【精选】七年级上册一元一次方程专题练习(word版
- 格式:doc
- 大小:1.16 MB
- 文档页数:12
一、初一数学一元一次方程解答题压轴题精选(难)
1.下列图表是2017 年某校从参加中考体育测试的九年级学生中随机调查的10 名男生跑1000 米和 10 名女生跑 800米的成绩.
(1)按规定,女生跑 800 米的时间不超过 3'24"就可以得满分.该校九年级学生有 490 人,男生比女生少 70 人.请你根据上面成绩,估计该校女生中有多少人该项测试成绩得满分? (2)假如男生 1 号和男生 10 号被分在同组测试,请分析他俩在 400 米的环形跑道测试的过程中能否相遇。若能,求出发多长时间才能相遇;若不能,说明理由.
【答案】(1)解:设男生有x人,女生有(x+70)人,
由题意得:x+x+70=490,
解得:x=210,
则女生x+70=210+70=280(人).
故女生得满分人数: (人)
(2)解:不能;
假设经过x分钟后,1号与10号在1000米跑中能首次相遇,根据题意得:
解得
又∵
∴考生1号与10号不能相遇。
【解析】【分析】(1)通过男生、女生的人数关系列出方程,得出女生的人数;(2)根据题意表达出1号跟10号的速度,两位若相遇,相减的路程为400米,得出的时间为4.8, 但是4.8分钟大于3分钟,所以两位在测试过程中不会相遇。
2.元旦假期,甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市当日累计购物超出了300元以后,超出部分按原价8折优惠;在乙超市当日累计购物超出200元之后,超出部分按原价8.5折优惠.设某位顾客在元旦这天预计累计购物x元(其中x>300).
(1)当x=400时,顾客到哪家超市购物优惠.
(2)当x为何值时,顾客到这两家超市购物实际支付的钱数相同.
【答案】(1)解:在甲超市购物所付的费用是:元,在乙超市购物所付的费用是:元;
当时,在甲超市购物所付的费用是:,
在乙超市购物所付的费用是:,
所以到乙超市购物优惠
(2)解:根据题意由得:,
解得:,
答:当时,两家超市所花实际钱数相同
【解析】【分析】(1)甲超市费用:利用300元+超出300元部分×0.8即得;乙超市费用:利用200元+超出200元部分×0.85即得;然后将x=400分别代入甲乙超市费用的代数式中计算即可.
(2)由甲超市费用=乙超市费用建立方程,求出x值即可.
3.根据绝对值定义,若有,则或,若,则,我们可以根据这样的结论,解一些简单的绝对值方程,例如:
解:方程可化为:
或
当时,则有:;所以 .
当时,则有:;所以 .
故,方程的解为或。
(1)解方程:
(2)已知,求的值;
(3)在(2)的条件下,若都是整数,则的最大值是________(直接写结果,不需要过程).
【答案】(1)解:方程可化为:或,
当时,则有,所以;
当时,则有,所以,
故方程的解为:或
(2)解:方程可化为:或,
当时,解得:,
当时,解得:,
∴或
(3)100
【解析】【解答】(3)∵或,且都是整数,
∴根据有理数乘法法则可知,当a=-10,b=-10时,取最大值,最大值为100.
【分析】(1)仿照题目中的方法,分别解方程和即可;(2)把
a+b看作是一个整体,利用题目中方法求出a+b的值,即可得到的值;(3)根据都是整数结合或,利用有理数乘法法则分析求解即可.
4.某县外出的农民工准备集体包车回家过春节,如果单独租用45座客车若干辆,刚好坐满;如果单独租用60座客车,可少租1辆,且余15个座位.
(1)求准备包车回家过春节的农民工人数;
(2)已知租用45座客车的租金为每辆车5000元,60座客车的租金为每辆车6000元,问租用哪种客车更合算?请说明理由.
【答案】(1)解:设需单独租45座客车x辆,依题意得
45x=60(x-1)-15
解这个方程,得 x=5
则45x=45×5=225
答:准备回家过春节的农民工有225人
(2)解:由(1)知,需租5辆45座客车或4辆60座客车;
而租5辆45座客车的费用为 5×5000=25000(元),
租4辆60座客车的费用为4×6000=24000(元).
故,租4辆60座客车更合算
【解析】【分析】(1)设需单独租45座客车x辆,根据单独租用45座客车若干辆,刚好坐满;如果单独租用60座客车,可少租1辆,且余15个座位列出方程解出答案即可;(2)根据(1)知,需租5辆45座客车或4辆60座客车和租用45座客车的租金为每辆车5000元,60座客车的租金为每辆车6000元,求出答案即可。
5.某航空公司开展网络购机票优惠活动:凡购机票每张不超过2000元的一律八折优惠;超过2000元的,其中2000元按八折算,超过2000的部分按七折算.
(1)甲旅客购买了一张机票的原价为1500元,需付款________元;
(2)乙旅客购买了一张机票的原价为x(x>2000)元,需付款________元(用含x的代数式表示);
(3)丙旅客因出差购买了两张机票,第一张机票实际付款1440元,第二张机票享受了七折优惠,他査看了所买机票的原价,发现两张票共节约了910元,求丙旅客第二张机票的原价和实际付款各多少元?
【答案】(1)1200
(2)0.7x+200
(3)解:第一张机票的原价为1440÷0.8=1800(元).
设丙旅客第二张机票的原价为y元,则购买两种票实际付款(1800+y-910)元,
根据题意得:1440+0.7y+200=1800+y-910,
解得:y=2500,
∴1800+y-910-1440=1950.
答:丙旅客第二张机票的原价为2500元,实际付款1950元
【解析】【解答】解:(1)1500×0.8=1200(元).
故答案为:1200.(2)根据题意得:需付款=2000×0.8+(x-2000)×0.7=0.7x+200(元).故答案为:(0.7x+200).
【分析】(1)利用需付款=原价×0.8,即可求出结论;(2)根据需付款=2000×0.8+0.7×超出2000元部分,即可求出结论;(3)根据原价=需付款÷0.8可求出第一张机票的原价,设丙旅客第二张机票的原价为y元,则购买两种票实际付款(1800+y-910)元,根据(2)的结论,即可得出关于y的一元一次方程,解之即可得出结论.
6.某城市平均每天产生垃圾700 t,由甲、乙两家垃圾处理厂处理.已知甲厂每小时可处理垃圾55 t,费用为550元;乙厂每小时可处理垃圾45 t,费用为495元.
(1)如果甲、乙两厂同时处理该城市的垃圾,那么每天需几小时?
(2)如果该城市规定每天用于处理垃圾的费用不得高于7370元,那么至少安排甲厂处理几小时?
【答案】(1)解:设两厂同时处理每天需xh完成,
根据题意,得(55+45)x=700,解得x=7.
答:甲、乙两厂同时处理每天需7 h.
(2)解:设安排甲厂处理y h,
根据题意,得550y+495× ≤7370,
解得y≥6.
∴y的最小值为6.
答:至少安排甲厂处理6 h.
【解析】【分析】(1)设甲、乙两厂同时处理,每天需x小时,根据甲乙两厂同时处理垃圾每天需时=每天产生垃圾÷(甲厂每小时可处理垃圾量+乙厂每小时可处理垃圾量),列出