(每1ml相当于10μg的cl)。

4.2.4稀硝酸 取硝酸105ml,加水稀释至1000ml,摇匀,即得。 4.2.5硝酸银试液 取硝酸银1.75g,加水适量使溶解成100ml,摇匀,贮存于棕色试剂瓶中。 4.2.6标准铅溶液 称取硝酸铅0.160g,置1000ml量瓶中,加硝酸5ml,与水50ml溶解后,用水稀释至刻度,摇匀,作为贮备液。 临用前,精密量取贮备液10ml,置100ml量瓶中加水稀释至刻度,摇匀,即得(每1ml相当于10μg的Pb)。 注意:配制与贮存用的玻璃容器均不得含铅。 4.2.7醋酸盐缓冲溶液(PH3.5) 取醋酸铵25g,加水25ml溶解后,加盐酸液(7mol/L)38ml,用盐酸液(2mol/L)或氨试液(5mol/L)准确调节PH值至3.5(电位法指示),用水稀释至100ml即得。 4.2.8 7mol/L盐酸溶液 取630ml盐酸加水适量,使成1000ml,摇匀,即得。 4.2.9 2mol/L盐酸溶液 取盐酸180ml,加水适量使成1000ml,摇匀,即得。 4.2.10硫代乙酰胺试液 取硫代乙酰胺4g,加水溶解成100ml,置冰箱中保存。临用前取混合液[由氢氧化钠液(1mol/L)15ml,水5.0ml及甘油20ml组成]5.0ml,加4%硫代乙酰胺溶液1.0ml,置水浴上加热20秒钟,冷却,立即使用。

纤维混凝土

纤维混凝土 1.技术原理 纤维混凝土是指掺加短钢纤维或合成纤维作为增强材料的混凝土,钢纤维的掺入能显著提高混凝土的抗拉强度、抗弯强度、抗疲劳特性及耐久性;合成纤维的掺入可提高混凝土的韧性,特别是可以阻断混凝土内部毛细管通道,因而减少混凝土暴露面的水分蒸发,大大减少混凝土塑性裂缝和干缩裂缝。 2.施工工艺和方法 (1)原材料 1)水泥:钢纤维混凝土应采用普通硅酸盐水泥和硅酸盐水泥;合成纤维混凝土优先采用普通硅酸盐水泥和硅酸盐水泥,根据工程需要,选择其他品种水泥; 2)骨料:钢纤维混凝土不得使用海砂,粗骨料最大粒径不宜大于钢纤维长度的2/3;喷射钢纤维混凝土的骨料最大粒径不宜大于10mm; 3)纤维:纤维的长度、长径比、表面性状、截面性能和力学性能等应符合国家有关标准的规定,并根据工程特点和制备混凝土的性能选择不同的纤维。 (2)配合比 纤维混凝土的配合比设计应注意以下几点: 1)钢纤维混凝土中的纤维体积率不宜小于0.35%,当采用抗拉强度不低于1000MPa的高强异形钢纤维时,钢纤维体积率不宜小于0.25%;各类工程钢纤维混凝土的钢纤维体积率选择范围应参照国家与有关标准。控制混凝土早期收缩裂缝的合成纤维体积率宜为0.06%~0.12%。 2)纤维混凝土的最大胶凝材料用量不宜超过550kg/m3;喷射钢纤维混凝土的胶凝材料用量不宜小于380kg/m3。 (3)混凝土制备 纤维混凝土的搅拌应采用强制式搅拌机;宜先将纤维与水泥、矿物掺合料和粗细骨料投入搅拌机干拌60s~90s,而后再加水和外加剂搅拌120~180s,纤维体积率较高或强度等级不低于C50的纤维混凝土宜取搅拌时间范围上限。当混凝土中钢纤维体积率超过1.5%或合成纤维体积率超过0.2%时,宜延长搅拌时间。 3.质量保证措施 (1)纤维要选择合适的掺量,合成纤维会使混凝土强度降低,在同时满足抗裂性能和力学性能的前提下确定掺量,一般积率不超过0.12%。 (2)钢纤维或合成纤维掺量过多时,都会使坍落度损失增加,选择合适的掺量和调整配合比,使纤维的掺入对混凝土工作性不产生负面的影响; (3)纤维混凝土的轴心抗压强度、受压和受拉弹性模量、剪变模量、泊松比、

钢纤维及钢纤维混凝土的技术及规定

钢纤维及钢纤维混凝土知识 混凝土用纤维的分类: 所用纤维按其材料性质可分为:①金属纤维。如钢纤维(钢纤维混凝土)、不锈钢纤维(适用于耐热混凝土)。②无机纤维。主要有天然矿物纤维(温石棉、青石棉、铁石棉等)和人造矿物纤维(抗碱玻璃纤维及抗碱矿棉等碳纤维)。③有机纤维。主要有合成纤维(聚乙烯、聚丙烯、聚乙烯醇、尼龙、芳族聚酰亚胺等)和植物纤维(西沙尔麻、龙舌兰等),合成纤维混凝土不宜使用于高于60℃的热环境中。 钢纤维的性能和规格: 钢纤维是以切断细钢丝法、冷轧带钢剪切、钢锭铣削或钢水快速冷凝法制成长径比(纤维长度与其直径的比值,当纤维截面为非圆形时,采用换算等效截面圆面积的直径)为40~80的纤维。 因制取方法的不同钢纤维的性能有很大不同,如冷拔钢丝拉伸强度为800-2000MPa、冷轧带钢剪切法拉伸强度为600-900MPa、钢锭铣削法为700MPa;钢水冷凝法虽为380MPa,但是适合生产耐热纤维。 为增强砂浆或混凝土而加入的、长度和直径在一定范围内的细钢丝。常用截面为圆形的长直钢纤维,其长度为10~60毫米,直径为0.2~0.6毫米,长径比为50~100。为增加纤维和砂浆或混凝土的界面粘结,可选用各种异形的钢纤维,其截面有矩形、锯齿形、弯月形的;截面尺寸沿长度而交替变化的;波形的;圆圈状的;端部放大的或带弯钩的等。 钢纤维的规格:

钢纤维是当今世界各国普遍采用的混凝土增强材料。钢纤维混凝土是在普通混凝土中掺入乱向分布的短钢纤维所形成的一种新型的多相复合材料。这些乱向分布的钢纤维能够有效地阻碍混凝土内部微裂缝的扩展及宏观裂缝的形成,显著地改善了混凝土的抗拉、抗弯、抗冲击及抗疲劳性能,具有较好的延性。 纤维混凝土的作用: 制造纤维混凝土主要使用具有一定长径比(即纤维的长度与直径的比值)的短纤维。但有时也使用长纤维(如玻璃纤维无捻粗纱、聚丙烯纤化薄膜)或纤维制品(如玻璃纤维网格布、玻璃纤维毡)。其抗拉极限强度可提高30~50%。 纤维在纤维混凝土中的主要作用,在于限制在外力作用下水泥基料中裂缝的扩展。在受荷(拉、弯)初期,当配料合适并掺有适宜的高效减水剂时,水泥基料与纤维共同承受外力,而前者是外力的主要承受者;当基料发生开裂后,横跨裂缝的纤维成为外力的主要承受者。 若纤维的体积掺量大于某一临界值,整个复合材料可继续承受较高的荷载并产生较大的变形,直到纤维被拉断或纤维从基料中被拨出,以致复合材料破坏。与普通混凝土相比,纤维混凝土具有较高的抗拉与抗弯极限强度,尤以韧性提高的幅度为大。 钢纤维主要用于制造钢纤维混凝土,任何方法生产的钢纤维都能起到强化混凝土的作用。 纤维的增强效果主要取决于基体强度(fm),纤维的长径比(钢纤维长度l与直径d的比值,即I/d),纤维的体积率(钢纤维混凝土中钢纤维所占体积百分数),纤维与基体间的粘结强度(τ),以及纤维在基体中的分布和取向(η)的影响。当钢纤维混凝土破坏时,大都是纤维被拔出而不是被拉断,因此改善纤维与基体间的粘结强度是改善纤维增强效果的主要控制因素之一。 钢纤维混凝土的力学性能: 加入钢纤维的混凝土其抗压强度、拉伸强度、抗弯强度、冲击强度、韧性、冲击韧性等性能均得到较大提高。 1、具有较高的抗拉、抗弯、抗剪和抗扭强度 在混凝土中掺入适量钢纤维,其抗压强度提高10%~80%(C50以上混凝土提高幅度显著),抗拉强度提高50%~100%,抗弯强度提高50%~80%,抗剪强度提高50%~100%。试验表明,长度为5~15mm,长径比为10~30的超短钢纤维抗压强度提高幅度较短纤维大得多,但抗拉强度、抗折强度较短纤维低得多。 2、具有卓越的抗冲击性能 材料抵抗冲击或震动荷载作用的性能,称为冲击韧性,在通常的纤维掺量下,冲击抗压韧性可提高2~7倍,冲击抗弯、抗拉等韧性可提高几倍到几十倍。 3、收缩性能明显改善 在通常的纤维掺量下,钢纤维混凝土较普通混凝土的收缩值降低

C50钢纤维混凝土配合比设计说明

C50钢纤维砼配合比设计说明书 一、 设计目的: 该配合比适用于k75+500-k94+900段桥梁伸缩缝等的施工。 二、 设计说明: 1、 设计依据 ① 《公路工程国内招标文件范本》 ② 《普通混凝土配合比设计规程》 ③ 《普通混凝土拌合物性能试验方法标准》 ④ 《普通混凝土力学性能试验方法标准》 ⑤ 《普通混凝土长期性能和耐久性能试验方法标准》 GB/T 50082 ⑥ 《公路工程水泥及混凝土试验规程》 ⑦ 《公路工程岩石试验规程》 ⑧ 《公路工程集料试验规程》 ⑨ 《通用硅酸盐水泥》 ⑩ 《公路桥涵施工技术规范》 (11) 《建设用卵石、碎石》 (12) 《混凝土外加剂》 (13) 《钢纤维混凝土》 2、 配合比设计公式选用 根据《公路桥涵施工技术规范》 砼试配强度R 下式确定: JGJ 55-2011 GB/T 50080 GB/T 50081 JTGE30-2005 JTGE41-2005 JTGE42-2005 GB175-2007 JTG/T F50----2011 GB/T 14685-2011 GB8076-2008 JG/T 472-2015 JTG/T F50— 2011

Feu, o二f eu, k+1.645 a 其中值按下表选用: 三、C50砼配合比计算 1、原材料: ①水泥:柳州鱼峰水泥厂P .0 52.5普通硅酸盐水泥。 ②砂:贝江砂场河砂,细度模数2.72,表观相对密度2.654g/cm3。 ③碎石:神龙石场5?20mm,表观相对密度2.678g/cm3。采用 4.75-9.5mm碎石和9.5-19mm碎石按照30:70的比例进行掺配。 ④钢纤维:河北衡水鑫归机械加工厂,按照设计图纸每方掺量为60Kg ⑤水:饮用水 ⑥外加剂:郑州市邦基建材有限公司BJ聚羧酸高效减水剂,减水率为28%,掺量为1.0%。 ⑦设计坍落度:130?170mm 2、试配强度: f eu, o=f cu,k+1.645 (T =50+1.645 8=59.9 Mpa 3、水泥强度:(富余系数取1.0) f ee=52. 5Mpa 4、确定水灰比:

微晶纤维素

微晶纤维素是一种白色、无臭、无味、多孔、易流动粉末,不溶于水、烯酸、氢氧化钠溶液及一般有机溶剂。聚合度约220,结晶度高。为高度多孔颗粒或粉末。 一、微晶纤维素主要有三大特性: 1、吸附性:为多孔性微细粉末,可以吸附其他物质如水、油及药物等。比表面积随无定形 区比例的增大而增大。 2、分散性:微晶纤维素在水中经剧烈搅拌,易于分散生成奶油般的凝胶体。胶态微晶纤维 素因含有亲水性分散剂,在水中能形成稳定的悬浮液,程不透明的“奶油”状或凝胶状。 3、反应性能:在稀碱液中少部分溶解,大部分膨化,表现出较高的反应性能。 二、微晶纤维素在国内应用领域: 1、医药卫生:①微晶纤维素分子之间存在氢键,受压时氢键缔合,故具有高度的可压性, 常被用作于粘合剂;压制的片剂遇到液体后,水分迅速进入含有微晶纤维素的片剂内部,氢键即刻断裂,因此可做为崩解剂。此外微晶纤维素的密度较低,比溶剂较大,粒度分布较宽,又常被用作稀释剂。②医药行业中MCC主要被用在两个方面,一是利用他在水中强搅拌下易于形成凝胶的特性,用于制备膏状或悬浮状类药物;二是利用其成型作用,而用于医用压片的赋形剂。目前医药行业中压片赋形剂可分为两类,一是传统方法使用淀粉赋形剂;第二类是利用新型的纤维素赋形剂。使用淀粉的工艺必须经过造粒阶段,而使用MCC则因为其流动性好,本身具有一定的粘合性直接压片,因此能工艺简化,生产效率得以提高,例外使用MCC还有服用后崩解效果好、药效快、分散好等优点,因此使用MCC在压片赋形剂上得以广泛推广应用。 2、微晶纤维素在食品工业领域的应用:

微晶纤维素作为食品添加剂的主要作用有:泡沫稳定性;高温稳定性;液体的胶化剂; 悬浮剂;乳化稳定性等。其中乳化稳定性是微晶纤维素在食品工业领域最主要的功能。 3、微晶纤维素在轻工化工领域的应用: ①陶瓷业:陶瓷厂在陶土中添加微晶纤维素,不仅能增湿坯强度,提高半成品率,而 且焙烧时烧除微晶纤维质使陶瓷具有质轻透明的特色。 ②玻璃业:微晶纤维素胶液能在玻璃表面形成极黏的膜涂层,能为玻璃纤维提供纤维 素的表层,使其能用一般的纺织机器加工。 ③涂料业:在涂料中添加微晶纤维素,能使涂料具有触变性,以控制涂料的粘度、流 动性及涂刷性能。 4、微晶纤维素在日常化学工业中的应用: ①某些等级的微晶纤维素用于化妆及皮肤护理品的制造,甚至包含尿素这样难以掺和 的配料,同起耐热稳定剂的作用。 ②微晶纤维素与细砂、高岭土等混合,可制成含磨料的卫浴、厨房及手部皮肤的清洁 剂。 ③将微晶纤维素与羧甲基纤维素钠盐、有机物及水混合,可制成服装洗涤过程的保护 性胶体。 三、医药行业中微晶纤维素用于粉末直接压片的特点: ①可以使易吸潮的药物(土霉素、食母生、酵母片等)避免湿热的阴影,克服粘冲、 劣片的现象,有利于提高片剂的质量。

钢纤维混凝土配合比

C50钢纤维混凝土配合比 1,设计依据及参考文献 《普通混凝土配合比设计规程》JGJ55-2000(J64-2000) 《公路桥涵施工技术规范》JTJ041-2000 《国内公路招标文件范本》之第二卷技术规范(1) 《混凝土配合比设计计算手册》——刘长俊主编,辽宁科学技术出版社 2,确定钢纤维掺量: 选定纤维掺入率P=1.5%, T0=(78.67*P)kg=78.67*1.5=118kg; 3,确定水灰比 取W/C=0.45 (水灰比一般控制在0.40-0.53); 4,确定用水量: 取W=215kg(用水量一般控制在180-220kg),施工中采用掺用UNF-2A型高效减水剂,掺量为水泥用量的1%,减水率达10%,但考虑钢纤维混凝土的和易性较差,且施工中容易结团,故在试配中不考虑其减水效果,在试拌过程中观察其坍落度及施工性能。 5,计算水泥用量: C O=W O/(W/C)=215/0.45=478kg; 6,确定砂率: 取S P=65%(从强度和稠度方面考虑,砂率在60%-70%之间); 7,计算砂石用量: 设a=2 V S+G=1000L-[(W O/ρw+C O/ρc+T O/ρt+10L*a)] =1000L-[(215/(1/L)+478/(3.1/L)+118/(7.85/L)+10L*2)] =1000L-404L=596Lkg; S O = V S+G * S P * ρs=596 * 0.65 * 2.67 = 1034kg; G O = V S+G * (1-S P)*ρs = 596*0.35*2.67kg/L=557kg;

8,初步配合比: C O:S O:G O:T O:W O:W外= 478 : 1034 : 557 : 118 : 215 : 4.78 kg/m3 = 1: 2.16 : 1.17 : 0.25: 0.45 : 1% 9、混凝土配合比的试配、调整与确定: 试拌材料用量为: 水泥:砂:碎石:钢纤维:水:减水剂 = 11: 23.76: 12.87:2.75:4.95:0.11 kg; 拌和后,坍落度为10mm,能符合设计要求。观察拌和物施工性能: 棍度:中;保水性:少量;含砂:多; 拌和物在拌和过程中比普通砼困难,较难搅拌,但经机械振捣易密实。 6、经强度检测(数据见试表),28天抗压符合试配强度要求,故确定该配合比为基准配合比,即: 水泥: 砂: 碎石: 钢纤维: 水: 减水剂 = 11 : 23.76 : 12.87 : 2.75 : 4.95 : 0.11 kg = 1 : 2.16 : 1.17 : 0.25 : 0.45 : 1% = 478 : 1034 : 557 : 118 : 215 : 4.78kg/m3

钢纤维混凝土劈裂抗拉强度试验设计

北方工业大学 课程名称:高等钢筋混凝土结构专业班级:土木研-14 学生姓名:学号 任课教师:张燕坤 成绩: 评语:

钢纤维混凝土劈裂抗拉强度试验设计 1、试验名称 钢纤维混凝土劈裂抗拉强度试验设计 2、试验的目的意义 ①了解并掌握混凝土的抗裂度指标; ②学会劈裂抗拉试验的测量方法,分析钢纤维混凝土与普通混凝土之间的抗拉性能差异及影响钢纤维混凝土抗拉强度的因素,并讨论各因素影响的大小。 3、试验基本原理 根据混凝土劈裂抗拉强度可以确定混凝土的抗裂强度。 图1 劈裂试验示意图 4、试验仪器设备[1、4] ①压力试验机或万能试验机。精度示值的相对误差应是在2%以内。 ②试模。采用边长150mm方块作为标准试件,其最大集料粒径应小于40mm。 ③标准养护室。温度20℃、相对湿度大于90%。 ④振动台。频率50 Hz,空载振幅0.5mm。 ⑤捣棒、小铁铲、金属直尺、镘刀等。 ⑥垫块、垫条及支架。垫块采用半径75 mm的钢制弧形垫块,长度与试件相同;垫条为三层胶合板制成,宽度为20 mm、厚度为3~4 mm,长度不小于试件长度,垫条不得重复使用;支架为钢支架。

5、钢纤维混凝土的试验方案 对比常规混凝土的抗拉强度试验,并根据实际经验易知[2、3],钢纤维混凝土抗拉强度的主要影响因素有钢纤维体积率、混凝土强度、钢纤维比表面积。 试验原材料: 1.钢纤维的选择 为了选择增强效果较好的钢纤维配制混凝土,应结合钢纤维体积率、混凝土强度、钢纤维比表面积加以选择,A、B两种钢纤维由于比表面积不同可分A1、A2、A3,B1、B2、B3,(粗短,正常,细长)钢纤维和混凝土接触表面积不同,则钢纤维与混凝土的粘结力不同,则钢纤维混凝土的承载力和韧性和抗裂性不同两种钢纤维的体积率可取0.5% 1% 1.5% 2.混凝土的选择 按混凝土强度等级选择 C30 C40 C50 举例其中C30配合比 混凝土强度等级:C30;坍落度:35-50mm;水泥强度42.5级;砂子种类;中砂; 石子最大粒径40mm;砂率;34%配制强度:38.2(MPa) 材料用量(kg/m3):水泥:337kg 砂:642Kg 石子:1246Kg 水:175Kg 配合比:1:1.91:3.70:0.52 体积比:水泥散装337kg(0.232m3):砂0.403m3:碎石0.86m3:0.175m3 本试验由于要考虑A、B两种钢纤维混凝土的抗拉性能,且影响因素比较多,为了能够尽可能地减少试验数目且能为分析试验结果提供丰富而全面的信息,故而选择采用正交试验法进行试验设计。故本试验方案中,为三因素三水平进行。 将上述的影响因素和变化水平总结如表1所示。 由表1易知本试验是三因素三水平正交试验,选用正交表L9(3^4)即可满足试验要求,其水平组合如表2所示。

微晶纤维素2015版中国药典标准

微晶纤维素 Weijing Xianweisu Microcrystalline Cellulose C 6n H 10n+2O 5n+1 [9004-34-6] 本品系含纤维素植物的纤维浆制得的α-纤维素,在无机酸的作用下部分解聚,纯化而得。 【性状】本品为白色或类白色粉末或颗粒状粉末;无臭,无味。 本品在水、乙醇、乙醚、稀硫酸或5%氢氧化钠溶液中几乎不溶。 【鉴别】(1)取本品lO mg,置表面皿上,加氣化锌碘试液2ml,即变蓝色。 (2)取本品约1.3g ,精密称定,置具塞锥形瓶中,精密加25ml ,振摇使微晶纤维素分散并润湿,通入氮气以排除瓶中的空气,在保持通氮气的情况下,精密加lmol/L 双氢氧化乙二胺铜溶液25ml ,除去氮气管,密塞,强力振摇,使微晶纤维素溶解,作为供试品溶液;取适量,置25℃士0.1℃ :水浴中,约5分钟后,移至乌氏黏度计内(毛细管内径为 0.7?1.0mm ,选用适宜黏度计常数),照黏度测定法(通则 0633第二法),于25℃士0.1℃ 水浴中测定。记录供试品溶液流经黏度计上下两刻度时的时间A ,按下式计算供试品溶液的运动黏度ν1: ν1=t 1 × K 1 分别精密量取水和lmol/L 双氢氧化乙二胺铜溶液各25ml ,混匀,作为空白溶液,取适量,置25℃士0.1℃水浴中,约5分钟后,移至乌氏黏度计内(毛细管内径为0.5?0.6mm,黏度计常数约为0.01),照黏度测定法(通则0633第二法),于25℃士0.1℃水浴中测定。记录空白溶液流经黏度计上下两刻度时的时间按下式计算空白溶液的运动黏度v2: ν1=t 2× K 2 照下式计算微晶纤维素的相对黏度: ηrel =ν1/ν2 根据计算所得的相对黏度值(ηrel ),査附表,得〔特性黏数[>](ml/g)和浓度C(g/100ml)的乘积〕,计算聚合度(P),应不得过350。 式中m 为供试品取样量,g ,以干燥品计算。

进口药品注册标准JX20040038微晶纤维素-羧甲基纤维素钠标准

微晶纤维素-羧甲基纤维素钠标准 Weijing xian wei su-suo jia ji xian wei su na Microcrystalline Cellulose and Carboxymenthylcellulose Sodium (进口药品注册标准JX20040038) 本品是由微晶纤维素和羧甲基纤维素钠组成的胶状混合物。按干燥品计算,含羧甲基纤维素钠应为标示量的75.0%~125.0%。 【性状】本品为白色或类白色或微黄色的粉末,无臭,无味。 【鉴别】(1)取本品6.0g,称定,置搅拌器中,加水300ml,搅拌5分钟(18000rpm)。应出现白色不透明的分散液,静置后不分散。 (2)取鉴别(1)的分散液,滴几滴于氯化铝溶液(1→10)中,均应形成白色不透明的小球,静置后不分散。 (3)取碘试液3ml,加入鉴别(1)的分散液中,应不产生蓝色或蓝紫色。 【检查】黏度(在室温20±1℃下测定) 取本品,以干燥品计算,按本品水性分散液的标示浓度,制备600g的分散液,以旋转式黏度计测定(中国药典2000年版二部附录ⅥG第二法)。 测定法精密称取适量的水,置圆柱形层析缸[高度x直径(180×83mm)]内,置入棒状机械搅拌器(棒状机械搅拌器为德国制造,型号:T25BS4,固定转速为18000rpm),启动搅拌器,使水旋转,停止搅拌,移出搅拌器,在水仍在旋转时小心加入精密称取的本品适量,并立即计时,再置入搅拌器,棒头距缸底约25mm,15秒钟时,立即启动搅拌器(注意,样品不能粘住搅拌棒和缸壁,可上下约10mm移动或慢慢转动层析缸,必要时可用玻棒帮助消除粘住的样品)准确计时2分钟,停止搅拌,迅速将层析缸移离搅拌器,把适当的转子(带保护框)降入分散液中并调节转子的刻度至分散液的平面(Brookfield DV-Ⅱ+黏度计和1号转子适用),停止搅拌30秒钟时,启动旋转黏度计,在20rmp的速度下,测得读数应在全刻度的10~90%之间,在旋转30秒钟时立刻读取数值。重复测定三次,计算平均黏度,每次测定值与平均值之差不得超过平均值的±3%。黏度应为表示黏度的60.0%~140.0%。 酸碱度取黏度检查项下的分散液,依法测定(中国药典2000年版二部附录ⅥH),PH值为6.0~8.0。 干燥失重取本品,在105℃干燥3小时,减失重量不得过8.0%(中国药典2000年版二部附录ⅧL)。

钢纤维混凝土与普通混凝土的力学性能对比分析研究

钢纤维混凝土与普通混凝土的力学性能对比分析研究 xxx 摘要:混凝土作为建筑材料现如今得到了充分广泛的应用,但普通混凝土的力学性能却存在着些许的不足。本文主要介绍纤维增强混凝土的发展及种类,重点就钢纤维混凝土与普通混凝土的力学性能做对比分析研究。 关键词:纤维增强混凝土;钢纤维混凝土;普通混凝土;力学性能 引言 随着混凝土强度的提高,对混凝土结构的安全性要求也更加突出了,然而,就混凝土结构而言,一直受物理性与化学性两大病害困扰,这两大病害是造成混凝土结构工程灾害的主要原因。而裂缝则是混凝土工程所有病害中最主要的因素,它大约占了70%的比例。此外,由于普通混凝土的抗拉强度一般都很低,拉应变与弯曲应变也很小,因此,普通混凝土结构中脆性破坏经常发生。为了改善普通混凝土的物理力学性能,人们一直在寻找各种方法和技术,钢纤维混凝土(SFRC)因此应运而生。 1 纤维增强混凝土的发展 自1824年英国工匠约瑟夫·阿斯普丁发明波特兰水泥后,水泥混凝土得到迅速发展,经过近190多年的研究和应用,混凝土已成为当今主要的一种优良建筑材料。但是,水泥混凝土仍然存在着一个突出的缺陷,即:它的抗压强度虽然比较高,但其抗拉强度、抗弯强度、抗裂强度、抗冲击韧性、抗爆等性能却比较差。纤维混凝土就是人们考虑如何改善混凝土的脆性,提高其抗拉、抗弯、抗冲击和抗爆等力学性能的基础上发展起来的,它具有普通混凝土所没有的许多优良性能。 纤维混凝土的发展始于20世纪初,其中以钢纤维混凝土研究的时间最早、应用得最广泛。早在1910年,美国的H.F.Porter就发表了关于短钢纤维增强混凝土的第一篇论文。纤维混凝土真正进入应用于工程的研究,是在20世纪60年代初期。1963年,美国的J.P.Romualdi等发表了钢纤维约束混凝土裂缝发展机理的研究报告,首次提出了纤维的阻裂机理,才使这种复合材料的发展有实质性的突破,尤其钢纤维混凝土的研究和应用受到高度重视。20世纪70年代后,不仅钢纤维混凝土的研究发展很快,而且碳、玻璃、石棉等高弹纤维混凝土,尼龙、聚丙烯、植物等低弹性 收稿日期:2015-03-07 作者简介:xxx,(学号)xxxxxxxxx 纤维混凝土的研制也引起了各国的关注。增强理论的广度和深度以及研究应用都取得了令人鼓舞的成果。 目前,对于混凝土中均匀而任意分布的短纤维对混凝土的增强机理存在着两种不同的理论解释。其一,为美国的J.P.Romualdi提出的“纤维间距机理”;其二,为英国的Swamy Mamgat等提出的“复合材料机理”。 纤维增强混凝土(FRC: Fiber Reinforced Concrete)是以水泥浆、砂浆或混凝土为基体,以非连续的短纤维或连续的长纤维作增强材所组成的水泥基复合材料的总称,通常简称为“纤维混凝土”。研究表明,在混凝土中掺入纤维能够提高混凝土的抗拉强度,抑制混凝土的早期塑性开裂,有效控制裂缝的扩展,对混凝土的抗渗,防水及抗冻等耐久性也有很好的促进作用。 同时,纤维的掺入也是改善混凝土中的薄弱相,降低其脆性,提高混凝土韧性的有效途径。 2 纤维增强混凝土的分类 现今,应于纤混凝土或纤维砂浆的纤维有很多种,按其来源或生产方法可分成三大类: (1)天然纤维:植物类(如:棉花、剑麻),矿物 类(如:石棉、矿棉)。 玄武岩纤维(Basalt Fiber简称BF)是一种新型无机纤维材料,是用火山爆发形成的一种玻璃态的玄武岩矿石,经高温熔融后快速拉制而成的纤维,与普通混凝土相比,其受拉强度高0.5倍~1倍,延伸率高3倍~5倍,与有机聚丙烯纤维相比,玄武岩纤维的化学稳定性、热稳定性、弹性模量和抗拉强度都具有明显的优点。 碳纤维(Carbon Fiber简称CF)在水泥浆的强碱性环境中稳定性好,无毒无害,无石棉纤维的致癌结构,性能优于玻璃纤维、钢纤维,而且比其他纤维对水的湿润性大,与混凝土的粘结紧密,因而增强效果最好。近年的研究还表明,碳纤维的掺入不仅可显著提高混凝土的强度和韧性,而且其电学性能也有了明显改善,具备本征自感应、自调节功能,它可以作为传感器并以电信号输出的形式,反映自身受力状况和 1

钢纤维混凝土配合比设计方法

以抗压强度为主控的钢纤维混凝土配合比设计方法 一、基本要求: 1、钢纤维直径为0.35~0.70mm,长径比50~80,适宜体积掺量为1.0%~2.0%,掺量低于0.5%时增韧效果不明显,掺量过高时纤维难分散、混凝土流动度变差、成本高。钢纤维参数选择参照表5-19、表5-20; 2、每立方米混凝土中胶凝材料用量400~500kg,水泥用量宜在300~400kg之间,水泥强度等级不宜低于42.5级,砂率一般为45%~60%,配合比参数参照表1; 3、粗骨料粒径不宜大于20mm; 表5-19 钢纤维类型[2] 表5-20 钢纤维几何参数采用范围[2]

二、钢纤维增强混凝土配合比设计方法[1,2] 4 混凝土配制强度的确定 4.0.1混凝土配制强度应按下列规定确定: 1.当混凝土的设计强度等级小于C60时,配制强度应按下式计算: cu,0cu,k 1.645f f σ≥+ (4.0.1-1) 式中,f cu,o —钢纤维混凝土配制强度,MPa ; f cu,k —钢纤维混凝土立方体抗压强度标准值,这里取设计混凝土强度等级值,MPa ; σ—混凝土强度标准差,MPa 。 2.当设计强度等级大于或等于C60时,配制强度应按下式计算: cu,0cu,k 1.15f f ≥ (4.0.1-2) 4.0.2混凝土强度标准差应按照下列规定确定: 1.当具有近1个月~3个月的同一品种、同一强度等级混凝土的强度资料时,其混凝土强度标准差σ应按下式计算: σ= (4.0.2) 式中,f cu ,i —第i 组的试件强度,MPa ; m f cu —n 组试件的强度平均值,MPa ; n —试件组数,n 值应大于或者等于30。 对于强度等级不大于C30的混凝土:当σ计算值不小于3.0MPa 时,应按照计算结果取值;当σ计算值小于3.0MPa 时,σ应取3.0MPa 。对于强度等级大于C30且不大于C60的混凝土:当σ计算值不小于4.0MPa 时,应按照计算结果取值;当σ计算值小于4.0MPa 时,σ应取4.0MPa 。 2.当没有近期的同一品种、同一强度等级混凝土强度资料时,其强度标准差σ可按表4.0.2取值。

微晶纤维素简介

片剂常用辅料——微晶纤维素(MCC)简介 北京大学药学院微晶纤维素( Microcrystalline cellulose, MCC) 是天然纤维素经稀酸水解至极限聚合度( LOOP) 的可自由流动的极细微的短棒状或粉末状多孔状颗粒,颜色为白色或近白色, 无臭、无味, 颗粒大小一般在20~ 80 L m, 极限聚合度( LODP) 在15~ 375; 不具纤维性而流动性极强。不溶于水、稀酸、有机溶剂和油脂, 在稀碱溶液中部分溶解、润涨, 在羧甲基化、乙酰化、酯化过程中具有较高的反应性能。由于具有较低聚合度和较大的比表面积等特殊性质, 微晶纤维素被广泛应用于医药、食品、化妆品以及轻化工行业。1 评价微晶纤维素性质的物化指标有很多。常用的主要有结晶度、聚合度、结晶形态、吸水值、润湿热、粒度、容重、比表值、流动性、凝胶性能、反应性能、学成分等。2在制药工业中,微晶纤维素常用作吸附剂、助悬剂、稀释剂、崩解剂。微晶纤维素广泛应用于药物制剂,主要在口服片剂和胶囊中用作稀释剂和粘合剂,不仅可用于湿法制粒也可用于干法直接压片。还有一定的润滑和崩解作用,在片剂制备中非常有用。 由于微晶纤维素分子之间存在氢键,受压时氢键缔合,故具有高度的可压性,,常被用作于黏合剂;压制的片剂遇到液体后,,水分迅速进入含有微晶纤维素的片剂内部, 氢键即刻断裂, 所以可作为崩解剂。因此, 它是片剂生产中广泛使用的一种辅料, 能够提高片剂的硬度。例如,在制备利福平药片中可用MCC与淀粉(6.25:1质量比) 和各种原料混合均匀后直接压片, 产品在lm in 内崩散成雾状. 而且在有效期内含量不变,并能很好地提高药物稳定性。又如, 由于加人微晶纤维素, 醋酸泼尼松与醋酸黄连素(盐酸小劈碱) 片剂的溶出度提高到80% 以上。用微晶纤维素做辅料压片时不需经过传统的造粒过程, 例如在制备咳必清药片中由于加人了MCC , 解决了咳必清湿法造粒压片易吸潮而出现的严重黏冲现象, 并且崩解迅速。 微晶纤维素也可用作药品的缓释剂。缓释过程是由活性物质进人载体的多孔结构. 活性物质被分子间氢键包含, 干燥后活性物质被固定。活性物质释放时由于水在聚合物载体的毛细管系统内扩散引起润胀, 载体经基和被固定的活性物质之间的化合键被破坏, 活性物质缓慢地释放出来。 微晶纤维素粉末在水中能形成稳定的分散体系, 将其与药物配合可制成奶油状或悬浮状的药液, 同时还可用作胶囊剂。微晶纤维素在水中经强力搅拌生成凝胶,也可用于制造膏 1何耀良,廖小新,黄科林,吴睿等微晶纤维素的研究进展化工技术与开发2010 年1 月 2曹永梅,黄科林等微晶纤维素的性质、应用及市场前景企业科技与发展2009年第12 期

钢纤维混凝土力学性能报告

钢纤维混凝土力学性能报告 作者:波尔派丝吴

前言 现如今在建筑行业中使用最为广泛的材料就是混凝土,它是由骨料、水泥和水组成的,在实际应用当中能够表现出具有良好的抗压效果。在构件受力时利用自身的抗压性能抵抗荷载消除形变。根据混凝土的抗压强度可划分混凝土的等级,混凝土强度是结构设计和施工的重要依据。 但由于普通混凝土力学性能上的缺陷,抗弯拉强度小、弯曲韧度低、易开裂,导致其在工程作业中的应用受到很大限制。我们通常的解决办法是配筋,随着施工技术的革新,钢纤维问世,现今钢纤维改变混凝土性能已成为混凝土改性的重要途经之一。 钢纤维混凝土是指将规定尺寸、不连续的金属短纤维(即钢纤维)均匀、乱向地分散于混凝土中,形成一种可浇筑、可喷射的新型复合材料。因其在实际应用中表现出的抗拉、抗弯、抗剪、耐冲击性能优异,所以在建筑、公路、水工等领域中得到广泛应用。同时钢纤维混凝土相比于配筋混凝土具有更好等效弯曲强度与施工流水节拍。

I.钢纤维混凝土的基本组成 钢纤维混凝土是由粗骨料(石子)、细骨料(砂)、水泥、水、钢纤维以及适用工程状况的外加剂(无特定情况可不加)组成的一种非均质集合体复合材料。按设计配合比配制,经过立模、浇筑、振捣、整平、养护、拆模,形成具有设计强度的钢纤维混凝土构件。 II.钢纤维混凝土的基本力学性能 为了对钢纤维混凝土的力学性能分析,我们选用C30混凝土、SF80/50BP钢纤维(长径比80、长度50mm的冷拉端钩钢纤维)分别制作了6组样块,每组分别做6个样块,为了保证钢纤维的分散率采用成排钢纤维(在不使用外界设备干扰时成排钢纤维分散效果会优于散纤维),掺量分别为0kg/m3、5kg/m3、10kg/m3、15kg/m3、20kg/m3、25kg/m3,在恒温箱养护 28d后拆模进行试验。 A.抗压强度 龄期28d钢纤维混凝土试块与同等养护条件下龄期28d的普通混凝土试块相比较,在弹性形变阶段弹性模量与泊松比可视为基本相同; 实验数据表明,钢纤维对基体的抗压强度增强效果并不明显。在基体中加入钢纤维后,当钢纤维体积率的增加时基体的抗压强度略有提升,但增量很小,提升在0%~10%(前期工作者的大量实验也印证了此观点)。同时为了保障钢纤维在混凝土基体中的方向效能系数与粘接强度,钢纤维的长度需满足混凝土最大粒径的1.5~2.0倍,否则容易造成钢纤维的局部结团,相当于构成了薄弱截面,此时加入钢纤维反而会产生不利影响,造成钢纤维与混凝土界面粘结性状变差,其抗压强度甚至会比同配比的普通混凝土有所下降。

水泥钢纤维井盖标准

中华人民共和国城镇建设行业标准 JC889-2001 钢纤维混凝土检查井盖 teel fiber reinforced concrete checking well cover (节录) 1、范围 (1) 2、引用标准 (1) 3、定义 (1) 4、产品分类 (4) 5、原材料及构造要求 (5) 6、技术要求 (5) 7、试验方法 (6) 8、检验规则 (7) 9、标志、产品合格证 (8) 10、贮存、运输 (8)

附录A 钢纤维混凝土检查井盖承载能力的试验装置和试验方法 (标准的附录) (9) 1、范围 本标准规定了钢纤维混凝土检查井盖的定义、产品分类、技术要求、试验方法、检验规则和标志。 本标准适用于城市道路、公路、生活小区等机动车辆行驶或停放场地检查井上的井盖,也适用于安装在绿化带等禁止机动车辆行驶或停放的通道、场地检查井上的井盖。 2、引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB 175-1999 硅酸盐水泥、普通硅酸盐水泥 GB/T 700-1988 碳素结构钢 GB 1348-1998 球墨铸件 GB 1499-1998 钢筋混凝土用热轧带肋钢筋

GB 8076-1997 混凝土外加剂 GB 9439-1998 灰铸铁件 GB/T 14684-2001 建筑用砂 GB/T 14685-2001 建筑用卵石、碎石 GB 50204-1992 混凝土结构工程施工及验收规范 GBJ 10-1989 混凝土结构设计规范(含1996年局部修订) GBJ 82-1985 普通混凝土长期性能和耐久性能试验方法 GBJ 321-1990 预制混凝土构件质量检验评定标准 JG/T 3064-1999 钢纤维混凝土 JGJ 63-1989 混凝土拌合用水标准 3、定义 3.1检查井 在地下管线位置上每隔一定距离修建的竖井。主要供检修管道,清除污泥及用于连接不同方向、不同高度的管线使用。 3.2支座 固定于检查井井口的部分,用于安装井盖。

指定标准-18食品添加剂微晶纤维素

食品添加剂微晶纤维素 1 范围 本标准适用于用纤维植物原料与无机酸捣成浆状,制成α-纤维素,再经处理使纤维素作部分解聚,然后再除去非结晶部分并提纯而得的食品添加剂微晶纤维素。 白色或近乎白色细小粉末。不溶于水、稀酸、稀碱溶液和大多数有机溶剂。 2 技术要求 应符合表1的规定。 表1

附 录 A 检验方法 A.1 一般规定 除非另有说明,在分析中仅使用确认为分析纯的试剂和GB/T 6682-2008中规定的水。分析中所用标准滴定溶液、杂质测定用标准溶液、制剂及制品,在没有注明其他要求时,均按GB/T 601、GB/T 602、GB/T 603的规定制备。本试验所用溶液在未注明用何种溶剂配制时,均指水溶液。 A.2 鉴别试验 A.2.1 用带38μm筛子的空气喷嘴筛过筛20g 试样5min 。若未过筛量大于5%,则将30g 试样溶于270mL 水中;否则将45g 试样溶于255mL 水中。此为试样溶液。将试样溶液在高速捣碎机(18000rpm 以上)中混合5min 。取100mL 该混合溶液,移入一100mL 刻度量筒中,静置3h 。在表面应有白色、不透明、无气泡的上层分散液(保留此分散液用于鉴别试验A.2.2)出现。 A.2.2 取鉴别试验A.2.1中的分散液为试样溶液,在20mL 试样溶液中加入几滴碘试液,无紫至蓝色或蓝色出现。 A.3 碳水化合物含量(以纤维素计,以干基计)的测定 A.3.1 分析步骤 准确称取约125mg 试样,用约25mL 水将其移入一300mL 锥形烧瓶中。加50.0mL 浓度为0.5mol/L 的重铬酸钾溶液,混合。然后小心地加入100mL 硫酸并加热至沸。移去热源,于室温下静置15min ,于水浴中冷却后移入一250mL 容量瓶中。用水稀释至将近刻度,冷却至25℃,再用水稀释定容,混合。取该液50.0mL ,加2~3滴1,10-菲罗啉-亚铁指示剂,用0.1mol/L 硫酸亚铁铵液滴定,记录所耗滴定液为S (mL )。同时进行空白试验,记录0.1mol/L 硫酸亚铁铵液的消耗量为B (mL )。 A.3.2 结果计算 碳水化合物含量X 1按式(A.1)计算: ()W S B 338X 1?-= ……………………………(A.1) 式中: X 1——试样中碳水化合物的含量,%; W ——所取试样质量,单位为毫克(mg ),并按实测干燥减量值进行校正; S ——滴定时消耗0.1mol/L 硫酸亚铁铵液的毫升数(mL ); B ——空白试验消耗0.1mol/L 硫酸亚铁铵液的毫升数(mL )。 实验结果以平行测定结果的算术平均值为准。 A.4 pH 的测定 称取5g 试样,加水40mL ,振摇20min ,离心分离。然后用酸度计测定上清液的pH 值。 A.5 水不溶物的测定

相关主题
文本预览
相关文档 最新文档