【精选】七年级上册一元一次方程专题练习(word版

  • 格式:doc
  • 大小:1.16 MB
  • 文档页数:12

下载文档原格式

  / 12
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学一元一次方程解答题压轴题精选(难)

1.下列图表是2017 年某校从参加中考体育测试的九年级学生中随机调查的10 名男生跑1000 米和 10 名女生跑 800米的成绩.

(1)按规定,女生跑 800 米的时间不超过 3'24"就可以得满分.该校九年级学生有 490 人,男生比女生少 70 人.请你根据上面成绩,估计该校女生中有多少人该项测试成绩得满分? (2)假如男生 1 号和男生 10 号被分在同组测试,请分析他俩在 400 米的环形跑道测试的过程中能否相遇。若能,求出发多长时间才能相遇;若不能,说明理由.

【答案】(1)解:设男生有x人,女生有(x+70)人,

由题意得:x+x+70=490,

解得:x=210,

则女生x+70=210+70=280(人).

故女生得满分人数: (人)

(2)解:不能;

假设经过x分钟后,1号与10号在1000米跑中能首次相遇,根据题意得:

解得

又∵

∴考生1号与10号不能相遇。

【解析】【分析】(1)通过男生、女生的人数关系列出方程,得出女生的人数;(2)根据题意表达出1号跟10号的速度,两位若相遇,相减的路程为400米,得出的时间为4.8, 但是4.8分钟大于3分钟,所以两位在测试过程中不会相遇。

2.元旦假期,甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市当日累计购物超出了300元以后,超出部分按原价8折优惠;在乙超市当日累计购物超出200元之后,超出部分按原价8.5折优惠.设某位顾客在元旦这天预计累计购物x元(其中x>300).

(1)当x=400时,顾客到哪家超市购物优惠.

(2)当x为何值时,顾客到这两家超市购物实际支付的钱数相同.

【答案】(1)解:在甲超市购物所付的费用是:元,在乙超市购物所付的费用是:元;

当时,在甲超市购物所付的费用是:,

在乙超市购物所付的费用是:,

所以到乙超市购物优惠

(2)解:根据题意由得:,

解得:,

答:当时,两家超市所花实际钱数相同

【解析】【分析】(1)甲超市费用:利用300元+超出300元部分×0.8即得;乙超市费用:利用200元+超出200元部分×0.85即得;然后将x=400分别代入甲乙超市费用的代数式中计算即可.

(2)由甲超市费用=乙超市费用建立方程,求出x值即可.

3.根据绝对值定义,若有,则或,若,则,我们可以根据这样的结论,解一些简单的绝对值方程,例如:

解:方程可化为:

当时,则有:;所以 .

当时,则有:;所以 .

故,方程的解为或。

(1)解方程:

(2)已知,求的值;

(3)在(2)的条件下,若都是整数,则的最大值是________(直接写结果,不需要过程).

【答案】(1)解:方程可化为:或,

当时,则有,所以;

当时,则有,所以,

故方程的解为:或

(2)解:方程可化为:或,

当时,解得:,

当时,解得:,

∴或

(3)100

【解析】【解答】(3)∵或,且都是整数,

∴根据有理数乘法法则可知,当a=-10,b=-10时,取最大值,最大值为100.

【分析】(1)仿照题目中的方法,分别解方程和即可;(2)把

a+b看作是一个整体,利用题目中方法求出a+b的值,即可得到的值;(3)根据都是整数结合或,利用有理数乘法法则分析求解即可.

4.某县外出的农民工准备集体包车回家过春节,如果单独租用45座客车若干辆,刚好坐满;如果单独租用60座客车,可少租1辆,且余15个座位.

(1)求准备包车回家过春节的农民工人数;

(2)已知租用45座客车的租金为每辆车5000元,60座客车的租金为每辆车6000元,问租用哪种客车更合算?请说明理由.

【答案】(1)解:设需单独租45座客车x辆,依题意得

45x=60(x-1)-15

解这个方程,得 x=5

则45x=45×5=225

答:准备回家过春节的农民工有225人

(2)解:由(1)知,需租5辆45座客车或4辆60座客车;

而租5辆45座客车的费用为 5×5000=25000(元),

租4辆60座客车的费用为4×6000=24000(元).

故,租4辆60座客车更合算

【解析】【分析】(1)设需单独租45座客车x辆,根据单独租用45座客车若干辆,刚好坐满;如果单独租用60座客车,可少租1辆,且余15个座位列出方程解出答案即可;(2)根据(1)知,需租5辆45座客车或4辆60座客车和租用45座客车的租金为每辆车5000元,60座客车的租金为每辆车6000元,求出答案即可。

5.某航空公司开展网络购机票优惠活动:凡购机票每张不超过2000元的一律八折优惠;超过2000元的,其中2000元按八折算,超过2000的部分按七折算.

(1)甲旅客购买了一张机票的原价为1500元,需付款________元;

(2)乙旅客购买了一张机票的原价为x(x>2000)元,需付款________元(用含x的代数式表示);

(3)丙旅客因出差购买了两张机票,第一张机票实际付款1440元,第二张机票享受了七折优惠,他査看了所买机票的原价,发现两张票共节约了910元,求丙旅客第二张机票的原价和实际付款各多少元?

【答案】(1)1200

(2)0.7x+200

(3)解:第一张机票的原价为1440÷0.8=1800(元).

设丙旅客第二张机票的原价为y元,则购买两种票实际付款(1800+y-910)元,

根据题意得:1440+0.7y+200=1800+y-910,

解得:y=2500,

∴1800+y-910-1440=1950.

答:丙旅客第二张机票的原价为2500元,实际付款1950元

【解析】【解答】解:(1)1500×0.8=1200(元).

故答案为:1200.(2)根据题意得:需付款=2000×0.8+(x-2000)×0.7=0.7x+200(元).故答案为:(0.7x+200).

【分析】(1)利用需付款=原价×0.8,即可求出结论;(2)根据需付款=2000×0.8+0.7×超出2000元部分,即可求出结论;(3)根据原价=需付款÷0.8可求出第一张机票的原价,设丙旅客第二张机票的原价为y元,则购买两种票实际付款(1800+y-910)元,根据(2)的结论,即可得出关于y的一元一次方程,解之即可得出结论.

6.某城市平均每天产生垃圾700 t,由甲、乙两家垃圾处理厂处理.已知甲厂每小时可处理垃圾55 t,费用为550元;乙厂每小时可处理垃圾45 t,费用为495元.

(1)如果甲、乙两厂同时处理该城市的垃圾,那么每天需几小时?

(2)如果该城市规定每天用于处理垃圾的费用不得高于7370元,那么至少安排甲厂处理几小时?

【答案】(1)解:设两厂同时处理每天需xh完成,

根据题意,得(55+45)x=700,解得x=7.

答:甲、乙两厂同时处理每天需7 h.

(2)解:设安排甲厂处理y h,

根据题意,得550y+495× ≤7370,

解得y≥6.

∴y的最小值为6.

答:至少安排甲厂处理6 h.

【解析】【分析】(1)设甲、乙两厂同时处理,每天需x小时,根据甲乙两厂同时处理垃圾每天需时=每天产生垃圾÷(甲厂每小时可处理垃圾量+乙厂每小时可处理垃圾量),列出