压缩感知介绍
- 格式:ppt
- 大小:605.00 KB
- 文档页数:19
2011.No31 03.2 熟悉结构施工图结构施工图是关于承重构件的布置,使用的材料、形状、大小及内部构造的工程图样,是承重构件以及其他受力构件施工的依据。
看结构施工图最难的就是钢筋,要把结施图看懂就要知道钢筋的分布情况,现在都是在使用平法来标示钢筋,所以也要把平法弄懂才行。
在识读与熟悉结施图的过程中应该充分结合钢筋平法表示的系列图集,搞清楚:a 各结构构件的钢筋的品种,规格,以及受力钢筋在各构件的布置情况。
b 箍筋与纵向受力钢筋的位置关系。
c 各个构件纵向钢筋以及箍筋弯钩的角度及其长度。
d 熟悉各构件节点的钢筋的锚固长度。
e 熟悉各个构件钢筋的连接方式。
f 熟悉在钢筋的搭接区域内,钢筋的搭接长度。
g 核算钢筋的间距是否满足施工要求,尤其是各个构件节点处的钢筋间距。
h 弯起钢筋的弯折角度以及离连接点的距离。
除此以外,对于钢筋混凝土构件,还应该熟悉各个构件的砼保护层厚度,各个构件的尺寸大小、布置位置等。
特别注意的是对于结施图的阅读应充分结合建施图进行。
4 结束语在熟悉施工图纸的过程中,施工技术人员对于施工图纸中的疑问,和比较好的建议应该做好记录,为后续工作(图纸自审和会审)做好准备。
参考文献[1]《建筑识图》周坚主编 中国电力出版社 2007年;[2]《建筑工程项目管理》银花主编 机械工业出版社 2010年;摘 要 压缩感知(Compressive Sensing, CS)理论是一个充分利用信号稀疏性或可压缩性的全新信号采集、编解码理论。
本文系一文献综述,主要介绍了压缩感知的三部分即信号的稀疏表示、测量矩阵的设计、信号恢复算法的设计。
关键词 压缩感知 稀疏表示 测量矩阵 信号恢复算法1 引言1928年由美国电信工程师H.奈奎斯特(Nyquist)首先提出,1948年信息论的创始人C.E.香农(Shannon)又对其加以明确说明并正式作为定理引用的奈奎斯特采样定理,是采样带限信号过程所遵循的规律。
压缩感知,又称压缩采样,压缩传感。
它作为一个新的采样理论,它通过开发信号的稀疏特性,在远小于Nyquist 采样率的条件下,用随机采样获取信号的离散样本,然后通过非线性重建算法完美的重建信号[1]。
压缩感知理论一经提出,就引起学术界和工业界的广泛关注。
他在信息论、图像处理、地球科学、光学/微波成像、模式识别、无线通信、大气、地质等领域受到高度关注,[2]并被美国科技评论评为2007年度十大科技进展。
编辑本段基本知识现代信号处理的一个关键基础是Shannon 采样理论:一个信号可以无失真重建所要求的离散样本数由其带宽决定。
但是Shannon 采样定理是一个信号重建的充分非必要条件。
在过去的几年内,压缩感知作为一个新的采样理论,它可以在远小于Nyquist 采样率的条件下获取信号的离散样本,保证信号的无失真重建。
压缩感知理论一经提出,就引起学术界和工业的界的广泛关注。
[3]压缩感知理论的核心思想主要包括两点。
第一个是信号的稀疏结构。
传统的Shannon 信号表示方法只开发利用了最少的被采样信号的先验信息,即信号的带宽。
但是,现实生活中很多广受关注的信号本身具有一些结构特点。
相对于带宽信息的自由度,这些结构特点是由信号的更小的一部分自由度所决定。
换句话说,在很少的信息损失情况下,这种信号可以用很少的数字编码表示。
所以,在这种意义上,这种信号是稀疏信号(或者近似稀疏信号、可压缩信号)。
另外一点是不相关特性。
稀疏信号的有用信息的获取可以通过一个非自适应的采样方法将信号压缩成较小的样本数据来完成。
理论证明压缩感知的采样方法只是一个简单的将信号与一组确定的波形进行相关的操作。
这些波形要求是与信号所在的稀疏空间不相关的。
压缩感知方法抛弃了当前信号采样中的冗余信息。
它直接从连续时间信号变换得到压缩样本,然后在数字信号处理中采用优化方法处理压缩样本。
这里恢复信号所需的优化算法常常是一个已知信号稀疏的欠定线性逆问题。
压缩感知简介 压缩感知(也称为压缩感知、压缩采样或稀疏采样)是⼀种信号处理技术,通过寻找⽋定线性系统的解决⽅案来有效地获取和重构信号。
这是基于这样的原理,即通过优化,可以利⽤信号的稀疏性从⽐Nyquist-Shannon 采样定理所需的样本少得多的样本中恢复它。
有两种情况可以恢复。
第⼀个是稀疏的,这要求信号在某些域中是稀疏的。
第⼆个是不相⼲性,它通过等距属性应⽤,这对于稀疏信号来说已经⾜够了。
概述 信号处理⼯程领域的⼀个共同⽬标是从⼀系列采样测量中重建信号。
⼀般来说,这项任务是不可能的,因为在未测量信号的时间内⽆法重建信号。
然⽽,通过对信号的先验知识或假设,可以从⼀系列测量中完美地重建信号(获取这⼀系列测量称为采样)。
随着时间的推移,⼯程师们对哪些假设是实⽤的以及如何推⼴它们的理解有所提⾼。
信号处理的早期突破是奈奎斯特-⾹农采样定理。
它指出,如果真实信号的最⾼频率⼩于采样率的⼀半,则可以通过sinc 插值完美地重构信号。
主要思想是,利⽤关于信号频率约束的先验知识,重构信号所需的样本更少。
⼤约在 2004 年,Emmanuel Candès、Justin Romberg、Terence Tao和David Donoho证明,在了解信号稀疏性的情况下,可以使⽤⽐采样定理所需更少的样本来重建信号。
这个想法是压缩感知的基础。
历史 压缩传感依赖于其他⼏个科学领域在历史上使⽤过的技术。
在统计学中,最⼩⼆乘法由L1-norm,由Laplace引⼊。
随着线性规划和Dantzig单纯形算法的介绍,L1-norm ⽤于计算统计。
在统计理论中,L1-norm 被George W. Brown和后来的作者⽤于中值⽆偏估计量。
它被Peter J. Huber 和其他从事稳健统计⼯作的⼈使⽤。
L1-norm 也⽤于信号处理,例如,在 1970 年代,地震学家根据似乎不满⾜Nyquist-Shannon 标准的数据构建了地球内反射层的图像。
压缩感知高光谱
压缩感知是一种新型的信号处理方法,它可以在信号未完全采样的情况下,通过稀疏表示和随机测量,实现对信号的高效压缩和重构。
高光谱图像是一种包含大量光谱信息的数据类型,具有很高的维度和复杂性。
因此,压缩感知技术被广泛应用于高光谱图像的处理中,以提高处理效率和降低存储成本。
在压缩感知中,信号被表示为稀疏的基向量组合,即大部分元素为零或接近零的向量。
然后,通过测量矩阵对信号进行随机测量,以获取足够的信息来重构原始信号。
在处理高光谱图像时,可以利用压缩感知技术对图像中的稀疏区域进行稀疏表示,并利用测量矩阵对稀疏表示后的图像进行随机测量。
这样可以大大减少需要采集和存储的数据量,同时保持对原始图像的近似重构。
在压缩感知处理高光谱图像时,可以采用不同的算法和技术来提高处理效率和精度。
例如,可以采用稀疏矩阵分解算法将高光谱图像分解为多个低维度的矩阵,从而降低存储
成本和计算复杂度。
同时,可以利用图像处理技术对高光谱图像进行预处理和后处理,以提高重构精度和图像质量。
总之,压缩感知技术为高光谱图像的处理提供了新的思路和方法,可以帮助提高处理效率和降低存储成本。
未来,随着压缩感知技术的不断发展和完善,相信其在高光谱图像处理中的应用将更加广泛和深入。
压缩感知理论综述摘要压缩感知,又称压缩采样,压缩传感。
它作为一个新的采样理论,它通过开发信号的稀疏特性,在远小于Nyquist 采样率的条件下,用随机采样获取信号的离散样本,然后通过非线性重建算法完美的重建信号。
压缩感知理论一经提出,就引起学术界和工业界的广泛关注。
他在信息论、图像处理、地球科学、光学/微波成像、模式识别、无线通信、大气、地质等领域受到高度关注,并被美国科技评论评为2007年度十大科技进展。
本文基于压缩感知技术的研究背景以及应用进行了文献综述,首先进行了压缩感知技术理论介绍,对压缩感知技术的产生以及发展做了简单说明,然后分析了压缩感知应用的领域,最后对压缩感知技术的相关研究现状做了介绍。
关键词压缩感知,稀疏表示,稀疏信号1、引言数字图像处理技术的发展,拓宽了人类获取信息的视野范围,研究表明,人眼视觉特性决定了我们只能看到电磁波谱中的可见光部分,其余的红外波段等波谱信息对人眼来说都是不可见的。
而数字图像处理技术可以利用红外、微波等波谱信息进行数字成像,从而将人眼视觉不可感知的信息转变为可视化的图形图像信息。
数字图像处理技术现如今己经深入应用于人们生活的各个领域:经过数字技术加工处理的航空遥感和卫星遥感图像主要用于地形地质、矿藏探查,自然灾害预测预报等领域。
而目前广泛应用于临床诊断和治疗的各种成像技术,如超声波诊断、CT、核磁共振等都用到图像处理技术。
对产品及部件进行无损检测成为数字图像处理技术在工业生产方面的重要应用。
指纹识别系统在公共安全领域得到了广泛使用。
与文字信息不同,图像信息的数据量非常庞大,如果将原始图像直接存储和传输,将会给存储器的容量和通信线路的传输带宽带来巨大的压力,而一味地扩大存储器容量和通信线路带宽也是不现实的,必须采用有效的压缩手段将图像信号进行压缩,因此,图像压缩算法成为了近年来一个非常热点的研究领域。
图1 传统的信号编解码流程现代信号处理的一个关键基础是Shannon 采样理论:一个信号可以无失真重建所要求的离散样本数由其带宽决定。
压缩感知理论一、压缩感知理论简介压缩感知,又称压缩采样,压缩传感。
它作为一个新的采样理论,它通过开发信号的稀疏特性,在远小于Nyquist 采样率的条件下,用随机采样获取信号的离散样本,然后通过非线性重建算法完美的重建信号。
压缩感知理论一经提出,就引起学术界和工业界的广泛关注。
它在信息论、图像处理、地球科学、光学、微波成像、模式识别、无线通信、大气、地质等领域受到高度关注,并被美国科技评论评为2007年度十大科技进展。
二、压缩感知产生背景信号采样是模拟的物理世界通向数字的信息世界之必备手段。
多年来,指导信号采样的理论基础一直是著名的Nyquist 采样定理。
定理指出,只有当采样速率达到信号带宽的两倍以上时,才能由采样信号精确重建原始信号。
可见,带宽是Nyquist 采样定理对采样的本质要求。
但是,对于超宽带通信和信号处理、核磁共振成像、雷达遥感成像、传感器网络等实际应用,信号的带宽变得越来越大,人们对信号的采样速率、传输速度和存储空间的要求也变得越来越高。
为了缓解对信号传输速度和存储空间的压力,当前常见的解决方案是信号压缩但是,信号压缩实际上是一种严重的资源浪费,因为大量采样数据在压缩过程中被丢弃了,它们对于信号来说是不重要的或者只是冗余信息。
故而就有人研究如何很好地利用采集到的信号,压缩感知是由 E. J. Candes 、J. Romberg 、T. T ao 和D. L. Donoho 等科学家于2004 年提出,压缩感知方法抛弃了当前信号采样中的冗余信息。
它直接从连续时间信号变换得到压缩样本,然后在数字信号处理中采用优化方法处理压缩样本。
这里恢复信号所需的优化算法常常是一个已知信号稀疏的欠定线性逆问题。
三、压缩感知理论压缩感知理论主要涉及到三个方面,即信号的稀疏表示、测量矩阵的设计和重构算法的构造。
稀疏信号广义上可理解为信号中只有少数元素是非零的,或者信号在某一变换域内少数元素是非零的。
压缩感知图像处理技术随着科技的发展,图像处理技术也在不断地创新和改进。
其中,压缩感知图像处理技术是一项非常有前景的技术。
它可以在保证图像质量的同时,减少图像处理的时间和成本,广泛应用于数字图像处理、图像压缩、视频压缩等领域。
一、压缩感知图像处理技术的概念压缩感知图像处理技术(Compressed Sensing)是指一种新型的信号采样与处理方法,它是一种以少量采样数据重建高维信号的理论和算法。
在传统的数字信号采样中,要求采样的样本数必须大于等于信号的维数,才能准确地采样信号。
而在压缩感知图像处理技术中,只需要采集不多于信号的运动维数次数的采样数据,就可以重构出完整的信号。
二、压缩感知图像处理技术的原理压缩感知图像处理技术的原理是在稀疏性假设的基础上,利用随机矩阵将高维信号随机映射到低维空间,并利用少量的观测信号(线性变换后)进行重建。
在信号的稀疏表示下,通过对信号的采样和重建可以达到信号的压缩和恢复的效果。
三、压缩感知图像处理技术的优势相比传统的信号采样方法,压缩感知图像处理技术具有以下优势:1、减少数据的采集和存储量。
由于相比传统信号采集方法,压缩感知图像处理技术可以仅采集一部分信号,就能获得完整的信号信息,从而减少了数据的采集和存储量。
2、提高图像处理的速度。
由于采集和存储的数据量减少了,同时又可以恢复出完整的图像信号,因此可以大大提高图像处理的速度。
3、已经广泛应用。
压缩感知图像处理技术已经被广泛应用于图像压缩、视频转码、稀疏信号重构等领域,取得了很好的效果。
四、压缩感知图像处理技术的应用随着压缩感知图像处理技术的成熟和应用,它已经被广泛应用在各个领域:1、图像处理。
利用压缩感知图像处理技术对图像信号进行压缩和重构。
2、视频转码。
将高清视频等复杂的数据进行压缩和转码。
3、稀疏信号重构。
通过少量样本进行大规模稀疏信号重构。
四、压缩感知图像处理技术存在的问题压缩感知图像处理技术虽然有很多优势,但同时存在以下问题:1、复杂的计算量。