导数及其应用同步练习及答案
- 格式:doc
- 大小:938.50 KB
- 文档页数:12
课外作业 一.选择题,1. .函数x x x x f +--=23)(的单调减区间是 ( )A .()1,-∞- B.),31(∞ C .()1,-∞-和),31(∞ D.)31,1(-解: 'f (x )=-32x -2x+1<0,所以x>31或x<-1,故选C 2.函数xxx f sin )(=,则 ( ) A .)(x f 在),0(π内是减函数 B. )(x f 在),0(π内是增函数C .)(x f 在)2,2(ππ-内是减函数 D. )(x f 在)2,2(ππ-内是增函数 解: 'f (x )=2sin cos xx x x -,当x ∈),0(π时'f (x )<0,故选A 3. .函数()(1)x f x x e 的单调递增区间是 ( )A .[0,+∞)B . [2,+∞)C .(-∞,2]D .(-∞,1]解:令'f (x )=x e -(x-1)xe >0,得2-x>0,x<2,故选C4..()f x '是f (x )的导函数,()f x '的图象如右图所示,则f (x )的图象只可能是( )A B C DA .B .C .D . 解:)('x f 越大表示曲线f (x )递增(减)速度越快,故选D5.下列函数中,在),0(+∞上为增函数的是 ( ) A.y=sinx+1, B.xxe y = C.x x y -=3D.x x y -+=)1ln(解:y=sinx+1是周期函数,不满足条件; xxe y =,则'y =x e +x xe ,当x>0时'y >0成立。
故选B6.对于R 上可导的任意函数,若满足()()01/≥-x fx ,则必有( )A . ()()()1220f f f <+ B. ()()()1220f f f >+ C . ()()()1220f f f ≥+ D. ()()()1220f f f ≤+解:x ≥1时'f (x )≥0;x ≤1时'f (x )≤0。
《导数及其应用》一、选择题1。
0()0f x '=是函数()f x 在点0x 处取极值的:A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 2、设曲线21y x =+在点))(,(x f x 处的切线的斜率为()g x ,则函数()cos y g x x =的部分图象可以为A 。
B. C 。
D.3.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( )4.若曲线y =x 2+ax +b在点(0,b )处的切线方程是x -y +1=0,则( )A .a =1,b =1B .a =-1,b =1C .a =1,b =-1D .a =-1,b =-1 5.函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3时取得极值,则a 等于( )A .2B .3C .4D .56。
设函数()f x 的导函数为()f x ',且()()221f x x x f '=+⋅,则()0f '等于 ( )A 、0B 、4-C 、2-D 、27。
直线y x =是曲线ln y a x =+的一条切线,则实数a 的值为( )A .1-B .eC .ln 2D .18。
若函数)1,1(12)(3+--=k k x x x f 在区间上不是单调函数,则实数k 的取值范围( ) A .3113≥≤≤--≤k k k 或或 B .3113<<-<<-k k 或C .22<<-kD .不存在这样的实数k9.函数()f x 的定义域为(),a b ,导函数()f x '在(),a b 内的图像如图所示, 则函数()f x 在(),a b 内有极小值点 ( )A .1个B .2个C .3个D .4个 10.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有()0f x ≥,则(1)'(0)f f 的最小值为( ) A .3 B .52 C .2 D .32二、填空题(本大题共4个小题,每小题5分,共20分) 11。
导数及其应用一、知识梳理:(一)导数概念及基本运算1、导数的几何意义:曲线y=f (x )在某一点(x 0,y 0)处的导数f ’( x 0)就是过点(x 0,y 0)的切线的斜率,相应地,切线方程为2、几种常见函数的导数:'c = (c 为常数); ()n x '= (R n ∈);'(sin )x = ; '(cos )x = ;(ln )x '= ; (log )a x '= ;'()x e = ; '()x a =3、运算法则:'()u v ±= ;'()uv = ;'u v ⎛⎫= ⎪⎝⎭ (0)v ≠。
4、问题1:求下列函数的导数:(1)31()213f x x x =++ (2) cos x y e x = (3)2tan y x x =+问题2:cos y x x =在3x π=处的导数值是___________.问题3. 求322+=x y 在点)5,1(P 的切线方程。
(二)导数在研究函数中的应用1. 函数的单调性与导数的关系一般地,函数的单调性与其导函数的正负有如下关系:在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在这个区间内 ;如果()0f x '<,那么函数()y f x =在这个区间内 .2. 判别f (x 0)是极大、极小值的方法:若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,)(0x f 是极值,并且如果)(x f '在0x 两侧满足“左正右负”,则0x 是)(x f 的 ,)(0x f 是极大值;如果)(x f '在0x 两侧满足“左负右正”,则0x 是)(x f 的极小值点,)(0x f 是注:若函数f (x )在点x 0处取得极值,则f ‘(x 0)= 。
导数及其应用同步练习附答案1.已知函数f (x )=1x cos x ,则f (π)+f ′⎝ ⎛⎭⎪⎫π2=( )A .-3π2 B .-1π2 C .-3πD .-1π解析:选C .因为f ′(x )=-1x 2cos x +1x (-sin x ),所以f (π)+f ′⎝ ⎛⎭⎪⎫π2=-1π+2π·(-1)=-3π.2.曲线y =e x -ln x 在点(1,e)处的切线方程为( ) A .(1-e)x -y +1=0 B .(1-e)x -y -1=0 C .(e -1)x -y +1=0D .(e -1)x -y -1=0解析:选C .由于y ′=e -1x ,所以y ′|x =1=e -1,故曲线y =e x -ln x 在点(1,e)处的切线方程为y -e =(e -1)(x -1),即(e -1)x -y +1=0.3.已知f (x )=ax 4+b cos x +7x -2.若f ′(2 018)=6,则f ′(-2 018)=( ) A .-6 B .-8 C .6D .8解析:选D.因为f ′(x )=4ax 3-b sin x +7.所以f ′(-x )=4a (-x )3-b sin(-x )+7=-4ax 3+b sin x +7. 所以f ′(x )+f ′(-x )=14.又f ′(2 018)=6,所以f ′(-2 018)=14-6=8,故选D.4.如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),其中g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .4解析:选B .由题图可得曲线y =f (x )在x =3处切线的斜率等于-13,即f ′(3)=-13.又因为g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),由图可知f (3)=1,所以g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0.5.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2距离的最小值为( )A .1B . 2C .22D . 3解析:选B .因为定义域为(0,+∞),令y ′=2x -1x =1,解得x =1,则在P (1,1)处的切线方程为x -y =0,所以两平行线间的距离为d =22= 2. 6.曲线y =ln x 在与x 轴交点处的切线方程为________.解析:因为曲线y =ln x 与x 轴的交点为(1,0),且函数y =ln x 的导函数为y ′=1x ,所以曲线y =ln x 在点(1,0)处的切线的斜率为k =11=1.即过点(1,0),且斜率为1的直线的方程为y -0=1(x -1),整理得x -y -1=0.答案:x -y -1=07.设函数f (x )在(0,+∞)内可导,且f (e x )=x +e x ,则f ′(2 018)=________. 解析:令e x =t ,则x =ln t ,所以f (t )=ln t +t ,故f (x )=ln x +x .求导得f ′(x )=1x +1,故f ′(2 018)=12 018+1=2 0192 018.答案:2 0192 0188.(2017·高考天津卷)已知a ∈R ,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.解析:因为f ′(x )=a -1x ,所以f ′(1)=a -1,又f (1)=a ,所以切线l 的方程为y -a =(a -1)(x -1),令x =0,得y =1.答案:19.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值; (2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围. 解:f ′(x )=3x 2+2(1-a )x -a (a +2). (1)由题意得⎩⎨⎧f (0)=b =0,f ′(0)=-a (a +2)=-3,解得b =0,a =-3或a =1.(2)因为曲线y =f (x )存在两条垂直于y 轴的切线,所以关于x 的方程f ′(x )=3x 2+2(1-a )x -a (a +2)=0有两个不相等的实数根, 所以Δ=4(1-a )2+12a (a +2)>0, 即4a 2+4a +1>0, 所以a ≠-12.所以a 的取值范围为⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫-12,+∞. 10.已知函数f (x )=x 3+x -16.(1)求曲线y =f (x )在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f (x )的切线,且经过原点,求直线l 的方程及切点坐标; (3)如果曲线y =f (x )的某一切线与直线y =-14x +3垂直,求切点坐标与切线的方程.解:(1)可判定点(2,-6)在曲线y =f (x )上. 因为f ′(x )=(x 3+x -16)′=3x 2+1.所以f (x )在点(2,-6)处的切线的斜率为k =f ′(2)=13. 所以切线的方程为y =13(x -2)+(-6), 即y =13x -32. (2)设切点为(x 0,y 0),则直线l 的斜率为f ′(x 0)=3x 20+1, 所以直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16,又因为直线l 过点(0,0),所以0=(3x 20+1)(-x 0)+x 30+x 0-16,。
导数及其应用一、选择题(共15小题,每小题4.0分,共60分)1.下列求导运算正确的是()A.′=x B.(x e x)′=e x+1 C.(x2cos x)′=-2x sin x D.′=1-2.已知f(x)=ax3+bx2+x(a,b∈R且ab≠0)的图象如图所示,若|x1|>|x2|,则有()A.a>0,b>0 B.a<0,b<0 C.a<0,b>0 D.a>0,b<03.已知函数f(x)=x2+cos x,f′(x)是函数f(x)的导函数,则f′(x)的图象大致是() A.B.C.D.4.函数f(x)=x-sin x在区间[0,π]上的最大、最小值分别为()A.π,0 B.-,0 C.π,-1 D.0,-15.ʃ(e x+e-x)d x的值为()A.e+B.2e C.D.e-6.已知f(x)=x+在(1,e)上为单调函数,则实数b的取值范围是()A.(-∞,1]∪[e2,+∞)B.(-∞,0]∪[e2,+∞)C.(-∞,e2] D.[1,e2] 7.若函数f(x)=x2-a ln x在(1,+∞)上为增函数,则实数a的取值范围是()A.(1,+∞)B.[1,+∞)C.(-∞,1) D.(-∞,1]8.设函数f(x)=x-ln x(x>0),则y=f(x)()A.在区间,(1,e)内均有零点B.在区间,(1,e)内均无零点C.在区间内无零点,在区间(1,e)内有零点D.在区间内有零点,在区间(1,e)内无零点9.已知函数f(x)=x2-2ln x,若关于x的不等式f(x)-m≥0在[1,e]上有实数解,则实数m的取值范围是()A.(-∞,e2-2) B.(-∞,e2-2] C.(-∞,1) D.(-∞,1]10.曲线y=x2-2ln x的单调增区间是()A . (0,1]B . [1,+∞)C . (-∞,-1]和(0,1]D . [-1,0)和[1,+∞) 11.由曲线y =与直线y =2x -1及x 轴所围成的封闭图形的面积为( )A .B .C .D .12.一列车沿直线轨道前进,刹车后列车速度v (t )=27-0.9t ,则列车从刹车到停车走过的路程为( )A . 405B . 540C . 810D . 94513.已知函数f (x )=2x 3+ax 2+36x -24在x =2处有极值,则该函数的一个递增区间是( ) A . (2,3) B . (3,+∞) C . (2,+∞) D . (-∞,3)14.如图,函数y =f (x )的图象在点P (2,y )处的切线是l ,则f (2)+f ′(2)等于( )A . -4B . 3C . -2D . 115.函数f (x )={2−x,x ≤0,√4−x 2,0<x ≤2,则∫f(x)dx 2−2的值为( ) A . π+6 B . π-2 C . 2π D . 8二、填空题(共6小题,每小题4.0分,共24分)16.用长为18 cm 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2∶1,则该长方体的长、宽、高分别为__________时,其体积最大.17.若函数f (x )=x 3+x 2+m 在区间[-2,1]上的最大值为,则m =________.18.如图,已知点A ,点P (x 0,y 0)(x 0>0)在曲线y =x 2上,若阴影部分的面积与△OAP 的面积相等,则x 0=________.19.如图所示,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器,当这个正六棱柱容器的底面边长为________时,其容积最大.20.已知函数f (x )=-x 3+2ax 2+3x (a >0)的导数f ′(x )的最大值为5,则在函数f (x )图象上的点(1,f (1))处的切线方程是________.21.已知函数y =xf ′(x )的图象如图所示(其中f ′(x )是函数f (x )的导函数),给出以下说法:①函数f (x )在区间(1,+∞)上是增函数;②函数f (x )在区间(-1,1)上无单调性;③函数f (x )在x =-处取得极大值;④函数f (x )在x=1处取得极小值.其中正确的说法有________.二、解答题(共6小题,每小题11.0分,共66分)22.已知定义在R上的函数f(x)=ax3-2ax2+b(a>0)在区间[-2,1]上的最大值是5,最小值是-11.(1)求函数f(x)的解析式;(2)若t∈[-1,1]时,f′(x)+tx≤0恒成立,求实数x的取值范围.23.已知函数f(x)=x-ln x-2.(1)求函数f(x)的最小值;(2)如果不等式x ln x+(1-k)x+k>0(k∈Z)在区间(1,+∞)上恒成立,求k的最大值.24.已知函数g(x)=,f(x)=g(x)-ax.(1)求函数g(x)的单调区间;(2)若函数f(x)在(1,+∞)上是减函数,求实数a的最小值.25.已知函数f(x)=(x+1)ln x-a(x-1).(1)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;(2)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.26.某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车的投入成本增加的比例为x(0<x<1),则出厂价相应提高的比例为0.7x,年销售量也相应增加,年销售量y关于x的函数为y=3 240,则当x为何值时,本年度的年利润最大?最大利润为多少?(年利润=(每辆车的出厂价-每辆车的投入成本)×年销售量)26.设函数f(x)=2−ax2+ax-2ln x(a∈R).(1)当a=0时,求函数f(x)的极值;(2)当a>4时,2求函数f(x)的单调区间;(3)若对任意a∈(4,6)及任意x1,x2∈[1,2],ma+2ln 2>|f(x1)-f(x2)|恒成立,求实数m的取值范围.导数及其应用答案解析1.【答案】D【解析】A项,′=-;B项,(x·e x)′=e x+x·e x;C项,(x2cos x)′=2x cos x -x2·sin x;D正确,故选D.2.【答案】B【解析】由f(x)的图象易知f(x)有两个极值点x1,x2,且x=x1时有极小值,∴f′(x)=3ax2+2bx+1的图象如图所示,∴a<0.又|x1|>|x2|,∴-x1>x2,∴x1+x2<0,即x1+x2=-<0,∴b<0.3.【答案】A 【解析】由于f(x)=x2+cos x,∴f′(x)=x-sin x,∴f′(-x)=-f′(x),故f′(x)为奇函数,其图象关于原点对称,排除B和D,又当x=时,f′=-sin=-1<0,排除C,故选A.4.【答案】C【解析】函数f(x)=x-sin x,∴f′(x)=1-cos x,令f′(x)=0,解得cos x=,又x∈[0,π],∴x=,∴x∈时,f′(x)<0,f(x)单调递减;x∈时,f′(x)>0,f(x)单调递增.又f=-sin=-1,f(0)=0,f(π)=π,∴函数f(x)在区间[0,π]上的最大、最小值分别为π,-1.5.【答案】D 【解析】ʃ(e x+e-x)d x=(e x-e-x)|=e-.6.【答案】A【解析】若b≤0,则函数在(0,+∞)上为增函数,满足条件,若b>0,则函数的导数f′(x)=1-=,由f′(x)>0得x>或x<-,此时函数单调递增,由f′(x)<0得-<x<,此时函数单调递减,若函数f(x)在(1,e)上为增函数,则≤1,即0<b≤1,若函数f(x)在(1,e)上为减函数,则≥e,即b≥e2,综上b≤1或b≥e2,故选A.【解析】由题意知,f′(x)=x-=(x>0),∵f(x)在区间(1,+∞)上是增函数,∴f′(x)≥0在区间(1,+∞)上恒成立,∴a≤x2在区间(1,+∞)上恒成立,∵x>1时,x2>1,∴a≤1,故选D.8.【答案】C【解析】由题意得f′(x)=(x>0),令f′(x)>0,得x>3;令f′(x)<0,得0<x<3;令f′(x)=0,得x=3,故知函数f(x)在区间(0,3)上为减函数,在区间(3,+∞)上为增函数,在点x=3处有极小值1-ln 3<0;又f(1)=>0,f(e)=-1<0,f=+1>0.所以f(x)在区间内无零点,在区间(1,e)内有零点.9.【答案】B【解析】由f(x)-m≥0得f(x)≥m,函数f(x)的定义域为(0,+∞),f′(x)=2x-=,当x∈[1,e]时,f′(x)≥0,此时,函数f(x)单调递增,所以f(1)≤f(x)≤f(e).即1≤f(x)≤e2-2,要使f(x)-m≥0在[1,e]上有实数解,则有m≤e2-2.10.【答案】B【解析】求解函数的导数可得y′=2x-,令2x-≥0,结合x>0,解得x≥1.所以单调增区间为[1,+∞).11.【答案】D【解析】联立曲线y=与直线y=2x-1,构成方程组解得联立直线y=2x-1,y=0构成方程组,解得∴曲线y=与直线y=2x-1及x轴所围成的封闭图形的面积为S=ʃd x-==+-=.12.【答案】A【解析】停车时v(t)=0,由27-0.9t=0,得t=30,∴所求路程s=ʃv(t)d t=ʃ(27-0.9t)d t=(27t-0.45t2)=405.【解析】因为f ′(x )=6x 2+2ax +36,且在x =2处有极值,所以f ′(2)=0,即24+4a +36=0,解得a =-15,所以f ′(x )=6x 2-30x +36=6(x -2)(x -3),由f ′(x )>0,得x <2或x >3.14.【答案】D【解析】由图象可得函数y =f (x )的图象在点P 处的切线是l ,与x 轴交于点(4,0),与y 轴交于点(0,4),则可知l :x +y =4,∴f (2)=2,f ′(2)=-1,∴f (2)+f ′(2)=1,故选D. 15.【答案】A【解析】∵f (x )={2−x,x ≤0,√4−x 2,0<x ≤2,则∫f(x)dx 2−2=∫(2−x)dx 0−2+∫√4−x 2dx 20=(2x -12x 2)|0−2+∫√4−x 220dx =6+∫√4−x 2dx 20,设y =2(y ≥0,0<x ≤2),则x 2+y 2=4(y ≥0,0<x ≤2)对应的曲线为半径为2的圆位于第一象限内的部分,对应的面积S =14π×22=π,根据积分的几何意义可得∫√4−x 2dx 20=π,故∫f(x)dx 2−2=6+∫√4−x 2dx 20=π+6. 16.【答案】2 cm,1 cm ,cm【解析】设长、宽、高分别2x ,x ,h ,则4(2x +x +h )=18,h =-3x ,∴V =2x ·x ·h =2x 2=-6x 3+9x 2,求导得,V ′=-18x 2+18x ,由V ′=0得x =1或x =0(舍去).∴x =1是函数V 在(0,+∞)上唯一的极大值点,也是最大值点,故长、宽、高分别为2 cm ,1cm ,cm 时,体积最大.17.【答案】2【解析】f ′(x )=3x 2+3x =3x (x +1).由f ′(x )=0,得x =0或x =-1.又f (0)=m ,f (-1)=m +,f (1)=m +,f (-2)=-8+6+m =m -2,∴当x ∈[-2,1]时,最大值为f (1)=m +,∴m +=,∴m =2.18.【答案】【解析】由题意知×x0×=ʃx2d x,即x0=x,解得x0=或x0=-或x0=0.∵x0>0,∴x0=.19.【答案】【解析】设被切去的全等四边形的一边长为x,如图所示,则正六棱柱的底面边长为1-2x,高为x,所以正六棱柱的体积V=6×(1-2x)2·x=(4x3-4x2+x),则V′=(12x2-8x+1).令V′=0,得x=(舍去)或x=.当x∈时,V′>0;当x∈时,V′<0.故当x=时,V有极大值,也是最大值,此时正六棱柱的底面边长为.20.【答案】15x-3y-2=0【解析】∵f′(x)=-2x2+4ax+3=-2(x-a)2+3+2a2,∴f′(x)max=3+2a2=5,∵a>0,∴a=1.∴f′(x)=-2x2+4x+3,f′(1)=-2+4+3=5.又f(1)=-+2+3=,∴所求切线方程为y-=5(x-1).即15x-3y-2=0.21.【答案】①④【解析】从图象上可以发现,当x∈(1,+∞)时,xf′(x)>0,于是f′(x)>0,故f(x)在区间(1,+∞)上是增函数,故①正确;当x∈(-1,1)时,f′(x)<0,所以函数f(x)在区间(-1,1)上是减函数,②错误,③也错误;f(x)在区间(0,1)上是减函数,而在区间(1,+∞)上是增函数,所以函数f(x)在x=1处取得极小值,故④正确.22.【答案】解(1)∵f(x)=ax3-2ax2+b,∴f′(x)=3ax2-4ax=ax(3x-4).令f′(x)=0,得x1=0,x2=∉[-2,1],∵a>0,∴可得下表:因此f(0)必为最大值,∴f(0)=5,因此b=5,∵f(-2)=-16a+5,f(1)=-a+5,∴f(1)>f(-2),即f(-2)=-16a+5=-11,∴a=1,∴f(x)=x3-2x2+5.(2)由(1)知,f′(x)=3x2-4x,∴f′(x)+tx≤0等价于3x2-4x+tx≤0,令g(t)=xt+3x2-4x,则问题就是g(t)≤0在t∈[-1,1]上恒成立时,求实数x的取值范围,为此只需即解得0≤x≤1,∴所求实数x的取值范围是[0,1].23.【答案】解(1)求函数的定义域为(0,+∞),因为f′(x)=,所以当x∈(0,1)时,f′(x)<0,函数f(x)单调递减;当x∈[1,+∞)时,f′(x)≥0,函数f(x)单调递增.因此,函数f(x)的最小值为f(1)=-1.(2)不等式x ln x+(1-k)x+k>0(k∈Z)在区间(1,+∞)上恒成立等价k<(x>1).令g(x)=(x>1),则g′(x)==,由于x∈(1,+∞)时,f′(x)>0,函数f(x)单调递增且f(1)=-1<0,所以函数f(x)在(1,+∞)上有且只有一个零点x0,因为f(3)=1-ln 3<0,f(4)=2-ln 4>0,所以x0∈(3,4),因此,当x∈(1,x0)时,f(x)<0,g′(x)<0;当x∈(x0,+∞)时,f(x)>0,g′(x)>0,从而函数g(x)在(1,x0),(x0,+∞)上分别是减函数、增函数.因此g(x)min=g(x0)===x0,所以,由k<(x>1)得k<x0,又因为k∈Z,且x0∈(3,4),所以k max=3.24.【答案】解(1)由已知得函数g(x)的定义域为(0,1)∪(1,+∞),g′(x)==.当x>e时,g′(x)>0,所以函数g(x)的单调递增区间是(e,+∞);当0<x<e且x≠1时,g′(x)<0,所以函数g(x)的单调递减区间是(0,1),(1,e).(2)因为f(x)在(1,+∞)上为减函数,且f(x)=-ax,所以f′(x)=-a≤0在(1,+∞)上恒成立,所以当x∈(1,+∞)时,f′(x)max≤0.又f′(x)=-a=-2+-a=-2+-a.故当=,则x=e2时,f′(x)max=-a,所以-a≤0,于是a≥,故a的最小值为.25.【答案】解(1)f(x)的定义域为(0,+∞),当a=4时,f(x)=(x+1)ln x-4(x-1),f′(x)=ln x+-3,f′(1)=-2,f(1)=0,曲线y=f(x)在(1,f(1))处的切线方程为y=-2(x-1),即2x+y-2=0.(2)当x∈(1,+∞)时,f(x)>0等价于ln x->0,设g(x)=ln x-,则g′(x)=-=,且g(1)=0.①当a≤2,x∈(1,+∞)时,x2+2(1-a)x+1≥x2-2x+1>0,故g′(x)>0,g(x)在(1,+∞)单调递增,因此g(x)>0;②当a>2时,令g′(x)=0得,x1=a-1-,x2=a-1+.由x2>1和x1x2=1得x1<1,故当x∈(1,x2)时,g′(x)<0,g(x)在(1,x2)单调递减,因此g(x)<0,综上,a的取值范围是(-∞,2].26.【答案】解由题意得,本年度每辆车的投入成本为10(1+x),每辆车的出厂价为13(1+0.7x),年利润为f(x)=[13(1+0.7x)-10(1+x)]·y=(3-0.9x)×3 240×=3 240(0.9x3-4.8x2+4.5x+5),则f′(x)=3 240(2.7x2-9.6x+4.5)=972(9x-5)(x-3),由f′(x)=0,解得x=或x=3(舍去),当x∈时,f′(x)>0,f(x)是增函数;当x∈时,f′(x)<0,f(x)是减函数.第 11 页 共 11 页 所以当x =时,f (x )取极大值,f =20 000.因为f (x )在(0,1)内只有一个极大值,所以它是最大值.所以当x =时,本年度的年利润最大,最大利润为20 000万元. 27.【答案】(1)函数的定义域为(0,+∞),当a =0时,f (x )=x 2-2ln x ,f ′(x )=2x -2x =2(x+1)(x−1)x ,令f ′(x )=0,得x =1,当0<x <1时,f ′(x )<0;当x >1时,f ′(x )>0.∴f (x )极小值=f (1)=1,无极大值.(2)f ′(x )=(2-a )x +a -2x=(2−a )x 2+ax−2x =(2−a)(x−2a−2)(x−1)x ,∵a >4,∴2a−2<1,令f ′(x )<0,得0<x <2a−2或x >1,函数单调递减,令f ′(x )>0,得2a−2<x <1,函数单调递增,故当a >4时,f (x )在 (0,2a−2)和(1,+∞)上单调递减,在(2a−2,1)上单调递增.(3)由(2)知,当a ∈(4,6)时,f (x )在[1,2]上单调递减,∴当x =1时,f (x )有最大值,当x =2时,f (x )有最小值, |f (x 1)-f (x 2)|≤f (1)-f (2)=a 2-3+2ln 2,∴ma +2ln 2>a 2-3+2ln 2,∵a >0,∴m >12-3a ,∵4<a <6,∴-14<12-3a <0,∴m ≥0,故实数m 的取值范围为[0,+∞).。
导数应用练习题答案1.下列函数在给定区间上是否满足罗尔定理的所有条件?如满足,请求出定理中的数值ξ。
2(1)()23[1,1.5]f x x x =---; 21(2)()[2,2]1f x x =-+;(3)()[0,3]f x =; 2(4)()1[1,1]x f x e =--解:2(1)()23[1,1.5]f x x x =---该函数在给定闭区间上连续,其导数为()41f x x '=-,在开区间上可导,而且(1)0f -=,(1.5)0f =,满足罗尔定理,至少有一点(1,1.5)ξ∈-, 使()410f ξξ'=-=,解出14ξ=。
解:21(2)()[2,2]1f x x =-+该函数在给定闭区间上连续,其导数为222()(1)x f x x -'=+,在开区间上可导,而且1(2)5f -=,1(2)5f =,满足罗尔定理,至少有一点(2,2)ξ∈-, 使222()0(1)f ξξξ-'==+,解出0ξ=。
解:(3)()[0,3]f x =该函数在给定闭区间上连续,其导数为()f x '=,在开区间上可导,而且(0)0f =,(3)0f =,满足罗尔定理,至少有一点(0,3)ξ∈,使()0f ξ'==,解出2ξ=。
解:2(4)()e 1[1,1]x f x =--该函数在给定闭区间上连续,其导数为2()2e x f x x '=,在开区间上可导,而且(1)e 1f -=-,(1)e 1f =-,满足罗尔定理,至少有一点ξ,使2()2e 0f ξξξ'==,解出0ξ=。
2.下列函数在给定区域上是否满足拉格朗日定理的所有条件?如满足,请求出定理中的数值ξ。
3(1)()[0,](0)f x x a a =>; (2)()ln [1,2]f x x=;32(3)()52[1,0]f x x x x =-+--解:3(1)()[0,](0)f x xa a =>该函数在给定闭区间上连续,其导数为2()3f x x '=,在开区间上可导,满足拉格朗日定理条件,至少有一点(0,)a ξ∈,使()(0)()(0)f a f f a ξ'-=-,即3203(0)a a ξ-=-,解出ξ=。
单元综合测试三(第三章)时间:90分钟 分值:150分第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.已知f (x )=(x +a )2,且f ′(12)=-3,则a 的值为( ) A .-1 B .-2 C .1D .2解析:f (x )=(x +a )2,∴f ′(x )=2(x +a ). 又f ′(12)=-3,∴1+2a =-3,解得a =-2. 答案:B2.函数y =sin x (cos x +1)的导数是( ) A .y ′=cos2x -cos x B .y ′=cos2x +sin x C .y ′=cos2x +cos xD .y ′=cos 2x +cos x解析:y ′=(sin x )′(cos x +1)+sin x (cos x +1)′=cos 2x +cos x -sin 2x =cos2x +cos x .答案:C3.函数y =3x -x 3的单调递增区间是( ) A .(0,+∞) B .(-∞,-1) C .(-1,1)D .(1,+∞)解析:f ′(x )=3-3x 2>0⇒x ∈(-1,1).答案:C4.某汽车启动阶段的路程函数为s (t )=2t 3-5t 2+2,则t =2秒时,汽车的加速度是( )A .14B .4C .10D .6解析:依题意v (t )=s ′(t )=6t 2-10t ,所以a (t )=v ′(t )=12t -10,故汽车在t =2秒时的加速度为a (2)=24-10=14.答案:A5.若曲线f (x )=x sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a 的值为( )A .-2B .-1C .1D .2解析:f ′(x )=x cos x +sin x ,f ′(π2)=1, ∴k =-a2=-1,a =2. 答案:D6.已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为( )A .1B .3C .-4D .-8解析:如图所示,由已知可设P (4,y 1),Q (-2,y 2), ∵点P ,Q 在抛物线x 2=2y 上,∴⎩⎨⎧42=2y 1, ①(-2)2=2y 2, ②∴⎩⎨⎧y 1=8,y 2=2,∴P (4,8),Q (-2,2).又∵抛物线可化为y =12x 2,∴y ′=x . ∴过点P 的切线斜率为y ′|x =4=4,∴过点P 的切线为y -8=4(x -4),即y =4x -8. 又∵过点Q 的切线斜率为y ′|x =-2=-2.∴过点Q 的切线为y -2=-2(x +2),即y =-2x -2.联立⎩⎨⎧y =4x -8,y =-2x -2,解得x =1,y =-4.∴点A的纵坐标为-4. 答案:C7.若函数y=a(x3-x)的递增区间是(-∞,-33),(33,+∞),则a的取值范围是()A.a>0 B.-1<a<0 C.a>1 D.0<a<1解析:依题意y′=a(3x2-1)>0的解集为(-∞,-33),(33,+∞),故a>0.答案:A8.对任意的x∈R,函数f(x)=x3+ax2+7ax不存在极值点的充要条件是()A.0≤a≤21 B.a=0或a=7C.a<0或a>21 D.a=0或a=21解析:f′(x)=3x2+2ax+7a,当Δ=4a2-84a≤0,即0≤a≤21时,f′(x)≥0恒成立,函数f(x)不存在极值点.故选A.答案:A9.已知函数f(x)=x3-3x,若对于区间[-3,2]上任意的x1,x2,都有|f(x1)-f(x2)|≤t,则实数t的最小值是()A.0 B.10C.18 D.20解析:f′(x)=3x2-3,令f′(x)=0,解得x=±1,所以1,-1为函数f(x)的极值点,因为f(-3)=-18,f(-1)=2,f(1)=-2,f(2)=2,所以在区间[-3,2]上,f(x)max=2,f(x)min=-18,所以对于区间[-3,2]上任意的x1,x2,|f(x1)-f(x2)|≤20,所以t≥20,从而t的最小值为20.答案:D10.设函数f(x)的定义域为R,x0(x0≠0)是f(x)的极大值点,以下结论一定正确的是()A.∀x∈R,f(x)≤f(x0)B.-x0是f(-x)的极小值点C.-x0是-f(x)的极小值点D.-x0是-f(-x)的极小值点解析:取函数f(x)=x3-x,则x=-33为f(x)的极大值点,但f(3)>f(-33),∴排除A.取函数f(x)=-(x-1)2,则x=1是f(x)的极大值点,f(-x)=-(x+1)2,-1不是f(-x)的极小值点,∴排除B;-f(x)=(x-1)2,-1不是-f(x)的极小值点,∴排除C.故选D.答案:D11.若函数y=f(x)满足xf′(x)>-f(x)在R上恒成立,且a>b,则()A.af(b)>bf(a) B.af(a)>bf(b)C.af(a)<bf(b) D.af(b)<bf(a)解析:设g(x)=xf(x),则g′(x)=xf′(x)+f(x)>0,∴g(x)在R上是增函数,又a>b,∴g(a)>g(b)即af(a)>bf(b).答案:B12.设函数f (x )满足x 2f ′(x )+2xf (x )=e x x ,f (2)=e 28,则x >0时,f (x )( )A .有极大值,无极小值B .有极小值,无极大值C .既有极大值又有极小值D .既无极大值也无极小值解析:由题意知f ′(x )=e x x 3-2f (x )x =e x -2x 2f (x )x3.令g (x )=e x-2x 2f (x ),则g ′(x )=e x -2x 2f ′(x )-4xf (x )=e x -2(x 2f ′(x )+2xf (x ))=e x -2e xx =e x ⎝ ⎛⎭⎪⎫1-2x .由g ′(x )=0得x =2,当x =2时,g (x )min =e 2-2×22×e 28=0,即g (x )≥0,则当x >0时,f ′(x )=g (x )x 3≥0,故f (x )在(0,+∞)上单调递增,既无极大值也无极小值.答案:D第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.若抛物线y =x 2-x +c 上一点P 的横坐标为-2,抛物线过点P 的切线恰好过坐标原点,则c 的值为________.解析:∵y ′=2x -1,∴y ′|x =-2=-5. 又P (-2,6+c ),∴6+c-2=-5.∴c =4. 答案:414.如果函数f (x )=x 3-6bx +3b 在区间(0,1)内存在与x 轴平行的切线,则实数b 的取值范围是________.解析:存在与x 轴平行的切线,即f ′(x )=3x 2-6b =0有解,∵x ∈(0,1),∴b =x 22∈(0,12).答案:{b |0<b <12}15.已知a ≤4x 3+4x 2+1对任意x ∈[-1,1]都成立,则实数a 的取值范围是________.解析:设f (x )=4x 3+4x 2+1,则f ′(x )=12x 2+8x =4x (3x +2),令f ′(x )=0,解得x 1=0,x 2=-23.又f (-1)=1, f (-23)=4327,f (0)=1,f (1)=9,故f (x )在[-1,1]上的最小值为1,故a ≤1.答案:(-∞,1]16.设二次函数f (x )=ax 2+bx +c (a ≠0)的导数为f ′(x ),f ′(0)>0,若∀x ∈R ,恒有f (x )≥0,则f (1)f ′(0)的最小值是________.解析:二次函数f (x )=ax 2+bx +c (a ≠0)的导数为f ′(x )=2ax +b ,由f ′(0)>0,得b >0,又对∀x ∈R ,恒有f (x )≥0,则a >0, 且Δ=b 2-4ac ≤0,故c >0,所以f (1)f ′(0)=a +b +c b =a b +c b +1≥2acb 2+1≥2ac4ac +1=2,所以f (1)f ′(0)的最小值为2.答案:2三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知函数f (x )=ln(2x +a )+x 2,且f ′(0)=23.(1)求f (x )的解析式;(2)求曲线f (x )在x =-1处的切线方程. 解:(1)∵f (x )=ln(2x +a )+x 2,∴f ′(x )=12x +a ·(2x +a )′+2x =22x +a +2x .又∵f ′(0)=23,∴2a =23,解得a =3. 故f (x )=ln(2x +3)+x 2.(2)由(1)知f ′(x )=22x +3+2x =4x 2+6x +22x +3,且f (-1)=ln(-2+3)+(-1)2=1, f ′(-1)=4×(-1)2+6×(-1)+22(-1)+3=0,因此曲线f (x )在(-1,1)处的切线方程是y -1=0(x +1),即y =1.18.(12分)已知函数f (x )=13x 3+ax +b (a ,b ∈R )在x =2处取得极小值-43.(1)求函数f (x )的增区间;(2)若f (x )≤m 2+m +103对x ∈[-4,3]恒成立,求实数m 的取值范围.解:(1)由已知得f (2)=-43,f ′(2)=0,又f ′(x )=x 2+a ,所以83+2a +b =-43,4+a =0,所以a =-4,b =4,则f (x )=13x 3-4x +4,令f ′(x )=x 2-4>0,得x <-2或x >2,所以增区间为(-∞,-2),(2,+∞).(2)f (-4)=-43,f (-2)=283,f (2)=-43,f (3)=1,则当x ∈[-4,3]时,f (x )的最大值为283,故要使f (x )≤m 2+m +103对∈[-4,3]恒成立,只要283≤m 2+m +103,所以实数m 的取值范围是m ≥2或m ≤-3.19.(12分)已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4.(1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值. 解:(1)f ′(x )=e x (ax +a +b )-2x -4.由已知得f (0)=4,f ′(0)=4,故b =4,a +b -4=4,所以a =4,b =4.(2)由(1)知,f (x )=4e x (x +1)-x 2-4x , f ′(x )=4e x(x +2)-2x -4=4(x +2)(e x-12).令f ′(x )=0,得x =-ln2或x =-2.从而当x ∈(-∞,-2)∪(-ln2,+∞)时,f ′(x )>0;当x ∈(-2,-ln2)时,f ′(x )<0.故f (x )在(-∞,-2),(-ln2,+∞)上单调递增,在(-2,-ln2)上单调递减.当x =-2时,函数f (x )取得极大值, 极大值为f (-2)=4(1-e -2).20.(12分)已知函数f (x )=x -a ln x (a ∈R ).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程. (2)求函数f (x )的极值.解:函数f (x )的定义域为(0,+∞),f ′(x )=1-ax . (1)当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x (x >0),所以f (1)=1,f ′(1)=-1,所以y =f (x )在点A (1,f (1))处的切线方程为y -1=-(x -1),即x +y -2=0.(2)由f ′(x )=1-a x =x -ax ,x >0可知:①当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f(x)无极值;②当a>0时,由f′(x)=0,解得x=a;因为x∈(0,a)时,f′(x)<0,x∈(a,+∞)时,f′(x)>0,所以f(x)在x=a处取得极小值,且极小值为f(a)=a-a ln a,无极大值.综上:当a≤0时,函数f(x)无极值,当a>0时,函数f(x)在x=a处取得极小值a-a ln a,无极大值.21.(12分)某地政府鉴于某种日常食品价格增长过快,欲将这种食品价格控制在适当范围内,决定给这种食品生产厂家提供政府补贴,设这种食品的市场价格为x 元/千克,政府补贴为t 元/千克,根据市场调查,当16≤x ≤24时,这种食品日供应量p 万千克,日需量q 万千克近似地满足关系:p =2(x +4t -14)(t >0),q =24+8ln 20x .当p =q 时的市场价格称为市场平衡价格.(1)将政府补贴表示为市场平衡价格的函数,并求出函数的值域;(2)为使市场平衡价格不高于20元/千克,政府补贴至少为多少元/千克?解:(1)由p =q 得2(x +4t -14) =24+8ln 20x (16≤x ≤24,t >0), 即t =132-14x +ln 20x (16≤x ≤24). ∵t ′=-14-1x <0,∴t 是x 的减函数. ∴t min =132-14×24+ln 2024=12+ln 2024=12+ln 56; t max =132-14×16+ln 2016=52+ln 54, ∴值域为⎣⎢⎡⎦⎥⎤12+ln 56,52+ln 54.(2)由(1)知t =132-14x +ln 20x (16≤x ≤24).而当x =20时,t =132-14×20+ln 2020=1.5(元/千克),∵t 是x 的减函数,∴欲使x ≤20,必须t ≥1.5(元/千克). 要使市场平衡价格不高于20元/千克,政府补贴至少为1.5元/千克.22.(12分)已知函数f (x )=ln x -12ax 2-2x .(1)若函数f (x )在x =2处取得极值,求实数a 的值. (2)若函数f (x )在定义域内单调递增,求实数a 的取值范围. (3)当a =-12时,关于x 的方程f (x )=-12x +b 在[1,4]上恰有两个不相等的实数根,求实数b 的取值范围.解:(1)由题意,得f ′(x )=-ax 2+2x -1x(x >0), 因为x =2时,函数f (x )取得极值,所以f ′(2)=0,解得a =-34,经检验,符合题意.(2)函数f (x )的定义域为(0,+∞),依题意,f ′(x )≥0在x >0时恒成立,即ax 2+2x -1≤0在x >0时恒成立,则a ≤1-2x x 2=⎝ ⎛⎭⎪⎫1x -12-1在x >0时恒成立,即a ≤⎝ ⎛⎭⎪⎫⎝⎛⎭⎪⎫1x -12-1min (x >0),当x =1时,⎝⎛⎭⎪⎫1x -12-1取最小值-1,所以a 的取值范围是(-∞,-1].(3)当a =-12时,f (x )=-12x +b , 即14x 2-32x +ln x -b =0.设g (x )=14x 2-32x +ln x -b (x >0), 则g ′(x )=(x -2)(x -1)2x, 当x 变化时,g ′(x ),g (x )的变化情况如下表:x (0,1) 1 (1,2) 2 (2,4) g ′(x ) + 0 - 0 + g (x )极大极小所以g (x )极小值=g (2)=ln2-b -2, g (x )极大值=g (1)=-b -54, 又g (4)=2ln2-b -2,因为方程g (x )=0在[1,4]上恰有两个不相等的实数根, 则⎩⎪⎨⎪⎧g (1)≥0,g (2)<0,g (4)≥0,解得ln2-2<b ≤-54,所以实数b 的取值范围是(ln2-2,-54).。
《导数与其应用》一、选择题 1.0()0f x '=是函数()f x 在点0x 处取极值的: A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件 2、设曲线21y x =+在点))(,(x f x 处的切线的斜率为()g x ,则函数()cos y g x x =的部分图象可以为 A. C.D.3.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( )4.若曲线y =x 2++b 在点(0,b )处的切线方程是x -y +1=0,则( )A .a =1,b =1B .a =-1,b =1C .a =1,b =-1D .a =-1,b =-15.函数f (x )=x 3+2+3x -9,已知f (x )在x =-3时取得极值,则a 等于( )A .2B .3C .4D .56. 设函数()f x 的导函数为()f x ',且()()221f x x x f '=+⋅,则()0f '等于( )A 、0B 、4-C 、2-D 、2 7. 直线y x =是曲线ln y a x =+的一条切线,则实数a 的值为( )A .1-B .eC .ln 2D .1 8. 若函数)1,1(12)(3+--=k k x x x f 在区间上不是单调函数,则实数k 的取值范围( ) A .3113≥≤≤--≤k k k 或或 B .3113<<-<<-k k 或C .22<<-kD .不存在这样的实数k 9.函数()f x 的定义域为(),a b ,导函数()f x '在(),a b 内的图像如图所示,则函数()f x 在(),a b 内有极小值点 ( )A .1个B .2个C .3个D .4个10.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有()0f x ≥,则(1)'(0)f f 的最小值为( )A .3B .52C .2D .32二、填空题(本大题共4个小题,每小题5分,共20分) 11.函数sin xy x=的导数为 12、已知函数223)(a bx ax x x f +++=在1处有极值为10,则f (2)等于. 13.函数2cos y x x =+在区间[0,]2π上的最大值是14.已知函数3()f x x ax =+在R 上有两个极值点,则实数a 的取值范围是15. 已知函数)(x f 是定义在R 上的奇函数,0)1(=f ,)()(2>-'x x f x f x )(0>x ,则不等式0)(2>x f x 的解集是三、解答题(本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤)Ox xx xy y y yOO O16. 设函数32()2338f x x ax bx c=+++在1x=与2x=时取得极值.(1)求a、b的值;(2)若对于任意的[03]x∈,,都有2()f x c<成立,求c的取值范围.17. 已知函数32()23 3.f x x x=-+(1)求曲线()y f x=在点2x=处的切线方程;(2)若关于x的方程()0f x m+=有三个不同的实根,求实数m的取值范围.18. 设函数Rxxxxf∈+-=,56)(3.(1)求)(x f的单调区间和极值;(2)若关于x的方程axf=)(有3个不同实根,求实数a的取值范围.(3)已知当)1()(,),1(-≥+∞∈xkxfx时恒成立,求实数k的取值范围.19. (本题满分12分)已知函数()ln f x x x =. (Ⅰ)求()f x 的最小值;(Ⅱ)若对所有1x ≥都有()1f x ax ≥-,求实数a 的取值范围. 20. 已知()R a x x a ax x f ∈+++-=14)1(3)(23(1)当1-=a 时,求函数的单调区间。
第一章 导数及其应用1.1 变化率与导数1. 设函数()x f y =,当自变量x 由0x 改变到x x ∆+0时,函数的改变量y ∆为【 】 A .()x x f ∆+0 B .()x x f ∆+0 C .()x x f ∆⋅0 D .()()00x f x x f -∆+2. 一质点运动的方程为221t s -=,则在一段时间[]2,1内的平均速度为【 】 A .-4 B .-8 C .6 D . -63. 曲线=y x x 32+在2x =处的切线的斜率为【 】A . 7B . 6C . 5D . 4 4. 在曲线12+=x y 的图象上取一点(1,2)及附近一点()y x ∆+∆+2,1,则xy ∆∆为 【 】A .21+∆+∆xxB .21-∆-∆xx C .2+∆x D .xx ∆-∆+125. 将半径为R 的球加热,若球的半径增加R ∆,则球体积的平均变化率为【 】 A .()()2324443R R R R R πππ⋅∆+⋅∆+∆ B .()224443R R R R πππ+⋅∆+∆C .24R R π⋅∆D .24R π6.某质点的运动方程是2(21)s t t =--,则在t=1s 时的瞬时速度为 【 】A .-1B .-3C .7D .137.物体按照s (t )=3t 2+t +4的规律作直线运动,则在4s 附近的平均变化率为 . 8.已知物体的运动方程是23(s t t t=+秒,s 米),则物体在时刻t = 4时的速度v = .9.求2x y =在0x x =附近的平均变化率.10. 求曲线y =f (x )=x 2+1在点P (1,2)处的切线方程.11.将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热,如果第xh 时,原油的温度(单位:C )为2()715(08)f x x x x =-+≤≤,计算第2h 时和第5h 时,原油温度的瞬时变化率,并说明它们的意义.1.2 导数的运算1. 函数y = (2x +1) 3在x = 0处的导数是 【 】A .0B .1C .3D .6 2.函数y =x 2co sx 的导数为 【 】 A . y ′=2x co sx -x 2s i nx B . y ′=2x co sx +x 2s i nx C . y ′=x 2co sx -2xs i nx D . y ′=x co sx -x 2s i nx 3. 已知函数f (x ) = a x 2 +c ,且(1)f '=2 , 则a 的值为 【 】A .1B .2C .-1D . 04. 已知函数()f x 在1x =处的导数为3,则()f x 的解析式可能为 【 】 A .(x - 1)3+3(x - 1) B .2(x - 1)2 C .2(x - 1) D .x – 15.若函数()f x 的导数为221x -+,则()f x 可以等于 【 】 A . .321x -+ B .1x + C ..4x - D .323x x-+6.函数2sin(2)y x x =+导数是【 】A ..2cos(2)x x +B .22sin(2)x x x +C .2(41)cos(2)x x x ++D .24cos(2)x x + 7.设函数()f x 的导函数为()f x ',且()()221f x x x f '=+⋅,则()0f '等于【 】A .0B .4-C .2-D .2 8. 若xex f 1)(-=,则0(12)(1)limt f t f t→--=.9.设函数32()2f x x ax x '=++, (1)f '= 9,则a = . 10.函数2x y a =的导函数是 .11. 求下列函数的导数:(1)y =21x; (2)y = (2x 2 – 5x + 2)e x ; (3)y =32121xxx++; (4)lny =.1.3 导数在研究函数中的应用1. 函数1x 3x )x (f 23+-=是减函数的区间为【 】A . (2,)+∞B . (,2)-∞C . (,0)-∞D . (0,2)2.下列结论中正确的是【 】 A . 导数为零的点一定是极值点B . 如果在0x 附近的左侧0)('>x f ,右侧0)('<x f ,那么)(0x f 是极大值C . 如果在x 附近的左侧0)('>x f ,右侧0)('<x f ,那么)(0x f 是极小值D . 如果在0x 附近的左侧0)('<x f ,右侧0)('>x f ,那么)(0x f 是极大值 3.函数3()34f x x x =-,[0,1]x ∈的最大值是【 】 A .1 B .12C .0D .-14.设a ∈R ,若函数3ax y e x =+,x ∈R 有大于零的极值点,则【 】 A .3a >- B .3a <- C .13a >- D .13a <-5. 函数2()2ln f x x x =-的递增区间是【 】A .1(0,)2B .11(,0)(,)22-+∞及 C .1(,)2+∞ D .11(,)(0,)22-∞-及6.对于R 上可导的任意函数f (x ),且'(1)0f =若满足(x -1)f x '()>0,则必有【 】 A .f (0)+f (2)<2f (1) B .f (0)+f (2)≥2f (1) C .f (0)+f (2)>2f (1) D .f (0)+f (2)≥2f (1)7.已知f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则a 的取值范围为【 】 A .-1<a <2 B .-3<a <6 C .a <-1或a >2 D .a <-3或a >68. 已知函数y =-x 2-2x +3在区间] ,[2a 上的最大值为433, 则a 等于【 】A . -23 B .21 C . -21 D . -21或-239.函数y =223a bx ax x x f +++=)(在1=x 时, 有极值10, 那么b a ,的值为 . 10.函数()ln 0)f x x x x = (>的单调递增区间是 .11. 已知c 2bx 3x )x (f 3++=, 若函数)x (f 的一个极值点落在x 轴上, 求23c b +的值. 12. 已知函数,a x 9x 3x )x (f 23+++-= (1) 求)x (f 的单调递减区间;(2) 若)x (f 在区间]2,2[ -上的最大值为20, 求它在该区间上的最小值. 13.设函数()(0)kx f x xe k =≠(1)求曲线()y f x =在点(0,(0))f 处的切线方程; (2)求函数()f x 的单调区间;(3)若函数()f x 在区间(1,1)-内单调递增,求k 的取值范围.1.4 生活中的优化问题举例1.把总长为16 m 的篱笆,要围成一个矩形场地,则矩形场地的最大面积是 m2. 2.将正数a 分成两部分,使其立方和为最小,这两部分应分成_____和___.3.在半径为R 的圆内,作内接等腰三角形,当底边上高为___时,它的面积最大4.有一边长分别为8与5的长方形,在各角剪去相同的小正方形,把四边折起作成一个无盖小盒,要使纸盒的容积最大,问剪去的小正方形的边长应为多少? 5.学校或班级举行活动,通常需要张贴海报进行宣传.现让你设计一张如图1.4-1所示的竖向张贴的海报,要求版心面积为128dm 2,上、下两边各空2dm ,左、右两边各空1dm .如何设计海报的尺寸,才能使四周空心面积最小?6. 当圆柱形金属饮料罐的表面积为定值S 时,它的高与底面半径应怎样选取,才能使所用材料最省?7.某厂生产产品x 件的总成本32()120075c x x=+(万元),已知产品单价P(万元)与产品件数x足:2k P x=,生产100件这样的产品单价为50万元,产量定为多少件时总利润最大?8.已知矩形的两个顶点位于x 轴上,另两个顶点位于抛物线y =4-x 2在x 轴上方的曲线上,求这种矩形中面积最大者的边长.9. 一书店预计一年内要销售某种书15万册,欲分几次订货,如果每次订货要付手续费30元,每千册书存放一年要耗库费40元,并假设该书均匀投放市场,问此书店分几次进货、每次进多少册,可使所付的手续费与库存费之和最少?10.请您设计一个帐篷.它下部的形状是高为1m 的正六棱柱,上部的形状是侧棱长为3m 的正六棱锥(如右图所示).试问当帐篷的顶点O 到底面中心1o 的距离为多少时,帐篷的体积最大? 【注:1,3VS h V S h=⋅=⋅ 柱体底锥体底】11.某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x (x ≥10)层,则每平方米的平均建筑费用为560+48x (单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用建筑总面积)1.5 定积分的概念1.求由1,2,===y x e y x 围成的曲边梯形的面积时,若选择x为积分变量,则积分区【 】 A .[0,2e ] B .[0,2] C .[1,2] D .[0,1] 2.已知自由落体运动的速率gt v =,则落体运动从0=t 到0t t =所走的路程为【 】 A .320gt B .20gt C .220gt D .620gt3. 曲线3cos (0)2y x x π=≤≤与坐标轴围成的面积是【 】A .4B .52C .3D .24.dx e e x x ⎰-+1)(=【 】A .ee 1+B .2eC .e2 D .ee 1-5.曲线x y e =在点2(2)e ,处的切线与坐标轴所围三角形的面积为【 】 A .294e B .22e C .2e D .22e6.如果1N 力能拉长弹簧1cm ,为将弹簧拉长6cm ,所耗费的功是【 】 A .0.18 B .0.26 C .0.12 D .0.287.将边长为1米的正方形薄片垂直放于比彼一时为ρ的液体中,使其上距液面距离为2米,则该正方形薄片所受液压力为【 】A .⎰32dx x ρ B .()⎰+212dx x ρ C .⎰1dx x ρ D .()⎰+321dx x ρ8.将和式)21 (2)111(lim nn n n +++++∞→表示为定积分 .9.曲线1,0,2===y x x y ,所围成的图形的面积可用定积分表示为.10.设物体的速度v 与时间t 的函数关系为v =v (t),那么它在时间段[a ,b ]内的位移s 用定积分表示为 .11.计算定积分21(1)x dx +ò.12. 一物体按规律x =b t 3作直线运动,式中x 为时间t 内通过的距离,媒质的阻力正比于速度的平方.试求物体由x =0运动到x =a 时,阻力所作的功.1.6 微积分基本定理1.下列各式中,正确的是【 】 A .)()()(///a fb f dx x f ba -=⎰ B .)()()(///b f a f dx x f ba-=⎰C .)()()(/a fb f dx x f ba-=⎰D .)()()(/b f a f dx x f ba-=⎰2.已知自由落体的运动速度g gt v (=为常数),则当[]2,1∈t 时,物体下落的距离是【 】 A .g21 B .g C .g23 D .g 23.若,2ln 3)12(1+=+⎰adx xx 则a 的值是【 】A .6B .4C .3D .2 4. 12x dx ⎰等于【 】A .14B .12C .13D .25.)(x f 是一次函数,且⎰⎰==1010617)(,5)(dx x xf dx x f ,那么)(x f 的解析式是【 】A .34+xB .43+xC .24+-xD .43+-x6. 计算定积分:dx x x ⎰+20)sin (π= .7. 计算下列定积分:(1)⎰--312)4(dx x x ;(2)dx x ⎰-222cos ππ.8. 计算dxx⎰421.9. 计算dx e x 21⎰.10.求曲线xxx y 223++-=与x 轴所围成的图形的面积.1.7 定积分的简单应用1.由x xy ,1=轴及2,1==x x 围成的图形的面积为【】A .ln 2B .lg 2C . 12D .12.由曲线[])(.,,,),0)()((b a b x a x b a x x f x f y <==∈≤=和x 轴围成的曲边梯形的面积S = 【 】A .()b a f x dx ⎰B . ()b a f x dx -⎰C .[]()b a f x a dx -⎰D .[]()baf x b dx -⎰3. 如果10N 的力能使弹簧压缩10cm ,为在弹性限度内将弹簧从平衡位置拉到离平衡位置6cm 处,则克服弹力所做的功为【 】A . 0.28JB . 0.12JC . 0.26JD . 0.18J4. 给出以下命题:⑴若()0ba f x dx >⎰,则f (x )>0; ⑵20sin 4x dx =⎰π;⑶f (x )的原函数为F (x ),且F (x )是以T 为周期的函数,则0()()aa T Tf x dx f x dx +=⎰⎰;其中正确命题的个数为【 】 A . 1 B . 2 C . 3 D . 05.一质点做直线运动,由始点起经过t s 后的距离为s =41t 4- 4t 3 + 16t 2,则速度为零的时刻是【 】A .4s 末B .8s 末C .0s 与8s 末D .0s ,4s ,8s 末6.一物体在力()41F x x =-(单位:N)的的作用下,沿着与力F 相同的方向,从x =1m 处运动到x =3m 处, 则力()F x 所作的功为【 】A . 10JB . 12JC . 14JD . 16J7.已知)(x f 为一次函数,且10()2()f x x f t dt =+⎰,则)(x f = .8.一质点在直线上从时刻t =0秒以速度34)(2+-=t t t v (米/秒)运动,则该质点在时刻t =3秒时运动的路程为 .9. 一物体沿直线以速度()23v t t =-(t 的单位为:秒,v 的单位为:米/秒)的速度作变速直线运动,求该物体从时刻t=0秒至时刻 t=5秒间运动的路程?10. 求曲线1y x=和2y x =在它们交点处的两条切线与x 轴所围成的三角形面积. 11.求抛物线2x y =与直线x y x y 2,==所围图形的面积.参考答案第一章 导数及其应用1.1 变化率与导数1.D2.D3. A4.C5.B6.B7. 253t +∆8. 125169. 2020)(x x x y -∆+=∆,所以xx x x xy ∆-∆+=∆∆220)(xx xx x x x x ∆+=∆-∆+∆+=02202022所以2x y =在0x x =附近的平均变化率为x x ∆+02. 10.22210[(1)1](11)2|limlim2x x x x x xy xx=∆→∆→+∆+-+∆+∆'===∆∆,所以,所求切线的斜率为2,因此,所求的切线方程为22(1)y x -=-即20x y -=. 11.在第2h 时和第5h 时,原油温度的瞬时变化率就是'(2)f 和'(5)f 根据导数定义,0(2)()f x f x f xx+∆-∆=∆∆22(2)7(2)15(27215)3x x x x+∆-+∆+--⨯+==∆-∆所以0(2)limlim (3)3x x f f x x∆→∆→∆'==∆-=-∆同理可得:(6)f '=3.在第2h 时和第5h 时,原油温度的瞬时变化率分别为3-和3,说明在2h 附近,原油温度大约以3 C /h 的速率下降,在第5h 附近,原油温度大约以3C /h 的速率上升.1.2 导数的运算1.D2.A3.A4.A5.D6.C7.B8. e2-(或12--e ) 9.6 10. 2ln x y a a =11. 【解析】利用导数公式及运算法则进行运算.(1)y = x –2 ,y ′= –2x –2 – 1 = – 2x –3 = –32x(或y ′=422)()1(xx x'-=')= –2x –3 = –32x.(2))y ′ = (2x 2 – 5x + 2) ′e x + (2x 2 – 5x + 2) (e x ) ′= (4x – 5) e x + (2x 2 – 5x + 2) e x = (2x 2 – x – 3) e x (3)y ′ =)1()2()1(32'+'+'xx x = (x –1) ′ + (2x –2) ′ + (x –3) ′ = –x –2 – 4x –3 –3x –4 = –432341xxx--.(4)可看成ln ,y u u ==, v = x 2 + 1复合而成.x u v xy y u v ''''=⋅⋅=1211(2)2v x u -⋅⋅1221(1)22x x -=+⋅21xx ==+.1.3 导数在研究函数中的应用1.D2.B3.A4.B5.C6.C7. D8.D9.43113a a b b ==-⎧⎧⎨⎨=-=⎩⎩或 10. 1[,)e+∞ 11.b3x 3)x (f 2+=', 设)x (f 的极值点为()0,m , 则0)m (f ,0)m (f ='=所以,0b 3m 30c 20b 3m 23⎪⎩⎪⎨⎧=+=+⨯+ 所以,0c 2bm 2,0c 2bm 3bm =+=++-所以22c )bm (=,,c )b (b 22=-所以.0c b 23=+12. (1) .9x 6x 3)x (f 2++-='令1x 0)x (f -<⇒<'或,3x > 所以函数)x (f 的单调递减区间为)1,(--∞ , ),3(∞+ .(2) 因为,a 2a 18128)2(f +=+-+=- ,a 22a 18128)2(f +=+++-=所以)2(f )2(f ->. 因为在)3,1( -上0)x (f >', 所以)x (f 在]2,1[ -上单调递增, 又由于)x (f 在]1,2[-- 上单调递减,因此)2(f 和)1(f -分别是)x (f 在区间]2,2[ -上的最大值和最小值, 于是有2a 20a 22-=⇒=+. 故,2x 9x 3x )x (f 23-++-=因此72931)1(f -=--+=-, 即函数)x (f 在区间]2,2[ -上的最小值为7-.13. (1)()()()()''1,01,00kx f x kx e f f =+==,曲线()y f x =在点(0,(0))f 处的切线方程为y x =.(2)由()()'10kx f x kx e =+=,得()10x k k=-≠,若0k >,则当1,x k ⎛⎫∈-∞-⎪⎝⎭时,()'0f x <,函数()f x 单调递减,当1,,x k ⎛⎫∈-+∞ ⎪⎝⎭时,()'0f x >,函数()f x 单调递增,若0k <,则当1,x k ⎛⎫∈-∞-⎪⎝⎭时,()'0f x >,函数()f x 单调递增,当1,,x k ⎛⎫∈-+∞ ⎪⎝⎭时,()'0f x <,函数()f x 单调递减,(3)由(2)知,若0k >,则当且仅当11k-≤-,即0<1k ≤时,函数()f x ()1,1-内单调递增, 若0k <,则当且仅当11k -≥,即1k ≥-时,函数()f x ()1,1-内单调递增,综上可知,函数()f x ()1,1-内单调递增时,k 的取值范围是[)(]1,00,1- .1.4 生活中的优化问题举例1. 162.2a2a3.23R4.(1)正方形边长为x ,则V =(8-2x )·(5-2x )x =2(2x 3-13x 2+20x )(0<x <25)V ′=4(3x 2-13x +10)(0<x <25),V ′=0得x =1 根据实际情况,小盒容积最大是存在的,∴当x =1时,容积V 取最大值为18. 5.设版心的高为x dm ,则版心的宽为128xdm ,此时四周空白面积为128512()(4)(2)12828,0S x x xx xx=++-=++>.求导数,得'2512()2S x x=-.令'2512()20S x x=-=,解得16(16x x ==-舍去).于是宽为128128816x==.当(0,16)x ∈时,'()S x <0;当(16,)x ∈+∞时,'()S x >0.因此,16x =是函数()S x 的极小值,也是最小值点.所以,当版心高为16dm ,宽为8dm 时,能使四周空白面积最小.答:当版心高为16dm ,宽为8dm 时,海报四周空白面积最小.6. S =2Rh π+22R π⇒h =RR S ππ222-⇒V (R )=RR S ππ222-πR 2=3221)2(21RSR R R S ππ-=-)('R V )=026R S π=⇒ ⇒R h R Rh R 222622=⇒+=πππ.7.258.设位于抛物线上的矩形的一个顶点为(x ,y ),且x >0,y >0, 则另一个在抛物线上的顶点为(-x ,y ), 在x 轴上的两个顶点为(-x ,0)、(x ,0),其中0< x <2. 设矩形的面积为S ,则S =2 x (4-x 2),0< x <2. 由S′(x )=8-6 x 2=0,得x =332,易知x =34是S 在(0,2)上的极值点, 即是最大值点,所以这种矩形中面积最大者的边长为332和38.9.假设每次进书x 千册,手续费与库存费之和为y 元,由于该书均匀投放市场,则平均库存量为批量之半,即2x,故有y =x150×30+2x ×40,y′=-24500x+20, 令y′=0,得x =15,且y″=39000x,f″(15)>0,所以当x =15时,y 取得极小值,且极小值唯一, 故 当x =15时,y 取得最小值,此时进货次数为15150=10(次).即该书店分10次进货,每次进15000册书,所付手续费与库存费之和最少.10.设正六棱锥的高为x m ,则正六棱锥底面边长为(单位:m ).于是底面正六边形的面积为(单位:m 2):236((9)42S x==- .帐篷的体积为(单位:m 3):22321())1)(3)3927)2322V x x x x x x x x ⎡⎤=-+=-+=--++⎢⎥⎣⎦(13)x <<求导数,得2()23)2V x x x '=-+-;令()0V x '=解得x =-3(不合题意,舍去),x =1.当0<x <1时,()0V x '>,V(x )为增函数;当1<x <3时,()0V x '<,V(x )为减函数. 所以当x =1时,V(x )最大.即当OO 1为2m 时,帐篷的体积最大.11.设楼房每平方米的平均综合费用为()f x 元,则 ()()2160100001080056048560482000f x x x x x⨯=++=++()10,x x Z+≥∈()21080048f x x '=-, 令 ()0f x '= 得 15x =当 15x > 时,()0f x '>;当 015x <<时,()0f x '< 因此当15x =时,()f x 取最小值()152000f =;答:为了楼房每平方米的平均综合费最少,该楼房应建为15层.1.5 定积分的概念1.B2.C3.C4.D5.D6.A7.A8.dxx⎰+111 9.dx x ⎰-12)1( 10. ()bas v t dt =ò11.所求定积分是1,201x x y y x ====+,与所围成的梯形面积,即为如图阴影部分面积,面积为52.即:215(1)2x dx +=ò.12. 物体的速度233)(btbt dtdx V ='==.媒质阻力9)3(t kb bt k kv F zu ===k 为比例常数,k>0.当x =0时,t=0;当x =a 时,311)(bat t ==,又ds=vdt ,故阻力所作的功为327713032032727727)3(111ba kt kb dt bt k dt v k dt v kv ds F W t t t zu zu ====⋅==⎰⎰⎰⎰.1.6 微积分基本定理1.C2.C3.D4.C5.A6.218π+ 7. (1)203(2)π28.2ln 2ln 4ln ln 14242=-==⎰xdx x. 9.1022121021)2(21xxxex d edx e ==⎰⎰)1(212-=e .10. 首先求出函数xx x y 223++-=的零点:11-=x ,02=x ,23=x .又易判断出在)0 , 1(-内,图形在x 轴下方,在)2 , 0(内,图形在x 轴上方,所以所求面积为dx x xxA ⎰-++--=0123)2(dx x xx ⎰++-+223)2(1237=.1.7 定积分的简单应用1.A2.B3.D4.B5.D6.C7.1x -8. 0米 9.∵当302≤≤t 时,()230≤v t t =-;当352≤≤t 时,()230≥v t t =-.∴物体从时刻t=0秒至时刻 t=5秒间运动的路程352302(32)(23)S t dx t dx =-+-⎰⎰=9929(10)442++=(米).10. 曲线1y x =和2x y =在它们的交点坐标是(1,1),两条切线方程分别是y =-x +2和y =2x -1,它们与x 轴所围成的三角形的面积是43.11.解两个方程组⎩⎨⎧==x y x y ,2和⎩⎨⎧==xy x y 2,2得抛物线与两直线的交点分别为)1,1(与)4,2(.故所求面积为21S S S +=dx x x dx x x )2()2(2211-+-=⎰⎰67=.37.710≈⨯(J ).作 者 于华东责任编辑 庞保军。