高等数学(空间解析几何)习题及解答
- 格式:doc
- 大小:2.06 MB
- 文档页数:99
8第八章空间解析几何答案第八章空间解析几何与向量代数§8.1向量及其线性运算1.填空题(1)点关于面对称的点为(),关于面对称的点为(),关于面对称的点为().(2)点关于轴对称的点为(),关于轴对称的点为(),关于轴对称的点为(),关于坐标原点对称的点为().2. 已知两点和,计算向量的模、方向余弦和方向角.解:因为,故,方向余弦为,,,方向角为,, .3. 在平面上,求与、、等距离的点.解:设该点为,则,即,解得,则该点为.4. 求平行于向量的单位向量的分解式.解:所求的向量有两个,一个与同向,一个与反向. 因为,所以.5. 已知点且向量在x轴、y轴和z轴上的投影分别为,求点的坐标.解:设点的坐标为,由题意可知,则,即点的坐标为.§8.2 数量积向量积1.若,求的模.解:所以.2.已知,证明:.证明:由,可得,可知,展开可得,即,故.3. 。
4.已知,,求与的夹角及在上的投影.解:,,. 因为,所以.5..§8.3 曲面及其方程1.填空题(1)将xOz坐标面上的抛物线绕轴旋转一周,所生成的旋转曲面的方程为(),绕轴旋转一周,所生成的旋转曲面的方程为().(2)以点为球心,且通过坐标原点的球面方程为().(3)将坐标面的圆绕轴旋转一周,所生成的旋转曲面的方程为(). 2.求与点与点之比为的动点的轨迹,并注明它是什么曲面.解:设动点为,由于,所以,解之,可得,即,所以所求的动点的轨迹为以点为心,半径为的球面.3§8.4 空间曲线及其方程1. 填空题(1)二元一次方程组在平面解析几何中表示的图形是(两相交直线的交点);它在空间解析几何中表示的图形是(两平面的交线,平行于轴且过点).(2)旋转抛物面在面上的投影为(),在面上的投影为(),在面上的投影为().2.求球面与平面的交线在面上的投影方程.解:将代入,得,因此投影方程为.4.分别求母线平行于轴、轴及轴且通过曲线的柱面方程.解:在中消去得,即为母线平行于轴且通过曲线的柱面方程.在中消去得,即为母线平行于轴且通过曲线的柱面方程.在中消去得,即为母线平行于轴且通过曲线的柱面方程.4.将下列曲线的一般方程化为参数方程:(1).解:将代入得,即. 令,,所求的参数方程为..§8.5 平面及其方程1. 填空题(1)一平面过点且平行于向量和,平面的点法式方程为(),平面的一般方程为(),平面的截距式方程(),平面的一个单位法向量为().(2)设直线的方程为,当()时,直线过原点;当()且(或有一个成立)时,直线平行于轴但不与轴相交;当()时,直线与轴相交;当()时,直线与轴重合.2.求过三点,和的平面方程.解:由平面的三点式方程知,所求的平面方程为=0,即.3.求过点且垂直于两平面和的平面方程.解:该平面的法向量为,平面的方程为,即.4.分别按下列条件求平面方程:(1)平行于平面且经过点;(2)通过轴和点;(3)求平行于轴,且经过两点和的平面方程.解:(1)平面的法向量是,可作为所求平面的法向量,因此所求平面的方程为,即.(2)所求平面的法向量即垂直于轴又垂直于向量,所以所求平面的法向量为,因此所求平面的方程为,即.(3)由于所求平面平行于轴,故设所求平面方程为. 将点和分别代入得及,解得及. 因此所得方程为,即.§8.6 空间直线及其方程1. 填空题(1)直线和平面的关系是(平面与直线互相垂直).(2)过点且与直线平行的直线的方程是().(3)直线与直线的夹角为().2.化直线为对称式方程和参数方程.解:直线的方向向量为. 取,代入直线方程可得,. 所以直线的对称式方程为.令,所给直线的参数方程为.3.求过点且与直线垂直的平面方程.解:直线的方向向量可作为所求平面的法向量,即.所求平面的方程为,即.4. 确定的值,使直线与平面平行,并求直线与平面之间的距离.解:直线的方向向量,要使直线与平面平行,只要(其中为平面的法向量),即,解得. 令,代入直线的方程可得,,直线与平面之间的距离.第八章空间解析几何与向量代数综合练习1.填空题:(1)已知,,且与夹角为,则().(2)若向量,平行,则().(3)已知向量的模为,且与轴的夹角为,与y轴的夹角为,与z 轴的夹角为锐角,则=().(4)曲线 (a、b为常数)在xOy平面上投影曲线是().(5)xOy平面上曲线绕x轴旋转一周所得旋转曲面方程是().(6)直线与平面的夹角的正弦().(7)方程所表示的曲面名称为(双曲抛物面).(8)与两直线及都平行,且过原点的平面方程是().(9)已知动点到平面的距离与点到点的距离相等,则点的轨迹方程为().(10)与两平面和等距离的平面方程为().2. 设,,求向量,使得成立,这样的有多少个,求其中长度最短的.解:设,则,则,因此这样的,有无穷个.由于,因此,当时,即长度最短.3.已知点和点,试在轴上求一点,使得的面积最小.解:设,则,,,故的面积为,显然,当时,的面积最小,为,所求点为.4. 求曲线在各坐标平面上的投影曲线方程.解:在平面投影为;在平面投影为;在zOx平面投影为.5.求原点关于平面的对称点的坐标.解:过原点作垂直于平面的直线,该直线的方向向量等于平面的法向量,所求直线的对称式方程为,即为其参数方程. 将此参数方程代入平面,有,解得,即直线与平面的交点为. 设所求的对称点为,则,,,即所求的对称点为.6.求直线在平面上的投影直线绕轴线转一周所成曲面的方程.解:过作垂直于平面的平面,所求的直线在平面上的投影就是平面和的交线. 平面的法向量为:,则过点的平面的方程为:,即. 所以投影线为. 将投影线表示为以为参数的形式:,则绕轴的旋转面的方程为,即.7.求球心在直线上,且过点和点的球面方程.解:设球心为,则,即.又因为球心在直线上,直线的参数方程为,将直线的参数方程代入,可得,球心坐标为,所求球面方程为.8.已知两条直线的方程是,,求过且平行于的平面方程.解:因为所求平面过,所以点在平面上. 由于平面的法向量垂直于两直线的方向向量,因此平面的法向量为. 因此所求平面的方程为,即.9. 在过直线的所有平面中,求和原点距离最大的平面.解:设平面束方程为,即,平面与原点的距离为要使平面与原点的距离最大,只要,即该平面方程为.10. 设两个平面的方程为和(1)求两个平面的夹角. (2)求两个平面的角平分面方程.(3)求通过两个平面的交线,且和坐标面垂直的平面方程.解:(1)两个平面的法向量为和,设两个平面的夹角为,则,所以.(2)因为角平分面上任意一点到两个平面的距离相等,由点到平面的距离公式,可得,即,所求的角平分面方程为或.(3)设通过两个平面的交线的平面方程为,即,由于该平面垂直于坐标面,所以,可得,因此所求的平面方程为.。
大学解析几何考试题及答案详解一、选择题1. 下列哪个选项不是平面直角坐标系中的点的坐标表示?A. (x, y)B. (y, x)C. (-3, 4)D. (2, -5)答案:B详解:在平面直角坐标系中,点的坐标表示为有序数对 (x, y),其中 x 表示横坐标,y 表示纵坐标。
选项 B 中的表示 (y, x) 与常规的坐标表示不符,因此不是正确的坐标表示。
2. 已知点 A(2, 3) 和点 B(5, 1),线段 AB 的中点 M 的坐标是多少?A. (3, 2)B. (4, 2)C. (3.5, 2)D. (2, 1)答案:B详解:线段的中点坐标可以通过求两个端点坐标的平均值得到。
对于点 A(2, 3) 和点 B(5, 1),中点 M 的坐标为:M(x, y) = ((x1 + x2) / 2, (y1 + y2) / 2) = ((2 + 5) / 2,(3 + 1) / 2) = (3.5, 2)因此,正确答案是 C,但选项 B 也正确,这里可能是题目选项设置的错误。
二、填空题1. 如果一条直线的斜率 k = 2,且通过点 (1, 3),那么这条直线的方程是 ____________。
答案:y - 3 = 2(x - 1)详解:已知直线的斜率 k 和一个点 (x1, y1),可以使用点斜式方程 y - y1 = k(x - x1) 来表示直线。
将已知的斜率 k = 2 和点 (1, 3) 代入,得到直线方程 y - 3 = 2(x - 1)。
2. 椭圆的标准方程是 ________,其中 a 和 b 是椭圆的长半轴和短半轴。
答案:(x^2 / a^2) + (y^2 / b^2) = 1详解:椭圆的标准方程是以椭圆的中心为原点的坐标系中,椭圆的长半轴为 a,短半轴为 b 时的方程。
这个方程描述了所有到椭圆两个焦点距离之和等于常数 2a 的点的集合。
三、解答题1. 已知直线 l1: y = x + 1 与直线 l2: y = -2x + 6 相交于点 P。
一、计算题与证明题1.已知1||=a , 4||=b , 5||=c , 并且0=++c b a . 计算a c c b b a ⨯+⨯+⨯. 解:因为1||=a , 4||=b , 5||=c , 并且0=++c b a 所以a 与b 同向,且b a +与c 反向 因此0=⨯b a ,0=⨯c b ,0=⨯a c 所以0=⨯+⨯+⨯a c c b b a2.已知3||=⋅b a , 4||=⨯b a , 求||||b a ⋅. 解:3cos ||=⋅=⋅θb a b a (1)4sin ||=⋅=⨯θb a b a (2)()222)1(+得()252=⋅b a所以 5=⋅b a4.已知向量x 与)2,5,1(,-a 共线, 且满足3=⋅x a, 求向量x 的坐标. 解:设x 的坐标为()z y x ,,,又()2,5,1-=a则325=-+=⋅z y x x a (1) 又x 与a 共线,则0=⨯a x 即()()()05252512125251=-+++--=+---=-k y x j x z i z y ky x j y x i z y z yx kj i所以()()()05252222=-+++--y x x z z y即010*********22=-++++xy xz yz z y x (2) 又x 与a 共线,x 与a 夹角为0或π()30325110cos 222222222⋅++=-++⋅++⋅==z y x z y x ax整理得 103222=++z y x (3) 联立()()()321、、解出向量x 的坐标为⎪⎭⎫⎝⎛-51,21,1016.已知点)7,8,3(A , )3,2,1(--B 求线段AB 的中垂面的方程. 解:因为()7,8,3A ,)3,2,1(--BAB 中垂面上的点到B A 、的距离相等,设动点坐标为()z y x M ,,,则由MB MA =得()()()()()()222222321783++-++=-+-+-z y x z y x化简得027532=-++z y x这就是线段AB 的中垂面的方程。
空间解析几何习题答案空间解析几何习题答案在学习数学的过程中,解析几何是一个重要的分支。
它通过坐标系和代数方法来研究几何图形的性质和变换。
而空间解析几何则是解析几何的一个延伸,它研究的是三维空间中的几何图形。
在空间解析几何的学习过程中,我们经常会遇到一些习题,下面我将给出一些空间解析几何习题的解答。
习题一:已知直线L1过点A(1, 2, 3)和点B(4, 5, 6),直线L2过点C(7, 8, 9)且与直线L1垂直,求直线L2的方程。
解答:首先,我们可以求出直线L1的方向向量。
直线L1的方向向量可以通过两点的坐标差来得到,即(4-1, 5-2, 6-3),即(3, 3, 3)。
因为直线L2与直线L1垂直,所以直线L2的方向向量与直线L1的方向向量垂直,即两个向量的点积为0。
设直线L2的方向向量为(a, b, c),则有3a + 3b + 3c = 0。
再代入直线L2过点C(7, 8, 9),得到7a + 8b + 9c = 0。
所以直线L2的方程为7x + 8y + 9z = d,其中d为常数。
习题二:已知点A(1, 2, 3)和点B(4, 5, 6),求直线AB的方程。
解答:直线AB的方向向量可以通过两点的坐标差来得到,即(4-1, 5-2, 6-3),即(3, 3, 3)。
设直线AB的方程为x = 1 + 3t,y = 2 + 3t,z = 3 + 3t,其中t为参数。
习题三:已知平面P过点A(1, 2, 3)、点B(4, 5, 6)和点C(7, 8, 9),求平面P的方程。
解答:平面P的法向量可以通过两个方向向量的叉积来得到。
设向量AB为(4-1, 5-2, 6-3),即(3, 3, 3),向量AC为(7-1, 8-2, 9-3),即(6, 6, 6)。
则平面P的法向量为(3, 3, 3) × (6, 6, 6),即(0, 0, 0)。
因为法向量为零向量,所以平面P的方程为0x + 0y + 0z = d,即0 = d,其中d为常数。
高等数学( B )—向量代数与空间解析几何练习题及解答1、 已知 M 11,2,3 , M 2 0,1, 2 ,M 1M 2 的坐标式? M 1M 2 ?与 M 1M 2 平行的单位向量?方向余弦?[解]:1) M 1M 20 1,1 2, 2 31,1,5M 1M 2 21 222)1 5 273) cosx 2 x 1 1,cosy 2 y 1 1,cosz 2 z 1 5M 1M 227 M 1M 227M 1M 2274)与 M 1M 2 平行的单位向量为:cos ,cos ,cos1 , 1 , 5 。
272727x 1y z 1 x y 1z 2 2、 设直线n4与直线1平行,求 n,m 。
2m3[解 ] : s 12,n,4 , s 2 m,1,3 ,因为两直线平行,r m 1 n 1 p 1 2 n 4 4 3 所以 l 1 / /l 2s 1 / / s 2s 1s 2。
m 2n 2 p 2n, m2m 1 333Ax y 2z 1 与平面: 3x y z3垂直,求 A 。
、 已知平面:[解 ] : n 1A,1, 2 , n 2 3, 1,1 ,因为两平面垂直,所以12n 1 n 2 n 1 n 2 0 A 1 A 2 B 1B 2 C 1C 2 0 A 3 1 1 210 A14、 已知平面x 1 y z 1 : x By 3z 1 0 与直线4垂直,求 B , m 。
m6[ 解 ]: n 1,B, 3 , s m,4,6 ,因为垂直,所以有n/ / s n s 0m4 6 。
1BB2, m 235、 求由 a 1,2,3 , b 1,2,4 为邻边组成的平行四边形的面积。
[ 解] :由两向量叉积的几何意义知:以a ,b 为邻边组成的平行四边行的面积S a bi j k86, 43,222,7,4a b 123,因为124故 S a b22269 。
7426、求以A x1, y1, z1, B x2, y2, z2, C x3 , y3, z3为顶点的三角形面积。
空间解析几何参考答案练习一一1 D 2 B 3 D 4 C 5 B二1,2; 2,2; 3,1,1,1}3- 4, {}4,2,3-- 三, 222240A B a b λλ∙=+=+=得2λ=-; ()222b 226,15A B a b b a a b A B a λλλλλ⨯=⨯+⨯=-⨯⨯=-=-==-,解得,或 四222216913a b a b a b a b ±=+±∙=±=,;五()()()22220c 232a b a b c a b a c b c a b a c b c =++=+++∙+∙+∙=+∙+∙+∙ 32a b a c b c ∙+∙+∙=- 六 ()()a 2a 33a 2a 5a b b b b b +⨯-=-⨯+⨯=-⨯,5a 5a sin4b b ∏-⨯==练习二 一1 C 2 C 3 D 4 A 5.C 6.C二 1,m=1,m=3 2, 1 三(1) 2113;340110ij k n i j k x y z ==+-+--=-所求平面方程为(2) 11123;30211ij k n i j k x y z =-=-++--=所求平面方程为2;(3) 10024;20542i j kn j k y z ==++=-所求平面方程为;(4),,2,2x y z A A x y z ++==++=设所求平面方程为则有所求平面方程为 ;(5),333396;20310i j k n i j k y z =-=---=所求平面方程为x-3;(6) 2,A 8A x y z A ++=-设所求平面方程为8则有其在X 、Y 、Z 轴截距分别为-, 31,18,12,21202616A A A x y z ⨯==±++±=-故有解得,所求平面方程为8 ; 四()222000000113,,,,3,449122x y z M x y z t AM t t t --+====++=设球心则由得 ()()()()()2222,3,10,31,5,2319M M x y z ±----+-++=得t=1,球心或则球为()()222159y z ++++=或x五(1)直线,平面(2)圆,圆柱面(3)双曲线,双曲柱面(4)抛物线,抛物柱面(5)原点,z 轴练习三一1 B 2 D 3 D 4 C 5 B 6B二,1.24231x y z --==- ;2. 124213x y z -+==--- 三, ()11143,1,0,0213i j ks i j k ==----点在直线上,故对称式方程为1414133x t x y z y t z t =-+⎧+⎪=-⎨--⎪=-⎩==参数方程为 四()12,2,124,7,6,9x t y t z t t =+=-=-+=---代入平面方程得故交点为()()()2,1,,27,5,92,1,10,3u u u u u u u ++-++∙==-设另一直线上点由得()7691,8,6,186x y z s +-+=-==-所求直线为 五()()223220,2312220x y y z x y z λλλλ--+-+=+---+=设经过直线的平面为即242403140,1,220x y z y z λλλ-+-=⎧--==-⎨+-=⎩由两平面垂直,得故所求直线为 自测题 一 1,2;3.0x y z -+=;3,20y z x +=⎧⎨=⎩; 4,210y z x ⎧+=⎨=⎩;5,3λ=-二,1 C 2 D 3 B 4 A 三,1,1293110x y z -++==--;2,23,231x y z x y z +-=--= 3,sin cosx t y t z ⎧=⎪=⎨⎪=⎩;42 ;5,40x y z ++-=。
空间解析几何与矢量代数小练习一填空题 5 ’x9=45 分1、平行于向量a(6,7, 6) 的单位向量为______________.2、设已知两点M1( 4, 2 ,1)和 M 2 (3,0,2) ,计算向量M1M2的模_________________,方向余弦 _________________和方向角 _________________3、以点 (1,3,-2) 为球心,且通过坐标原点的球面方程为__________________.4、方程x2 y 2 z 2 2x 4 y 2z 0 表示______________曲面.5、方程x2 y2 z 表示______________曲面.6、x2 y2 z2 表示 ______________曲面 .7、在空间解析几何中y x2 表示 ______________图形 .二计算题11 ’x5=55 分1、求过点 (3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程.2、求平行于x 轴且过两点 (4,0,-2)和(5,1,7)的平面方程.3、求过点 (1,2,3) 且平行于直线xy 3z 1的直线方程 .2 1 54、求过点 (2,0,-3)x 2 y 4z 7 0且与直线5 y 2z 1垂直的平面方3x 05、已知:OA i 3k ,OB j 3k ,求OAB 的面积。
1参考答案一 填空题1、6 ,7 ,611 11 112、 M 1 M 2 =2, cos1,cos2,cos1 ,2 ,3 ,2223433、 ( x 1) 2( y3) 2 ( z2) 2144、以 (1,-2,-1) 为球心 , 半径为6 的球面5、旋转抛物面6、 圆锥面7、 抛物柱面二 计算题1、 3x 7y 5 z 4 0 2 、 9 y z 2 0 3、x 1y 2 z34、 16x 14y 11z 65 02155 S1OA OB 19222。
第4章 向量代数与空间解析几何习题解答习题一、计算题与证明题1.已知1||=a , 4||=b , 5||=c , 并且0=++c b a . 计算a c c b b a ⨯+⨯+⨯. 解:因为1||=a , 4||=b , 5||=c , 并且0=++c b a 所以a 与b 同向,且b a +与c 反向 因此0=⨯b a ,0=⨯c b ,0=⨯a c 所以0=⨯+⨯+⨯a c c b b a2.已知3||=⋅b a , 4||=⨯b a , 求||||b a ⋅. 解:3cos ||=⋅=⋅θb a b a (1)4sin ||=⋅=⨯θb a b a (2)()222)1(+得()252=⋅b a所以 5=⋅b a3.设力k j i F 532++-=作用在点)1,6,3(A , 求力F 对点)2,7,1(,-B 的力矩的大小. 解:因为()1,6,3A ,()2,7,1-B 所以()31,2--=力矩()()k j i k j i F AB M 53232++-⨯-+-=⨯=kj i kj i kj i 41614321252325331532312-+=--+-----=---=所以,力矩的大小为()13641614222=-++=M4.已知向量x 与)2,5,1(,-a 共线, 且满足3=⋅x a ρρ, 求向量x 的坐标. 解:设x 的坐标为()z y x ,,,又()2,5,1-=a则325=-+=⋅z y x x a (1)又x 与a 共线,则0=⨯a x 即()()()05252512125251=-+++--=+---=-k y x j x z i z y ky x j y x i z y z yx kj i所以()()()05252222=-+++--y x x z z y即010*********22=-++++xy xz yz z y x (2) 又x 与a 共线,x 与a 夹角为0或π()30325110cos 222222222⋅++=-++⋅++⋅==z y x z y x ax整理得 103222=++z y x (3) 联立()()()321、、解出向量x 的坐标为⎪⎭⎫⎝⎛-51,21,101 5.用向量方法证明, 若一个四边形的对角线互相平分, 则该四边形为平行四边形.证明:如图所示,因为平行四边形ABCD 的对角线 互相平分,则有==,由矢量合成的三角形法则有+=+=+=+=所以CD BA =即BA 平行且等于CD四边形ABCD 是平行四边形6.已知点)7,8,3(A , )3,2,1(--B 求线段AB 的中垂面的方程. 解:因为()7,8,3A ,)3,2,1(--BAB 中垂面上的点到B A 、的距离相等,设动点坐标为()z y x M ,,,则由MB MA =得()()()()()()222222321783++-++=-+-+-z y x z y x化简得027532=-++z y x这就是线段AB 的中垂面的方程。
一、计算题与证明题1.已知, , , 并且. 计算.1||=a 4||=b 5||=c 0=++c b a a c c b b a ⨯+⨯+⨯解:因为, , , 并且1||=a 4||=b 5||=c 0=++c b a 所以与同向,且与反向a b b a +c 因此,,0=⨯b a 0=⨯c b 0=⨯a c 所以0=⨯+⨯+⨯a c c b b a 2.已知, , 求.3||=⋅b a 4||=⨯b a ||||b a ⋅解:(1)3cos ||=⋅=⋅θb a b a(2)4sin ||=⋅=⨯θb a b a 得()222)1(+()252=⋅b a 所以5=⋅b a 4.已知向量与共线, 且满足, 求向量的坐标.x )2,5,1(,-a 3=⋅x ax 解:设的坐标为,又x ()z y x ,,()2,5,1-=a 则 (1)325=-+=⋅z y x x a 又与共线,则x a 0=⨯a x 即()()()05252512125251=-+++--=+---=-k y x j x z i z y kyx j y x i z y z y x kj i 所以()()()05252222=-+++--y x x z z y 即 (2)010*********22=-++++xy xz yz z y x 又与共线,与夹角为或x a x a 0π()30325110cos 222222222⋅++=-++⋅++⋅==z y x z y x ax 整理得(3)103222=++z y x 联立解出向量的坐标为()()()321、、x ⎪⎭⎫⎝⎛-51,21,1016.已知点, 求线段的中垂面的方程.)7,8,3(A )3,2,1(--B AB 解:因为,()7,8,3A )3,2,1(--B 中垂面上的点到的距离相等,设动点坐标为,则由得AB B A 、()z y x M ,,MB MA =()()()()()()222222321783++-++=-+-+-z y x z y x 化简得027532=-++z y x 这就是线段的中垂面的方程。
军教院第八章空间解析几何测试题一、填空题(共7题,2分/空,共20分)1. 四点O(0,0,0) , A(1,0,0) , B(0,1,1), C(0,0,1)组成的四面体的体积是2. ____________________________________________________________ 已知向量 a (1,1,1), b (1,2,3), c (0,0,1),则(a b) c =__(-2,-1,0) _________________3. ------------------------------------------------------------------------------- 点(1,0,1)到直线3x X z y 0的距离是一晋 ---------------------------------------- 4•点(1,0,2)到平面3x y 2z 1的距离是3皿_75.曲线C: 0对xoy坐标面的射影柱面是对yoz坐标面的射影柱面是—(z 1)2 y2 z 0 ________________ ,对xoz坐标面的射影柱面是____ z x 1 0 _____________ .26.曲线C: x y绕x轴旋转后产生的曲面方程是x4 4(y2 z2) ,曲线z 0 —C绕y轴旋转后产生的曲面方程是_x2 z2 2y ______________________ .2 2 27.椭球面—— 1的体积是??????9 4 25 —二、计算题(共4题,第1题10分,第2题15分,第3题20分,第4题10分, 共55分)1.过点P(a,b,c)作3个坐标平面的射影点,求过这3个射影点的平面方程.这里a,b,c是3个非零实数.解:设点P(a,b, c)在平面z 0上的射影点为M1(a,b,0),在平面x 0上的射影ujujmr f点为M2(0, a,b),在平面y 0上的射影点为M3(a,0, c),贝U M1M2 ( a,0,c),lULULUM1M3 (0, b,c)3.求曲线2y绕x 轴旋转产生的曲面方面1解:设皿1(为,丫1,乙)是母线x 22y上任意一点则过皿1(为』1, z ,)的纬圆方程是⑵由于 V 1 V 2(0,0, 2), V 1 V 2uuJuuuuuuuulr 阿皿2,川2)11和12间的距离d ----------------------V 1 v 2uuuuuir 于是 IVh , M,M 2 , uuuuuuM 側3所确定的平面方程是 即 bc(x a) ac(yb) abz 0 .2-已知空间两条直线'1::y0 o ,l 2:(1)证明11和12是异面直线;(2)求11和12间的距离;(3) 求公垂线方程.证明:(1)11的标准方程是-1片今,h 经过点艸1,方向向量 V 1 {1, 1,0} I 2的标准方程是,12经过点M 2(0,0, 2),方 向向量V 2{1,1,0},于uujuir(M 1M 2M V 2)0,所以11和12是异面直线。
大学解析几何考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项不是解析几何的研究对象?A. 平面曲线B. 空间曲线C. 空间曲面D. 质点运动答案:D2. 在平面直角坐标系中,点P(x, y)关于原点的对称点的坐标是:A. (-x, -y)B. (x, -y)C. (-x, y)D. (y, x)答案:A3. 如果直线l的方程为2x - 3y + 6 = 0,那么它的斜率k等于:A. 2/3B. -2/3C. 3/2D. -3/2答案:B4. 椭圆的标准方程是:A. (x/a)^2 + (y/b)^2 = 1B. (x/a)^2 - (y/b)^2 = 1C. (x/a)^2 + (y/b)^2 = 0D. (x/a)^2 - (y/b)^2 = 0答案:A5. 一个圆的圆心在原点,半径为1,那么它的方程是:A. x^2 + y^2 = 1B. x^2 + y^2 = 0C. x^2 + y^2 = 2D. x^2 + y^2 = -1答案:A6. 如果两条直线的方程分别为y = mx + b1和y = mx + b2,那么这两条直线:A. 相交B. 平行C. 重合D. 垂直答案:B7. 抛物线y^2 = 4ax的准线方程是:A. x = -aB. x = aC. y = -aD. y = a答案:A8. 双曲线x^2/a^2 - y^2/b^2 = 1的渐近线方程是:A. y = ±(b/a)xB. y = ±(a/b)xC. y = ±(a/b)xD. y = ±(b/a)x答案:D9. 点A(3, 4)关于直线y = x的对称点B的坐标是:A. (4, 3)B. (2, 3)C. (3, 2)D. (4, 5)答案:A10. 直线x = 2y + 3与圆x^2 + y^2 = 25相交于两点,这两点的距离是:A. 2√5B. 4√5C. 5√2D. 10答案:C二、填空题(每题4分,共20分)11. 在平面直角坐标系中,点P(2, -1)到原点的距离是_________。
1. 过点M o (1,1-,1)且垂直于平面01201=+++=+--z y x z y x 及的平面方程.39.02=+-z y3. 在平面02=--z y x 上找一点p ,使它与点),5,1,2()1,3,4(-)3,1,2(--及之间的距离相等.7.)51,1,57(.5.已知:→→-AB prj D C B A CD,则)2,3,3(),1,1,1(),7,1,5(),3,2,1(= ( )A .4B .1C .21D .2 7.设平面方程为0=-y x ,则其位置( )A .平行于x 轴B .平行于y 轴C .平行于z 轴D .过z 轴. 8.平面0372=++-z y x 与平面0153=-++z y x 的位置关系( ) A .平行 B .垂直 C .相交 D .重合 9.直线37423zy x =-+=-+与平面03224=---z y x 的位置关系( ) A .平行 B .垂直 C .斜交 D .直线在平面内 10.设点)0,1,0(-A 到直线⎩⎨⎧=-+=+-07201z x y 的距离为( )A .5B .61 C .51 D .81 5.D 7.D 8.B 9.A 10.A .3.当m=_____________时,532+-与m 23-+互相垂直.4.设++=2,22+-=,243+-=,则)(b a p r j c += .4. 过点),,(382-且垂直平面0232=--+z y x 直线方程为______________. 10.曲面方程为:44222=++z y x ,它是由曲线________绕_____________旋转而成的.3.34-=m ; 4.2919 9.332212--=+=-x y x ; 10.曲线1422=+z y 绕z 轴旋转而成.1.设{}{}{}0,2,1,3,1,1,1,3,2-=-=-=,则=⨯⨯)(( ) A .8 B .10 C .{}1,1,0-- D .{}21,1,23.若==-+=,则14//236( ) A .)4612(-+± B .)612(+± C .)412(-± D .)46(-± 4.若ϕ与,则3121321)2,1,2(),1,2,2(),1,1,1(M M M M M M M ( ) A .6π B .2π C .3π D .4π6.求平面062=-+-z y x 与平面052=-++z y x 的夹角( ) A .2π B .6π C .3π D .4π 8.设点⎩⎨⎧=-+-=+-+-04201)2,1,3(z y x z y x l M o ,直线,则M O 到l 的距离为( )A .223 B .553 C .453 D .229.直线夹角为与平面62241312=++-=-=-z y x z y x ( ) A .30o B .60o C .90oD .65arcsin1.D 3.A 4.C 6.C 8.A 9.D7.求与平面4362=+-z y x 平行平面,使点)8,2,3(为这两个平面公垂线中点. 3.确定k 值,使三个平面:328,1423,23=--=++=+-z y x z y x z y kx 通过同一条直线.5.求以向量i k k j j i +++,,为棱的平行六面体的体积.7.与平面0522=+++z y x ,且与三个坐标面所构成的四面体体积为1的平面方程_____________________.8.动点到点(0,0,5)的距离等于它到x 轴的距离的曲面方程为________________. 9.曲面方程:259916222=--z y x 则曲面名称为________________.10.曲线⎪⎩⎪⎨⎧-+-=--=2222)1()1(2y x z yx z 在y z 面上的投影方程______________.1.设32+-=,+=2,++-=,则与+是否平行__________.1.不平行7.33222±=++z y x ; 8.25102-=-z x ;9.双叶双曲面; 10.⎩⎨⎧==+--++02342222x z y z yz y练习题选参考答案1.两非零向量→a 、→b 垂直,则有0=⋅→→b a 或0Pr =→→a j b;平行则有0=⨯→→b a 或→→=b a λ或两向量对应坐标成比例。
专升本高等数学(一)-空间解析几何(总分:100.00,做题时间:90分钟)一、{{B}}选择题{{/B}}(总题数:16,分数:35.00)1.______∙ A.过原点,且垂直于x轴∙ B.过原点,且平行于x轴∙ C.不过原点,且垂直于x轴∙ D.不过原点,且平行于x轴(分数:2.00)A. √B.C.D.解析:[解析] 直线的方向向量为s={0,4,-3},x轴上的方向向量为i={1,0,0},由于0×1+4×0+(-3)×0=0,所以已知直线垂直于x轴.又原点(0,0,0)代入直线方程[*],等式成立,所以直线又过原点.(答案为A)2.平面π1:2x+3y+4z+4=0与平面π2:2x-3y+4z-4=0的位置关系是______∙ A.相交且垂直∙ B.相交但不重合,不垂直∙ C.平行∙ D.重合(分数:2.00)A.B. √C.D.解析:[解析] 依题意有,平面π1的法向量n1={2,3,4},平面π2的法向量n2={2,-3,4},因为n1与n2的对应分量不成比例,且2×2+3×(-3)+4×4=11≠0,所以给定两平面π1与π2相交但不重合,不垂直.(答案为B)3.平面π:x+2y-z+3=0与直线l______∙ A.互相垂直∙ B.互相平行但直线不在平面上∙ C.即不平行也不垂直∙ D.直线在平面上(分数:2.00)A.B.C.D. √解析:[解析] 平面π的法向量n={1,2,-1},直线l的方向向量s={3,-1,1},因为1×3+2×(-1)-1×1=0[*]n⊥s,即直线l与平面π平行.又直线l上取点M0(1,-1,2)代入平面π的方程,有1+2×(1)-2+3=0,即点M0在平面π上,则直线l在平面π上.(答案为D)4.过点M(0,2,-1),且与平面π:x-y+3z+4=0垂直的直线方程为______ A. B. C.D(分数:2.00)A. √B.C.D.解析:[解析] 依题意,已知平面π的法向量n={1,-1,3}即为所求直线l的方向向量,所以所求直线方程为[*],即为[*](答案为A)5.______∙ A.过原点,且垂直于y轴∙ B.过原点,且平行于y轴∙ C.不过原点,且垂直于y轴∙ D.不过原点,且平行于y轴(分数:2.00)A.B.C. √D.解析:6.平面π1:x+3y-2z+5=0与平面π2:2x+6y-4z-3=0的位置关系是______∙ A.相交且垂直∙ B.相交但不重合,不垂直∙ C.平行但不重合∙ D.重合(分数:2.00)A.B.C. √D.解析:7.平面π:2x-3y+5z+1=0与直线l______∙ A.互相垂直∙ B.互相平行但直线不在平面上∙ C.即不平行也不垂直∙ D.直线在平面上(分数:2.00)A.B. √C.D.解析:8.已知直线l1:;l2______∙ A.垂直∙ B.平行但不重合∙ C.重合∙ D.相交(分数:2.00)A. √B.C.D.解析:9.方程z=x2+y2表示的二次曲面是______∙ A.椭球面∙ B.柱面∙ C.圆锥面∙ D.抛物面(分数:2.00)A.B.C.D. √解析:[解析] 参看常用的二次曲面标准方程及相应图形表,可知,方程z=x2+y2表示旋转抛物面.(答案为D)10.方程x2+y2-z2=0表示的二次曲面是______∙ A.球面∙ B.旋转抛物面∙ C.圆锥面∙ D.圆柱面(分数:2.00)A.B.C. √D.解析:[解析] 参看常用的二次曲面标准方程及相应图形表,可知,方程x2+y2-z2=0表示正圆锥面.(答案为C)11.在空间直角坐标系中,方程x2-4(y-1)2=0表示______∙ A.两个平面∙ B.双曲柱面∙ C.椭圆柱面∙ D.圆柱面(分数:2.00)A. √B.C.D.解析:[解析] 方程x2-4(y-1)2=0中不含z,所以其方程为柱面方程.又由于x2-4(y-1)2=0[*]x=±2(y-1),即等价于x=2(y-1)与x=-2(y-1),亦即x-2y+2=0与x+2y-2=0,表示两个相交的平面.(答案为A).12.方程z=x2+2y2表示的二次曲面是______∙ A.椭球面∙ B.旋转抛物面∙ C.圆锥面∙ D.椭圆抛物面(分数:2.00)A.B.C.D. √解析:13.方程z2=x2+y2表示的二次曲面是______∙ A.椭球面∙ B.柱面∙ C.圆锥面∙ D.抛物面(分数:3.00)A.B.C. √D.解析:14.方程x2+4y2+9z2=9表示的二次曲面是______∙ A.球面∙ B.椭球面∙ C.圆锥面∙ D.圆柱面(分数:3.00)A.B. √C.D.解析:15.在空间直角坐标系中,表示圆柱面的方程是______∙ A.x2-4y2=0∙ B.x2+4y2=0∙ C.x2+4y2=z∙ D.4x2+4y2=1(分数:2.00)A.B.C.D. √解析:16.在空间直角坐标系中,方程x2-2y2=-1表示的二次曲面是______∙ A.两个平面∙ B.抛物柱面∙ C.双曲柱面∙ D.椭圆抛物面(分数:3.00)A.B.C. √D.解析:二、{{B}}填空题{{/B}}(总题数:16,分数:40.00)17.过点(1,0,0)且以向量n={2,-3,1}为法向量的平面方程为______.(分数:2.00)填空项1:__________________ (正确答案:2x-3y+z-2=0)解析:[解析] 因为有直线经过的已知点坐标和平面的法向量,用点法式平面方程解之得2(x-1)-3(y-0)+(z-0)=0,即2x-3y+z-2=0为所求平面的方程.18.过原点且与平面2x-y+3z+5=0平行的平面方程为______.(分数:2.00)填空项1:__________________ (正确答案:2x-y+3z=0)解析:[解析] 由两个平面平行的充分必要条件可知,已知平面的法向量{2,-1,3}就是所求平面的法向量.又所求平面过原点(0,0,0),由点法式平面方程有 2(x-0)-(y-0)+3(z-0)=0,即2x-y+3z=0为所求平面的方程.19.过点(1,2,0)且与向量a={-1,-3,2}垂直的平面方程为______.(分数:2.00)填空项1:__________________ (正确答案:x+3y-2z-7=0)解析:[解析] 依题意,已知向量就是所求平面方程的法向量,用点法式平面方程解之得-(x-1)-3(y-2)+2(z-0)=0,即x+3y-2z-7=0为所求平面的方程.20.过点A(1,3,-2)和B(1,0,-4)的直线方程为______.(分数:2.00)填空项1:__________________ (正确答案:[*])解析:[解析] 因为向量[*]=(0,-3,-2)就是所求直线的方向向量,用标准式直线方程解之得 [*],即为所求的直线方程.21.设平面π过点(1,0,-1)且与平面4x-y+2z-8=0平行,则平面π的方程为 1.(分数:2.00)填空项1:__________________ (正确答案:4x-y+2z-2=0)解析:22.点(1,-1,0)到平面x-2y+3z-2=0的距离为 1.(分数:2.00)填空项1:__________________ (正确答案:[*])解析:23.过x轴和点(2,-4,1)的平面方程为 1.(分数:2.00)填空项1:__________________ (正确答案:y+4z=0)解析:24.过点(1,-2,0)且与向量{1,-1,2}垂直的平面方程为 1.(分数:2.00)填空项1:__________________ (正确答案:x-y+2z-3=0)解析:25.在直角坐标系O-xyz中,xOz平面上的抛物线z=4x2绕z轴旋转一周所生成的曲面方程为______.(分数:2.00)填空项1:__________________ (正确答案:z=4(x2+y2))解析:[解析] 在xOz平面上的曲线[*]以Oz轴为旋转轴的旋转曲面方程为[*],于是可得z=4(x2+y2)为旋转曲面方程.26.空间直角坐标系中,方程y=x2表示的二次曲面是 1.(分数:2.00)填空项1:__________________ (正确答案:母线平行于Oz轴的抛物柱面)解析:[解析] 空间直角坐标系中,方程y=x2表示的二次曲面是母线平行于Oz轴的抛物柱面.27.空间直角坐标系中,方程y2+z2=4表示的二次曲面是 1.(分数:2.00)填空项1:__________________ (正确答案:以Ox轴为轴的圆柱面)解析:[解析] 空间直角坐标系中,方程y2+z2=4表示的二次曲面是以Ox轴为轴的圆柱面.28.球面方程为x2+y2+z2-2x+4y-6z=0,则球心为______,半径为______.(分数:2.00)填空项1:__________________ (正确答案:(1,-2,3),[*])解析:[解析] 用配方法,将球面方程变形为球面的标准方程(x2-2x+1)+(y2+4y+4)+(z2-6z+9)=1+4+9,即(x-1)2+(y+2)2+(z-3)2=[*],所以球心为(1,-2,3),半径R=[*]29.在直角坐标系O-xyz中,yOz平面上的抛物线z2=2y绕y轴旋转一周所生成的曲面方程为 1.(分数:4.00)填空项1:__________________ (正确答案:[*])解析:30.空间直角坐标系中,方程y2+4z2=4表示的二次曲面是 1.(分数:4.00)填空项1:__________________ (正确答案:椭圆柱面)解析:31.空间直角坐标系中,方程x2-z2=0表示的二次曲面是 1.(分数:4.00)填空项1:__________________ (正确答案:两个平面)解析:32.球心为点(1,2,3) 1.(分数:4.00)填空项1:__________________ (正确答案:(x-1)2+(y-2)2+(z-3)2=8)解析:三、{{B}}解答题{{/B}}(总题数:10,分数:25.00)33.求过点M0(1,-1,2)且垂直于直线l(分数:2.00)__________________________________________________________________________________________ 正确答案:(依题意,直线l的方向向量s={2,3,1}即为所求平面的法向量,又平面过点M0(1,-1,2),由平面的点法式方程可得2(x-1)+3(y+1)+(z-2)=0,即所求平面方程为2x+3y+z-1=0.)解析:34.求过两点A(1,1,1),B(0,1,-1)且垂直于平面x+y+z=0的平面方程.(分数:2.00)__________________________________________________________________________________________ 正确答案:(设所求平面的法向量为n={A,B,C},因所求平面通过点A(1,1,1),则平面方程为A(x-1)+B(y-1)+C(z-1)=0.又所求平面过点B(0,1,-1),则有A(0-1)+B(1-1)+C(-1-1)=0,即A+2C=0.由两平面垂直的充要条件,则有A+B+C=0.解方程组得A:B:C=2:-1:-1,即所求平面的法向量为{2,-1,-1},所求平面方程为2(x-1)-(y-1)-(z-1)=0,即2x-y-z=0.)解析:35.求过点A(1,-2,1),B(5,4,3)的直线方程.(分数:2.00)__________________________________________________________________________________________ 正确答案:(所求直线的方向向量[*],则[*]={(5-1),(4+2),(3-1)}={4,6,2},直线的标准式方程为[*].)解析:36.求过点M1(1,-1,-2),M2(-1,2,0),M3(1,3,1)的平面方程.(分数:2.00)__________________________________________________________________________________________ 正确答案:(设所求的平面方程为 Ax+By+Cz+D=0,将已知三点坐标代入方程,得 [*] 解得[*],所求的平面方程为[*],即为x+6y-8z-11=0.)解析:37.求过点M0(1,2,-3),与直线l(分数:2.00)__________________________________________________________________________________________ 正确答案:(设所求的直线方向向量为s,s∥l,平面π1的法向量为n1={1,1,-2},平面π2的法向量为n2={1,2,-1},则[*],得s={3,-1,1},所求的直线方程为[*].)解析:38.已知直线lπ过点M(2,1,-5)且与l垂直,求平面π的方程.(分数:3.00)__________________________________________________________________________________________ 正确答案:(直线l的方向向量s={3,2,-1}即为所求平面的法向量,平面π过点M(2,1,-5),所求平面方程为3(x-2)+2(y-1)-(z+5)=0,即3x+2y-z-13=0.)解析:39.求过点M0(2,1,3)且垂直于直线l(分数:3.00)__________________________________________________________________________________________ 正确答案:(直线l的方向向量{3,2,-1},为所求平面的法向量,又平面过点M0(2,1,3),由平面的点法式方程可得3(x-2)+2(y-1)-(z-3)=0,即所求平面方程为3x+2y-z-5=0.)解析:40.求过两点A(0,1,1),B(1,2,1)(分数:3.00)__________________________________________________________________________________________ 正确答案:(设所求平面的法向量为n={A,B,C},因平面过点A(0,1,1),则平面方程为A(x-0)+B(y-1)+C(z-1)=0.又平面过点B(1,2,1),则有A(1-0)+B(2-1)+C(1-1)=0,即A+B=0.由于n 与向量(1,-2,1)垂直,则有A-2B+C=0,解方程组得A:B:C=-1:1:3,即平面的法向量为{-1,1,3},所求平面方程为-(x-0)+(y-1)+3(z-1)=0,即x-y-3z+4=0.)解析:41.求过点A(1,3,-2),B(2,-4,3)的直线方程.(分数:3.00)__________________________________________________________________________________________ 正确答案:(所求直线的方向向量[*],则[*]={(2-1),(-4-3),(3+2)}={1,-7,5},直线的标准式方程为[*].)解析:42.求过点M0(1,-2,1)且与直线l(分数:3.00)__________________________________________________________________________________________ 正确答案:(由于所求直线与已知直线平行,所以已知直线的方向向量即为所求直线的方向向量.平面π1的法向量为n1={1,-1,2},平面π2的法向量为n2={4,1,-1},则[*],得s={-1,9,5},所求的直线方程为[*].)解析:。
空间解析几何课后习题解析第一章矢量与坐标§1.1 矢量的概念1.下列情形中的矢量终点各构成什么图形?(1)把空间中一切单位矢量归结到共同的始点;(2)把平行于某一平面的一切单位矢量归结到共同的始点;(3)把平行于某一直线的一切矢量归结到共同的始点;(4)把平行于某一直线的一切单位矢量归结到共同的始点.[解]:(1)单位球面;(2)单位圆(3)直线;(4)相距为2的两点2. 设点O是正六边形ABCDEF的中心,在矢量、OB、、OD、OE、OF、AB、BC、CD、DE、和中,哪些矢量是相等的?[解]:如图1-1,在正六边形ABCDEF中,相等的矢量对是:图1-1.和和和和和3. 设在平面上给了一个四边形ABCD,点K、L、M、N分别是边AB、BC、CD、DA的中点,求证:KL=NM. 当ABCD是空间四边形时,这等式是否也成立?[证明]:如图1-2,连结AC, 则在?BAC中,21AC. KL与方向相同;在?DAC中,21AC. NM与AC方向相同,从而KL=NM且KL与NM方向相同,所以KL=NM.4. 如图1-3,设ABCD-EFGH是一个平行六面体,在下列各对矢量中,找出相等的矢量和互为相反矢量的矢量:(1) 、; (2) 、; (3) 、;(4) AD、; (5) BE、.[解]:相等的矢量对是(2)、(3)和(5);互为反矢量的矢量对是(1)和(4)。
§1.2 矢量的加法1.要使下列各式成立,矢量ba,应满足什么条件?(1=+(2+=+(3-=+(4+=C(5=[解]:(1), -=+;(2),+=+(3≥且,-=+ (4),+=(5),≥-=-§1.3 数量乘矢量1 试解下列各题.⑴ 化简)()()()(→→→→-?+--?-b a y x b a y x .⑵ 已知→→→→-+=3212e e e a ,→→→→+-=321223e e e b ,求→→+b a ,→→-b a 和→→+b a 23.⑶ 从矢量方程组=-=+→→→→→→by x ay x 3243,解出矢量→x ,→y .解⑴→→→→→→→→→→→→→→-=+-+---+=-?+--?-ay b x b y a y b x a x b y a y b x a x b a y x b a y x 22)()()()(⑵ →→→→→→→→→→+=+-+-+=+3132132142232e e e e e e e e b a ,→→→→→→→→→→→-+-=+---+=-321321321342)223(2e e e e e e e e e b a ,→→→→→→→→→→→-+-=+---+=-3213213217103)223(2)2(323e e e e e e e e e b a . 2 已知四边形ABCD 中,→→→-=c a AB 2,→→→→-+=c b a CD 865,对角线→AC 、→BD 的中点分别为E 、F ,求→EF .解→→→→→→→→→→→-+=-+-+=+=c b a c a c b a AB CD EF 533)2(21)865(212121.3 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→→→-=b a CD ,证明:A 、B 、D 三点共线.证明∵→→→→→→→→→→=+=-++-=+=AB b a b a b a CD BC BD 5)(382∴→AB 与→BD 共线,又∵B 为公共点,从而A 、B 、D 三点共线.4 在四边形ABCD 中,→→→+=b a AB 2,→→→--=b a BC 4,→→→--=b a CD 35,证明ABCD 为梯形.证明∵→→→→→→→→→→→→→=--=-+--++=++=BC b a b a b a b a CD BC AB AD 2)4(2)35()4()2( ∴→AD ∥→BC ,∴ABCD 为梯形.5. 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线矢量, BM ,可以构成一个三角形.[证明]: )(21+=)(21BC BA BM +=)(21+=0)(21=+++++=++∴CB CA BC BA AC AB CN BM AL从而三中线矢量CN BM AL ,,构成一个三角形。
第七章空间解析几何与向量代数A一、1、平行于向量 a (6,7, 6) 的单位向量为______________.2、设已知两点M 1 (4, 2 ,1)和M 2(3,0,2) ,计算向量M1M2 的模,方向余弦和方向角.3、设m 3i 5j 8k ,n 2i 4j 7k , p 5i j 4k ,求向量 a 4m 3n p 在x 轴上的投影,及在y 轴上的分向量.二、1、设a3i j 2k ,b i 2j k ,求(1) a b及 a b;(2)( 2a) 3b及 a 2b (3) a、b的.夹角的余弦(3,1,3) ,求与 M1M 2,M 2 M 3 同时垂直的单位向量.2、知M 1(1, 1,2), M 2 (3,3,1), M3.3、设a (3,5, 2), b ( 2,1,4) ,问与满足 _________时, a b z轴三、1、以点(1,3,-2) 为球心,且通过坐标原点的球面方程为__________________.2、方程x2 y 2 z 2 2x 4 y 2z 0 表示______________曲面.3、1) 将xOy 坐标面上的y2 2x 绕x 轴旋转一周,生成的曲面方程为_______________ ,曲面名称为___________________.2) 将xOy 坐标面上的x2 y 2 2x 绕x 轴旋转一周,生成的曲面方程_____________,曲面名称为___________________.3) 将xOy 坐标面上的4x2 9 y 2 36 绕x 轴及y 轴旋转一周,生成的曲面方程为 _____________,曲面名称为_____________________.4)在平面解析几何中y x2 表示 ____________ 图形。
在空间解析几何中y x 2表示______________图形.5)画出下列方程所表示的曲面(1) z2 4( x2 y 2 )(2) z 4( x2 y 2 )四、x 2 y 21在平面解析几何中表示1、指出方程组4 9 ____________图形,在空间解y 3析几何中表示 ______________图形 .2、求球面 x 2y 2z 29 与平面x 的交线在 xOy 面上的投影方程 .z 13、求上半球 0za 2x 2 y 2 与圆柱体 x 2 y 2 ax (a 0) 的公共部分在xOy 面及 xOz 面上的投影 . 五、1、求过点 (3,0,-1) 且与平面 3x-7y+5z-12=0 平行的平面方程 .2、求过点 (1,1,-1),且平行于向量 a=(2,1,1)和 b=(1,-1,0) 的平面方程 .3、求平行于 xOz 面且过点 (2,-5,3) 的平面方程 .4、求平行于 x 轴且过两点 (4,0,-2) 和(5,1,7) 的平面方程 .六、1、求过点 (1,2,3)且平行于直线xy 3 z 1的直线方程 .21 52、求过点 (0,2,4)且与两平面 x2z 1 , y 3z 2 平行的直线方程 .3、求过点 (2,0,-3) 且与直线4、求过点 (3,1,-2)且通过直线x2 y 4z 7 03x 5 y 2z 1 垂直的平面方程 .x 4 y 3 z的平面方程 .521x y 3z 0 y z 1 0 的夹角 .5、求直线y z与平面 xx 06、求下列直线与直线、直线与平面的位置关系1) 直线2) 直线x 2y y z 7 与直线 x 1y 3 z ;2x z 7 2 1 1x2 y 2 z 3和平面 x+y+z=3.3 14 7、求点 (3,-1,2)x y z 1 0 的距离 .到直线2x y z 4B1、已知 a b c 0 ( a, b, c 为非零矢量),试证 : a b b c c a .2、 a b3, a b {1,1,1}, 求 (a, b) .3、已知和为两非零向量,问取何值时,向量模| a tb |最小?并证明此时 b (a tb) .4、求单位向量,使n a 且 n x 轴,其中 a (3,6,8) .5、求过轴,且与平面 2xy5z 0 的夹角为的平面方程 .36、求过点 M 1 (4,1,2) , M 2 (3,5, 1) ,且垂直于 6x 2y 3z 7 0的平面 .7、求过直线x 2y z 1 0x y z平行的平面 .2x y z 2 ,且与直线:1 128、求在平面 : xy z 1上,且与直线 y 1L :垂直相交的直线方程 .z19、设质量为 100kg 的物体从空间点 M 1 (3,1,8) ,移动到点 M 2 (1,4,2) ,计算重力所做的功(长度单位为) .10、求曲线y 2 z 2 2x在 xoy 坐标面上的投影曲线的方程,并指出原曲线是什么曲z 3 线?11、已知 OA i 3k , OB j 3k ,求 OAB 的面积12、 . 求直线2x 4 y z 0y z 1上的投影直线方程 .3x y 2z 9在平面 4xC1、设向量 a, b, c 有相同起点 , 且 a bc 0 ,其中0 , , ,不全为零 ,证明 : a, b,c 终点共线 .2、求过点 M 0 (1,2, 1) ,且与直线:x2 y 12相交成 角的直线方程 .2 1 1 33、过 ( 1,0,4) 且平行于平面 3x 4 yz 10 0 又与直线x 1y 3z相交的直线方112程 .4、求两直线:x1 y z与直线:xyz 2的最短距离 .0 1163 05、柱面的准线是xoy 面上的圆周(中心在原点,半径为1),母线平行于向量 g {1,1,1} ,求此柱面方程 .6、设向量 a,b 非零, b2, (a,b),求 lima xbax.3xx 2 y 7、求直线 L :z1( y 1) 绕 y 轴旋转一周所围成曲面方程 .2第七章 空间解析几何与向量代数习题答案A一、 1、6,7,611 11 112、M 1M 2=2, cos1, cos2,cos1 ,2 ,3 ,3222343、在 x 轴上的投影为 13,在 y 轴上的分量为 7j 二、 1、 1) a b 3 1 ( 1) 2 ( 2) ( 1) 3ij k a b 3125ij 7k1 21( 2) ( 2a) 3b6(a b) 18 , a 2b2( ab) 10i2 j 14k^ a b 3( 3) cos(a, b)a b2 212、 M 1M 2{ 2,4, 1}, M 2M 3{ 0, 2,2}i j ka M 1M 2M 2M 3 2 41 6i 4 j 4k0 2 2a 6, 4, 4a{17 17 }2 2 2 17即为所求单位向量。
高等数学课件与自学复习讲义第七章 空间解析几何 向量代数§1 空间直角坐标系一、 空间直角坐标系问在yz 平面上的点有什么特点? 答:x 坐标为0 二、 两点间的距离公式1. 求P 1(1, -1, 0), P 2(-1, 2, 3)之间的距离 解:22)03())1(2()11(P P 22221=-+--+--=2. 在xy 上找一点,使它的x 坐标为1,且与点(1, -2, 2)和点(2, -1, -4)等距解:由题意设此点的坐标为(1, y, 0)得方程z ,5y 18y 2y 8y 4y )z 4()y 1()12()z 2()y 2()11(22222222==++=++--+--+-=-+--+-所以此点坐标为(1, 5, 0)§2 曲面曲线的方程一、坐标面的方程,与坐标面平行的平面方程 1. 下面方程各代表什么曲面?(1)x=b: 过点(b, 0, 0)且平行于yz 平面的方程 (2)y=0: xz 平面(3)y=c: 过点(0, c, 0)且平行于xz 平面的方程 二、球心在点P 0(x 0, y 0, z 0),半径为R 的圆 1. 方程x 2+y 2+z 2-2x+2y-z+3=0是否表示球面? 解:方程配方得43)21z ()1y ()1x (222-=-+++-无实数解,因而不表示球面。
2. 若方程x 2+y 2+z 2-4x+y=0是球面,求球心与半径 解:方程配方得2222)217(417z )21y ()2x (==+++-,所以方程球心为(2, 21, 0), 半径为2173. 求出下列方程所表示的球面的球心坐标与半径,x 2+y 2+z 2+4x-2y+z+45=0解:配方得222224)21z ()1y ()2x (==++-++,所以方程球心为(-2, 1, -21),半径为2三、 柱面方程 1. 做方程y=x 2的图形 解:此题为抛物柱面,缺z2. 方程14z y 22=+表示什么曲面?(测验题)解:平行于x 轴椭圆柱面3. 下列方程表示什么曲面,并作图. x 2+y 2=2x 解:配方得 (x-1)2+y 2=1即圆心在(1, 0, 0)点上的圆柱面4. y 2=1解:y=±1,相互平行的平面5. x 2+y 2+z 2=0 解:原点O 四、空间曲线的方程1. 问⎩⎨⎧==+az R y x 222表示什么曲线?解:x 2+y 2=R 2表示圆柱面,它的母线平行于z 轴,而z=a 表示平行于xy 坐标面的平面,因而它们的交线是圆。
空间解析几何复习题(答案)1.已知1||=a , 4||=b , 5||=c , 并且0=++c b a . 计算a c c b b a ⨯+⨯+⨯. 解:因为1||=a , 4||=b , 5||=c , 并且0=++c b a 所以a 与b 同向,且b a +与c 反向 因此0=⨯b a ,0=⨯c b ,0=⨯a c 所以0=⨯+⨯+⨯a c c b b a2.已知3||=⋅b a , 4||=⨯b a , 求||||b a ⋅. 解:3cos ||=⋅=⋅θb a b a (1)4sin ||=⋅=⨯θb a b a (2)()222)1(+得()252=⋅b a所以 5=⋅b a3.已知向量x 与)2,5,1(,-a 共线, 且满足3=⋅x a, 求向量x 的坐标. 解:设x 的坐标为()z y x ,,,又()2,5,1-=a则325=-+=⋅z y x x a (1) 又x 与a 共线,则0=⨯a x 即()()()05252512125251=-+++--=+---=-k y x j x z i z y kyx j y x i z y z y x kj i所以()()()05252222=-+++--y x x z z y即010*********22=-++++xy xz yz z y x (2) 又x 与a 共线,x 与a 夹角为0或π()30325110cos 222222222⋅++=-++⋅++⋅==z y x z y x ax整理得 103222=++z y x (3)联立()()()321、、解出向量x 的坐标为⎪⎭⎫⎝⎛-51,21,101 4.向量a , b , c 具有相同的模, 且两两所成的角相等, 若a , b 的坐标分别为)1,1,0()0,1,1(和, 求向量c 的坐标.解:r c b a ===且它们两两所成的角相等,设为θ 则有1101101=⨯+⨯+⨯=⋅b a 则21cos rb a b a =⋅⋅=θ 设向量c 的坐标为()z y x ,,则11cos 0112=⋅⋅=⋅=+=⋅+⋅+⋅=⋅rr r b a y x z y x c a ϑ (1) 11cos 1102=⋅⋅=⋅=+=⋅+⋅+⋅=⋅r r r c b z y z y x c b ϑ (2) 2011222222=++==++=r z y x c所以2222=++z y x (3)联立(1)、(2)、(3)求出⎪⎩⎪⎨⎧===101z y x 或⎪⎪⎪⎩⎪⎪⎪⎨⎧-==-=313431z y x所以向量c 的坐标为()1,0,1或⎪⎭⎫ ⎝⎛--31,34,315.已知点)1,6,3(A , )1,4,2(-B , )3,2,0(-C , )3,0,2(--D , (1)求以AB , AC , AD 为邻边组成的平行六面体的体积. (2) 求三棱锥BCD A -的体积. (3) 求BCD ∆的面积.(4) 求点A 到平面BCD 的距离.解:因为()103,,A ,()1,4,2-B ,()3,2,0-C ,()3,0,2--D 所以()0,10,1--=()2,8,3--=AC()4,6,5---=(1)(),,是以它们为邻边的平行六面体的体积()17612120001003465283101=+--++---------=V (2)由立体几何中知道,四面体ABCD (三棱锥BCD A -)的体积3881766161=⨯==V V T(3)因为()222,,-=,()444--=,,k j i kj iBD BC 01616444222+--=---=⨯()()216161622=-+-=,这是平行四边形BCED 的面积因此S S BCD 21=∆□BCED 2821621=⨯= (4)设点A 到平面BCD 的距离为H ,由立体几何使得三棱锥BCD A -的体积H S V BCD T ⋅=∆31所以22112112838833==⋅==∆BCDT S V H 6.求经过点)1,2,3(A 和)3,2,1(--B 且与坐标平面xOz 垂直的平面的方程. 解:与xoy 平面垂直的平面平行于y 轴,方程为0=++D Cz Ax (1)把点()123,,A 和点()321--,,B 代入上式得03=++D C A (2)03=+--D C A (3)由(2),(3)得2D A -=,2DC =代入(1)得022=++-D z Dx D 消去D 得所求的平面方程为02=--z x7.求到两平面0623:=-+-z y x α和1152:=+-+z y x β距离相等的点的轨迹方程. 解;设动点为()z y x M ,,,由点到平面的距离公式得()()()2222221025101025213623-++-+-+-=+-+-+-z y x z y z所以()10102512914623+-+-±=-+-z y x z y x8.已知原点到平面α的距离为120, 且α在三个坐标轴上的截距之比为5:6:2-, 求α 的方程.解:设截距的比例系数为k ,则该平面的截距式方程为1562=++-kz k y k x 化成一般式为0306515=-++-k z y x 又因点()0,0,0O 到平面α的距离为120,则有()120651530222=++--k求出2864±=k所以,所求平面方程为028********=±++-z y x9.若点)1,0,2(-A 在平面α上的投影为)1,5,2(-B , 求平面α的方程. 解:依题意,设平面的法矢为()2,5,4-=n 代入平面的点法式方程为()()()0125524=----+z y x整理得所求平面方程为035254=+--z y x10.已知两平面02467:=--+z y mx α与平面0191132:=-+-z my x β相互垂直,求m 的值.解:两平面的法矢分别为()6,1,1--=m n ,()11,3,22m n -=,由1n ⊥2n ,得066212=--m m求出1966-=m 11.已知四点)0,0,0(A , )3,5,2(,-B , )2,1,0(-C , )7,0,2(D , 求三棱锥ABC D -中ABC面上的高.解:已知四点()()()()7,0,2,2,1,0,3,5,2,0,0,0D C B A --,则()()()9,1,2,4,5,0,7,0,2--=--=--=DC DB DA为邻边构成的平行六面体的体积为()912450702,,-------==V()[]80700090++--++-=()87090-+-=28=由立体几何可知,三棱锥ABC D -的体积为314286161=⨯==-V V ABC D设D 到平面ABC 的高为H则有 ABC ABC D S H V ∆-⋅=31所以 ABCABCD S V H ∆-=3又()()2,1,0,3,5,2-==k j i kj i 24721352++=--=⨯所以,692124721222=++==∆S ABC 因此,696928692869213143==⨯=H 12.已知点A 在z 轴上且到平面014724:=+--z y x α的距离为7, 求点A 的坐标. 解:A 在z 轴上,故设A 的坐标为()200,,,由点到平面的距离公式,得()()7724147222=-+-++-z所以69147±=+-z 则692±=z那么A 点的坐标为()692,0,0±A13.已知点.A 在z 轴上且到点)1,2,0(-B 与到平面9326:=+-z y x α的距离相等, 求点A 的坐标。
空间解析几何练习2解答1. 求过点M 0(2, 9, -6)且与连接坐标原点及点M 0的线段OM 0垂直的平面方程. 解 所求平面的法线向量为n =(2, 9, -6), 所求平面的方程为2(x -2)+9(y -9)-6(z -6)=0, 即2x +9y -6z -121=0.2. 求点(1, 2, 1)到平面x +2y +2z -10=0的距离.解 点(1, 2, 1)到平面x +2y +2z -10=0的距离为1221|1012221|222=++-⨯+⨯+=d . 3. 求过点(2, 0, -3)且与直线⎩⎨⎧=+-+=-+-012530742z y x z y x 垂直的平面方程. 解 所求平面的法线向量n 可取为直线⎩⎨⎧=+-+=-+-012530742z y x z y x 的方向向量, 即 k j i k j i n 111416253421)2 ,5 ,3()4 ,2 ,1(++-=--=-⨯-=. 所平面的方程为-16(x -2)+14(y -0)+11(z +3)=0, 即16x -14y -11z -65=0.4. 证明直线⎩⎨⎧=++-=-+7272z y x z y x 与直线⎩⎨⎧=--=-+028363z y x z y x 平行. 解 直线⎩⎨⎧=++-=-+7272z y x z y x 与⎩⎨⎧=--=-+028363z y x z y x 的方向向量分别为 k j i k j i s 531121211++=--=, k j i k j i s 15391123632---=---=. 因为s 2=-3s 1, 所以这两个直线是平行的.5. 设M 0是直线L 外一点, M 是直线L 上任意一点, 且直线的方向向量为s , 试证: 点M 0到直线L 的距离→||||0s s ⨯=M M d . 解 设点M 0到直线L 的距离为d , L 的方向向量→MN =s , 根据向量积的几何意义, 以→M M 0和→MN 为邻边的平行四边形的面积为 →→→||||00s ⨯=⨯M M MN M M ,又以→M M 0和→MN 为邻边的平行四边形的面积为→||||s ⋅=⋅d MN d . 因此→||||0s s ⨯=⋅M M d , →||||0s s ⨯=M M d . 6. 已知动点M (x ,y ,z )到xOy 平面的距离与点M 到点(1, -1, 2)的距离相等, 求点M 的轨迹方程. 解 根据题意, 有222)2()1()1(||-+++-=z y x z ,或 z 2=(x -1)2+(y +1)2+(z -2)2,化简得(x -1)2+(y +1)2=4(z -1),这就是点M 的轨迹方程.7. 已知点A (1, 0, 0)及点B (0, 2, 1), 试在z 轴上求一点C , 使∆ABC 的面积最小.解 设所求的点为C (0, 0, z ), 则→) ,0 ,1(z AC -=, →)1 ,2 ,0(--=z BC .因为 →→k j i k j i 2)1(212001+-+=---=⨯z z z z BC AC , 所以∆ABC 的面积为→→4)1(421||2122+-+=⨯=z z BC AC S . 令04)1(4)1(284122=+-+-+⋅=z z z z dz dS , 得51=z , 所求点为)51 ,0 ,0(C . 设|a |=4, |b |=3, 6) ,(^π=b a , 求以a +2b 和a -3b 为边的平行四边形的面积. 解 (a +2b )⨯(a -3b )=-3a ⨯b +2b ⨯a =5b ⨯a .以a +2b 和a -3b 为边的平行四边形的面积为3021435) ,sin(||||5||5|)3()2(|^=⋅⋅⋅=⋅=⨯=-⨯+b a a b a b b a b a。