2017年北京市东城区高三二模数学(理)试题及答案
- 格式:pdf
- 大小:599.79 KB
- 文档页数:4
北京市东城区2016-2017学年度第二学期高三综合练习(二)数学(理科)本试卷共5页,共150分.考试时长120分钟.考生务必将答案答在答题卡上在试卷上 作答无效.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.已知集合2{|40}A x x =-<,则A =R ðA .{|2x x ≤-或2}x ≥B .{|2x x <-或2}x >C .{|22}x x -<<D .{|22}x x ≤≤- 2.下列函数中为奇函数的是A .cos y x x =+B .sin y x x =+ C.y D .||e x y -=3.若,x y 满足10,0,0x y x y y -++⎧⎪⎨⎪⎩≥≤≥则2x y +的最大值为A .1-B .0C .12D .2 4.设,a b 是非零向量,则“,a b 共线”是“||||||+=+a b a b ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 5.已知等比数列{}n a 为递增数列,n S 是其前n 项和.若15172a a +=,244a a =,则6=S A .2716 B .278C .634 D .6326.我国南宋时期的数学家秦九韶(约12021261-)在他的著作《数书九章》中提出了多项式求值的秦九韶算法.如图所示的框图给出了利 用秦九韶算法求多项式的一个实例. 若输入的5,1,2n v x ===, 则 程序框图计算的是 A .5432222221+++++ B .5432222225+++++ C .654322222221++++++ D .43222221++++7.动点P 从点A 出发,按逆时针方向沿周长为l 的平面图形运动一周,,A P 两点间的距离y 与动点P 所走过的路程x 的关系如图所示,那么动点P 所走的图形可能是A .B .C .D .8.据统计某超市两种蔬菜,A B 连续n 天价格分别为123,,,,n a a a a L 和123,,,,n b b b b L ,令{|,1,2,,}m m M m a b m n =<=L ,若M 中元素个数大于34n ,则称蔬菜A 在这n 天的价格 低于蔬菜B 的价格,记作:A B p ,现有三种蔬菜,,A B C ,下列说法正确的是 A .若A B p ,B C p ,则A C pB .若A B p ,BC p 同时不成立,则A C p 不成立 C .A B p ,B A p 可同时不成立D .A B p ,B A p 可同时成立第Ⅱ卷(非选择题 共110分)二、填空题(本大题共6小题,每小题5分,共30分)9.复数i(2i)-在复平面内所对应的点的坐标为 .10.在极坐标系中,直线cos sin 10r q q +=与圆2cos (0)a a r q >=相切,则a = . 11.某校开设A 类选修课4门,B 类选修课2门,每位同学需从两类选修课中共选4门.若要求至少选一门B 类课程,则不同的选法共有 种.(用数字作答)12.如图,在四边形ABCD 中,45ABD ∠=︒,30ADB ∠=︒,1BC =, 2DC =,1cos 4BCD ∠=,则BD = ;三角形ABD 的面积为 .13.在直角坐标系xOy 中,直线l 过抛物线24y x =的焦点F ,且与该抛物线相交于,A B 两点,其中点A 在x 轴上方.若直线l 的倾斜角为60,则||OA =.14.已知函数|1|,(0,2],()min{|1|,|3|},(2,4],min{|3|,|5|},(4,).x x f x x x x x x x -∈=--∈--∈+∞⎧⎪⎨⎪⎩① 若()f x a =有且只有一个根,则实数a 的取值范围是_______.② 若关于x 的方程()()f x T f x +=有且仅有3个不同的实根,则实数T 的取值范围 是_______.三、解答题(本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程) 15.(本小题13分)已知函数()2cos 2()f x x a x a =+⋅∈R . (Ⅰ)若()26f =π,求a 的值; (Ⅱ)若()f x 在7[,]1212ππ上单调递减,求()f x 的最大值.小明计划在8月11日至8月20日期间游览某主题公园.根据旅游局统计数据,该 主题公园在此期间“游览舒适度”(即在园人数与景区主管部门核定的最大瞬时容量之 比,40%以下为舒适,40%—60%为一般,60%以上为拥挤)情况如图所示.小明随机选择 8月11日至8月19日中的某一天到达该主题公园,并游览2天.(Ⅰ)求小明连续两天都遇上拥挤的概率;(Ⅱ)设X 是小明游览期间遇上舒适的天数,求X 的分布列和数学期望;(Ⅲ)由图判断从哪天开始连续三天游览舒适度的方差最大?(结论不要求证明)17.(本小题共14分)如图,在几何体ABCDEF 中,平面ADE ^平面ABCD ,四边形ABCD 为菱形,且60DAB ∠=︒,2EA ED AB EF ===,EF AB ∥,M 为BC 中点.(Ⅰ)求证:FM ∥平面BDE ;(Ⅱ)求直线CF 与平面BDE 所成角的正弦值; (Ⅲ)在棱CF 上是否存在点G ,使BG DE ^?若存在,求CG CF的值;若不存在,说明理由.设函数2()()e ()x f x x ax a a R -=+-⋅∈.(Ⅰ)当0a =时,求曲线()y f x =在点(1,(1))f --处的切线方程;(Ⅱ)设2()1g x x x =--,若对任意的[0,2]t Î,存在[0,2]s Î使得()()f s g t ≥成立,求a 的取值范围.19.(本小题共13分)已知椭圆2222:1(0)x y C a b a b +=>>的短轴长为右焦点为(1,0)F ,点M 是椭圆C 上异于左、右顶点,A B 的一点.(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线AM 与直线2x =交于点N , 线段BN 的中点为E .证明: 点B 关于直线EF的对称点在直线MF 上.20.(本小题共13分)对于n 维向量12(,,,)n A a a a =鬃?,若对任意{1,2,,}i n 巫鬃均有0i a =或1i a =,则 称A 为n 维T 向量. 对于两个n 维T 向量,A B ,定义1(,)||ni i i d A B a b ==-å.(Ⅰ)若(1,0,1,0,1)A =,(0,1,1,1,0)B =,求(,)d A B 的值;(Ⅱ)现有一个5维T 向量序列:231,,,A A A ⋅⋅⋅,若1(1,1,1,1,1)A =且满足:1(,)2i i d A A +=,*i ÎN .求证:该序列中不存在5维T 向量(0,0,0,0,0);(Ⅲ)现有一个12维T 向量序列:231,,,A A A ⋅⋅⋅,若112(1,1,,1)A个=鬃?且满足:1(,)i i d A A m +=, *m N Î,1,2,3,i 鬃?=,若存在正整数j 使得12(0,0,,0)j A个鬃?=,j A 为12维T 向量序列中的项,求出所有的m .东城区2016-2017学年度第二学期高三综合练习(二)高三数学参考答案及评分标准 (理科)一、选择题(共8小题,每小题5分,共40分)(1)A (2)B (3)C (4)B (5)D (6)A (7)C (8)C 二、填空题(共6小题,每小题5分,共30分)(9)(1,2) (10)1 (11)14(12)21 (13 (14)(1,)+∞ (4,2)(2,4--U 三、解答题(共6小题,共80分) (15)(共13分)解:(Ⅰ)因为()2cos 2=2666f a πππ=⋅+⋅⋅, ………3分 所以31222a +?. ………5分所以1a =. ………6分(Ⅱ)由题意(22)f x x x)x ϕ=+,其中tanϕ=.………8分 所以T =π,且712122πππ-=, ………9分所以当12x π=时,max ()sin()126y f ϕππ==+.所以=+23k k ϕππ(∈)Z . ………10分所以tanϕ=3a =. ………11分所以π())3f x x =+. ………12分所以()f x 的最大值为 ……………………13分(16)(共13分)解:设i A 表示事件“小明8月11日起第i 日连续两天游览主题公园”(1,2,,9i = ). 根据题意,1()9i P A =,且()i j A A i j =乒 . …………1分(Ⅰ)设B 为事件“小明连续两天都遇上拥挤”,则47B A A = . …………2分C所以47472()()()()9P B P A A P A P A ==+=. …………5分 (Ⅱ)由题意,可知X 的所有可能取值为0,1,2, …………6分4784781(0)()()()()3P X P A A A P A P A P A ===++= ,…………7分356935694(1)()()()()()9P X P A A A A P A P A P A P A ===+++= ,…………8分12122(2)()()()9P X P A A P A P A ===+=. …………9分 所以X 的分布列为分故X 的期望14280123999EX =???.…………………11分 (Ⅲ)从8月16日开始连续三天游览舒适度的方差最大.…………13分 (17)(共14分)解:(Ⅰ)取CD 中点N ,连结,MN FN .因为,N M 分别为,CD BC 中点, 所以MN ∥BD . 又BD ⊂平面BDE 且MN Ë平面BDE , 所以MN ∥平面BDE , 因为EF ∥AB ,2AB EF =, 所以EF ∥CD ,EF DN =. 所以四边形EFND 为平行四边形. 所以FN ∥ED .又ED ⊂平面BDE 且FN Ë平面BDE ,所以FN ∥平面BDE , ………2分 又FN MN N = ,所以平面MFN ∥平面BDE . ………3分 又FM Ì平面MFN ,所以FM ∥平面BDE . …………4分C(Ⅱ)取AD 中点O ,连结EO ,因为EA ED =,所以EO ^因为平面ADE ^平面ABCD 所以EO ^平面ABCD ,EO 因为AD AB =,60DAB ∠=所以△ADB 为等边三角形. 因为O 为AD 中点, 所以AD BO ^.因为,,EO BO AO 两两垂直,设4AB =,以O 为原点,,,OA OB OE 为,,x y z 轴,如图建立空间直角坐标系O xyz -.…………6分 由题意得,(2,0,0)A ,B ,(C -,(2,0,0)D -,E ,(1F -.………7分(3,CF =,DE = ,(0,BE =-.设平面BDE 的法向量为(,,)x y z =n ,则0,0,BE DE ì?ïíï?î n n 即0,0.y z x ì-=ïíï=î 令1z =,则1y =,x =-所以(,1)=-n .………9分 设直线CF 与平面BDE 成角为α,sin |cos ,|αCF =< n 所以直线CF 与平面ADE 所成角的正弦值为10. ……………………10分 (Ⅲ)设G 是CF 上一点,且CG CFλ=,[0,1]λ∈.……………11分因此点(34,)G λ-+.……………12分(34,)BGλ=-. 由0BG DE ? ,解得49λ=.所以在棱CF 上存在点G 使得BG ^DE ,此时49CG CF =.………14分解:(Ⅰ)当0a =时,因为2()e x f x x -=?,所以2'()(2)e x f x x x -=-+?, …………1分'(1)3e f -=-. …………2分又因为(1)e f -=, …………3分 所以曲线()y f x =在点(1,(1))f --处的切线方程为e 3e(1)y x -=-+,即3e 2e 0x y ++=. ……………………4分(Ⅱ)“对任意的[0,2]t Î,存在[0,2]s Î使得()()f s g t ³成立”等价于“在区间[0,2]上,()f x 的最大值大于或等于()g x 的最大值”. …………………5分因为2215()1()24g x x x x =--=--, 所以()g x 在[0,2]上的最大值为(2)1g =.2'()(2)e ()e x x f x x a x ax a --=+?+-?2e [(2)2]x x a x a -=-+-- e (2)()x x x a -=--+ 令'()0f x =,得2x =或x a =-. …………………7分 ① 当0a -?,即0a ³时,'()0f x ³在[0,2]上恒成立,)(x f 在[0,2]上为单调递增函数, ()f x 的最大值为21(2)(4)e f a =+?, 由21(4)1ea +壮,得2e 4a ?. ……………9分 ② 当02a <-<,即20a -<<时,当(0,)x a ∈-时,'()0f x <,()f x 为单调递减函数,当(2)x a ∈-,时,'()0f x >,()f x 为单调递增函数. 所以()f x 的最大值为(0)f a =-或21(2)(4)e f a =+?, 由1a -?,得1a ?;由21(4)1ea +壮,得2e 4a ?. 又因为20a -<<,所以21a -<?. ……………11分 ③ 当2a -?,即2a ?时,'()0f x £在[0,2]上恒成立,()f x 在[0,2]上为单调递减函数,()f x 的最大值为(0)f a =-,由1a -?,得1a ?, 又因为2a ?,所以2a ?.综上所述,实数a 的值范围是1a ?或2e4a ?.……………………13分解:(Ⅰ)由题意得2221,.b c a b c ⎧=⎪=⎨⎪=+⎩解得2a =. ……………4分所以椭圆C 的方程为22143x y +=. ………………5分 (Ⅱ)“点B 关于直线EF 的对称点在直线MF 上”等价于“EF 平分MFB Д.……………6分设直线AM 的方程为(2)(0)y k x k =+?,则(2,4),(2,2)N k E k .……7分设点00(,)M x y ,由22(2),1,43y k x x y ì=+ïíï+=ïî得2222(34)1616120k x k x k +++-=,得2020286,3412.34k x k k y k ì-+ï=ï+íï=ï+î……9分 ① 当MF x ^轴时,01x =,此时12k =?. 所以3(1,),(2,2),(2,1)2M N E 北?.此时,点E 在BFM Ð的角平分线所在的直线1y x =-或1y x =-+, 即EF 平分MFB Ð. ……10分 ② 当12k 贡时,直线MF 的斜率为0204114MF y k k x k==--, 所以直线MF 的方程为24(41)40kx k y k +--=. ……11分 所以点E 到直线MF 的距离2d2=22|2(41)||41|k k k +=+|2|||k BE ==. 即点B 关于直线EF 的对称点在直线MF 上. …………………14分解:(Ⅰ)由于(1,0,1,0,1)A =,(0,1,1,1,0)B =,由定义1(,)||niii d A B a b ==-å,可得(,)4d A B =. …………………………4分(Ⅱ)反证法:若结论不成立,即存在一个含5维T 向量序列123,,,,m A A A A L ,使得1(1,1,1,1,1)A =,(0,0,0,0,0)m A =.因为向量1(1,1,1,1,1)A =的每一个分量变为0,都需要奇数次变化,不妨设1A 的第(1,2,3,4,5)i i =个分量1变化了21i n -次之后变成0, 所以将1A 中所有分量1 变为0 共需要12345(21)(21)(21)(21)(21)n n n n n -+-+-+-+- 123452(2)1n n n n n =++++--次,此数为奇数.又因为*1(,)2,i i d A A i +=?N ,说明i A 中的分量有2个数值发生改变, 进而变化到1i A +,所以共需要改变数值2(1)m -次,此数为偶数,所以矛盾. 所以该序列中不存在5维T 向量(0,0,0,0,0). ……………9分 (Ⅲ)此时1,2,3,4,5,6,7,8,9,10,11,12m =. ……………13分易见当m 为12的因子1,2,3,4,6,12时,给 (1分). 答出5,8,10m =给(1分).答出7,9,11m =中任一个给(1分),都对给(2分)。
2017平谷期末理18.(13分)已知函数1()(1)x f x k x e=-+. (Ⅰ)如果()f x 在0x =处取得极值,求k 的值;(Ⅱ)求函数()f x 的单调区间; (III )当0k =时,过点(0,)A t 存在函数曲线()f x 的切线,求t 的取值范围.18. 解:(Ⅰ)函数的定义域为R .所以 (1)1()x xk e f x e --'=∵函数()f x 在0x =处取得极值∴00(1)1(0)0k e f e--'==,解得:k=0 当k=0时,1()x xe f x e-'=,11()00,()00,x x x x e e f x x f x x e e --''=>⇒>=<⇒< ∴函数()f x 在0x =处取得极小值,符合题意。
………..3分(Ⅱ)因为(1)1()x xk e f x e--'=. ①当1k ≥时, ()0f x '<恒成立,所以()f x 在(,)-∞+∞为减函数 ②当1k <时,令()0f x '= , 则ln(1)x k =--,当(,ln(1))x k ∈-∞--时,()0f x '<,()f x 在(,ln(1))k -∞--上单调递减; 当(ln(1),)x k ∈--+∞时,()0f x '>,()f x 在(ln(1),)k --+∞上单调递增;…8分 (III )设切点坐标为00(,)x y ,则切线方程为000'()()y y f x x x -=- 即000011()(1)()x x y x x x e e -+=--将(0,)A t 代入得001x x t e +=.令1()x x M x e +=, 所以 ()x x M x e -'=.当()0xxM x e-'==时,00x =. 所以 当(,0)x ∈-∞时,()0M x '>,函数()M x 在(,0)x ∈-∞上单调递增; 当(0,)x ∈+∞时,()0M x '<,()M x 在(0,)x ∈+∞上单调递减.所以 当00x =时,max ()(0)1M x M ==,无最小值.当1t ≤时,存在切线; …..13分2017昌平高三期末理)( 13分) 设函数()ln(1)f x ax bx =++,2()()g x f x bx =-. (Ⅰ)若1,1a b ==-,求函数()f x 的单调区间;(Ⅱ)若曲线()y g x =在点(1,ln 3)处的切线与直线1130x y -=平行. (i) 求,a b 的值;(ii)求实数(3)k k ≤的取值范围,使得2()()g x k x x >-对(0,)x ∈+∞恒成立.(18)解:(Ⅰ)当1,1a b ==-时,()ln(1),(1)f x x x x =+->-, 则1'()111x f x x x-=-=++.当'()0f x >时,10x -<<;当'()0f x <时,0x >; 所以()f x 的单调增区间为(1,0)-,单调减区间为(0,)+∞. …4分 (Ⅱ)(i)因为22()()ln(1)()g x f x bx ax b x x =-=++-,所以'()(12)1ag x b x ax=+-+. 依题设有(1)ln(1),11'(1),3g a g =+⎧⎪⎨=⎪⎩ 即ln(1)ln 3,11.13a ab a+=⎧⎪⎨-=⎪+⎩解得23a b =⎧⎨=-⎩. ……8分 (i i)21()ln(12)3(),(,)2g x x x x x =+--∈-+∞2()()g x k x x >-对(0,)x ∈+∞恒成立,即2()()0g x k x x -->对(0,)x ∈+∞恒成立.令2()()()F x g x k x x =--.则有24(3)1'()12k x k F x x-+-=+.① 当13k ≤≤时,当(0,)x ∈+∞时,'()0F x >,所以在(0,)+∞上单调递增. 所以()(0)0F x F >=,即当(0,)x ∈+∞时,2()()g x k x x >-;②当1k <时,当x ∈时,'()0F x <,所以在上单调递减,故当x ∈时,()(0)0F x F <=,即当(0,)x ∈+∞时,2()()g x k x x >-不恒成立.综上,[1,3]∈.…13分()F x ()F x k2017朝阳期末理19.( 14分)设函数2()ln(1)1f x x ax x =-+++,2()(1)e xg x x ax =-+,R a ∈. (Ⅰ)当1a =时,求函数()f x 在点(2,(2))f 处的切线方程;(Ⅱ)若函数()g x 有两个零点,试求a 的取值范围;(Ⅲ)证明()()f x g x ≤. 19.解:(Ⅰ)函数()f x 的定义域是(1,)+∞,(221)()1x ax a f x x -+'=-.当1a =时,(2)426f a '=+=,(2)437f a =+=.所以函数()f x 在点(2,(2))f 处的切线方程为76(2)y x -=-.即65y x =-.……4分 (Ⅱ)函数()g x 的定义域为R ,由已知得()(e 2)xg x x a '=+.①当0a =时,函数()(1)e xg x x =-只有一个零点;②当0a >,因为e 20xa +>, 当(,0)x ∈-∞时,()0g x '<;当(0,)x ∈+∞时,()0g x '>.所以函数()g x 在(,0)-∞上单调递减,在(0,)+∞上单调递增.又(0)1g =-,(1)g a =, 因为0x <,所以10,1x x e -<<,所以(1)1x e x x ->-,所以2()1g x ax x >+-取0x =00x <且0()0g x >所以(0)(1)0g g <,0()(0)0g x g <.由零点存在性定理及函数的单调性知,函数有两个零点.③当0a <时,由()(e 2)0xg x x a '=+=,得0x =,或ln(2)x a =-. ⅰ) 当1a <-,则ln(2)0a ->.当x 变化时,(),()g x g x '变化情况如下表:注意到(0)1g =-,所以函数()g x 至多有一个零点,不符合题意. ⅱ) 当12a =-,则l n (2)0a -=,()g x 在(,)-∞+∞单调递增,函数()g x 至多有一个零点,不符合题意.若12a >-,则ln(2)0a -≤.当x 变化时,(),()g x g x '变化情况如下表:注意到当0,0x a <<时,2()(1)e 0xg x x ax =-+<,(0)1g =-,所以函数()g x 至多有一个零点,不符合题意.综上,a 的取值范围是(0,).+∞……9分 (Ⅲ)证明:()()(1)e ln(1)1x g x f x x x x -=-----.设()(1)e ln(1)1x h x x x x =-----,其定义域为(1,)+∞,则证明()0h x ≥即可.因为1()e (e )11xx x h x x x x x '=-=---,取311e x -=+,则1311()(e e )0x h x x '=-<,(2)0h '>.又因为21()(1)e 0(1)x h x x x ''=++>-,所以函数()h x '在(1,)+∞上单增. 所以()0h x '=有唯一的实根0(1,2)x ∈,且001e1x x =-. 当01x x <<时,()0h x '<;当0x x >时,()0h x '>.所以函数()h x 的最小值为0()h x . 所以00000()()(1)e ln(1)1x h x h x x x x ≥=-----00110x x =+--=. 所以()().f x g x ≤…14分2017东城期末理 18.设函数.(Ⅰ)若f (0)为f (x )的极小值,求a 的值;(Ⅱ)若f (x )>0对x ∈(0,+∞)恒成立,求a 的最大值. 18.解:(Ⅰ)f (x )的定义域为(﹣1,+∞),因为,所以f′(x )=﹣,因为f (0)为f (x )的极小值,所以f′(0)=0,即﹣=0,所以a=1,此时,f′(x )=,当x ∈(﹣1,0)时,f′(x )<0,f (x )单调递减;当x ∈(0,+∞)时,f′(x )>0,f (x )单调递增.所以f (x )在x=0处取得极小值,所以a=1. … (Ⅱ)由(Ⅰ)知当a=1时,f (x )在[0,+∞)上为单调递增函数, 所以f (x )>f (0)=0,所以f (x )>0对x ∈(0,+∞)恒成立. 因此,当a <1时,f (x )=ln (x +1)﹣>ln (x +1)﹣>0,f (x )>0对x ∈(0,+∞)恒成立.当a >1时,f′(x )=,所以,当x ∈(0,a ﹣1)时,f′(x )<0,因为f (x )在[0,a ﹣1)上单调递减, 所以f (a ﹣1)<f (0)=0,所以当a >1时,f (x )>0并非对x ∈(0,+∞)恒成立. 综上,a 的最大值为1. …2017丰台期末理18.(13分)已知函数()e x f x x =与函数21()2g x x ax =+的图象在点(00),处有相同的切线.(Ⅰ)求a 的值;(Ⅱ)设()()()()h x f x bg x b =-∈R ,求函数()h x 在[12],上的最小值. 18.解:(Ⅰ)因为()e e xxf x x '=+,所以(0)1f '=….2分 因为()g x x a '=+,所以(0)g a '=. ….4分因为()f x 与()g x 的图象在(0,0)处有相同的切线,所以(0)(0)f g ''=,所以1a =. (5)分(Ⅱ)由(Ⅰ)知, 21()2g x x x =+, 令21()()()e 2xh x f x bg x x bx bx =-=--,[1,2]x ∈,则()e e (1)(1)(e )xxxh x x b x x b '=+-+=+-.…….6分(1)当0b ≤时,[1,2]x ∀∈,()0h x '>,所以()h x 在[1,2]上是增函数, 故()h x 的最小值为3(1)=e 2h b -; …….7分 (2)当0b >时,由()=0h x '得,ln x b =, …….8分①若ln 1b ≤,即0e b <≤,则[1,2]x ∀∈,()0h x '>,所以()h x 在[1,2]上是增函数,故()h x 的最小值为3(1)=e 2h b -. …….9分 ②若1ln 2b <<,即2e e b <<,则(1,l n )x b ∀∈,()0h x '<,(ln 2)x b ∀∈,,()0h x '>,所以()h x 在(1,ln )b 上是减函数,在(ln 2)b ,上是增函数, 故()h x 的最小值为21(ln )=ln 2h b b b -;…….11分 ③若ln 2b ≥,即2e b ≥,则[1,2]x ∀∈,()0h x '<,所以()h x 在[1,2]上是减函数,故()h x 的最小值为2(2)=2e 4h b -.…….12分 综上所述,当e b ≤时,()h x 的最小值为3(1)=e 2h b -, 当2e e b <<时,()h x 的最小值为21ln 2b b -, 当2e b ≥时,()h x 的最小值为22e 4b -. ……….13分2017海淀期末理19. (14分)已知函数()ln 1af x x x=--. (Ⅰ)若曲线()y f x =存在斜率为1-的切线,求实数a 的取值范围;(Ⅱ)求()f x 的单调区间;(Ⅲ)设函数()ln x ag x x+=,求证:当10a -<<时,()g x 在(1,)+∞上存在极小值.19. 解:(Ⅰ)由()ln 1a f x x x =--得221'()(0)a x af x x x x x +=+=>.由已知曲线()y f x =存在斜率为1-的切线,所以'()1f x =-存在大于零的实数根, 即20x x a ++=存在大于零的实数根,因为2y x x a =++在0x >时单调递增, 所以实数a 的取值范围0∞(-,).(Ⅱ)由2'()x af x x +=,0x >,a ∈R 可得 当0a ≥时,'()0f x >,所以函数()f x 的增区间为(0,)+∞; 当0a <时,若(,)x a ∈-+∞,'()0f x >,若(0,)x a ∈-,'()0f x <, 所以此时函数()f x 的增区间为(,)a -+∞,减区间为(0,)a -.(Ⅲ)由()ln x a g x x+=及题设得22ln 1('()(ln )(ln )a x f x x g x x x --==), 由10a -<<可得01a <-<,由(Ⅱ)可知函数()f x 在(,)a -+∞上递增,所以(1)10f a =--<,取e x =,显然e 1>,(e)lne 10e a af e=--=->,所以存在0(1,e)x ∈满足0()0f x =,即存在0(1,e)x ∈满足0'()0g x =, 所以(),'()g x g x 在区间(1,)+∞上的情况如下:x0(1,)x0x0(,)x +∞'()g x -0 +()g x极小所以当10a -<<时,()g x 在(1,)+∞上存在极小值. (本题所取的特殊值不唯一,注意到0(1)ax x->>),因此只需要0ln 1x ≥即可) 2017石景山期末理19.( 14分)已知函数2()11xf x x =++,2()(0)a xg x x e a =<. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若对任意12,[0,2]x x ∈,12()()f x g x ≥恒成立,求a 的取值范围.19.解:(Ⅰ)函数()f x 的定义域为R ,()()()()()()x x x f x x x --+'==++2222211111.……2分 当x 变化时,()f x ',()f x 的变化情况如下表:所以,函数()f x 的单调递增区间是(,)-11,单调递减区间是(,)-∞-1,(,)+∞1.……5分 (Ⅱ)依题意,“对于任意12,[0,2]x x ∈,12()()f x g x ≥恒成立”等价于 “对于任意[0,2]x ∈,min max ()()f x g x ≥成立”.由(Ⅰ)知,函数()f x 在[0,1]上单调递增,在[1,2]上单调递减, 因为(0)1f =,2(2)115mf =+>,所以函数()f x 的最小值为(0)1f =. 所以应满足max ()1g x ≤.………7分因为2()e axg x x =,所以2()(+2)e axg x ax x '=.…8分 因为0a <,令()0g x '=得,10x =,22x a=-. (ⅰ)当22a-≥,即10a -≤<时,在[0,2]上()0g x '≥,所以函数()g x 在[0,2]上单调递增,所以函数2max ()(2)4e a g x g ==.由24e 1a ≤得,ln 2a ≤-,所以1ln 2a -≤≤-. ……………11分(ⅱ)当202a<-<,即1a <-时, 在2[0,)a -上()0g x '≥,在2(,2]a-上()0g x '<,所以函数()g x 在2[0,)a -上单调递增,在2(,2]a -上单调递减,所以max 2224()()e g x g a a =-=.由2241e a ≤得,2ea ≤-,所以1a <-.……13分综上所述,a 的取值范围是(,ln 2]-∞-.……14分2017通州期末理18.(13分)设函数()()1kxf x e k R =-∈.(Ⅰ)当k =1时,求曲线()y f x =在点))0(0(f ,处的切线方程; (Ⅱ)设函数kx x x f x F -+=2)()(,证明:当x ∈)0(∞+,时,()F x >0.18.解:(Ⅰ)'()x f x e =,…….1分将x =0分别代入f (x )和f ’(x )得,f ’(0)=1, f (0)=0…….3分 所以曲线在点(0, f (0))处的切线方程为:y =x . …….4分(Ⅱ)'()2kx F x ke x k =+-…….6分令()2kx g x ke x k =+-,则2'()2kx g x k e =+…….8分 20,0kx e k >≥ ,2'()20kx g x k e ∴=+>…….10分∴g (x )在(0,)+∞上单调递增,∴g (x )>g (0)=0即'()0F x >,…….11分∴F (x )在(0,)+∞上单调递增,∴F (x )>F (0)=0….13分2017西城期末理18.( 13分)已知函数()ln sin (1)f x x a x =-⋅-,其中a ∈R .(Ⅰ)如果曲线()y f x =在1x =处的切线的斜率是1-,求a 的值; (Ⅱ)如果()f x 在区间(0,1)上为增函数,求a 的取值范围. 18.解:(Ⅰ)函数()f x 的定义域是(0,)+∞,[1分] 导函数为1()cos(1)f x a x x'=-⋅-.[2分] 因为曲线()y f x =在1x =处的切线的斜率是1-, 所以(1)1f '=-,即11a -=-,[3分]所以2a =.[4分](Ⅱ)因为()f x 在区间(0,1)上为增函数,所以对于任意(0,1)x ∈,都有1()cos(1)0f x a x x'=-⋅-≥.[6分] 因为(0,1)x ∈时,cos(1)0x ->, 所以11()cos(1)0cos(1)f x a x a x x x '=-⋅-⇔⋅-≤≥.[8分] 令()cos(1)g x x x =⋅-,所以()cos(1)sin (1)g x x x x '=--⋅-.[10分] 因为(0,1)x ∈时,sin (1)0x -<,所以(0,1)x ∈时,()0g x '>,()g x 在区间(0,1)上单调递增,所以()(1)1g x g <=.[12分] 所以1a ≤.即a 的取值范围是(,1]-∞.[13分]2017丰台一模理18.(13分)已知函数1()ln()(0)f x kx k k x=+->.(Ⅰ)求()f x 的单调区间;(Ⅱ)对任意12[]x k k∈,,都有ln()1x kx kx mx -+≤,求m 的取值范围.18.解:由已知得,()f x 的定义域为(0,)+∞. (Ⅰ)21()x f x x-'=, 令()0f x '>,得1x >,令()0f x '<,得01x <<. 所以函数()f x 的单调减区间是(0,1),单调增区间是(1,)+∞. …5分(Ⅱ)由ln()1x kx kx mx -+≤,得1ln()kx k m x+-≤,即()max m f x ≥. 由(Ⅰ)知,(1)当2k ≥时,()f x 在12[,]k k 上单调递减,所以1()()0max f x f k ==,所以0m ≥; .(2)当01k <≤时,()f x 在12[,]k k上单调递增,所以2()()ln22max kf x f k ==-,所以ln 22km ≥-;(3)当12k <<时,()f x 在1[,1)k 上单调递减,在2(1,]k上单调递增,所以12()(),()max f x max f f k k ⎧⎫=⎨⎬⎩⎭. 又1()0f k =,2()ln22k f k =-,① 若21()()f f k k ≥,即ln 202k -≥,所以12ln 2k <<,此时2()()ln22max kf x f k ==-,所以ln 22km ≥-.② 若21()()f f k k <,即ln 202k-<,所以2ln 22k ≤<,此时max ()0f x =,所以0m ≥综上所述,当2ln 2k ≥时,0m ≥;当02ln 2k <<时,ln 22km ≥-.…13分 2017延庆一模理18.(13分)已知函数()()ln()f x x a a x =+-.(Ⅰ)当1a =时,求曲线()y f x =在0x =处的切线方程; (Ⅱ)当a e =时,求证:函数()f x 在0x =处取得最值. 18. 解:(Ⅰ)因为1a =1()ln(1)1x f x x x +'=-+-…2分 (0)1f '=-,所以1k =- …3分 因为(0)0f =所以切点为(0,0), …4分 则切线方程为y x =- …5分 (Ⅱ)证明:定义域(,)e -∞ 函数a e =所以()ln()x ef x e x x e +'=-+-…6分 (0)f e =2()ln()1ef x e x x e'=-++- 当(,)x e ∈-∞时,ln()y e x =-,21ey x e=+-均为减函数…7分 2()ln()1ef x e x x e'=-++-所以()f x '在(,)e -∞上单调递减;…8分 又(0)0f '= 因为当(,0)x ∈-∞时2()ln()10ef x e x x e '=-++>-…9分 ()f x 在(,0)-∞上单调递增;…10分又因为当(0,)x e ∈2()ln()10ef x e x x e '=-++<-…11分 ()f x 在(0,)x e ∈上单调递减;…12分 因为(0)0f =所以()f x 在0x =处取得最大值 …13分解法二:当(,0)x ∈-∞时,0,x ->e x e -> ,ln()ln 1e x e ->=ln()12e x -+>…7分又因为0,x <11222,,2,2e e ex e e x e e x e e x e -<->>=->------…8分 2()ln()10ef x e x x e'=-++>-,()f x 在(,0)-∞上单调递增; …9分 当(0,)x e ∈(,0),(0,)x e e x e -∈--∈ln()1e x -<, …10分 又因为(0,)x e ∈112220,,2,2e e e e x e x e e x e e x e-<-<<<=-<------…11分 2()ln()10ef x e x x e'=-++<-,()f x 在(0,)x e ∈上单调递减;…12分 又因为(0)0f =所以()f x 在0x =处取得最大值 …13分 解法三:也可以二次求导,老师斟酌给分2017朝阳一模理(18)(13分)已知函数()ln 1f x x ax =--(R a ∈),21()()22g x xf x x x =++.(Ⅰ)求()f x 的单调区间;(Ⅱ)当1a =时,若函数()g x 在区间(,1)()m m m Z +?内存在唯一的极值点,求m 的值. (18) 解:(Ⅰ)由已知得0x >,11()axf x a x x-'=-=. (ⅰ)当0a ≤时,()0f x '>恒成立,则函数()f x 在(0,)+∞为增函数;(ⅱ)当0a >时,由()0f x '>,得10x a <<; 由()0f x '<,得1x a>; 所以函数()f x 的单调递增区间为1(0,)a ,单调递减区间为1(,)a+∞. ……4分(Ⅱ)因为21()()22g x xf x x x =++21(ln 1)22x x x x x =--++21ln 2x x x x =-+,则()ln 11g x x x '=+-+ln 2()3x x f x =-+=+.由(Ⅰ)可知,函数()g x '在(0,1)上单调递增,在(1,)+∞上单调递减. 又因为2211()22e e g '=--+210e=-<,(1)10g '=>, 所以()g x '在(0,1)上有且只有一个零点1x .又在1(0,)x 上()0g x '<,()g x 在1(0,)x 上单调递减;在1(,1)x 上()0g x '>,()g x 在1(,1)x 上单调递增.所以1x 为极值点,此时0m =.又(3)ln 310g '=->,(4)2ln 220g '=-<,所以()g x '在(3,4)上有且只有一个零点2x . 又在2(3,)x 上()0g x '>,()g x 在2(3,)x 上单调递增;在2(,4)x 上()0g x '<,()g x 在2(,4)x 上单调递减.所以2x 为极值点,此时3m =. 综上所述,0m =或3m =. ……13分2017东城一模理(18)(13分)已知函数1()2ln ()f x x mx m x=+-∈R . (Ⅰ)当1m =-时,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)若)(x f 在(0,)+∞上为单调递减,求m 的取值范围;(Ⅲ)设b a <<0,求证:ln ln b a b a -<-(18)解:(Ⅰ)的定义域为.当1m =-时,1()2ln f x x x x=++, 所以221'()1f x x x=-+.因为(1)2f =且'(1)2f =, 所以曲线在点处的切线方程为20x y -=.……4分(Ⅱ)若函数在上为单调递减,则在上恒成立. 即在上恒成立.即在上恒成立. 设221()(0)g x x x x=->,则.因为,所以当时,有最大值.所以的取值范围为…9分 (Ⅲ)因为,不等式等价于. 即,原不等式转化为.令,由(Ⅱ)知在上单调递减, 所以在(1,)+∞上单调递减.所以,当时,. 即当时,成立. 所以,当时,不等式成立.…13分2017房山一模理18、(14分)已知函数()1xf x x ae =-+.(1)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,求a 的值; 2)求()f x 的极值; (3)当1a =时,曲线()y f x =与直线1ykx =-没有公共点,求k 的取值范围. 18.(I )'()1x f x ae =+ 因为x ae x x f +-=1)(,在点(1,)1(f )处的切线平行于x 轴,所以k='1(1)10f ae =+= 所以1a e=- ……4分)(x f (0,)+∞()y f x =(1,(1))f )(x f (0,)+∞'()0f x ≤(0,)+∞2210m x x --≤(0,)+∞221xm x -≤(0,)+∞max [()]m g x ≥22211()(1)1(0)g x x x x x =-=--+>1x =()g x 1m [1,)+∞b a <<0ln ln b a b a -<-ln ln b a -<lnb a <(1)t t >12ln t t t <-1()2ln h t t t t=+-1()2ln f x x x x=+-(0,)+∞1()2ln h t t t t=+-1t >()(1)0h t h <=1t >12ln 0t t t+-<b a <<0ln ln b a b a -<-(II )当0≥a 时,令0)(/>x f 恒成立,所以函数无极值 当0<a 时,令x ae x f +=1)(/=0,解得)1ln(x -=2)ln()(--=ax f 极大值……9分(III)法一、当a=1时,()1x f x x e =-+与1y kx =-无公共点只需证()(1)x h x x k e =-+无零点即()0h x =无根,即(1)x e k x =-,由数形结合知 当1k =时无零点 当1k <时有一个零点 当1k >时,(1)x e k x -与相切时,有一个零点设切点00,)x y (,0x e e x x =,所以10=x ,所以切点为(1,e )所以k-1=e ,所以1k e =+ 综上所述11k e ≤<+ …14分法二、当a=1时,()1x f x x e =-+与1y kx =-无公共点 只需证()(1)x h x x k e =-+无零点 x e k x h +-=1)(/ (1)当=1k 时,()=e x h x ,无零点(2)当1k <时,0)(/>x h ,)(x h 单调递增,111()10,(0)101k h e h k -=-+<=>-所以)(x h 有一个零点 (3)当1>k 时,令01)('=+-=k e x h x 解得)1ln(-=k x)1)1ln(()1()1(ln()(---=-=k k k h x h 极小当1)1ln(=-k ,即1+=e k ,0)('=极小x h ,有一个零点当1)1ln(<-k ,即11+<<e k ,0)('>极小x h ,无零点当1)1ln(>-k ,即1+>e k ,0)('<极小x h , 01)0(>=h ,一定有零点综上所述:11k e ≤<+ …14分2017海淀一模理18.已知函数2()24(1)ln(1)f x x ax a x =-+-+,其中实数3a <. (Ⅰ)判断1x =是否为函数()f x 的极值点,并说明理由; (Ⅱ)若()0f x ≤在区间[]0,1上恒成立,求a 的取值范围.18.解:(Ⅰ)由2()24(1)ln(1)f x x ax a x =-+-+可得函数()f x 定义域为(1,)-+∞.4(1)'()221a f x x a x -=-++22(1)(2)1x a x a x ⎡⎤+-+-⎣⎦=+, 令2()(1)(2)g x x a x a =+-+-,经验证(1)0g =,因为3a <,所以()0g x =的判别式222(1)4(2)69(3)0a a a a a ∆=---=-+=->, 由二次函数性质可得,1是函数()g x 的异号零点,所以1是'()f x 的异号零点, 所以1x =是函数()f x 的极值点.(Ⅱ)已知(0)0f =,因为[]2(1)(2)'()1x x a f x x ---=+,又因为3a <,所以21a -<,所以当2a ≤时,在区间[]0,1上'()0f x <,所以函数()f x 单调递减,所以有()0f x ≤恒成立;当23a <<时,在区间[]0,2a -上'()0f x >,所以函数()f x 单调递增,所以(2)(0)0f a f ->=,所以不等式不能恒成立;所以2a ≤时,有()0f x ≤在区间[]0,1恒成立. 2017石景山一模理18.已知函数()1n f x x =.(Ⅰ)求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)求证:当0x >时,1()1f x x≥-;(Ⅲ)若11n x a x ->对任意1x >恒成立,求实数a 的最大值.18.解:(Ⅰ)1'()f x x=,'(1)1f =,又(1)0f =,所以切线方程为1y x =-; (Ⅱ)由题意知0x >,令1()()(1)g x f x x =--11n 1x x=-+.22111'()x g x x x x -=-=令21'()0x g x x-==,解得1x =.易知当1x >时,'()0g x >,易知当01x <<时,'()0g x <.即()g x 在(0,1)单调递减,在(1,)+∞单调递增 所以min ()(1)0g x g ==, ()(1)0g x g ≥= 即1()()(1)0g x f x x =--≥,即1()(1)f x x≥-.(Ⅲ)设()11n (1)h x x a x x =--≥,依题意,对于任意1x >,()0h x >恒成立.'()1a x a h x x x-=-=,1a ≤时,'()0h x >,()h x 在[)1,+∞上单调递增, 当1x >时,()(1)0h x h >=,满足题意.1a >时,随x 变化,'()h x ,()h x 的变化情况如下表:()h x 在(1,)a 上单调递减,所以()(1)0g a g <=即当1a >时,总存在()0g a <,不合题意. 综上所述,实数a 的最大值为1.2017西城一模理18.(13分)已知函数21()e 2x f x x =-.设l 为曲线()y f x =在点00(,())P x f x 处的切线,其中0[1,1]x ∈-. (Ⅰ)求直线l 的方程(用0x 表示);(Ⅱ)设O 为原点,直线1x =分别与直线l 和x 轴交于,A B 两点,求△AOB 的面积的最小值. 18.解:(Ⅰ)对()f x 求导数,得()e x f x x '=- [ 1分] 所以切线l 的斜率为000()e x x f x '=-, [ 2分]由此得切线l 的方程为:000002(1(e 2))e ()x x x x x y x ----=, 即000020(e )(1)1e 2x x x x y x x =+-+-. [ 4分](Ⅱ)依题意,切线方程中令1x =,得 00020000011e e )22(e )(1)(2)(x x x y x x x x x =+=--+--. [ 5分]所以 (1,)A y ,(1,0)B .所以 1||||2AOB S OB y =⋅△0001|(2)(1e 22)|x x x =--000(1)(11|e )|22x x x =--,0[1,1]x ∈- [ 7分] 设 ()(111e )22)(x x g x x -=-,[1,1]x ∈-. [ 8分]则 11111e )(1)(e )(1)(e 1)22(2()22x x x x x x g x -+'=-----=-. [10分]令 ()0g x '=,得0x =或1x =. ()g x ,()g x '的变化情况如下表:所以 ()g x 在(1,0)-单调递减;在(0,1)单调递增, [12分]所以 min ()(0)1g x g ==, 从而 △AOB 的面积的最小值为1 [13分] 2017朝阳二模理19.(14分)已知函数2()e x f x x x =+-,2(),g x x ax b =++,a b ÎR . (Ⅰ)当1a =时,求函数()()()F x f x g x =-的单调区间;(Ⅱ)若曲线()y f x =在点(0,1)处的切线l 与曲线()y g x =切于点(1,)c ,求,,a b c 的值; (Ⅲ)若()()f x g x ≥恒成立,求a b +的最大值.(18)解:(Ⅰ)依题意,得1b =.又12120F BF ∠=︒,在1Rt BFO ∆中,160F BO ∠=︒,所以2a =.所以椭圆W 的标准方程为2214x y +=. ……4分 (Ⅱ)设M 00(,)x y ,00x ≠,则N 0(0,)y ,E 00(,)2x y . 因为点M 在椭圆W 上,所以220014x y +=.即220044x y =-. 又A (0,1),所以直线AE 的方程为002(1)1y y x x --=.令1y =-,得C 00(,1)1xy --. 又B (0,1)-,G 为线段BC 的中点,所以G 00(,1)2(1)x y --.所以00(,)2x OE y = ,0000(,1)22(1)x x GE y y =-+- . 因为000000()(1)222(1)x x x OE GE y y y ⋅=-++- 2220000044(1)x x y y y =-++-20004414(1)y y y -=-+-0011y y =--+0=,所以OE GE ⊥ .90OEG ∠=︒. …13分 2017东城二模理18. 设函数()()2(x f x x ax a e a -=+-⋅∈R ). (1)当0=a 时,求曲线()y f x =在点()()1,1f --处的切线方程;(2)设()21g x x x =--,若对任意的[]0,2t ∈,存在[]0,2s ∈使得()()f s g t ≥成立,求a 的取值范围.18. 解:(1)当0a =时,因为()2x f x x e -=⋅,所以()()()2'2,'13x f x x x e f e -=-+⋅-=-,又因为()1f e -=,所以曲线()y f x =在点()()1,1f --处的切线方程为()31y e e x -=-+,即320ex y e ++=.(2)“对任意的[]0,2t ∈,存在[]0,2s ∈使得()()f s g t ≥成立”等价于“在区间[]0,2上,()f x 的最大值大于或等于()g x 的最大值”.因为()2215124g x x x x ⎛⎫=--=-- ⎪⎝⎭,所以()g x 在[]0,2上的最大值为()21g =. ()()()2'2x x f x x a e x ax a e --=+⋅-+-⋅()[]222x e x a x a -=-+--()()2x e x x a -=--+,令()'0f x =,得2x =或x a =-.①当0a -≤,即0a ≥时,()'0f x ≥在[]0,2上恒成立,()f x 在[]0,2上为单调递增函数,()f x 的最大值大为()()2124f a e =+⋅,由()2141a e+⋅≥,得24a e ≥-;②当02a <-<,即20a -<<时,当()0,x a ∈-时,()()'0,f x f x <为单调递减函数,当(),2x a ∈-时,()()'0,f x f x >为单调递增函数,所以()f x 的最大值大为()0f a =-或()()2124f a e=+⋅.由1a -≥,得1a ≤-;由()2141a e+⋅≥,得24a e ≥-,又因为20a -<<,所以21a -<≤-;③当2a -≥,即2a ≤-时,()'0f x ≤在[]0,2上恒成立,()f x 在[]0,2上为单调递减函数,所以()f x 的最大值大为()0f a =-,由1a -≥,得1a ≤-,又因为2a ≤-,所以2a ≤-,综上所述,实数a 的取值范围是1a ≤-或24a e ≥-.2017丰台二模理18.(13分)已知函数()e ln x f x a x a =--.(Ⅰ)当e a =时,求曲线()y f x =在点(1(1)),f 处的切线方程;(Ⅱ)证明:对于(0e)a ∀∈,,()f x 在区间()e,1a上有极小值,且极小值大于0.18.解:(Ⅰ) ()f x 的定义域为(0,)+∞, ……1分 因为e a =,所以()e e(ln 1)x f x x =-+,所以e()e x f x x'=-. ……2分因为(1)0f =,(1)0f '=, …3分所以曲线()y f x =在点(1,(1))f 处的切线方程为0y =. ……4分(Ⅱ) 因为0e a <<,所以()e x a f x x '=-在区间(,1)ea上是单调递增函数. …5分因为e ()e e 0e aa f '=-<,(1)e 0f a '=->, …6分所以0(,1)eax ∃∈,使得00e =0x a x -. …7分所以0(,)e ax x ∀∈,()0f x '<;0(,1)x x ∀∈,()0f x '>, ……8分故()f x 在0(,)eax 上单调递减,在0(,1)x 上单调递增, …9分所以()f x 有极小值0()f x . ……10分 因为0e 0x a x -=, 所以000001()=e (ln 1)(ln 1)x f x a x a x x -+=--. …11分 设1()=(ln 1)g x a x x --,(,1)eax ∈, 则2211(1)()()a x g x a x x x +'=--=-, ……12分所以()0g x '<, 即()g x 在(,1)ea上单调递减,所以()(1)0g x g >=,即0()0f x >,所以函数()f x 的极小值大于0. …13分2017海淀二模理19.已知函数f (x )=e ax ﹣x .(Ⅰ)若曲线y=f (x )在(0,f (0))处的切线l 与直线x +2y +3=0垂直,求a 的值;(Ⅱ)当a ≠1时,求证:存在实数x 0使f (x 0)<1. 19.(Ⅰ)解:f'(x )=ae ax ﹣1,∵曲线y=f(x)在(0,f(0))处的切线与直线x+2y+3=0垂直,∴切线l的斜率为2,∴f'(0)=a﹣1=2,∴a=3;(Ⅱ)证明:当a≤0时,显然有f(1)<e a﹣1≤0<1,即存在实数x0使f(x0)<1;当a>0,a≠1时,由f'(x)=0可得,∴在时,f'(x)<0,∴函数f(x)在上递减;时,f'(x)>0,∴函数f(x)在上递增.∴=是f(x)的极小值.设,则,令g'(x)=0,得x=1.∴当x≠1时g(x)<g(1)=1,∴,综上,若a≠1,存在实数x0使f(x0)<1.2017顺义二模理18.已知函数f(x)=pe﹣x+x+1(p∈R).(Ⅰ)当实数p=e时,求曲线y=f(x)在点x=1处的切线方程;(Ⅱ)求函数f(x)的单调区间;(Ⅲ)当p=1时,若直线y=mx+1与曲线y=f(x)没有公共点,求实数m的取值范围.18.解:(Ⅰ)当p=e时,f(x)=e1﹣x+x+1,可得导数f′(x)=﹣e1﹣x+1,∴f(1)=3,f′(1)=0,∴曲线y=f(x)在点x=1处的切线方程为y=3;(Ⅱ)∵f(x)=pe﹣x+x+1,∴f′(x)=﹣pe﹣x+1,①当p≤0时,f′(x)>0,则函数f(x)的单调递增区间为(﹣∞,+∞);②当p>0时,令f′(x)=0,得e x=p,解得x=lnp.则当x变化时,f′(x)的变化情况如下表:所以,当p>0时,f(x)的单调递增区间为(lnp,+∞),单调递减区间为(﹣∞,lnp).(Ⅲ)当p=1时,f(x)=e﹣x+x+1,直线y=mx+1与曲线y=f(x)没有公共点,等价于关于x 的方程mx+1=e ﹣x+x+1在(﹣∞,+∞)上没有实数解, 即关于x 的方程(m ﹣1)x=e ﹣x (*)在(﹣∞,+∞)上没有实数解. ①当m=1时,方程(*)化为e ﹣x =0,显然在(﹣∞,+∞)上没有实数解. ②当m ≠1时,方程(*)化为xe x =,令g (x )=xe x ,则有g′(x )=(1+x )e x .令g′(x )=0,得x=﹣1,则当x 变化时,g'(x )的变化情况如下表:当x=﹣1时,,同时当x 趋于+∞时,g (x )趋于+∞,从而g (x )的值域为.所以当<﹣时,方程(*)无实数解,解得实数m 的取值范围是(1﹣e ,1).综合①②可知实数m 的取值范围是(1﹣e ,1]. 2017西城二模理19.(13分)已知函数21()()e x f x x ax a -=+-⋅,其中a ∈R .(Ⅰ)求函数()f x '的零点个数(Ⅱ)证明0a ≥是函数()f x 存在最小值的充分不必要条件. 19.解:(Ⅰ)由21()()e x f x x ax a -=+-⋅,得121()(2)e ()e x x f x x a x ax a --'=+⋅-+-⋅21[(2)2]e x x a x a -=-+--⋅1()(2)e x x a x -=-+-⋅.[ 2分]令()0f x '=,得2x =,或x a =-.所以当2a =-时,函数()f x '有且只有一个零点:2x =;当2a ≠-时,函数()f x '有两个相异的零点:2x =,x a =-.[ 4分](Ⅱ)① 当2a =-时,()0f x '≤恒成立,此时函数()f x 在(,)-∞+∞上单调递减, 所以,函数()f x 无极值.[ 5分]② 当2a >-时,()f x ',()f x 的变化情况如下表:所以,0a ≥时,()f x 的极小值为1()e a f a a +-=-⋅≤0.[ 7分]又2x >时,222240x ax a a a a +->+-=+>,所以,当2x >时,21()()e 0x f x x ax a -=+-⋅>恒成立.[ 8分] 所以,1()e a f a a +-=-⋅为()f x 的最小值.[ 9分] 故0a ≥是函数()f x 存在最小值的充分条件.[10分] ③ 当5a =-时,()f x ',()f x 的变化情况如下表:因为当5x >时,21()(55)e 0x f x x x -=-+⋅>,又1(2)e 0f -=-<,所以,当5a =-时,函数()f x 也存在最小值.[12分] 所以,0a ≥不是函数()f x 存在最小值的必要条件.综上,0a ≥是函数()f x 存在最小值的充分而不必要条件.[13分]2017人大附中18.(13分)已知函数()ln()f x a x =+,())g x k R =?,y x =为曲线()y f x =的切线.(Ⅰ)求a 的值;(Ⅱ)若存在00x >,使得()00,x x ∈时,()y f x =图象在()y g x =图象的下方,求k 的取值范围.18.(Ⅰ)()()1f x x a a x '=>-+,设切点为()11,x y ,则1111111ln()a x y a x y x⎧=⎪+⎪⎪=+⎨⎪=⎪⎪⎩,解得:1a =.5(Ⅱ)由(Ⅰ)知1a =,令()()()ln(1)(0,)h x f x g x x x =-=+-∈+∞ 依题意,存在00x >,使得()00,x x ∈时()0h x <, ·························· 7分 ①0k ≤时,(0,)x ∈+∞,()ln(1)0h x x =+->,此时不存在00x >, 使得()00,x x ∈时()0h x <; 8分②01k <<时,因为()h x'=22111k k k ⎡⎤⎫-+-⎢⎥⎪⎭=所以存在120,0x x >>使()()120h x h x ''==,不妨设21x x >()10,x x ∈,()()0,h x h x '<递减,所以()()00h x h <=,此时存在00x >,使得()00,x x ∈时()0h x <; 11分③1k ≥时,因为(0,)x ∈+∞,()221110k k k h x ⎡⎤⎫-+-⎢⎥⎪⎭'=≤, ()y h x =递减,所以()()00h x h <=.12分综上所述,k 的取值范围是(0,)+∞.13分2017高考押题理19.(13分)已知函数()ln f x x =.(Ⅰ)求曲线()y f x =在点(1,(1))f 处的切线方程;(Ⅱ)求证:当0x >时,1()1f x x-≥;(Ⅲ)若1ln x a x ->对任意1x >恒成立,求实数a 的最大值19.解:(Ⅰ)1()f x x'=, (1)1f '=, 又(1)0f =,所以切线方程为1y x =-; (Ⅱ)由题意知0x >,令11()()(1)ln 1g x f x x x x=--=-+.22111'()x g x x x x -=-= 令21'()0x g x x-==,解得1x =.易知当1>x 时,'()0g x >,易知当01x <<时,'()0g x <.即()g x 在(0,1)单调递减,在(1,)+∞单调递增 所以min ()(1)0g x g ==,()(1)0g x g ≥= 即1()()(1)0g x f x x =--≥,即1()(1)f x x≥-.(Ⅲ)设()1ln (1)h x x a x x =--≥,依题意,对于任意1,>x ()0h x >恒成立.'()1a x ah x x x-=-=, 1≤a 时,'(),h x >0()h x 在[1,)+∞上单调增, 当1>x 时,()(1)0h x h >=,满足题意. 1>a 时,随x 变化,'()h x ,()h x 的变化情况如下表:()h x 在(,)a 1上单调递减, 所以()()<=g a g 10 即当 1>a 时,总存在()0<g a ,不合题意. 综上所述,实数a 的最大值为1.2017北大地高考押题理18.已知函数满足,其中,且。
北京市东城区2017届高三下学期二模数学试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知集合24{|}0A x x =﹣<,则R A ð=( ) A .2{}2|x x x ≤≥-或B .2{2|}x x x <-或>C .2{|}2x x -<<D .2{|}2x x ≤≤-2.下列函数中为奇函数的是( ) A .cos y x x =+B .sin y x x =+C.yD .xy e=-3.若x y ,满足1000x y x y y -+≥⎧⎪+≤⎨⎪≥⎩,则2x y +的最大值为( )A .1-B .0C .12D .24.设,a b 是非零向量,则“,a b 共线”是“||||||a b a b +=+”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件5.已知等比数列{}n a 为递增数列,n S 是其前n 项和.若15172a a +=,244a a =,则6S =( ) A .2716B .278C .634D .6326.我国南宋时期的数学家秦九韶(约1202﹣1261)在他的著作《数书九章》中提出了多项式求值的秦九韶算法.如图所示的框图给出了利用秦九韶算法求多项式的一个实例.若输入的5,1,2n v x ===,则程序框图计算的是( )A .5432222221+++++B .5432222225+++++C .654322222221++++++D .43222221++++7.动点P 从点A 出发,按逆时针方向沿周长为1的平面图形运动一周,A ,P 两点间的距离Y 与动点P 所走过的路程X 的关系如图所示,那么动点P 所走的图形可能是( )A .B .C .D .8.据统计某超市两种蔬菜,A B 连续n 天价格分别为123,,,,n a a a a ⋯,和123,,,,b b b 令,{|}1,2,,m m M m a b m n ==<,若M 中元素个数大于34n ,则称蔬菜A 在这n 天的价格低于蔬菜B 的价格,记作:,,,,,A B A B C 现有三种蔬菜下列说法正确的是( ) A .,,A B B C A C <<<若则B .,A B BC A C <<<若同时不成立,则不成立 C .,A B B A <<可同时不成立D .,A B B A <<可同时成立二、填空题共6小题,每小题5分,共30分.9.复数i(2i)-在复平面内所对应的点的坐标为_______.10.在极坐标系中,直线cos sin 10ρθθ+=与圆2cos (0)a a ρθ=>相切,则a =_______.11.4,2,4A B 某校开设类选修课门类选修课门每位同学需从两类选修课中共选门,若要求至少选一门B 类课程,则不同的选法共有_______种.(用数字作答)12.如图,在四边形1,45,30,1,2,cos 4ABCD ABD ADB BC DC BCD ∠=︒∠=︒==∠=中,则BD =_______;三角形ABD 的面积为_______.13.在直角坐标系2,4,,xOy l y x F A B =中直线过抛物线的焦点且与该抛物线相交于两点,其中点60,A x l OA ︒=在轴上方.若直线的倾斜角为则_______.14.已知函数{}{}|1|,(0,2]()min |1|,|3|,(2,4]min |3|,|5|,(4,)x x f x x x x x x x ⎧-∈⎪--∈⎨⎪--∈+∞⎩①若()f x a =有且只有一个根,则实数a 的取值范围是_______.②若关于x 的方程()()f x T f x +=有且仅有3个不同的实根,则实数T 的取值范围是_______. 三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.已知函数()f x=sin 2cos2()x a x a +∈R . (Ⅰ)若π()26f =,求a 的值;(Ⅱ)若f x ()在π7π,1212⎡⎤⎢⎥⎣⎦上单调递减,求()f x 的最大值. 16.小明计划在8月11日至8月20日期间游览某主题公园.根据旅游局统计数据,该主题公园在此期间“游览舒适度”(即在园人数与景区主管部门核定的最大瞬时容量之比,40%以下为舒适,40%﹣60%为一般,60%以上为拥挤)情况如图所示.小明随机选择8月11日至8月19日中的某一天到达该主题公园,并游览2天.(Ⅰ)求小明连续两天都遇上拥挤的概率;(Ⅱ)设X 是小明游览期间遇上舒适的天数,求X 的分布列和数学期望; (Ⅲ)由图判断从哪天开始连续三天游览舒适度的方差最大?(结论不要求证明) 17.如图,在几何体ABCDEF 中,平面A D E A B C⊥平面,四边形ABCD 为菱形,且60,2,,DAB EA ED AB EF EF AB M BC ∠=︒===∥为中点.(Ⅰ)求证:FM BDE ∥平面;(Ⅱ)求直线CF BDE 与平面所成角的正弦值; (Ⅲ)在,CF G BG DE ⊥棱上是否存在点使?若存在,求CGCF的值;若不存在,说明理由.18.设函数2()()e ()x f x x ax a a -=+-∈R .(Ⅰ)当0,()(1,(1))a y f x f ==时求曲线在点-处的切线方程;(Ⅱ)设2()1,0,]2[g x x x t =--∈若对任意的,存在0,2[()])(s f s g t ∈≥使得成立,求a 的取值范围.19.已知椭圆C :22221(0)x y a ba b =+>>的短轴长为,右焦点为(1,0)F ,点M 是椭圆C 上异于左、右顶点,A B 的一点.(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线2AM x N BN E =与直线交于点,线段的中点为.证明:B EF 点关于直线的对称点在直线MF 上.20.对于12(,,,)n n A a a a =⋯维向量,若对任意1,2,{01},i i i n a a ∈==均有或,则称A 为,,,n T n T A B d A B 维向量.对于两个维向量定义()=1||ni i i a b =-∑. (Ⅰ)若(1,0,1,0,1)(0,1,1,1,0)(,)A B d A B ==,,求的值.(Ⅱ)现有一个5维1231,,,,1(1,1,1,1,1)T A A A A ⋯=向量序列:若且满足:(,1)2i i d A A +=,*i ∈N .求证:该序列中不存在5维T 向量(0,0,0,0,0).(Ⅲ)现有一个12维123T A A A 向量序列:,,,,若112(1,1,,1)A 个且满足:1()i i d A A m +=,,*,1,2,3,m i ∈=N ,若存在正整数j 使得12(0,0,,0)j A 个,j A 为12维T 向量序列中的项,求出所有的m .。
东城二模数学理科附答案Modified by JACK on the afternoon of December 26, 2020北京市东城区2016-2017学年度第二学期高三综合练习(二)数学(理科)第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合2{|40}A x x ,则A R(A ){|2x x 或2}x (B ){|2x x 或2}x(C ){|22}x x (D ){|22}x x(2)下列函数中为奇函数的是(A )cos y x x =+ (B )sin y x x =+(C )y x (D )||e x y -=(3)若,x y 满足10,00,x y x y y ,则2x y 的最大值为(A )1 (B )0 (C )12(D )2(4)设,a b 是非零向量,则“,a b 共线”是“||||||a b a b ”的(A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件(5)已知等比数列{}n a 为递增数列,n S 是其前n 项和.若15172a a ,244a a ,则6=S(A )2716 (B )278 (C )634 (D ) 632否1v v x 1i i1i n0i(6)我国南宋时期的数学家秦九韶(约12021261)在他的着作《数书九章》中提出了九韶算法.如图所示的框图给出了利用秦九韶算法求多项式的一个实例.若输入的5n ,1v ,2x ,则程序框图计算的是(A )5432222221(B )5432222225APPAP(C )654322222221(D )43222221(7)动点P 从点A 出发,按逆时针方向沿周长为l 的平面图形运动一周,,A P 两点间的距离y 与动点P 所走过的路程x 的关系如图P 所走的图形可能是(A)(B)(C)(D)BD(8)据统计某超市两种蔬菜,A B 连续n 天价格分别为123,,,,n a a a a 和123,,,,n b b b b ,令{|,1,2,,}m m M m a b m n =<=,若M 中元素个数大于34n ,则称蔬菜A 在这n 天的价格低于蔬菜B 的价格,记作:A B ,现有三种蔬菜,,A B C ,下列说法正确的是(A )若A B ,B C ,则A C(B )若A B ,B C 同时不成立,则A C 不成立(C )A B ,B A 可同时不成立(D )A B ,B A 可同时成立第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
北京市东城区2016-2017学年度第二学期高三综合练习(二)数学 (理科)学校_________班级___________姓名___________考号_________本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合2{|40}A x x =-<,则A =R ð(A ){|2x x ?或2}x ³ (B ){|2x x <-或2}x >(C ){|22}x x -<< (D ){|22}x x -#(2)下列函数中为奇函数的是(A )cos y x x =+ (B )sin y x x =+ (C)y =(D )||e x y -=(3)若,x y 满足10,00,x y x y y ì-+?ïï+?íï³ïî,则2x y +的最大值为(A )1- (B )0 (C )12(D )2 (4)设,a b 是非零向量,则“,a b 共线”是“||||||+=+a b a b ”的(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件(5)已知等比数列{}n a 为递增数列,n S 是其前n 项和.若15172a a +=,244a a =,则6=S (A )2716 (B )278 (C )634 (D ) 632APAP(6)我国南宋时期的数学家秦九韶(约12021261-)在他的著作《数书九章》中提出了多项式求值的秦九韶算法.如图所示的框图给出了利用秦九韶算法求多项式的一个实例.若输入的5n =,1v =,2x =,则程序框图计算的是 (A )5432222221+++++ (B )5432222225+++++ (C )654322222221++++++ (D )43222221++++(7)动点P 从点A 出发,按逆时针方向沿周长为l 的平面图形运动一周,,A P 两点间的距离y 与动点P 所走过的路程x 的关系如图所示,那么动点P 所走的图形可能是(A ) (B ) (C ) (D )B D(8)据统计某超市两种蔬菜,A B 连续n 天价格分别为123,,,,n a a a a L 和123,,,,n b b b b L ,令{|,1,2,,}m m M m a b m n =<=L ,若M 中元素个数大于34n ,则称蔬菜A 在这n 天的价格低于蔬菜B 的价格,记作:A B p ,现有三种蔬菜,,A B C ,下列说法正确的是(A )若A B p ,B C p ,则A C p(B )若A B p ,B C p 同时不成立,则A C p 不成立(C )A B p ,B A p 可同时不成立 (D )A B p,B A p 可同时成立第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
北京市东城区2017届高三数学下学期二模考试试卷理(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(北京市东城区2017届高三数学下学期二模考试试卷理(含解析))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为北京市东城区2017届高三数学下学期二模考试试卷理(含解析)的全部内容。
2017年北京市东城区高考数学二模试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合A={x|x2﹣4<0},则∁RA=( )A.{x|x≤﹣2或x≥2}ﻩB.{x|x<﹣2或x>2}ﻩC.{x|﹣2<x<2}ﻩD.{x|﹣2≤x≤2} 2.下列函数中为奇函数的是()A.y=x+cosxﻩB.y=x+sinx C. D.y=e﹣|x|3.若x,y满足,则x+2y的最大值为()A.﹣1ﻩB.0ﻩC.ﻩD.24.设,是非零向量,则“,共线”是“|+|=||+||”的( )A.充分而不必要条件ﻩB.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.已知等比数列{an}为递增数列,Sn是其前n项和.若a1+a5=,a2a4=4,则S6=( )A. B.C.ﻩD.6.我国南宋时期的数学家秦九韶(约1202﹣1261)在他的著作《数书九章》中提出了多项式求值的秦九韶算法.如图所示的框图给出了利用秦九韶算法求多项式的一个实例.若输入的n=5,v=1,x=2,则程序框图计算的是( )A.25+24+23+22+2+1ﻩB.25+24+23+22+2+5C.26+25+24+23+22+2+1ﻩD.24+23+22+2+17.动点P从点A出发,按逆时针方向沿周长为1的平面图形运动一周,A,P两点间的距离y与动点P所走过的路程x的关系如图所示,那么动点P所走的图形可能是( )A.B.C.ﻩD.8.据统计某超市两种蔬菜A,B连续n天价格分别为a1,a2,a3,…,a n,和b1,b2,b3,…,b n,令M={m|a m<b m,m=1,2,…,n},若M中元素个数大于n,则称蔬菜A在这n天的价格低于蔬菜B的价格,记作:A B,现有三种蔬菜A,B,C,下列说法正确的是()A.若A B,B C,则A CB.若A B,B C同时不成立,则A C不成立C.A B,B A可同时不成立D.A B,B A可同时成立二、填空题共6小题,每小题5分,共30分.9.复数i(2﹣i)在复平面内所对应的点的坐标为 .10.在极坐标系中,直线ρcosθ+ρsinθ+1=0与圆ρ=2acosθ(a>0)相切,则a =.11.某校开设A类选修课4门,B类选修课2门,每位同学需从两类选修课中共选4门,若要求至少选一门B类课程,则不同的选法共有种.(用数字作答)12.如图,在四边形ABCD中,∠ABD=45°,∠ADB=30°,BC=1,DC=2,cos∠BCD=,则BD= ;三角形ABD的面积为.13.在直角坐标系xOy中,直线l过抛物线y2=4x的焦点F,且与该抛物线相交于A,B两点,其中点A在x轴上方.若直线l的倾斜角为60°,则|OA|= .14.已知函数①若f(x)=a有且只有一个根,则实数a的取值范围是.②若关于x的方程f(x+T)=f(x)有且仅有3个不同的实根,则实数T的取值范围是.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.已知函数f(x)=sin2x+a•cos2x(a∈R).(Ⅰ)若f()=2,求a的值;(Ⅱ)若f(x)在[,]上单调递减,求f(x)的最大值.16.小明计划在8月11日至8月20日期间游览某主题公园.根据旅游局统计数据,该主题公园在此期间“游览舒适度”(即在园人数与景区主管部门核定的最大瞬时容量之比,40%以下为舒适,40%﹣60%为一般,60%以上为拥挤)情况如图所示.小明随机选择8月11日至8月19日中的某一天到达该主题公园,并游览2天.(Ⅰ)求小明连续两天都遇上拥挤的概率;(Ⅱ)设X是小明游览期间遇上舒适的天数,求X的分布列和数学期望;(Ⅲ)由图判断从哪天开始连续三天游览舒适度的方差最大?(结论不要求证明)17.如图,在几何体ABCDEF中,平面ADE⊥平面ABCD,四边形ABCD为菱形,且∠DAB =60°,EA=ED=AB=2EF,EF∥AB,M为BC中点.(Ⅰ)求证:FM∥平面BDE;(Ⅱ)求直线CF与平面BDE所成角的正弦值;(Ⅲ)在棱CF上是否存在点G,使BG⊥DE?若存在,求的值;若不存在,说明理由.18.设函数f(x)=(x2+ax﹣a)•e﹣x(a∈R).(Ⅰ)当a=0时,求曲线y=f(x)在点(﹣1,f(﹣1))处的切线方程;(Ⅱ)设g(x)=x2﹣x﹣1,若对任意的t∈[0,2],存在s∈[0,2]使得f(s)≥g(t)成立,求a的取值范围.19.已知椭圆C:=1(a>b>0)的短轴长为2,右焦点为F(1,0),点M是椭圆C上异于左、右顶点A,B的一点.(Ⅰ)求椭圆C的方程;(Ⅱ)若直线AM与直线x=2交于点N,线段BN的中点为E.证明:点B关于直线EF的对称点在直线MF上.20.对于n维向量A=(a1,a2,…,a n),若对任意i∈{1,2,…,n}均有ai=0或ai=1,则称A 为n维T向量.对于两个n维T向量A,B,定义d(A,B)=.(Ⅰ)若A=(1,0,1,0,1),B=(0,1,1,1,0),求d(A,B)的值.(Ⅱ)现有一个5维T向量序列:A1,A2,A3,…,若A1=(1,1,1,1,1)且满足:d(A i,Ai+1)=2,i ∈N*.求证:该序列中不存在5维T向量(0,0,0,0,0).(Ⅲ)现有一个12维T向量序列:A1,A2,A3,…,若且满足:d(Ai,A i+)=m,m∈N*,i=1,2,3,…,若存在正整数j使得,A j为12维T向量序列1中的项,求出所有的m.2017年北京市东城区高考数学二模试卷(理科)参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合A={x|x2﹣4<0},则∁RA=( )A.{x|x≤﹣2或x≥2} B.{x|x<﹣2或x>2} C.{x|﹣2<x<2}D.{x|﹣2≤x≤2}【考点】1F:补集及其运算.【分析】解不等式求出集合A,根据补集的定义计算∁RA.【解答】解:集合A={x|x2﹣4<0}={x|﹣2<x<2},则∁RA={x|x≤﹣2或x≥2}.故选:A.2.下列函数中为奇函数的是( )A.y=x+cosxﻩB.y=x+sinxC.D.y=e﹣|x|【考点】3K:函数奇偶性的判断.【分析】分别确定函数的奇偶性,可得结论.【解答】解:对于A非奇非偶函数,不正确;对于B,计算,正确,对于C,非奇非偶函数,不正确;对于D,偶函数,不正确,故选:B.3.若x,y满足,则x+2y的最大值为( )A.﹣1 B.0 C.D.2【考点】7C:简单线性规划.【分析】作出题中不等式组表示的平面区域,得如图的△ABC及其内部,再将目标函数z=x+2y对应的直线进行平移,判断最优解,然后求解z取得的最大值.【解答】解:作出x,y满足表示的平面区域,得到如图的三角形及其内部,由,解得A(﹣,),设z=F(x,y)=x+2y,将直线l:z=x+2y进行平移,当l经过点A时,目标函数z达到最大值∴z最大值=F(,)=.故选:C.4.设,是非零向量,则“,共线”是“|+|=||+||”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件ﻩD.既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【分析】“|+|=||+||”⇒“,共线”,反之不成立,例如.【解答】解:“|+|=||+||”⇒“,共线”,反之不成立,例如.∴,是非零向量,则“,共线”是“|+|=||+||”的必要不充分条件.故选:B.5.已知等比数列{a n}为递增数列,S n是其前n项和.若a1+a5=,a2a4=4,则S6=() A. B.ﻩC.ﻩD.【考点】89:等比数列的前n项和.【分析】利用等比数列的通项公式与求和公式即可得出.【解答】解:设递增的等比数列{a n}的公比为q,∵a1+a5=,a2a4=4=a1a5,解得a1=,a5=8.解得q=2,则S6==.故选:D.6.我国南宋时期的数学家秦九韶(约1202﹣1261)在他的著作《数书九章》中提出了多项式求值的秦九韶算法.如图所示的框图给出了利用秦九韶算法求多项式的一个实例.若输入的n =5,v=1,x=2,则程序框图计算的是( )A.25+24+23+22+2+1 B.25+24+23+22+2+5C.26+25+24+23+22+2+1ﻩD.24+23+22+2+1【考点】EF:程序框图.【分析】由题意,模拟程序的运行,依次写出每次循环得到的i,v的值,当i=﹣1时,不满足条件i≥0,跳出循环,输出v的值为63,即可得解.【解答】解:模拟程序的运行,可得n=5,v=1,x=2,i=4满足条件i≥0,执行循环体,v=3,i=3满足条件i≥0,执行循环体,v=7,i=2满足条件i≥0,执行循环体,v=15,i=1满足条件i≥0,执行循环体,v=31,i=0满足条件i≥0,执行循环体,v=63,i=﹣1不满足条件i≥0,退出循环,输出v的值为63.由于25+24+23+22+2+1=63.故选:A.7.动点P从点A出发,按逆时针方向沿周长为1的平面图形运动一周,A,P两点间的距离y 与动点P所走过的路程x的关系如图所示,那么动点P所走的图形可能是()A.ﻩB.ﻩC.D.【考点】3O:函数的图象.【分析】本题考查的是函数的图象与图象变化的问题.在解答时首先要充分考查所给四个图形的特点,包括对称性、圆滑性等,再结合所给A,P两点连线的距离y与点P走过的路程x的函数图象即可直观的获得解答.【解答】解:由题意可知:对于A、B,当P位于A,B图形时,函数变化有部分为直线关系,不可能全部是曲线,由此即可排除A、B,对于D,其图象变化不会是对称的,由此排除D,故选C.8.据统计某超市两种蔬菜A,B连续n天价格分别为a1,a2,a3,…,a n,和b1,b2,b3,…,bn,令M={m|am<b m,m=1,2,…,n},若M中元素个数大于n,则称蔬菜A在这n天的价格低于蔬菜B的价格,记作:A B,现有三种蔬菜A,B,C,下列说法正确的是( )A.若A B,B C,则A CB.若A B,B C同时不成立,则A C不成立C.A B,B A可同时不成立D.A B,B A可同时成立【考点】F4:进行简单的合情推理.【分析】令a i=bi,i=1,2,…n,即可判断C正确.【解答】解:若ai=bi,i=1,2,…n,则A B,B A同时不成立,故选C.二、填空题共6小题,每小题5分,共30分.9.复数i(2﹣i)在复平面内所对应的点的坐标为(1,2) .【考点】A4:复数的代数表示法及其几何意义.【分析】利用复数的运算法则、几何意义即可得出.【解答】解:复数i(2﹣i)=2i+1在复平面内所对应的点的坐标为(1,2).故答案为:(1,2).10.在极坐标系中,直线ρcosθ+ρsinθ+1=0与圆ρ=2acosθ(a>0)相切,则a=1 .【考点】Q4:简单曲线的极坐标方程.【分析】把极坐标方程化为直角坐标方程,利用直线与圆相切的性质即可得出.【解答】解:直线ρcosθ+ρsinθ+1=0化为直角坐标方程:x+y+1=0.圆ρ=2acosθ(a>0)即ρ2=2ρacosθ(a>0),可得直角坐标方程:x2+y2=2ax,配方为:(x ﹣a)2+y2=a2.可得圆心(a,0),半径a.∵直线ρcosθ+ρsinθ+1=0与圆ρ=2acosθ(a>0)相切,∴=a,a>0,解得a=1.故答案为:1.11.某校开设A类选修课4门,B类选修课2门,每位同学需从两类选修课中共选4门,若要求至少选一门B类课程,则不同的选法共有14 种.(用数字作答)【考点】D8:排列、组合的实际应用.【分析】根据题意,分2种情况讨论:①、选择1门B类课程,需要选择A类课程3门,②、选择2门B类课程,需要选择A类课程2门,由分步计数原理计算每种情况的选法数目,进而由分步计数原理计算可得答案.【解答】解:根据题意,分2种情况讨论:①、选择1门B类课程,需要选择A类课程3门,则B类课程有C21=2种选法,A类课程有C43=4种选法,此时有2×4=8种选择方法;②、选择2门B类课程,需要选择A类课程2门,则B类课程有C22=1种选法,A类课程有C42=6种选法,此时有1×6=6种选择方法;则一共有8+6=14种不同的选法;故答案为:14.12.如图,在四边形ABCD中,∠ABD=45°,∠ADB=30°,BC=1,DC=2,cos∠BCD=,则BD= 2 ;三角形ABD的面积为﹣1 .【考点】HT:三角形中的几何计算.【分析】△CBD中,由余弦定理,可得,BD,△ABD中,利用正弦定理,可得AD,利用三角形的面积公式,可得结论.【解答】解:△CBD中,由余弦定理,可得,BD==2,△ABD中,利用正弦定理,可得AD==2﹣2,∴三角形ABD的面积为(2﹣2)×=﹣1,故答案为2,﹣1.13.在直角坐标系xOy中,直线l过抛物线y2=4x的焦点F,且与该抛物线相交于A,B两点,其中点A在x轴上方.若直线l的倾斜角为60°,则|OA|= .【考点】K8:抛物线的简单性质.【分析】由题意可知求得直线l的方程,代入抛物线方程,点A在x轴上方,即可求得A点坐标,利用两点之间的距离公式,即可求得丨OA丨.【解答】解:抛物线y2=4x的焦点F的坐标为(1,0)∵直线l过F,倾斜角为60°,即斜率k=tanα=,∴直线l的方程为:y=(x﹣1),即x=y+1,,解得:,,由点A在x轴上方,则A(3,2),则|OA|==,则丨OA丨=,故答案为:.14.已知函数①若f(x)=a有且只有一个根,则实数a的取值范围是(1,+∞) .②若关于x的方程f(x+T)=f(x)有且仅有3个不同的实根,则实数T的取值范围是(﹣4,﹣2)∪(2,4) .【考点】54:根的存在性及根的个数判断.【分析】①作出f(x)的图象,根据图象判断;②将f(x)的图象平移,只需与原图象有3个交点即可.【解答】解:①f(x)=,作出f(x)的函数图象如图所示:由图象可知当a>1时,f(x)=a只有1解.②∵关于x的方程f(x+T)=f(x)有且仅有3个不同的实根,∴将f(x)的图象向左或向右平移|T|个单位后与原图象有3个交点,∴2<|T|<4,即﹣4<T<﹣2或2<T<4.故答案为:①(1,+∞),②(﹣4,﹣2)∪(2,4).三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.已知函数f(x)=sin2x+a•cos2x(a∈R).(Ⅰ)若f()=2,求a的值;(Ⅱ)若f(x)在[,]上单调递减,求f(x)的最大值.【考点】GL:三角函数中的恒等变换应用;H2:正弦函数的图象.【分析】(Ⅰ)根据f()=2,即可求a的值;(Ⅱ)利用辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,结合三角函数的图象和性质,f(x)在[,]上单调递减,可得最大值.【解答】解:(Ⅰ)因为,∵.故得:a=1.(Ⅱ)由题意:f(x)=,其中tan,∴函数的周期T=π,且,所以当x=时,函数f(x)取得最大值,即f(x)max=f()═=,∴sin()=1,∴,k∈Z.∴tanθ==,∴a=3.故得.因此f(x)的最大值为.16.小明计划在8月11日至8月20日期间游览某主题公园.根据旅游局统计数据,该主题公园在此期间“游览舒适度"(即在园人数与景区主管部门核定的最大瞬时容量之比,40%以下为舒适,40%﹣60%为一般,60%以上为拥挤)情况如图所示.小明随机选择8月11日至8月19日中的某一天到达该主题公园,并游览2天.(Ⅰ)求小明连续两天都遇上拥挤的概率;(Ⅱ)设X是小明游览期间遇上舒适的天数,求X的分布列和数学期望;(Ⅲ)由图判断从哪天开始连续三天游览舒适度的方差最大?(结论不要求证明)【考点】CH:离散型随机变量的期望与方差;CC:列举法计算基本事件数及事件发生的概率.【分析】设Ai表示事件“小明8月11日起第i日连续两天游览主题公园”(i=1,2,…,9).根据题意,,且事件Ai与Aj互斥.(Ⅰ)设B为事件“小明连续两天都遇上拥挤",则B=A4∪A7.利用互斥事件的概率计算公式即可得出.(Ⅱ)由题意,可知X的所有可能取值为0,1,2,结合图象,利用互斥事件与古典概率计算公式即可得出.(Ⅲ)从8月16日开始连续三天游览舒适度的方差最大.【解答】解:设Ai表示事件“小明8月11日起第i日连续两天游览主题公园”(i=1,2,…,9).根据题意,,且事件Ai与A j互斥.…(Ⅰ)设B为事件“小明连续两天都遇上拥挤",则B=A4∪A7.…所以.…(Ⅱ)由题意,可知X的所有可能取值为0,1,2,…,…,…. …所以X的分布列为X012P…故X的期望.…(Ⅲ)从8月16日开始连续三天游览舒适度的方差最大.…17.如图,在几何体ABCDEF中,平面ADE⊥平面ABCD,四边形ABCD为菱形,且∠DAB=60°,EA=ED=AB=2EF,EF∥AB,M为BC中点.(Ⅰ)求证:FM∥平面BDE;(Ⅱ)求直线CF与平面BDE所成角的正弦值;(Ⅲ)在棱CF上是否存在点G,使BG⊥DE?若存在,求的值;若不存在,说明理由.【考点】LS:直线与平面平行的判定;MI:直线与平面所成的角.【分析】(Ⅰ)取CD中点N,连结MN、FN,推导出四边形EFND为平行四边形.从而FN∥ED.进而FN∥平面BDE,由此能证明平面MFN∥平面BDE,从而FM∥平面BDE.(Ⅱ)取AD中点O,连结EO,BO.以O为原点,OA,OB,OE为x,y,z轴,建立空间直角坐标系O﹣xyz,利用向量法能求出直线CF与平面ADE所成角的正弦值.(Ⅲ)设G是CF上一点,且,λ∈[0,1].利用向量法能求出在棱CF上存在点G使得BG ⊥DE,此时.【解答】(共14分)证明:(Ⅰ)取CD 中点N,连结MN、FN.因为N,M分别为CD,BC中点,所以MN∥BD.又BD⊂平面BDE,且MN⊄平面BDE,所以MN∥平面BDE,因为EF∥AB,AB=2EF,所以EF∥CD,EF=DN.所以四边形EFND为平行四边形.所以FN∥ED.又ED⊂平面BDE且FN⊄平面BDE,所以FN∥平面BDE,…又FN∩MN=N,所以平面MFN∥平面BDE.…又FM⊂平面MFN,所以FM∥平面BDE. …解:(Ⅱ)取AD中点O,连结EO,BO.因为EA=ED,所以EO⊥AD.因为平面ADE⊥平面ABCD,所以EO⊥平面ABCD,EO⊥BO.因为AD=AB,∠DAB=60°,所以△ADB为等边三角形.因为O为AD中点,所以AD⊥BO.因为EO,BO,AO两两垂直,设AB=4,以O为原点,OA,OB,OE为x,y,z轴,如图建立空间直角坐标系O﹣xy z. …由题意得,A(2,0,0),,,D(﹣2,0,0),,.…,,.设平面BDE的法向量为=(x,y,z),则,即,令z=1,则y=1,.所以.…设直线CF与平面BDE成角为α,,所以直线CF与平面ADE所成角的正弦值为.…(Ⅲ)设G是CF上一点,且,λ∈[0,1]. …因此点. ….由,解得.所以在棱CF上存在点G使得BG⊥DE,此时.…18.设函数f(x)=(x2+ax﹣a)•e﹣x(a∈R).(Ⅰ)当a=0时,求曲线y=f(x)在点(﹣1,f(﹣1))处的切线方程;(Ⅱ)设g(x)=x2﹣x﹣1,若对任意的t∈[0,2],存在s∈[0,2]使得f(s)≥g(t)成立,求a的取值范围.【考点】6E:利用导数求闭区间上函数的最值;6H:利用导数研究曲线上某点切线方程.【分析】(Ⅰ)当a=0时,f′(x)=(﹣x2+2x)e﹣x,由此能求出曲线y=f(x)在点(﹣1,f(﹣1))处的切线方程.(Ⅱ)“对任意的t∈[0,2],存在s∈[0,2]使得f(s)≥g(t)成立",等价于“在区间[0,2]上,f(x)的最大值大于或等于g(x)的最大值”.求出g(x)在[0,2]上的最大值为g(2)=1.f'(x)=e﹣x(x﹣2)(x+a),令f′(x)=0,得x=2,或x=﹣a. 由此利用分类讨论思想结合导数性质能求出实数a的值范围.【解答】(共13分)解:(Ⅰ)当a=0时,∵f(x)=x2e﹣x,∴f′(x)=(﹣x2+2x)e﹣x,…,∴f′(﹣1)﹣3e. …又∵f(﹣1)=e,…∴曲线y=f(x)在点(﹣1,f(﹣1))处的切线方程为:y﹣e=﹣3e(x+1),即3ex+y+2e=0. …(Ⅱ)“对任意的t∈[0,2],存在s∈[0,2]使得f(s)≥g(t)成立",等价于“在区间[0,2]上,f(x)的最大值大于或等于g(x)的最大值". …∵,∴g(x)在[0,2]上的最大值为g(2)=1.f'(x)=(2x+a)•e﹣x﹣(x2+ax﹣a)•e﹣x=﹣ex[x2+(a﹣2)x﹣2a]=e﹣x(x﹣2)(x+a),令f′(x)=0,得x=2,或x=﹣a.…①当﹣a<0,即a>0时,f′(x)>0在[0,2]上恒成立,f(x)在[0,2]上为单调递增函数,f(x)的最大值为f(2)=(4+a)•,由(4+a)•≥1,得a≤e2﹣4.…②当0<﹣a<2,即﹣2<a<0时,当x∈(0,﹣a)时,f′(x)<0,f(x)为单调递减函数,当x∈(﹣a,¬2)时,f'(x)>0,f(x)为单调递增函数.∴f(x)的最大值为f(0)=﹣a或f(2)=(4+a),由﹣a≥1,得a≤﹣1;由(4+a)≥1,得a≤e2﹣4.又∵﹣2<a<0,∴﹣2<a=1. …③当﹣a>2,即a<﹣2时,f′(x)<0在[0,2]上恒成立,f(x)在[0,2]上为单调递减函数,f(x)的最大值为f(0)=﹣a,由﹣a≥1,得a≤﹣1,又因为a<﹣2,所以a<﹣2.综上所述,实数a的值范围是{x|a≤﹣1或a≥e2﹣4}.…19.已知椭圆C:=1(a>b>0)的短轴长为2,右焦点为F(1,0),点M是椭圆C上异于左、右顶点A,B的一点.(Ⅰ)求椭圆C的方程;(Ⅱ)若直线AM与直线x=2交于点N,线段BN的中点为E.证明:点B关于直线EF的对称点在直线MF上.【考点】KL:直线与椭圆的位置关系.【分析】(Ⅰ)由题意可知b=,c=1,a2=b2+c2=4,即可求得椭圆方程;(Ⅱ)由“点B关于直线EF的对称点在直线MF上”等价于“EF平分∠MFB”设直线AM的方程,代入椭圆方程,由韦达定理求得M点坐标,分类讨论,当MF⊥x轴时,求得k的值,即可求得N和E点坐标,求得点E在∠BFM的角平分线所在的直线y=x﹣1或y=﹣x+1,则EF平分∠MFB,当k≠时,即可求得直线MF的斜率及方程,利用点到直线的距离公式,求得=|BE|,则点B关于直线EF的对称点在直线MF上.【解答】解:(Ⅰ)由题意得2b=2,则b=,c=1,则a2=b2+c2=4,则a=2,∴椭圆C的方程为;(Ⅱ)证明:“点B关于直线EF的对称点在直线MF上”等价于“EF平分∠MFB".设直线AM的方程为y=k(x+2)(k≠0),则N(2,4k),E(2,2k).…设点M(x0,y0),由,整理得(4k2+3)x2+16k2x+16k2﹣12=0,由韦达定理可知﹣2x0=,则x0=,y0=k(x0+2)=,①当MF⊥x轴时,x0=1,此时k=±.则M(1,±),N(2,±2),E(2,±1).此时,点E在∠BFM的角平分线所在的直线y=x﹣1或y=﹣x+1,即EF平分∠MFB.…②当k≠时,直线MF的斜率为k MF==,所以直线MF的方程为4kx+(4k2﹣1)y﹣4k=0.…所以点E到直线MF的距离===|2k|=|BE|.即点B关于直线EF的对称点在直线MF上,综上可知:点B关于直线EF的对称点在直线MF上. …20.对于n维向量A=(a1,a2,…,a n),若对任意i∈{1,2,…,n}均有a i=0或a i=1,则称A为n 维T向量.对于两个n维T向量A,B,定义d(A,B)=.(Ⅰ)若A=(1,0,1,0,1),B=(0,1,1,1,0),求d(A,B)的值.(Ⅱ)现有一个5维T向量序列:A1,A2,A3,…,若A1=(1,1,1,1,1)且满足:d(A i,A i+1)=2,i∈N*.求证:该序列中不存在5维T向量(0,0,0,0,0).(Ⅲ)现有一个12维T向量序列:A1,A2,A3,…,若且满足:d(A i,A i+1)=m,m∈N*,i=1,2,3,…,若存在正整数j使得,Aj为12维T向量序列中的项,求出所有的m.【考点】R9:反证法与放缩法.【分析】(Ⅰ)由于A=(1,0,1,0,1),B=(0,1,1,1,0),由定义,求d(A,B)的值.(Ⅱ)利用反证法进行证明即可;(Ⅲ)根据存在正整数j使得,A j为12维T向量序列中的项,求出所有的m.【解答】解:(Ⅰ)由于A=(1,0,1,0,1),B=(0,1,1,1,0),由定义,可得d(A,B)=4.…(Ⅱ)反证法:若结论不成立,即存在一个含5维T向量序列,A1,A2,A3,…A n,使得A1=(1,1,1,1,1),A m=(0,0,0,0,0).因为向量A1=(1,1,1,1,1)的每一个分量变为0,都需要奇数次变化,不妨设A1的第i(i=1,2,3,4,5)个分量1变化了2n i﹣1次之后变成0,所以将A1中所有分量1变为0共需要(2n1﹣1)+(2n2﹣1)+(2n3﹣1)+(2n4﹣1)+(2n5﹣1)=2(n1+n2+n3+n4+n5﹣2)﹣1次,此数为奇数.又因为,说明Ai中的分量有2个数值发生改变,进而变化到Ai+1,所以共需要改变数值2(m﹣1)次,此数为偶数,所以矛盾.所以该序列中不存在5维T向量(0,0,0,0,0).…(Ⅲ)存在正整数j使得,A j为12维T向量序列中的项,此时m=1,2,3,4,5,6,7,8,9,10,11,12.…以上就是本文的全部内容,可以编辑修改。
东城区2016-2017学年度第一学期期末教学统一检测高三数学 (理科) 2017.1本试卷共6页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题(共8小题,每小题5分,共40分,在每小题给出的四个选项中,选出符合题目要求的一项。
)(1)已知集合{|(1)(3)0}A x x x =--<,{|24}B x x =<<,则A B =(A ){|13}x x << (B ){|14}x x << (C ){|23}x x << (D ){|24}x x << (2)抛物线22y x =的准线方程是(A )1y =- (B )12y =- (C )1x =-(D )12x =-(3)“1k =”是“直线0kx y --与圆229x y +=相切”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件(4)执行如图所示的程序框图,输出的k 值为(A )6 (B )8(C )10 (D )12(5)已知,x y ∈R ,且0x y >>,则(A )tan tan 0x y -> (B )sin sin 0x x y y -> (C )ln ln 0x y +> (D )220xy->正(主)视图俯视图侧(左)视图时间(天)(6)已知()f x 是定义在R 上的奇函数,且在[0,)+∞上是增函数,则(1)0f x +≥的解集为(A )(,1]-∞- (B )(,1]-∞ (C )[1,)-+∞ (D )[1,)+∞ (7)某三棱锥的三视图如图所示,则该三棱锥的体积为 (A )23 (B )43(C )2 (D )83(8)数列{}n a 表示第n 天午时某种细菌的数量.细菌在理想条件下第n 天的日增长率0.6n r =(*1n nn na a r n a +-=∈N ,).当这种细菌在实际条件下生长时,其日增长率n r 会发生变化.下图描述了细菌在理想和实际两种状态下细菌数量Q 随时间的变化规律.那么,对这种细菌在实际条件下日增长率n r 的规律描述正确的是10(C )时间10时间(天)(D )0.0.0.第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
北京市东城区2017-2018学年度第二学期高三综合练习(二)高三数学 (理科)本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)若集合{|12}A x x =-<<,{|2B x x =<-或1}x >,则AB =(A ){|2x x <-或1}x > (B ){|2x x <-或1}x >- (C ){|22}x x -<< (D ){|12}x x <<(2)复数(1+i)(2-i)=(A )3+i (B )1+i (C )3-i (D )1-i(3)在5a x x ⎛⎫+ ⎪⎝⎭展开式中,3x 的系数为10,则实数a 等于(A )1- (B )12(C )1 (D )2 (4)已知双曲线C :x 2a 2-y 2b 2=1的一条渐近线的倾斜角为60º,且与椭圆x 25+y 2=1有相等的焦距,则C 的方程为(A )x 23-y 2=1 (B )x 29-y 23=1 (C )x 2-y 23=1 (D )x 23-y 29=1(5)设a ,b 是非零向量,则“|a +b |=|a |-|b |”是“a // b ”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(6)某公司为了解用户对其产品的满意度,从甲、乙两地区分别随机调查了100个用户,根据用户对产品的满意度评分,分别得到甲地区和乙地区用户满意度评分的频率分布直方图.若甲地区和乙地区用户满意度评分的中位数分别为12,m m ;平均数分别为12,s s ,则下面正确的是 (A ) 1212,m m s s >> (B )1212,m m s s >< (C )1212,m m s s << (D )1212,m m s s <> (7)已知函数a x x g x x f +==2)(,log )(2,若存在]2,21[,21∈x x ,使得)()(21x g x f =,则a 的取值范围是(A )[5,0]- (B )(,5][0,)-??? (C )(5,0)- (D )(,5)(0,)-???(8)A ,B ,C ,D 四名工人一天中生产零件的情况如图所示,每个点的横、纵坐标分别表示该工人一天中生产的I 型、 II 型零件数,则下列说法错误..的是 (A )四个工人中,D 的日生产零件总数最大(B )A ,B 日生产零件总数之和小于C ,D 日生产零件 总数之和(C )A ,B 日生产I 型零件总数之和小于II 型零件总数之和 (D )A ,B ,C ,D 日生产I 型零件总数之和小于II 型零件总数之和第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
北京市东城区2017届高三下学期二模数学试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知集合24{|}0A x x =﹣<,则R A ð=( ) A .2{}2|x x x ≤≥-或B .2{2|}x x x <-或>C .2{|}2x x -<<D .2{|}2x x ≤≤-2.下列函数中为奇函数的是( ) A .cos y x x =+B .sin y x x =+C.yD .xy e=-3.若x y ,满足1000x y x y y -+≥⎧⎪+≤⎨⎪≥⎩,则2x y +的最大值为( )A .1-B .0C .12D .24.设,a b 是非零向量,则“,a b 共线”是“||||||a b a b +=+”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件5.已知等比数列{}n a 为递增数列,n S 是其前n 项和.若15172a a +=,244a a =,则6S =( ) A .2716B .278C .634D .6326.我国南宋时期的数学家秦九韶(约1202﹣1261)在他的著作《数书九章》中提出了多项式求值的秦九韶算法.如图所示的框图给出了利用秦九韶算法求多项式的一个实例.若输入的5,1,2n v x ===,则程序框图计算的是( )A .5432222221+++++B .5432222225+++++C .654322222221++++++D .43222221++++7.动点P 从点A 出发,按逆时针方向沿周长为1的平面图形运动一周,A ,P 两点间的距离Y 与动点P 所走过的路程X 的关系如图所示,那么动点P 所走的图形可能是( )A .B .C .D .8.据统计某超市两种蔬菜,A B 连续n 天价格分别为123,,,,n a a a a ⋯,和123,,,,b b b 令,{|}1,2,,m m M m a b m n ==<,若M 中元素个数大于34n ,则称蔬菜A 在这n 天的价格低于蔬菜B 的价格,记作:,,,,,A B A B C 现有三种蔬菜下列说法正确的是( ) A .,,A B B C A C <<<若则B .,A B BC A C <<<若同时不成立,则不成立 C .,A B B A <<可同时不成立D .,A B B A <<可同时成立二、填空题共6小题,每小题5分,共30分.9.复数i(2i)-在复平面内所对应的点的坐标为_______.10.在极坐标系中,直线cos sin 10ρθθ+=与圆2cos (0)a a ρθ=>相切,则a =_______.11.4,2,4A B 某校开设类选修课门类选修课门每位同学需从两类选修课中共选门,若要求至少选一门B 类课程,则不同的选法共有_______种.(用数字作答)12.如图,在四边形1,45,30,1,2,cos 4ABCD ABD ADB BC DC BCD ∠=︒∠=︒==∠=中,则BD =_______;三角形ABD 的面积为_______.13.在直角坐标系2,4,,xOy l y x F A B =中直线过抛物线的焦点且与该抛物线相交于两点,其中点60,A x l OA ︒=在轴上方.若直线的倾斜角为则_______.14.已知函数{}{}|1|,(0,2]()min |1|,|3|,(2,4]min |3|,|5|,(4,)x x f x x x x x x x ⎧-∈⎪--∈⎨⎪--∈+∞⎩①若()f x a =有且只有一个根,则实数a 的取值范围是_______.②若关于x 的方程()()f x T f x +=有且仅有3个不同的实根,则实数T 的取值范围是_______. 三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.已知函数()f x=sin 2cos2()x a x a +∈R . (Ⅰ)若π()26f =,求a 的值;(Ⅱ)若f x ()在π7π,1212⎡⎤⎢⎥⎣⎦上单调递减,求()f x 的最大值. 16.小明计划在8月11日至8月20日期间游览某主题公园.根据旅游局统计数据,该主题公园在此期间“游览舒适度”(即在园人数与景区主管部门核定的最大瞬时容量之比,40%以下为舒适,40%﹣60%为一般,60%以上为拥挤)情况如图所示.小明随机选择8月11日至8月19日中的某一天到达该主题公园,并游览2天.(Ⅰ)求小明连续两天都遇上拥挤的概率;(Ⅱ)设X 是小明游览期间遇上舒适的天数,求X 的分布列和数学期望; (Ⅲ)由图判断从哪天开始连续三天游览舒适度的方差最大?(结论不要求证明) 17.如图,在几何体ABCDEF 中,平面A D E A B C⊥平面,四边形ABCD 为菱形,且60,2,,DAB EA ED AB EF EF AB M BC ∠=︒===∥为中点.(Ⅰ)求证:FM BDE ∥平面;(Ⅱ)求直线CF BDE 与平面所成角的正弦值; (Ⅲ)在,CF G BG DE ⊥棱上是否存在点使?若存在,求CGCF的值;若不存在,说明理由.18.设函数2()()e ()x f x x ax a a -=+-∈R .(Ⅰ)当0,()(1,(1))a y f x f ==时求曲线在点-处的切线方程;(Ⅱ)设2()1,0,]2[g x x x t =--∈若对任意的,存在0,2[()])(s f s g t ∈≥使得成立,求a 的取值范围.19.已知椭圆C :22221(0)x y a ba b =+>>的短轴长为,右焦点为(1,0)F ,点M 是椭圆C 上异于左、右顶点,A B 的一点.(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线2AM x N BN E =与直线交于点,线段的中点为.证明:B EF 点关于直线的对称点在直线MF 上.20.对于12(,,,)n n A a a a =⋯维向量,若对任意1,2,{01},i i i n a a ∈==均有或,则称A 为,,,n T n T A B d A B 维向量.对于两个维向量定义()=1||ni i i a b =-∑. (Ⅰ)若(1,0,1,0,1)(0,1,1,1,0)(,)A B d A B ==,,求的值.(Ⅱ)现有一个5维1231,,,,1(1,1,1,1,1)T A A A A ⋯=向量序列:若且满足:(,1)2i i d A A +=,*i ∈N .求证:该序列中不存在5维T 向量(0,0,0,0,0).(Ⅲ)现有一个12维123T A A A 向量序列:,,,,若112(1,1,,1)A 个且满足:1()i i d A A m +=,,*,1,2,3,m i ∈=N ,若存在正整数j 使得12(0,0,,0)j A 个,j A 为12维T 向量序列中的项,求出所有的m .北京市东城区2017届高三下学期二模考试(理)数学试卷答 案1.A 2.B 3.C 4.B 5.D 6.A 7.C 8.C 9.(1,2) 10.1 11.1412.211314.①(1,)+∞;②4,2)(2,4)--(15.解(Ⅰ)因为πππ()2cos22666f a =+=, 31222a +=. 故得:1a =.(Ⅱ)由题意:()),tanf x x θθ=+=其中∴函数的周期πT =,且7πππ12122-=,所以当π12x =时,函数()f x 取得最大值,即max ππ()())126f x f θ=+=,πsin()16θ∴+=,π2π,.tan 3.3k k a θθ∴=+∈∴===Z因此()f x 的最大值为16.解:设i A 表示事件“小明8月11日起第i 日连续两天游览主题公园”(i 1,2,,9)=.根据题意,1()9i P A =,且事件i A 与j A 互斥.(Ⅰ)设B 为事件“小明连续两天都遇上拥挤”, 则47B A A =.所以47472()()()()9P B P A A P A P A ==+=. (Ⅱ)由题意,可知X 的所有可能取值为0,1,2,4784781(0)()()()()3P X P A A A P A P A P A ===++=,356935694(1)()()()()()9P X P A A A A P A P A P A P A ===+++=, 12122(2)()()()9P X P A A P A P A ===+=. 所以X 的分布列为故X 的期望14()0123999E X =⨯+⨯+⨯=. (Ⅲ)从8月16日开始连续三天游览舒适度的方差最大. 17.证明:(Ⅰ),CD N MN FN 取中点连结、. 因为,,,N M CD BC MN BD 分别为中点所以∥.,,BD BDE MN BDE MN BDE ⊂⊄又平面且平面所以∥平面,因为//,2,,EF AB AB EF EF CD EF DN ==所以∥. 所以四边形EFND 为平行四边形.所以FN ED ∥. 又ED BDE FN BDE ⊂⊄平面且平面, 所以FN BDE ∥平面, 又,FNMN N MFN BDE =所以平面∥平面.又,FM MFN FM BDE ⊂平面所以∥平面. 解:(Ⅱ),,AD O EO BO 取中点连结. 因为,EA ED EO AD =⊥所以.因为平面,,ADE ABCD EO ABCD EO BO ⊥⊥⊥平面所以平面. 因为,60,AD AB DAB ADB =∠=︒所以△为等边三角形. 因为,O AD AD BO ⊥为中点所以. 因为,,,4,EO BO AO AB =两两垂直设以,,,,,O OA OB OE x y z 为原点为轴,如图建立空间直角坐标系O xyz -.由题意得,2,0,0A (),B ,(C -,2,0,0D (-),E ,(F -.(3,CF =,CE =,(3,BE =-.设平面BDE 的法向量为n ,,x y z =(),则0n BE n DE ⎧=⎪⎨=⎪⎩,即00y z x -=⎧⎪⎨=⎪⎩,令11z y ==,则,x =.所以(n =.设直线CF BDE α与平面成角为,sin |cos ,n |CF α=<>=,所以直线CF ADE 与平面. (Ⅲ)设G CF 是上一点,且CG CF λ=,1[]0,λ∈.因此点(34,)G λ-+.(34,)BG λ=-.由0BG DE =,解得49λ=. 所以在棱CF G BG DE ⊥上存在点使得,此时49CG CF =.18.解:(Ⅰ)当20e x a f x x -==时,(),∴22e ,13e x f x x x f -'=-+∴'--()()()=. 又∵1e f -=(),∴曲线()(1,(1))y f x f =--在点处的切线方程为:e 3e(1)3e 2e 0y x x y -=-+++=,即.(Ⅱ)“对任意的0,20,[],[]2t s f s g t ∈∈≥存在使得()()成立”, 等价于“在区间0,2,[]f x g x 上()的最大值大于或等于()的最大值”. ∵2215()1()24g x x x x =--=--, ∴0,2[]21g x g =()在上的最大值为().2'2e x x f x x a x ax a e --=+-+-()()()=2e 22[]x x a x a -+--=()e 2x x x a --+()(),令0,2,f x x x a '===-()得或. ①当0,0,a a -<即>时00[202[]]f x f x '()>在,上恒成立,()在,上为单调递增函数,2124e f x f a =+()的最大值为()(), 由22141,e 4ea a +≥≤-()得 ②当02,20a a --<<即<<时,当00,x a f x f x ∈-'(,)时,()<()为单调递减函数, 当(,2)'()0,()x a f x f x ∈--时,>为单调递增函数. ∴21()(0)(2)(4)f x f a f a e =-=+的最大值为或,由1,1;(4)a a a -≥≤-+得由211e≥,得2e 4a ≤-. 又∵20,21a a -∴-=<<<. ③当22a a ->,即<-时,00[202[]]f x f x '()<在,上恒成立,()在,上为单调递减函数,0f x f a =-()的最大值为(),由1,1a a -≥≤-得, 又因为2,2a a <-所以<-.综上所述,实数a 的值范围是2{|}14x a a e ≤-≥-或.19.解:(Ⅰ)由题意得2b =则b 2221,4,2c a b c a ==+==则则,∴椭圆C 的方程为22143x y +=;(Ⅱ)证明:“”“B EF MF EF MFB ∠点关于直线的对称点在直线上等价于平分”.设直线202,4,2,2AM y k x k N k E k =+≠的方程为()(),则()(). 设点00,M x y (),由22(2)143y k x x y =+⎧⎪⎨+=⎪⎩,整理得2222431616120k x k x k +++-=(),由韦达定理可知2021612234k x k --=+,则2028634k x k -+=+,00212234k y k x k =+=+(), ①当01,1,2MF x x k ⊥==±轴时此时.则31,2M ±(),2,2N ±(),2,1E ±().此时,点11E BFM y x y x ∠=-=-+在的角平分线所在的直线或, 即EF MFB ∠平分. ②当12k ≠时,直线MF 的斜率为0204114MF y kk x k ==--,所以直线244140MF kx k y k +--=的方程为(). 所以点E 到直线MF 的距离2222|2(41)||41|k k d k +==+2k BE ==. 即点B EF MF 关于直线的对称点在直线上,综上可知:点B EF MF 关于直线的对称点在直线上.20.解:(Ⅰ)由于(1,0,1,0,1)A =,(0,1,1,1,0)B =,由定义1(,B)||ni i i d A a b ==-∑,可得,4d A B =().(Ⅱ)反证法:若结论不成立,即存在一个含5维T 向量序列,123,,,,n A A A A ,使得1(1,1,1,1,1)(0,0,0,0,0,0)m A A ==,.因为向量1(1,1,1,1,1)A =的每一个分量变为0,都需要奇数次变化, 不妨设1i i i 1,2,3,4,5121A n =的第()个分量变化了-次之后变成0, 所以将1A 中所有分量1变为0共需要:1234(21)(21)(21)(21)n n n n -+-+-+-521n +=(-)2123452n n n n n ++++-()1-次,此数为奇数.又因为1,,*i i d A A m m +=∈N (),说明i A 中的分量有2个数值发生改变,进而变化到1,21i A m +所以共需要改变数值(-)次,此数为偶数,所以矛盾. 所以该序列中不存在5维T 向量0,0,0,0,0(). (Ⅲ)存在正整数j 使得12(0,0,,0)j A =个,j A 为12维T 向量序列中的项,此时m=1,2,3,4,5,6,7,8,9,10,11,12.解 析1.解:集合2{|}{4022|}A x x x x ==-<-<<, 则}2|2{RA x x x =≤≥-或ð. 故选:A .2.解:对于A 非奇非偶函数,不正确; 对于B ,计算,正确,对于C ,非奇非偶函数,不正确; 对于D ,偶函数,不正确, 故选:B .3.解:作出x y ,满足1000x y x y y -+≥⎧⎪+≤⎨⎪≥⎩表示的平面区域,得到如图的三角形及其内部,由100x y x y -+=⎧⎨+=⎩,解得A 11(,)22-,设2z F x y x y ==+(,),将直线2l z x y =+:进行平移, 当l 经过点A 时,目标函数z 达到最大值 ∴z F =最大值11(,)22-=12. 故选:C .4.解:“||||||a b a b +=+”⇒“,a b 共线”,反之不成立,例如0a b =-≠. ∴a ,b 是非零向量,则“a ,b 共线”是“||||||a b a b +=+”的必要不充分条件. 故选:B .5.解:设递增的等比数列{}n a 的公比为q ,∵15172a a +=,244a a =15a a =, 解得112a =,58a =. 解得2q =,则6S =61(21)632212-=-. 故选:D .6.解:模拟程序的运行,可得5124n v x i ====,,,满足条件i ≥0,执行循环体,v =3,i =3满足条件0i ≥,执行循环体,72v i ==, 满足条件0i ≥,执行循环体,151v i ==, 满足条件0i ≥,执行循环体,310v i ==, 满足条件0i ≥,执行循环体,631v i ==,﹣ 不满足条件0i ≥,退出循环,输出63v 的值为. 由于25+24+23+22+2+1=63. 故选:A .7.解:由题意可知:对于A B P A B 、,当位于,图形时,函数变化有部分为直线关系,不可能全部是曲线, 由此即可排除A 、B ,对于D ,其图象变化不会是对称的,由此排除D , 故选C .8.解:若12i i a b i n ==,,,, 则A B B A <<,同时不成立, 故选C .9.解:复数221i i i =+(﹣)在复平面内所对应的点的坐标为(1,2). 故答案为:(12),.10.解:直线ρ=2acosθ(a >0)化为直角坐标方程:10x ++=.圆2cos 0a a ρθ=(>)即22cos 0a a ρρθ=(>),可得直角坐标方程:222x y ax +=,配方为:222x a y a -+=().可得圆心(0)a a ,,半径.∵直线10cos sin ρθθ+=与圆20acos a ρθ=(>)相切, ∴|1|2a +0a a =,>,解得1a =. 故答案为:1.11.解:根据题意,分2种情况讨论:①.选择1门B 类课程,需要选择A 类课程3门,则B 类课程有122C =种选法,A 类课程有344C =种选法, 此时有248⨯=种选择方法;②.选择2门B 类课程,需要选择A 类课程2门,则B 类课程有221C =种选法,A 类课程有246C =种选法, 此时有1×6=6种选择方法;则一共有8+6=14种不同的选法; 故答案为:14.12.解:CBD △中,由余弦定理,可得,2BD =, ABD △中,利用正弦定理,可得2sin 452sin105AD ︒==︒,∴三角形ABD的面积为1122)122⨯⨯⨯=,故答案为21.13.解:抛物线24y x =的焦点F 的坐标为(1,0) ∵直线l F 过,倾斜角为60︒,即斜率k tan α=, ∴直线l 的方程为:y=1)x ﹣,即1x y =+, 214x y y x⎧=+⎪⎨⎪=⎩,解得:3y x ⎧=⎪⎨=⎪⎩,13y x ⎧=⎪⎪⎨⎪=⎪⎩,由点(3A x A 在轴上方,则,则OA则OA =14.解:①|1|,(0,2]()|x 3|,(2,4]|x 5|,(4,)x x f x x x -∈⎧⎪-∈⎨⎪-∈+∞⎩,作出()f x 的函数图象如图所示:由图象可知当1()a f x a =>时,只有1解.②∵关于()()x f x T f x +=的方程有且仅有3个不同的实根,∴将f x T ()的图象向左或向右平移个单位后与原图象有3个交点, ∴24T <<,即4224T T ﹣<<﹣或<<.故答案为:①(1)4,2)(24)+∞-,,②(﹣,.15.(Ⅰ)根据π()26f a =,即可求的值;(Ⅱ)利用辅助角公式基本公式将函数化为y Asin x ωϕ=+()的形式,结合三角函数的图象和性质,()f x 在π7π,1212⎡⎤⎢⎥⎣⎦上单调递减,可得最大值. 16.设i A 表示事件“小明8月11日起第i 日连续两天游览主题公园”(129)i =,,,.根据题意1()9i P A =,,且事件i A 与j A 互斥.(Ⅰ)设B 为事件“小明连续两天都遇上拥挤”,则47B A A =.利用互斥事件的概率计算公式即可得出.(Ⅱ)由题意,可知X 的所有可能取值为0,1,2,结合图象,利用互斥事件与古典概率计算公式即可得出. (Ⅲ)从8月16日开始连续三天游览舒适度的方差最大.17.(Ⅰ)CD N MN FN EFND 取中点,连结、,推导出四边形为平行四边形.从而//FN //////ED FN BDE MFN BDE FM BDE .进而平面,由此能证明平面平面,从而平面.(Ⅱ)AD O EO BO O OA OB OE x y z 取中点,连结,.以为原点,,,为,,轴,建立空间直角坐标O xyz CF ADE 系-,利用向量法能求出直线与平面所成角的正弦值.(Ⅲ)设G CF 是上一点,且CG CF λ=,]1[0λ∈,.利用向量法能求出在棱CF G 上存在点使得BG DE ⊥,此时49CG CF =. 18.(Ⅰ)当202a f x x x e x ='=+-时,()(-),由此能求出曲线y f x =()在点(1(1)f --,)处的切线方程. (Ⅱ)“对任意的0202[][]t s f s g t ∈∈≥,,存在,使得()()成立”, 等价于“在区间]0[2f x g x ,上,()的最大值大于或等于()的最大值”.求出[0]2g x ()在,上的最大值为21'202g f x e x x x a f x x x a ==--+'===-().()()(),令(),得,或.由此利用分类讨论思想结合导数性质能求出实数a 的值范围.19.(Ⅰ)由题意可知22214b c a b c ==+=,,即可求得椭圆方程;(Ⅱ)由“点”“”B EF MF EF MFB AM ∠关于直线的对称点在直线上等价于平分设直线的方程,代入椭圆方程,由韦达定理求得M MF x k ⊥点坐标,分类讨论,当轴时,求得的值,即可求得11N E E BFM y x y x ∠=-=-+和点坐标,求得点在的角平分线所在的直线或,则EF MFB ∠平分,当12k ≠时,即可求得直线MF 的斜率及方程,利用点到直线的距离公式,求得2||d BE ==,则点B EF MF 关于直线的对称点在直线上.20.(Ⅰ)由于1010101110A B ==(,,,,),(,,,,),由定义1(,B)||ni i i d A a b ==-∑,求d A B (,)的值. (Ⅱ)利用反证法进行证明即可; (Ⅲ)根据存在正整数j 使得12(0,0,,0)j A =个,12j A T m 为维向量序列中的项,求出所有的.。
2016~2017学年北京东城区北京市第二中学高三上学期理科期中数学试卷选择1。
已知全集U= R ,则正确表示集合M= {−1, 0, 1}和N= {x|x 2+ x = 0}关系的韦恩(Venn )图是( ).A. B. C 。
D.2. 已知向量a = (1, 2),b = (1, 0),c = (3, 4),若 为实数,(a + λb )//c , 则λ等于( ).A 。
21 B 。
41 C.2 D 。
1 3. 函数31lg )(--=x x x f 的零点所在区间为( ).A. (0, 1)B. (1, 2)C. (2, 3) D 。
(3, +∞)4. 已知角α在第二象限且53sin =α,则)2cos()4cos(21παπα+-+等于( ).A 。
2B 。
4 C. 34D. 34- 5。
若函数x a x x f +=2)((a ∈ R),则下列结论正确的是( ).A 。
∀a ∈R ,f (x )在(0, +∞)上是增函数 B. ∀a ∈R ,f (x)在(0, +∞)上是减函数C. ∃a ∈R ,f (x)是偶函数 D 。
∃a ∈R ,f (x )是奇函数6。
已知函数x x x f -+=)1ln(1)(,则f (x )的图像大致为( ).A. B。
C。
D。
7. 已知定义在R上的函数f (x)是偶函数,在[0,+∞)上是减函数,并且有f (2) = 0,则使得f (x − 1) 〈0的一个必要不充分条件是().A. (−∞, −2) ∪(2, +∞)B。
(−∞,−1)∪(2,+∞) C. (−∞,−2) D. (−∞,−1) ∪(3,+∞)8。
非空集合G关于运算⊕满足:(1)对任意a,b∈G,都有a⊕b ∈G;(2)存在c∈G,使得对一切a∈G,都有c⊕a = a,则称G关于运算⊕为“融洽集",现给出下列集合和运算:①G = {二次三项式},⊕为多项式的加法.②G = {偶数},⊕为整数的乘法.③G = {平面向量},⊕为平面向量的加法.④G = {非负整数},⊕为整数的加法.其中G关于运算⊕为“融洽集”的是().A. ①② B. ②④ C. ②③ D. ③④填空9. 设等差数列{a n}的前n项和为S n,若a3+ a6= 12,S4= 8,则a9的值是.10. 已知|a|= 1,|b|= 2,且a⊥(a−b),则向量与向量的夹角为.11。
东城区2017学年第一学期期末教学统一检测高三数学(理科)学校_____________班级_______________姓名______________考号___________本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合{0,1}A=,2=≤,则A B={|4}B x x(A){0,1}(B){0,1,2}(C){|02}≤≤x xx x≤<(D){|02}对应的点位于(2)在复平面内,复数i1+i(A)第一象限(B)第二象限(C)第三象限(D)第四象限(3)设a∈R,则“2a a>”是“1>a”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D )既不充分也不必要条件(4)设等差数列{}n a 的前n 项和为n S ,若493=+a a ,则11S 等于(A )12 (B )18(C )22 (D )44(5)当4n =输出的S 值为 (A )6 (B )8 (C )14 (D )30(6)已知函数13log ,0,()2,0,xx x f x x >⎧⎪=⎨⎪≤⎩若1()2f a >,则实数a 的取值范围是(A)(1,0))-+∞ (B )(1-(C )(1,0))-+∞ (D )(- (7)在空间直角坐标系O xyz -中,一个四面体的顶点坐标为分别为(0,0,2),(2,2,0),(0,2,0),(2,2,2).画该四面体三视图中的正视图时,以xOz 平面为投影面,则得到正视图可以为(A ) (B ) (C ) (D )(8)已知圆22:2C x y +=,直线:240l x y +-=,点00(,)P x y 在直线l 上.若存在圆C 上的点Q ,使得45OPQ ∠= (O 为坐标原点),则0x 的取值范围是 (A )[0,1](B )8[0,]5(C )1[,1]2-(D )18[,]25-第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
北京市东城区2016-2017学年度第二学期高三综合练习(一)数学 (理科)学校_____________班级_______________姓名______________考号___________ 本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合2{|20}A x x x =--<,{|13}B x x =<<,则A B =U(A ){|13}x x -<< (B ){|11}x x -<< (C ){|12}x x << (D ){|23}x x <<(2)已知命题:,2np n ∀∈>N ,则p ⌝是(A),2nn ∀∈≤N (B),2n n ∀∈<N (C),2nn ∃∈≤N (D),2n n ∃∈>N(3)已知圆的参数方程为1,x y θθ⎧=-⎪⎨=⎪⎩(θ为参数),则圆心到直线3y x =+的距离为(A )1 (B(C )2 (D)(4)已知m 是直线,,αβ是两个互相垂直的平面,则“m ∥α”是“m β⊥ ”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 (5)已知向量,a b 满足2+=0a b ,2⋅=-a b ,则(3+)()⋅-=a b a b(A )1 (B )3 (C )4 (D )5(6)某三棱锥的三视图如图所示,则该三棱锥的体积为 (A )13(B )23 (C )1 (D )43(7)将函数sin(2)6y x π=+的图象向左平移(0)m m >个单位长度,得到函数()y f x =图象在区间[,]1212π5π-上单调递减,则m 的最小值为 (A )12π (B )6π (C )4π (D )3π (8)甲抛掷均匀硬币2017次,乙抛掷均匀硬币2016次,下列四个随机事件的概率是0.5的是①甲抛出正面次数比乙抛出正面次数多. ②甲抛出反面次数比乙抛出正面次数少. ③甲抛出反面次数比甲抛出正面次数多. ④乙抛出正面次数与乙抛出反面次数一样多. (A )①②(B )①③(C )②③(D )②④第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
北京市东城区2017届高三5月综合练习(二模)数学理试题第Ⅰ卷(共60分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}2|40A x x =-<,则A C R = ( )A .{|2x x ≤-或}2x ≥B .{|2x x <-或}2x >C .{}|22x x -<<D .{}|22x x -≤≤ 2. 下列函数中为奇函数的是( )A .cos y x x =+B .sin y x x =+ C.y =D .x y e -=3. 若,x y 满足1000x y x y y -+≥⎧⎪+≤⎨⎪≥⎩,则2x y +的最大值为( )A .1-B .0C .12D .2 4. 设,a b 是非零向量,则“,a b 共线”是“a b a b +=+”的( ) A .充分而不必要条件 B .必要而不充分条件 C. 充分必要条件 D .既不充分也不必要条件5. 已知等比数列{}n a 为递增数列,n S 是其前n 项和.若152417,42a a a a +==,则6S =( ) A .2716 B .278 C. 634 D .6326. 我国南宋时期的数学家秦九韶(约1202-1261)在他的著作《数书九章》中提出了多项式求值的秦九韶算法.如图所示的框图给出了利用秦九韶算法求多项式的一个实例.若输人的5,1,2n x υ===,则程序框图计算的是( )A .5432222221+++++ B .5432222225+++++C. 654322222221++++++ D .43222221++++7. 动点P 从点A 出发,按逆时针方向沿周长为l 的平面图形运动一周,,A P 两点间的距离y 与动点P 所走过的路程x 的关系如图所示,那么动点P 所走的图形可能是( )A .B . C. D .8. 据统计某超市两种蔬菜,A B 连续n 天价格分别为123,,,...,n a a a a 和123,,,...,n b b b b ,令{}|,1,2,...,m m M m a b m n =<=,若M 中元索个数大于34n ,則称蔬菜A 在这n 天的价格低于蔬菜B 的价格,记作:AB ,现有三种蔬菜,,A BC 下列说法正确的是( )A .若,AB BC ,则 A C B .若,A B B C 同时不成立,则A C 不成立C. ,AB BA 可同时不成立 D .,AB B A 可同时成立第Ⅱ卷(共110分)二、填空题(每题6分,满分30分,将答案填在答题纸上)9. 复数()i 2i -在平面内所对应的点的坐标为 .10. 在极坐标系中,直线cos sin 10ρθθ+=与圆()2cos 0ρθ=>a a 相切,则a = .11. 某校开设A 类选修课4门,B 类选修课2门,每位同学需从两类选修课中共选4门.若要求至少选一门B 类课程,则不同的选法共有 种.(用数字作答)12. 如图,在四边形ABCD 中,145,30,1,2,cos 4ABD ADB BC DC BCD ∠=∠===∠=,则BD = ;三角形ABD 的面积为 .13.在直角坐标系中xOy 中,直线l 过抛物线24y x =的焦点F ,且与该抛物线相交于,A B 两点,其中点A 在x 轴上方.若直线l 的倾斜角为60,则OA = .14. 已知函数()(]{}(]{}()1,0,2min 1,3,2,4min 3,5,4,x x f x x x x x x x ⎧-∈⎪⎪=--∈⎨⎪--∈+∞⎪⎩. ①若()f x a =有且只有1个实根,则实数a 的取值范围是 .②若关于x 的方程()()f x T f x +=有且只有3个不同的实根,则实数T 的取值范闱是 . 三、解答题 (本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.) 15.已知函数()2cos2(f x x a x a +⋅∈R). (1)若26π⎛⎫=⎪⎝⎭f ,求a 的值; (2)若()f x 在7,1212ππ⎡⎤⎢⎥⎣⎦上单调递减,求()f x 的最大值. 16. 小明计划在8月11日至8月20日期间游览某主题公园,根据旅游局统计数据,该主題公园在此期间“游览舒适度”(即在园人数与景区主管部门核定的最大瞬时容量之比,0040以下为舒适,000040~60为一般,0060以上为拥挤),情况如图所示,小明随机选择8月11日至8月19日中的某一天到达该主题公园,并游览2天.(1)求小明连续两天都遇上拥挤的概率;(2)设X 是小明游览期间遇上舒适的天数,求X 的分布列和数学期望; (3)由图判断从哪天开始连续三天游览舒适度的方差最大?(结论不要求证明)17. 如图,在几何体ABCDEF 中,平面ADE ⊥平面ABCD ,四边形ABCD 为菱形,且60,2,//,DAB EA ED AB EF EF AB M ∠====为BC 中点.(1)求证://FM 平面BDE ;(2)求直线CF 与平面BDE 所成角的正弦值;(3)在棱CF 上是否存在点G ,使BG DE ⊥?若存在,求CGCF的值;若不存在,说明理由. 18. 设函数()()2(x f x x ax a e a -=+-⋅∈R ).(1)当0=a 时,求曲线()y f x =在点()()1,1f --处的切线方程;(2)设()21g x x x =--,若对任意的[]0,2t ∈,存在[]0,2s ∈使得()()f s g t ≥成立,求a 的取值范围.19. 已知椭圆()2222:10x y C a b a b+=>>的短轴长为右焦点为()1,0F ,点M 时是椭圆C 上异于左、右顶点,A B 的一点. (1)求椭圆C 的方程;(2)若直线AM 与直线2x =交于点N ,线段BN 的中点为E .证明:点B 关于直线EF 的对称点在直线MF 上.20. 对于n 维向量()12,,...,n A a a a =,若对任意()1,2,...,i n ∈均有0i a =或1i a =,则称A 为n 维T 向量. 对于两个n 维T 向量,A B 定义()1,ni i i d A B a b ==-∑.(1)若()()1,0,1,0,1,0,1,1,1,0A B ==, 求(,)d A B 的值;(2)现有一个5维T 向量序列:123,,,...A A A 若()11,1,1,1,1A =且满足:()1,2,i i d A A i N *+=∈,求证:该序列中不存在5维T 向量()0,0,0,0,0.(3) 现有一个12维T 向量序列:123,,,...A A A 若()1121,1, (1)=且满足:()1,,,1,2,3,...i i d A A m m N i *+=∈=,若存在正整数j 使得()120,0,...,0,j j A A =为12维T 向量序列中的项,求出所有的m .北京市东城区2017届高三5月综合练习(二模)数学理试题参考答案一、选择题1-4: ABCB 5-8: DACC二、填空题9.()1,2 10.1 11.14 12.21()1,+∞ ()()4,22,4--三、解答题15. 解:(1)因为2cos 22666f a πππ⎛⎫=⋅+⋅⋅=⎪⎝⎭,所以31222a +⋅=,所以1a =.(2)由题意()22f x x x ⎫=+⎪⎭()2x ϕ=+.其中tan ϕ=,所以T π=,且712122πππ-=,所以当12x π=时,max 126y f ππϕ⎛⎫⎛⎫==+ ⎪ ⎪⎝⎭⎝⎭,所以()23k k Z πϕπ=+∈.所以tan 3a ϕ===,所以()23f x x π⎛⎫=+ ⎪⎝⎭,所以()f x的最大值为16. 解:设i A 表示事件“小明8月11日起第i 日连续两天游览主題公园”()1,2,...9i =,根据题意,()19i P A =,且()i j A A i j =∅≠.(1)设B 为事件“小明连续两天都遇上拥挤”.则47B A A =,所以()()()()474729P B P A A P A P A ==+=. (2)由题意,可知X 的所有可能取值为0,1,2.且()()()()()478478103P X P A A A P A P A P A ===++=; ()()()()()()35693569419P X P A A A A P A P A P A P A ===+++=;()()()()1212229P X P A A P A P A ===+=,所以X 的分布列为故X 的期望()280123999E X =⨯+⨯+⨯=.(3)从8月16日开始连续三天游览舒适度的方差最大.17. 解:(1)取CD 中点N ,连接,MN FN ,因为,N M 分别为,CD BC 中点,所以//MN BD ,又BD ⊂平面BDE 且MN ⊄平面BDE .所以//MN 平面BDE ,因为//,2EF AB AB EF =,所以//,EF CD EF DN =,所以四边形EFND 为平行四边形,所以//FN ED .又ED ⊂平面BDE 且FN ⊄平面BDE .所以//FN 平面BDE .又FN MN N =,所以平面//MFN 平面BDE ,又FM ⊂平面MFN ,所以//FM 平面BDE .(2) 取AD 中点O ,连结,EO BO ,因为EA ED =,所以EO AD ⊥,因为平面ADE ⊥平面ABCD ,所以EO ⊥平面,ABCD EO BO ⊥,因为,60AD AB DAB =∠=,所以ADB ∆为等边三角形,因为O 为AD 中点,所以AD BO ⊥.因为,,EO BO AO 两两垂直,设4AB =,以O 为原点,,,OA OB OE 为,,x y z 轴,如图建立空间直角坐标系O xyz -.由题意,得()()()()2,0,0,,,2,0,0A B C D --,((()()(,1,3,3,23,2,0,23,0,E F CF DE BE -=-==-.设平面BDE 的法向量为(),,n x y z =,则0n BE n DE ⎧⋅=⎪⎨⋅=⎪⎩,即00y z x -=⎧⎪⎨+=⎪⎩,令1z =,则1,y x ==所以()3,1,1n =-,设直线CF 与平面BDE 所成角为α,10sin cos,CF n α==,所以直线CF 与平面ADE(3)设G 是CF 上一点,且[],0,1CG CF λλ=∈,因此点()()34,,34,G BG λλ-+=-,由0BG DE ⋅=,解得49λ=. 所以在棱CF 上存在点G 使得BG DE ⊥,此时49CG CF =. 18. 解:(1)当0a =时,因为()2x f x x e -=⋅,所以()()()2'2,'13x f x x x e f e -=-+⋅-=-,又因为()1f e -=,所以曲线()y f x =在点()()1,1f --处的切线方程为()31y e e x -=-+,即320ex y e ++=.(2)“对任意的[]0,2t ∈,存在[]0,2s ∈使得()()f s g t ≥成立”等价于“在区间[]0,2上,()f x 的最大值大于或等于()g x 的最大值”.因为()2215124g x x x x ⎛⎫=--=-- ⎪⎝⎭,所以()g x 在[]0,2上的最大值为()21g =. ()()()2'2x x f x x a e x ax a e --=+⋅-+-⋅()[]222x e x a x a -=-+--()()2x e x x a -=--+,令()'0f x =,得2x =或x a =-.①当0a -≤,即0a ≥时,()'0f x ≥在[]0,2上恒成立,()f x 在[]0,2上为单调递增函数,()f x 的最大值大为()()2124f a e =+⋅,由()2141a e+⋅≥,得24a e ≥-;②当02a <-<,即20a -<<时,当()0,x a ∈-时,()()'0,f x f x <为单调递减函数,当(),2x a ∈-时,()()'0,f x f x >为单调递增函数,所以()f x 的最大值大为()0f a =-或()()2124f a e =+⋅.由1a -≥,得1a ≤-;由()2141a e+⋅≥,得24a e ≥-,又因为20a -<<,所以21a -<≤-;③当2a -≥,即2a ≤-时,()'0f x ≤在[]0,2上恒成立,()f x 在[]0,2上为单调递减函数,所以()f x 的最大值大为()0f a =-,由1a -≥,得1a ≤-,又因为2a ≤-,所以2a ≤-,综上所述,实数a 的取值范围是1a ≤-或24a e ≥-.19. 解:(1)由题意,得2221b c a b c ⎧=⎪=⎨⎪=+⎩,解得2a =,所以椭圆C 的方程为22143x y +=. (2)“点B 关于直线EF 的对称点在直线MF 上”等价于“EF 平分MFB ∠”.设直线AM 的方程为()()20y k x k =+≠,则()()2,4,2,2N k E k .设点()00,M x y ,由()222143y k x x y ⎧=+⎪⎨+=⎪⎩,得()2222341616120k x k x k +++-=,得2020286341234k x k k y k ⎧-+=⎪⎪+⎨⎪=⎪+⎩.①当MF x ⊥轴时,01x =,此时12k =±,所以()()31,,2,2,2,12M N E ⎛⎫±±± ⎪⎝⎭,此时,点E 在BFM ∠的角平分线所在的直线1y x =-或1y x =-+上,即EF 平分MFB ∠;②当12k ≠±时,直线MF 的斜率为0204114MF y k k x k==--,所以直线MF 的方程为()244140kx k y k +--=,所以点E 直线MF 的距离d ==()22241241k k k BE k +===+,即点B 关于直线EF 的对称点在直线MF 上. 20. 解:(1)由于()()1,0,1,0,1,0,1,1,1,0A B ==,由定义()1,ai ii d A B a b==-∑,可得(),4d A B =.(2)反证法:若结论不成立,即存在一个含5维T 向量序列123,,,...m A A A A ,使得()()11,1,1,1,1,0,0,0,0,0m A A ==,因为向量()11,1,1,1,1A =的每一个分量变为0,都需要奇数次变化,不妨设1A 的第()1,2,3,4,5i i =个分量1变化了121n -次之后变成0,所以将1A 中所有分量1变化为0共需要()()()()()123452*********n n n n n -+-+-+-+-()12345221n n n n n =++++--次,此数为奇数,又因为()1,2,i i d A A i N *+=∈,说明i A 中的分量有2个数值发生改变,进而变化到1i A +,所以共需改变数值()21m -次,此数为偶函数,所以矛盾.所以该序列中不存在5维T 向量()0,0,0,0,0.(3)此时1,2,3,4,5,6,7,8,9,10,11,12m =.。
东城区2016-2017学年度第二学期高三综合练习(一)高三数学参考答案及评分标准 (理科)一、选择题(共8小题,每小题5分,共40分)(1)A (2)C (3)B (4)D (5)B (6)D (7)C (8)B 二、填空题(共6小题,每小题5分,共30分) (9(10)40 (11)6(12)己巳 (13)32 (14)11,0,2()10,0.2x g x x x 或⎧≤<⎪⎪=⎨⎪<≥⎪⎩ 4三、解答题(共6小题,共80分) (15)(共13分)解:(Ⅰ)由余弦定理及题设22225c a b ab a ab =++=+,得2b a =.由正弦定理sin sin a b A B =,sin sin b Ba A=, 得sin 2sin BA=. ……………………………6分 (Ⅱ)由(Ⅰ)知3A B π∠+∠=. sin sin sin sin()3A B A A π⋅=⋅-1sin (cos sin )22A A A =⋅-112cos 2444A A =+- 11sin(2)264A π=+-. 因为03A π<∠<, 所以当6A π∠=,sin sin A B ⋅取得最大值14.…………………13分(16)(共13分)解:(Ⅰ)5a =.由表1知使用Y 共享单车方式人群的平均年龄的估计值为:Y 方式:2020%3055%+4020%+505%=31?创?.答:Y 共享单车方式人群的平均年龄约为31岁. ……………5分(Ⅱ)设事件i A 为“男性选择i 种共享单车”,12,3i =, 设事件i B 为“女性选择i 种共享单车”,12,3i =,设事件E 为“男性使用单车种类数大于女性使用单车种类数”. 由题意知,213132E A B A B A B = . 因此213132()()()()P E P A B P A B P A B =++0.58=.答:男性使用共享单车种类数大于女性使用共享单车种类数的概率为0.58.……11分(Ⅲ)此结论不正确. ……………………………13分 (17)(共14分)解:(Ⅰ)在直角三角形ABC 中,因为45ABC ? ,D 为AB 中点,所以CD AB ⊥.因为平面PAB ⊥平面ABC ,CD Ì平面ABC ,所以CD ⊥平面PAB . 因为AE ⊂平面PAB , 所以CD ⊥AE .在等边△PAD 中,AE 为中线, 所以AE PD ⊥. 因为PD DC D =I ,所以AE ⊥平面PCD . ……………………………5分 (Ⅱ)在△PAB 中,取AD 中点O ,连接PO ,所以PO AB ^.在平面ABC 中,过O 作CD 的平行线,交AC 于G . 因为平面PAB ⊥平面ABC , 所以PO ⊥平面ABC . 所以PO OG ^.因为,,OG OB OP 两两垂直,如图建立空间直角坐标系O xyz -. 设4AB a =,则相关各点坐标为:(0,,0)A a -,(0,3,0)B a ,(2,,0)C a a,)P ,(0,,0)D a ,(0,)2a E ,(,)2a Fa .(2,2,0)AC a a =u u u r ,(0,,)PA a =-u u r.设平面PAC 的法向量为(,,)x y z =n ,则0,0,ACPA ⎧⋅=⎪⎨⋅=⎪⎩uuu r uu rn n ,即0,0.x y y+=⎧⎪⎨=⎪⎩ 令1z =,则y =x =. 所以=n .平面PAB 的法向量为(2,0,0)DCa=, 设,DC n 的夹角为α,所以cos α=由图可知二面角B PA C --为锐角,所以二面角B PA C --的余弦值为7.…………………………10分 (Ⅲ)设M 是棱PB 上一点,则存在[0,1]λ∈使得PM PB λ=uuu r uu r.因此点(0,3(1))M a λλ-,(2,(3(1))CM a a λλ=---u u u r.由(Ⅰ)知CD ⊥平面PAB ,AE ⊥PD . 所以CD ⊥PD . 因为EF ∥CD , 所以EF PD ⊥. 又AE EF E =, 所以PD ^平面AEF . 所以PD 为平面AEF 的法向量.(0,,)PD a =u u u r.因为CM ⊄平面AEF ,所以CM ∥平面AEF 当且仅当0CM PD ⋅=u u u r u u u r,即(2,(31(1))(0,,)0a a a λλ---⋅=.解得23λ=. 因为2[0,1]3λ=∈,所以在棱PB 上存在点M ,使得CM ∥平面AEF , 此时23PM PB λ==. …………………………14分 (18)(共13分)解:(Ⅰ))(x f 的定义域为(0,)+∞.当1m =-时,1()2ln f x x x x=++, 所以221'()1f x x x=-+. 因为(1)2f =且'(1)2f =,所以曲线()y f x =在点(1,(1))f 处的切线方程为20x y -=.…………4分 (Ⅱ)若函数)(x f 在(0,)+∞上为单调递减,则'()0f x ≤在(0,)+∞上恒成立. 即2210m x x --≤在(0,)+∞上恒成立. 即221x m x -≤在(0,)+∞上恒成立. 设221()(0)g x x x x=->, 则max [()]m g x ≥. 因为22211()(1)1(0)g x x x x x=-=--+>, 所以当1x =时,()g x 有最大值1.所以m 的取值范围为[1,)+∞. ……………………9分(Ⅲ)因为b a <<0,不等式ln ln b ab a -<-ln ln b a -<.即lnb a <(1)t t >,原不等式转化为12ln t t t <-.令1()2ln h t t t t=+-, 由(Ⅱ)知1()2ln f x x x x=+-在(0,)+∞上单调递减,所以1()2ln h t t t t=+-在(1,)+∞上单调递减. 所以,当1t >时,()(1)0h t h <=. 即当1t >时,12ln 0t t t+-<成立. 所以,当时b a <<0,不等式ln ln b a b a -<-13分 (19)(共14分)解:(Ⅰ)由题意得2222,b caa b c ⎧=⎪⎪=⎨⎪⎪=+⎩解得2,a b == 所以椭圆C 的方程为22142x y +=. …………………………5分(Ⅱ)设点00(,)P x y ,11(,)M x y ,22(,)N x y .①11(,)M x y ,22(,)N x y 在x 轴同侧,不妨设12120,0,0,0x x y y ><>>. 射线OM 的方程为002y y x x =+,射线ON 的方程为002yy x x =-, 所以01102y y x x =+,02202y y x x =-,且2200142x y +=. 过,M N 作x 轴的垂线,垂足分别为'M ,'N , ΔΔ'Δ'''OMN OMM ONN MM N N S S S S =--四边形 121211221=[()()]2y y x x x y x y +--+02011221120011()()2222y x y x x y x y x x x x =-=??-+ 0012121222000441112422y y x x x x x x x y y =⋅=⋅=-⋅--. 由221101101,42,2x y y y x x ⎧+=⎪⎪⎨⎪=⎪+⎩得2201102()42y x x x +=+, 即2220010222200004(2)4(2)2(2)2(2)4x x x x x y x x ++===+++++-,同理2202x x =-,所以,2222120042x x x y =-=,即120x x =,所以,OMN S ∆=② 11(,)M x y ,22(,)N x y 在x 轴异侧,方法同 ①.综合①②,△OMN………………14分(20)(共13分)解:(Ⅰ)由于{1,2,3,4,5,6,7,8,9,10}A =,{1,2,3,4,5}M =,所以{6,7,8,9,10}N =,{5,6,7,8,9}N =,{4,5,6,7,8}N ={3,4,5,6,7}N =,{2,3,4,5,6}N =,回答其中之一即可 ………3分(Ⅱ)若集合12{,,,}n A a a a =L ,如果集合A 中每个元素加上同一个常数t ,形成新的集合12{,,,}n M a t a t a t =+++L . ……………5分根据1()||j i i j nT A a a ≤<≤=-∑定义可以验证:()()T M T A =. ……………6分取1nii C a t n=-=∑,此时11112{,,,}nnniiii i i n C a C a C a B a a a nnn===---=---∑∑∑L .通过验证,此时()()T B T A =,且1nii b C ==∑. ……………8分(Ⅲ)由于2m ³21314121()()()()()m T A a a a a a a a a =-+-+-++-L324222()()()m a a a a a a +-+-++-L4323()()m a a a a +-++-LM221()m m a a -+-121212=(21)(23)(23)(21)m m m mm a m a a a m a m a +-------+++-+-L L 212121=(21)()(23)()()m m m m m a a m a a a a -+--+--++-L2121=(21)()(23)()()m m m m b a m a a a a -+--+--++-L ………11分由于2120m a a b a -<-<-,2230m a a b a -<-<-, 2340m a a b a -<-<-,M10m m a a b a +<-<-.所以2(21)()()()m b a T A m b a --<<-.………13分。
东城区2016-2017学年第一学期期末教学统一检测高三数学参考答案及评分标准 (理科)一、选择题(共8小题,每小题5分,共40分)(1)C (2)D (3)A (4)B (5)D (6)C (7)B (8)B 二、填空题(共6小题,每小题5分,共30分)(9)1- (10)6 (11(127213 (13)13 (14)1,(1,)+∞三、解答题(共6小题,共80分) (15)(共13分)解:(Ⅰ)设等比数列{}n a 的公比为q . 由题意,得3418a q a ==,2q =. 所以11132n n n a a q --==⋅(1,2,)n = . ……………3分 又数列{}n n a b +是首项为4,公差为1的等差数列, 所以4(1)1n n a b n +=+-⋅.从而1(3)32n n b n -=+-⨯(1,2,)n = . ……………6分(Ⅱ)由(Ⅰ)知1(3)32n n b n -=+-⨯(1,2,)n =数列{3}n +的前n 项和为(7)2n n +. ……………9分 数列1{32}n -⋅的前n 项和为3(12)32312n n -=⨯--. ……………12分 所以,数列{}n b 的前n 项和为(7)3232n n n +-⨯+. ………13分 (16)(共13分) 解:(Ⅰ)由题意22T π==π,T =π. …………2分 因为点(0,1)在()2sin(2)f x x ϕ=+图象上, 所以2sin(20)=1ϕ⨯+. 又因为||2ϕπ<,Ay所以6ϕπ=. …………4分 所以076x =π. ………………6分 (Ⅱ)由(Ⅰ)知()2sin(2)6f x x π=+,因为02x π≤≤,所以2666x ππ7π≤+≤. 当262x ππ+=,即6x π=时,()f x 取得最大值2; 当266x π7π+=,即2x π=时,()f x 取得最小值1-.………13分 (17)(共14分)解:(Ⅰ)设AC 与BD 的交点为F ,连结EF .因为ABCD 为矩形,所以F 为AC 的中点. 在△PAC 中,由已知E 为PA 中点, 所以EF ∥PC . 又EF ⊂平面BED ,PC ⊄平面BED ,所以PC ∥平面BED . ……………………………5分(Ⅱ)取CD 中点O ,连结PO .因为△PCD 是等腰三角形,O 为CD 所以PO CD ⊥.又因为平面PCD ⊥平面ABCD ,PO ⊂平面PCD ,所以PO ⊥平面ABCD . 取AB 中点G ,连结OG , 由题设知四边形ABCD 为矩形,所以OF CD ⊥.所以PO OG ⊥.…………………1分如图建立空间直角坐标系O xyz -,则(1,1,0)A -,(0,1,0)C ,(0,0,1)P ,(0,1,0)D -,(1,1,0)B ,(0,0,0)O ,(1,0,0)G .(1,2,0)AC =- ,(0,1,1)PC =-.设平面PAC 的法向量为(,,)x y z =n ,则0,0,AC PC ⎧⋅=⎪⎨⋅=⎪⎩n n ,即20,0.x y y z -=⎧⎨-=⎩ 令1z =,则1y =,2x = . 所以(2,1,1)=n .平面PCD 的法向量为(1,0,0)OG =.设,OG n 的夹角为α,所以cos 3α=.由图可知二面角A PC D --为锐角,所以二面角A PC B --10分 (Ⅲ)设M 是棱PC 上一点,则存在[0,1]λ∈使得PM PC λ=.因此点(0,,1)M λλ-,(1,1,1)BM λλ=--- ,(1,2,0)AC =-.由BM ⋅ 0AC = ,即12λ=.因为1[0,1]2λ=∈,所以在棱PC 上存在点M ,使得BM ⊥AC . 此时,12PM PC λ==. …………………………14分 (18)(共14分)解:(Ⅰ)()f x 的定义域为(1,)-+∞.因为()ln(1)1axf x x x =+-+, 所以21'()1(1)a f x x x =-++. 因为(0)f 为()f x 的极小值, 所以'(0)0f =,即21001(01)a -=++. 所以1a =.此时,2'()(1)xf x x =+. 当(1,0)x ∈-时,'()0f x <,()f x 单调递减; 当(0,)x ∈+∞时,'()0f x >,()f x 单调递增.所以()f x 在0x =处取得极小值,所以1a =. ……………………………5分 (Ⅱ)由(Ⅰ)知当1a =时,()f x 在[0,)+∞上为单调递增函数, 所以()(0)0f x f >=,所以()0f x >对(0,)x ∈+∞恒成立. 因此,当1a <时,()ln(1)ln(1)011ax xf x x x x x =+->+->++, ()0f x >对(0,)x ∈+∞恒成立.当1a >时,221(1)'()1(1)(1)a x a f x x x x --=-=+++, 所以,当(0,1)x a ∈-时,'()0f x <,因为()f x 在[0,1)a -上单调递减, 所以(1)(0)0f a f -<=.所以当1a >时,()0f x >并非对(0,)x ∈+∞恒成立.综上,a 的最大值为1. ……………………………13分 (19)(共13分)解:(Ⅰ)由题意得222212.a c a abc =⎧⎪⎪=⎨⎪⎪=+⎩,,解得b =所以椭圆C 的方程为22143x y +=. ……………………………5分 (Ⅱ)设112233(,),(,),(,)A x y B x y Q x y .因为点P 在直线AO 上且满足||3||PO OA =, 所以11(3,3)P x y . 因为,,B Q P 三点共线,所以BP BQ λ=.所以12123232(3,3)(,)x x y y x x y y λ--=--,123212323(),3().x x x x y y y y λλ-=-⎧⎨-=-⎩解得31231231,31.x x x y y y λλλλλλ-⎧=+⎪⎪⎨-⎪=+⎪⎩因为点Q 在椭圆C 上,所以2233143x y +=.所以2212123131()()143x x y y λλλλλλ--+++=.即22222112212122296(1)()()()()1434343x y x y x x y y λλλλλ--+++-+=1, 因为,A B 在椭圆C 上,所以2211143x y +=,2222143x y +=.因为直线,OA OB 的斜率之积为34-, 所以121234y y x x ⋅=-,即1212043x x y y+=. 所以2291()1λλλ-+=,解得5λ=. 所以||||5||BP BQ λ==. ……………………………14分 (20)(共13分)解:(Ⅰ)4A 中所有与x 正交的元素为(1,1,1,1)--,(1,1,1,1)--,(1,1,1,1)--,(1,1,1,1)--,(1,1,1,1)--,(1,1,1,1)--. ………………………3分(Ⅱ)对于m B ∈,存在12(,,,),{1,1}n i x x x x x =∈-L ,12(,,,),{1,1}n i y y y y y =∈-L ;使得x y m =e .令1,0,i i i i ix y x y δ=⎧=⎨≠⎩,,1ni i k δ==∑;当i i x y =时1i i x y =,当i i x y ≠时1i i x y =-.那么1()2ni ii x y x yk n k k n ===--=-∑e .所以2m n k +=为偶数.………………………8分 (Ⅲ)8个,2个8n =时,不妨设1(1,1,1,1,1,1,1,1)x =,2(1,1,1,1,1,1,1,1)x =----.在考虑4n =时,共有四种互相正交的情况即: 1111111111111111------,分别与12,x x 搭配,可形成8种情况.所以8n =时,A 中最多可以有8个元素.………………………10分14n =时,不妨设114(1,1,1)y =个,17(1,1,,1,1,1,1)y =---个7个,则1y 与2y 正交.令1214(,,,)a a a a =L ,1214(,,,)b b b b =L ,1214(,,,)c c c c =L 且它们互相正交. 设 ,,a b c 相应位置数字都相同的共有k 个,除去这k 列外,a b 相应位置数字都相同的共有m 个, ,b c 相应位置数字都相同的共有n 个.则(14)22140a b m k m k m k =+---=+-=e . 所以7m k +=,同理7n k +=. 可得n m =.由于(142)0a c m m k k m =--++--=e ,可得27m =,*72m =∉N 矛盾. 所以任意三个元素都不正交.综上,14n =时,A 中最多可以有2个元素. ………13分。