人工智能习题作业神经计算I习题答案
- 格式:pdf
- 大小:112.28 KB
- 文档页数:5
文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.1.1 Define in your own word: (a) intelligence, (b) artificial intelligence, (c) agent.•Intelligence智能: Dictionary definitions of intelligence talk about “the capacity to acquire and apply knowledg e” or “the faculty of thought and reason” or “the ability to comprehend and profit from experien ce.” These are all reasonable answers, but if we want something quantifiable we would use something like “the ability to apply knowledge in order to perform better in an environment.”智能的字典定义有一种学习或应用知识的能力,一种思考和推理的本领,领会并且得益于经验的能力,这些都是有道理的答案,但如果我们想量化一些东西,我们将用到一些东西像为了在环境中更好的完成任务使能力适应知识•Artificial intelligence人工智能: We define artificial intelligence as the study and construction of agent programs that perform well in a given environment, for a given agent architecture.作为一学习和构造智能体程序,为了一个智能体结构,在被给的环境中可以很好的完成任务。
人工智能核心算法模拟习题(含答案)1、图像分类是根据图像的语义信息对不同类别图像进行区分,是计算机视觉的核心,是()、人脸识别等其他高层次视觉任务的基础A、物体检测B、图像分割C、物体跟踪D、行为分析答案:ABCD2、决策树分为两大类OoA、回归树B、分类树C、交叉树D、森林答案:AB3、关于学习器结合的描述,正确的是OoA、避免单学习器可能因误选而导致泛化性能不佳B、降低陷入局部极小点的风险C、假设空间扩大,有可能学得更好的近似D、多学习器结合有可能冲突答案:ABC4、()类型的数据集不适合用深度学习?A、数据集太小B、数据集有局部相关性C、数据集太大D、数据集没有局部相关性答案:AD5、需要循环迭代的算法有OoA、k-meansB、线性回归C、svmD、逻辑回归答案:ABD6、下列描述正确的是OA、K均值一般会聚类所有对象,但DBSCAN会丢弃被它识别为噪声的对象B、当簇具有很不相同的密度时,K均值和DBSCAN的性能都很差C、K均值可以用于高维的稀疏数据,DBSCAN则通常在此类数据上性能很差D、K均值可以发现不是明显分离的簇,但DBSCAN会合并有重叠的簇答案:ABCD7、深度学习中常用的损失函数有?A、11损失函数B、均方误差损失函数C、交叉燧误差损失函数D、自下降损失函数答案:BC8、预剪枝使得决策树的很多分子都没有展开,会导致OOA、显著减少训练时间开销B、显著减少测试时间开销C、降低过拟合风险I)、提高欠拟合风险答案:ABCD9、在某神经网络的隐层输出中,包含0.75,那么该神经网络采用的激活函数可能是OA、sigmoidB、tanhC、re1u答案:ABC10、关于随机森林说法正确的是OA、与AdaboOSt相比,随机森林采用一个固定的概率分布来产生随机向量B、随着个体学习器数目的增加,随机森林通常会收敛到更低的泛化误差C、与AdabOOSt相比,随机森林鲁棒性更好D、随机森林的训练效率往往低于Bagging答案:ABC11、下列哪些项用于对问题进行形式化A、感知B、初始状态C、动作D、环境答案:BC12、深度学习中的激活函数需要具有哪些属性?A、计算简单B、非线性C、具有饱和区D、几乎处处可微答案:ABC13、常见的聚类算法有哪些?A、密度聚类B、层次聚类C、谱聚类D、Kmeans答案:ABCD14、对于朴素贝叶斯分类器,下面说法正确的是OA、适用于小规模数据集B、适用于多分类任务C、适合增量式训练D、对输入数据的表达形式不敏感答案:ABC15、下列可用于隐马尔可夫预测的算法是OOA、维特比算法B、Baum-We1ch算法C、前向-后向算法D、拟牛顿法答案:ABCD16^Hiatp1ot1ib中,SUbPIOts_adjust方法中的()和()参数分别控制图片的宽度和高度百分比,以用作子图间的间距。
一、单选题1、人工智能的目的是让机器能够____,以实现某些脑力劳动的机械化。
A.具有完全的智能B.和人脑一样考虑问题C.完全代替人D.模拟、延伸和扩展人的智能正确答案:D2、盲人看不到一切物体,他们可以通过辨别人的声音识别人,这是智能的____方面。
A.行为能力B.感知能力C.思维能力D.学习能力正确答案:B3、连接主义认为人的思维基元是____。
A.符号B.神经元C.数字D.图形正确答案:B4、第一个神经元的数学模型-MP模型是____年诞生的。
A.1943B.1958C.1982D.1986正确答案:A5、符号主义认为人工智能源于____。
A.数理逻辑B.神经网络C.信息检索D.遗传算法正确答案:A6、被誉为“人工智能之父”的科学家是____。
A.明斯基B.麦卡锡C.图灵D.香农正确答案:C7、在等代价搜索算法中,总是选择____节点进行扩展。
A.代价最小B.深度最小C.深度最大D.代价最大正确答案:A8、八数码问题中, 启发函数f(x)=g(x)+h(x)中的常使用____来定义g(x)。
A.节点x与目标状态位置不同的棋子个数B.节点x的子节点数C.节点 x 与目标状态位置相同的棋子个数D.节点x所在层数正确答案:D9、在图搜索算法中,设规定每次优先从OPEN表的前端取一个节点进行考察,则在宽度优先搜索中,新扩展出的子代节点应该放在OPEN 表的____。
A.前端B.末端C.任意位置D.后端正确答案:B10、在图搜索算法中,设规定每次优先从OPEN表的前端取一个节点进行考察,则在深度优先搜索中,新扩展出的子代节点应该放在OPEN 表的____。
A.前端B.末端C.任意位置D.后端正确答案:A11、如果问题存在最优解,则下面几种搜索算法中,____必然可以得到该最优解。
A.宽度优先搜索B.深度优先搜索C.有界深度优先搜索D.A*算法正确答案:A12、在启发式搜索中,____提供一个评定侯选扩展节点的方法,以便确定哪个节点最有可能在通向目标的最佳路径上。
人工智能单选练习题库含参考答案一、单选题(共100题,每题1分,共100分)1、人工智能诞生在1955年,50年代末第一款神经网络-()将人工智能推向了第一个高潮。
A、感知机B、无人机C、费曼机D、机器人正确答案:A2、GooLeNet中使用较多小tricks,其中全局平局池化GAP就是一个,使用GAP的优点是()A、加速模型收敛B、提供更好的分类C、增加网络深度D、减少参数量,实现任意大小的输入正确答案:D3、学习器的实际预测输出与样本的真实输出之间的差异称为(___)。
A、误差B、精度C、查准率D、错误率正确答案:A4、华为的芯片支持 HUAWEI HiAI 的哪一个模块?A、HiAI FrameworkB、HiAI ServiceC、HiAI FoundationD、HiAI Engine正确答案:C5、有统计显示,在未来,非结构化数据的占比将达到()以上。
A、$0.90B、0.8C、0.6D、0.7正确答案:A6、我国人工智能的发展战略是()。
A、12320工业互联B、“1438”战略C、新一代人工智能发展规划D、国家制造创新正确答案:C7、()就是指分类任务中不同类别的训练样例数目差别很大的情况A、类别不相同B、类别不对等C、类别不平衡D、类别数不同正确答案:C8、以下哪个关键字是与 try 语句一起使用来处理异常的?A、&catch(a)&B、catch&C、&exception&D、&except正确答案:D9、深度学习中的“深度”是指()A、计算机对问题的处理更加灵活B、中间神经元网络的层次很多C、计算机的求解更加精准D、计算机理解的深度正确答案:B10、增强现实领域(AR)大量应用了(),典型的就是微软的HoLolens。
A、计算机视觉B、语音识别C、图像处理D、虚拟现实技术正确答案:A11、DBSCAN在最坏情况下的时间复杂度是()A、O(m2)B、O(m*logm)C、O(logm)D、O(m)正确答案:A12、多义现象可以被定义为在文本对象中一个单词或短语的多种含义共存。
《人工智能》课后习题答案第一章绪论1.1答:人工智能就是让机器完成那些如果由人来做则需要智能的事情的科学。
人工智能是相对于人的自然智能而言,即用人工的方法和技术,研制智能机器或智能系统来模仿延伸和扩展人的智能,实现智能行为和“机器思维”,解决需要人类专家才能处理的问题。
1.2答:“智能”一词源于拉丁“Legere”,意思是收集、汇集,智能通常用来表示从中进行选择、理解和感觉。
所谓自然智能就是人类和一些动物所具有的智力和行为能力。
智力是针对具体情况的,根据不同的情况有不同的含义。
“智力”是指学会某种技能的能力,而不是指技能本身。
1.3答:专家系统是一个智能的计算机程序,他运用知识和推理步骤来解决只有专家才能解决的复杂问题。
即任何解题能力达到了同领域人类专家水平的计算机程序度可以称为专家系统。
1.4答:自然语言处理—语言翻译系统,金山词霸系列机器人—足球机器人模式识别—Microsoft Cartoon Maker博弈—围棋和跳棋第二章知识表达技术2.1解答:(1)状态空间(State Space)是利用状态变量和操作符号,表示系统或问题的有关知识的符号体系,状态空间是一个四元组(S,O,S0,G):S—状态集合;O—操作算子集合;S0—初始状态,S0⊂S;G—目的状态,G⊂S,(G可若干具体状态,也可满足某些性质的路径信息描述)从S0结点到G结点的路径被称为求解路径。
状态空间一解是一有限操作算子序列,它使初始状态转换为目标状态:O1 O2 O3 OkS0→−−−S1→−−−S2→−−−……→−−−G其中O1,…,Ok即为状态空间的一个解(解往往不是唯一的)(2)谓词逻辑是命题逻辑的扩充和发展,它将原子命题分解成客体和谓词两个部分。
与命题逻辑中命题公式相对应,谓词逻辑中也有谓词(命题函数)公式、原子谓词公式、复合谓词公式等概念。
一阶谓词逻辑是谓词逻辑中最直观的一种逻辑。
(3)语义网络是一种采用网络形式表示人类知识的方法。
习题99.1 感知器的一个基本缺陷是不能执行异或(XOR )函数。
解释造成这个局限的原因。
解:感知器由两层神经元组成,其中只包括一层M -P 功能神经元,只能产生一个线性超平面。
而异或函数是非线性可分问题,可考虑异或函数的函数图像,会发现仅由一个线性超平面无法将输出结果分开,感知器的学习过程不会收敛,因此感知器不能执行异或函数。
9.2试用单个感知器神经元完成下列分类,写出其训练的迭代过程,画出最终的分类示意图。
已知11223344000211002120,;,;,;,⎧⎫⎧⎫⎧⎫⎧⎫⎡⎤⎡⎤⎡⎤⎡⎤========⎨⎬⎨⎬⎨⎬⎨⎬⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎩⎭⎩⎭⎩⎭⎩⎭P t P t P t P t解:第一次迭代:W=[0,0], b=0;第二次迭代:W=[0,0], b=0;第三次迭代:W=[0,2], b=-1;第四次迭代:W=[0,2], b=-1;第五次迭代:W=[0,2], b=-1;第六次迭代:W=[0,2], b=-1;边界方程:2210x -=分类示意图9.3 简述BP 神经网络的基本学习算法。
解:略。
9.4 编写计算机程序,实现BP 神经网络对26个英文字母的识别,通过实验给出网络的识别出错率。
解:略。
9.5 利用下述输入模式训练竞争网络:123111, , 111-⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦P P P (1)使用SOM 学习规则,其中学习率初值0η=0.5,试将输入模式训练一遍(即每个输入按给定顺序提交一次)。
假设初始权值矩阵为⎥⎥⎦⎤⎢⎢⎣⎡=2 00 2W (2)训练一遍输入模式之后,模式如何聚类?(即哪些输入模式被归入同一类中?)如果输入模式以不同顺序提交,结果会改变吗?解释其原因。
(3)用0η=0.5重复(1)。
这种改变对训练有何影响?解:(1)竞争层两个神经元,权值向量分别为1(0)W =,2(0)W =。
归一化:i P 与j W 分别除以各自的二范数,可得: 1230.7070.7070.707, , 0.7070.7070.707-⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦P P P 1(0)[1,0]=W ,2(0)[0,1]=W输入1P :11(0)0.765-=T P W12(0) 1.848-=T P W1112(0)(0)-<-T T P W P W 神经元1获胜,1W 调整。
第1章绪论课后习题及其答案1、选择题:1.以下哪两种对人工智能的定义中涉及拟人思维 ( BD )A 人工智能(学科)是计算机科学中涉及研究、设计和应用智能机器的一个分支。
它的近期主要目标在于研究用机器来模仿和执行人脑的某些智力功能,并开发相关理论和技术。
B 人工智能是一种使计算机能够思维,使机器具有智力的激动人心的新尝试C 人工智能研究如何使计算机做事让人过得更好(Rick和Knight,1991)。
D 人工智能是那些与人的思维、决策、问题求解和学习等有关活动的自动化(Bellman,1978)。
2.下列选项从学科的角度来说明什么是人工智能是 ( C )A人工智能是研究那些使理解、推理和行为成为可能的计算B人工智能是智能机器所执行的通常与人类智能有关的智能行为,如判断、推理证明、识别、感知、理解、通信、设计、思考、规划、学习和问题求解等思维活动。
C人工智能是计算机科学中涉及研究、设计和应用智能机器的一个分支。
它的近期主要目标在于研究用机器来模仿和执行人脑的某些智力功能,并开发相关理论和技术。
D人工智能是计算机科学中与智能行为的自动化有关的一个分支3.对于人工智能的发展来说,20世纪30年代和40年代的智能界,发现了两件最重要的事: ( AB )A数理逻辑B关于计算的新思想。
C数理逻辑D存储程序控制4.被称为人工智能之父的 ( C )A图灵B丘奇C香农D赫伯特•西蒙5.属于图灵提出或参与的成果有 ( BCD )A把数理关系理论简化为类理论B逻辑机C关于计算本质的思想,提供了形式推理概念与即将发明的计算机之间的联系。
D不仅创造了一个简单的通用的非数字计算模型,而且直接证明了计算机可能以某种被理解为智能的方法工作。
6.在人工智能发展过程中具有重要意义的()的提出和兴起,使人工智能发展成为一门具有比较坚实理论基础和广泛应用领域的学科。
他是信息科学与生命科学相互交叉、相互渗透和相促进的产物,是生物信息学的主要研究内容之一。
1 .设有下列语句,请用相应的谓词公式把它们表示出来:(1)有的人喜欢梅花,有的人喜欢菊花,有的人既喜欢梅花又喜欢菊花。
答:定义谓词:MAN(X):X是人,LIKE(X,Y):X喜欢Y ((∃X)(MAN(X)∧LIKE(X, 梅花)) ∧((∃Y)(MAN(Y)∧LIKE(Y,菊花))∧((∃Z)(MAN(Z)∧(LIKE(Z,梅花)∧LIKE(Z,菊花))(2)他每天下午都去打篮球。
答:定义谓词:TIME(X):X是下午PLAY(X,Y):X去打Y(∀X)TIME(X) PLAY(他,篮球)(3)并不是每一个人都喜欢吃臭豆腐。
定义谓词:MAN(X):X是人LIKE(X,Y):X喜欢吃Y┐((∀X)MAN(X)LIKE(X,CHOUDOUFU))2 .请对下列命题分别写出它的语义网络:(1)钱老师从6 月至8 月给会计班讲《市场经济学》课程。
(2)张三是大发电脑公司的经理,他35 岁,住在飞天胡同68 号。
(3)甲队与乙队进行蓝球比赛,最后以89 :102 的比分结束。
3. 框架表示法一般来讲,教师的工作态度是认真的,但行为举止有些随便,自动化系教师一般来讲性格内向,喜欢操作计算机。
方园是自动化系教师,他性格内向,但工作不刻苦。
试用框架写出上述知识,并求出方圆的兴趣和举止?答:框架名:<教师>继承:<职业>态度:认真举止:随便框架名:<自动化系教师>继承:<教师>性格:内向兴趣:操作计算机框架名:<方园>继承:<自动化系教师>性格:内向态度:不刻苦兴趣:操作计算机举止:随便4. 剧本表示法作为一个电影观众,请你编写一个去电影院看电影的剧本。
答:(1) 开场条件(a) 顾客想看电影(b) 顾客在足够的钱(2) 角色顾客,售票员,检票员,放映员(3) 道具钱,电影票(4) 场景场景1 购票1. 顾客来到售票处2. 售票员把票给顾客3. 顾客把钱给售票员4. 顾客走向电影院门场景2 检票1. 顾客把电影票给检票员2. 检票员检票3. 检票员把电影票还给顾客4. 顾客进入电影院场景3 等待1. 顾客找到自己的座位2. 顾客坐在自己座位一等待电影开始场景4 观看电影1. 放映员播放电影2. 顾客观看电影场景5 离开(a) 放映员结束电影放映(b) 顾客离开电影院(5) 结果(a) 顾客观看了电影(b) 顾客花了钱5. 状态空间表示法三个传教士和三个野人来到河边,有一条船可供一人或两人乘渡,在渡河过程中,任一岸的野人数若大于传教士人数,野人就会吃掉传教士。
1.1育才新工科-人工智能简介已完成成绩:100。
0分1【判断题】《人工智能》课程为理工类通选课,本课程给予学生的主要是思想而不是知识.我的答案:√得分:100.0分1.2图灵是谁?已完成成绩:100。
0分1【单选题】图灵曾协助军方破解()的著名密码系统Enigma。
•A、英国•B、美国•C、德国•D、日本我的答案:C得分: 33。
3分2【判断题】图灵使用博弈论的方法破解了Enigma。
我的答案:√得分:33。
3分3【判断题】电影《模仿游戏》是纪念图灵诞生90周年而拍摄的电影。
我的答案:×得分:33.4分1.3为什么图灵很灵?已完成成绩:100.0分1【单选题】1950年,图灵在他的论文()中,提出了关于机器思维的问题。
•A、《论数字计算在决断难题中的应用》•B、《论可计算数及其在判定问题中的应用》•C、《可计算性与λ可定义性》•D、《计算和智能》我的答案:D得分:33.3分2【判断题】图灵测试是指测试者与被测试者(一个人和一台机器)隔开的情况下,通过一些装置(如键盘)向被测试者随意提问。
如果测试者不能确定出被测试者是人还是机器,那么这台机器就通过了测试,并被认为具有人类智能。
我的答案:√得分:33。
3分3【判断题】存在一种人类认为的可计算系统与图灵计算不等价。
我的答案:×得分:33。
4分1。
4为什么图灵不灵?已完成成绩:100。
0分1【单选题】在政府报告中,()的报告使用“机器智能”这个词汇。
•A、中国•B、英国•C、德国•D、美国我的答案:D得分:25.0分2【单选题】以下叙述不正确的是()。
•A、图灵测试混淆了智能和人类的关系•B、机器智能的机制必须与人类智能相同•C、机器智能可以完全在特定的领域中超越人类智能•D、机器智能可以有人类智能的创造力我的答案:B得分:25。
0分3【多选题】机器智能可以有自己的“人格”体现主要表现在()。
•A、模型间的对抗—智能进化的方式•B、机器智能的协作—机器智能的社会组织•C、机器智能是社会的实际生产者•D、机器智能可以有人类智能的创造力我的答案:ABC得分:25。
上海大学《人工智能》网络课课后习题答案1.1育才新工科-人工智能简介1【判断题】《人工智能》课程为理工类通选课,本课程给予学生的主要是思想而不是知识。
对1.2图灵是谁?1【单选题】图灵曾协助军方破解()的著名密码系统Enigma。
A、英国B、美国C、德国D、日本2【判断题】电影《模仿游戏》是纪念图灵诞生90周年而拍摄的电影。
X3【判断题】图灵使用博弈论的方法破解了Enigma。
对1.3为什么图灵很灵?1【单选题】1937年,图灵在发表的论文()中,首次提出图灵机的概念。
A、《左右周期性的等价》B、《论可计算数及其在判定问题中的应用》C、《可计算性与λ可定义性》D、《论高斯误差函数》2【单选题】1950年,图灵在他的论文()中,提出了关于机器思维的问题.A、《论数字计算在决断难题中的应用》B、《论可计算数及其在判定问题中的应用》C、《可计算性与λ可定义性》D、《计算和智能》3【判断题】存在一种人类认为的可计算系统与图灵计算不等价。
X4【判断题】图灵测试是指测试者与被测试者(一个人和一台机器)隔开的情况下,通过一些装置(如键盘)向被测试者随意提问.如果测试者不能确定出被测试者是人还是机器,那么这台机器就通过了测试,并被认为具有人类智能。
对1。
4为什么图灵不灵?1【单选题】以下叙述不正确的是().A、图灵测试混淆了智能和人类的关系B、机器智能的机制必须与人类智能相同C、机器智能可以完全在特定的领域中超越人类智能D、机器智能可以有人类智能的创造力2【单选题】在政府报告中,()的报告使用“机器智能”这个词汇。
A、中国B、英国C、德国D、美国3【多选题】机器智能可以有自己的“人格”体现主要表现在()。
A、模型间的对抗—智能进化的方式B、机器智能的协作—机器智能的社会组织C、机器智能是社会的实际生产者D、机器智能可以有人类智能的创造力4【判断题】图灵测试存在的潜台词是机器智能的极限可以超越人的智能,机器智能可以不与人的智能可比拟。
人工智能习题作业神经计算I习题答案第五章神经网络课后习题及答案一、选择题:1. 在BP算法中,设y=f(xi)为xi的平滑函数,想知道xi对y增大变化的情况,我们可求,然后进行下列的哪一项?( B )A 取最小B 取最大C 取积分D 取平均值2. 对于反向传播学习,无论是在识别单个概念的学习或识别两个概念的学习中,都涉及到下列的哪一个操作?( A )A 权值的修正B 调整语义结构C 调整阀值D 重构人工神经元3. 根据Hopfield网络学习的特点,能实现联想记忆和执行线性和非线性规划等求解问题其应用没有涉及到下列的哪一个内容?( D )A 模糊推理模型B 非线性辨认C 自适应控制模型D 图象识别4. 对于神经网络的二级推理产生式规则由三个层次构成,它不含下列的哪一个层次?( C )A 输入层B 输出层C 中间层D 隐层5. 人工神经网络借用了生理神经元功能的一些描述方式,它涉及到下列的哪一些内容?( ABC )A 模拟神经元B 处理单元为节点C 加权有向图D 生理神经元连接而成6. 在应用和研究中采用的神经网络模型有许多种,下列的哪一些是具有代表性的?( ABD )A 反向传递(BP)B Hopfield网C 自适应共振D 双向联想存储器7. 下列的哪一些内容与反向传播学习算法有关?( ABCD )A 选取比率参数B 误差是否满足要求C 计算权值梯度D 权值学习修正8. 构造初始网络后,要用某种学习算法调整它的权值矩阵,使NN在功能上满足样例集给定的输入一输出对应关系,并由此产生推理,该矩阵必须满足下列的哪一个性质? ( A )A 收敛性B 对称性C 满秩性D 稀疏性9. 在人工神经元的功能描述中,往往会用一激发函数来表示输出,常用的一般非线性函数有下列的哪一些项? ( ABD )A 阀值型B 分段线性强饱和型C 离散型D S i gm oid型10. 基于神经网络的推理,其应用中必须涉及到下列的哪一些内容?( ACD )A NN的结构模型B NN的推理规则C NN的学习算法D 从NN到可解释的推理网二、填空题:1. 前馈网络是一种具有很强学习能力的系统,结构简单,易于编程。
1.什么是智能?智能有什么特征?答:智能可以理解为知识与智力的总和。
其中,知识是一切智能行为的基础,而智力是获取知识并运用知识求解问题的能力,即在任意给定的环境和目标的条件下,正确制订决策和实现目标的能力,它来自于人脑的思维活动。
智能具有下述特征:(1)具有感知能力(系统输入)。
(2)具有记忆与思维的能力。
(3)具有学习及自适应能力。
(4)具有行为能力(系统输出)。
2.人工智能有哪些学派?他们各自核心的观点有哪些?答:根据研究的理论、方法及侧重点的不同,目前人工智能主要有符号主义、联结主义和行为主义三个学派。
符号主义认为知识可用逻辑符号表达,认知过程是符号运算过程。
人和计算机都是物理符号系统,且可以用计算机的符号来模拟人的认知过程。
他们认为人工智能的核心问题是知识表示和知识推理,都可用符号来实现,所有认知活动都基于一个统一的体系结构。
联结主义原理主要是神经网络及神经网络间的连接机制与学习算法。
他们认为人的思维基元是神经元,而不是符号运算。
认为人脑不同于电脑,不能用符号运算来模拟大脑的工作模式。
行为主义原理为控制论及“感知—动作”型控制系统。
该学派认为智能取决于感知和行动,提出智能行为的“感知—动作”模式,他们认为知识不需要表示,不需要推理。
智能研究采用一种可增长的方式,它依赖于通过感知和行动来与外部世界联系和作用。
3.人工智能研究的近期目标和远期目标是什么?它们之间有什么样的关系?答:人工智能的近期目标是实现机器智能,即主要研究如何使现有的计算机更聪明,使它能够运用知识去处理问题,能够模拟人类的智能行为。
人工智能的远期目标是要制造智能机器。
即揭示人类智能的根本机理,用智能机器去模拟、延伸和扩展人类的智能。
人工智能的近期目标与远期目标之间并无严格的界限,二者相辅相成。
远期目标为近期目标指明了方向,近期目标则为远期目标奠定了理论和技术基础。
4.人工智能的研究途径有哪些?答:人工智能的研究途径主要有:(1)心理模拟,符号推演;(2)生理模拟,神经计算;(3)行为模拟,控制进化论。
人工智能(马少平朱小燕著) 清华大学出版社课后答案习题部分第一章课后习题1、对N=5、k≤3时,求解传教士和野人问题的产生式系统各组成部分进行描述(给出综合数据库、规则集合的形式化描述,给出初始状态和目标条件的描述),并画出状态空间图。
2、对量水问题给出产生式系统描述,并画出状态空间图。
有两个无刻度标志的水壶,分别可装5升和2升的水。
设另有一水缸,可用来向水壶灌水或倒出水,两个水壶之间,水也可以相互倾灌。
已知5升壶为满壶,2升壶为空壶,问如何通过倒水或灌水操作,使能在2升的壶中量出一升的水来。
3、对梵塔问题给出产生式系统描述,并讨论N为任意时状态空间的规模。
相传古代某处一庙宇中,有三根立柱,柱子上可套放直径不等的N个圆盘,开始时所有圆盘都放在第一根柱子上,且小盘处在大盘之上,即从下向上直径是递减的。
和尚们的任务是把所有圆盘一次一个地搬到另一个柱子上去(不许暂搁地上等),且小盘只许在大盘之上。
问和尚们如何搬法最后能完成将所有的盘子都移到第三根柱子上(其余两根柱子,有一根可作过渡盘子使用)。
求N=2时,求解该问题的产生式系统描述,给出其状态空间图。
讨论N为任意时,状态空间的规模。
4、对猴子摘香蕉问题,给出产生式系统描述。
一个房间里,天花板上挂有一串香蕉,有一只猴子可在房间里任意活动(到处走动,推移箱子,攀登箱子等)。
设房间里还有一只可被猴子移动的箱子,且猴子登上箱子时才能摘到香蕉,问猴子在某一状态下(设猴子位置为a,箱子位置为b,香蕉位置为c),如何行动可摘取到香蕉。
5、对三枚钱币问题给出产生式系统描述及状态空间图。
设有三枚钱币,其排列处在"正、正、反"状态,现允许每次可翻动其中任意一个钱币,问只许操作三次的情况下,如何翻动钱币使其变成"正、正、正"或"反、反、反"状态。
6、说明怎样才能用一个产生式系统把十进制数转换为二进制数,并通过转换141.125这个数为二进制数,阐明其运行过程。
解析题:1. 问题状态以五元组 (a,b,c,d,,e) ,a 农夫b 狐狸c 小羊d 菜.e 左岸1右岸为0.操作算子为L(x),R(x)。
x 为 b,c,d.分别表示农夫带着每一样物品到河左岸和到河右岸,当为x=0时表示不带任何物品。
整个问题状态以左岸的状态来描述。
初始状态为(1,1,1,1,1,1)农夫和三样物品都在左岸,目标状态为(0,0,0,0,0,0)农夫和三样物品都在右岸。
2. 深度优先扩展当前节点后生成的子节点总是置于OPEN 表的前端,即OPEN 表点作为棧表使用,后进先出,使当前节点后生成的子节点向纵深方向发展。
爬山算法,评价函数f(n)=h(n).不需设置OPEN 和CLOSE 表,仅从当前状态节点扩展出子节点,并将H(n)最小子节点作为下一次考察和扩展的节点,其余子节点全部丢弃。
(b ) (d ) (1,1,1,1,1)(0,1,0,1,0)(1,1,0,1,1) (0,0,0,1,0)(c )(0)(0,1,0,0,0)(b )(d ) (1,0,1,1,1)(c ) (1,1,1,0,1)(c ) (0,0,1,0,0)(1,0,1,0,1)(0,0,0,0,0)(0) (c )a(5) 1,2,38,4,07,6,5⎛⎫⎪ ⎪ ⎪⎝⎭S(4) 1,2,38,0,47,6,5⎛⎫ ⎪ ⎪ ⎪⎝⎭c(6) 1,2,30,8,47,6,5⎛⎫⎪ ⎪ ⎪⎝⎭d(5) 1,0,38,2,47,6,5⎛⎫⎪ ⎪ ⎪⎝⎭e(6) 1,2,38,6,40,7,5⎛⎫⎪ ⎪ ⎪⎝⎭f(6) 1,2,38,6,47,5,0⎛⎫⎪ ⎪ ⎪⎝⎭b(4) 1,2,38,6,47,0,5⎛⎫⎪ ⎪ ⎪⎝⎭g(6) 1,2,08,4,37,6,5⎛⎫⎪ ⎪ ⎪⎝⎭h(7) 1,2,38,4,57,6,0⎛⎫⎪ ⎪ ⎪⎝⎭i(7) 0,1,38,2,47,6,5⎛⎫⎪ ⎪ ⎪⎝⎭j(5) 1,3,08,2,47,6,5⎛⎫⎪ ⎪ ⎪⎝⎭k(5) 1,3,48,2,07,6,5⎛⎫⎪ ⎪ ⎪⎝⎭l(5) 1,3,48,0,27,6,5⎛⎫⎪ ⎪ ⎪⎝⎭m(7) 1,3,48,2,57,6,0⎛⎫⎪ ⎪ ⎪⎝⎭n(5) 1,3,48,6,27,0,5⎛⎫⎪ ⎪ ⎪⎝⎭o(7) 1,0,48,3,27,6,5⎛⎫⎪ ⎪ ⎪⎝⎭p(7) 1,3,40,8,27,6,5⎛⎫⎪ ⎪ ⎪⎝⎭。
1.什么是人类智能?它有哪些特征或特点?定义:人类所具有的智力和行为能力。
特点:主要体现为感知能力、记忆与思维能力、归纳与演绎能力、学习能力以及行为能力。
2.人工智能是何时、何地、怎样诞生的?解:人工智能于1956年夏季在美国Dartmouth大学诞生。
此时此地举办的关于用机器模拟人类智能问题的研讨会,第一次使用“人工智能”这一术语,标志着人工智能学科的诞生。
3.什么是人工智能?它的研究目标是?定义:用机器模拟人类智能。
研究目标:用计算机模仿人脑思维活动,解决复杂问题;从实用的观点来看,以知识为对象,研究知识的获取、知识的表示方法和知识的使用。
4.人工智能的发展经历了哪几个阶段?解:第一阶段:孕育期(1956年以前);第二阶段:人工智能基础技术的研究和形成(1956~1970年);第三阶段:发展和实用化阶段(1971~1980年);第四阶段:知识工程和专家系统(1980年至今)。
5.人工智能研究的基本内容有哪些?解:知识的获取、表示和使用。
6.人工智能有哪些主要研究领域?解:问题求解、专家系统、机器学习、模式识别、自动定论证明、自动程序设计、自然语言理解、机器人学、人工神经网络和智能检索等。
7.人工智能有哪几个主要学派?各自的特点是什么?主要学派:符号主义和联结主义。
特点:符号主义认为人类智能的基本单元是符号,认识过程就是符号表示下的符号计算,从而思维就是符号计算;联结主义认为人类智能的基本单元是神经元,认识过程是由神经元构成的网络的信息传递,这种传递是并行分布进行的。
8.人工智能的近期发展趋势有哪些?解:专家系统、机器人学、人工神经网络和智能检索。
9.什么是以符号处理为核心的方法?它有什么特征?解:通过符号处理来模拟人类求解问题的心理过程。
特征:基于数学逻辑对知识进行表示和推理。
11.什么是以网络连接为主的连接机制方法?它有什么特征?解:用硬件模拟人类神经网络,实现人类智能在机器上的模拟。
特征:研究神经网络。
人工智能课后习题答案第一章课后习题答案说明:由于人工智能的很多题目都很灵活,以下解答仅供参考。
第1题答: 1,综合数据库定义三元组:(m, c, b)其中:,表示传教士在河左岸的人数。
,表示野人在河左岸的认输。
,b=1,表示船在左岸,b=0,表示船在右岸。
2,规则集规则集可以用两种方式表示,两种方法均可。
第一种方法: 按每次渡河的人数分别写出每一个规则,共(3 0)、(0 3)、(2 1)、(1 1)、(1 0)、(0 1)、(2 0)、(0 2)八种渡河的可能(其中(x y)表示x个传教士和y个野人上船渡河),因此共有16个规则(从左岸到右岸、右岸到左岸各八个)。
注意:这里没有(1 2),因为该组合在船上的传教士人数少于野人人数。
规则集如下:r1:IF (m, c, 1) THEN (m-3, c, 0) r2:IF (m, c, 1) THEN (m, c-3, 0)r3:IF (m, c, 1) THEN (m-2, c-1, 0) r4:IF (m, c, 1) THEN (m-1, c-1, 0)r5:IF (m, c, 1) THEN (m-1, c, 0) r6:IF (m, c, 1) THEN (m, c-1, 0) r7:IF (m, c, 1) THEN (m-2, c, 0) r8:IF (m, c, 1) THEN (m, c-2, 0) r9 :IF (m, c, 0) THEN (m+3, c, 1) r10:IF (m, c, 0) THEN (m, c+3, 1) r11:IF (m, c, 0) THEN (m+2, c+1, 1) r12:IF (m, c, 0) THEN (m+1, c+1, 1) r13:IF (m, c, 0) THEN (m+1, c, 1) r14:IF (m, c, 0) THEN (m, c+1, 1) r15:IF (m, c, 0) THEN (m+2, c, 1) r16:IF (m, c, 0) THEN (m, c+2, 1)1第二种方法: 将规则集综合在一起,简化表示。
第五章 神经网络课后习题及答案
一、选择题:
1. 在BP算法中,设y=f(xi)为xi的平滑函数,想知道xi对y增大变化的情况,
我们可求 ,然后进行下列的哪一项? ( B )
A 取最小
B 取最大
C 取积分
D 取平均值
2. 对于反向传播学习,无论是在识别单个概念的学习或识别两个概念的学习中,都涉及到下列的哪一个操作? ( A )
A 权值的修正
B 调整语义结构
C 调整阀值
D 重构人工神经元
3. 根据Hopfield网络学习的特点,能实现联想记忆和执行线性和非线性规划等求解问题其应用没有涉及到下列的哪一个内容? ( D )
A 模糊推理模型
B 非线性辨认
C 自适应控制模型
D 图象识别
4. 对于神经网络的二级推理产生式规则由三个层次构成,它不含下列的哪一个层次? ( C )
A 输入层
B 输出层
C 中间层
D 隐层
5. 人工神经网络借用了生理神经元功能的一些描述方式,它涉及到下列的哪一些内容? ( ABC )
A 模拟神经元
B 处理单元为节点
C 加权有向图
D 生理神经元连接而成
6. 在应用和研究中采用的神经网络模型有许多种,下列的哪一些是具有代表性的? ( ABD )
A 反向传递(BP)
B Hopfield网
C 自适应共振
D 双向联想存储器
7. 下列的哪一些内容与反向传播学习算法有关? ( ABCD )
A 选取比率参数
B 误差是否满足要求
C 计算权值梯度
D 权值学习修正
8. 构造初始网络后,要用某种学习算法调整它的权值矩阵,使NN在功能上满足样例集给定的输入一输出对应关系,并由此产生推理,该矩阵必须满足下列的哪一个性质? ( A )
A 收敛性
B 对称性
C 满秩性
D 稀疏性
9. 在人工神经元的功能描述中,往往会用一激发函数来表示输出,常用的一般非线性函数有下列的哪一些项? ( ABD )
A 阀值型
B 分段线性强饱和型
C 离散型
D S i gm oid型
10. 基于神经网络的推理,其应用中必须涉及到下列的哪一些内容? ( ACD )
A NN的结构模型
B NN的推理规则
C NN的学习算法
D 从NN到可解释的推理网
二、填空题:
1. 前馈网络是一种具有很强学习能力的系统,结构简单,易于编程。
前馈网络通
过简单非线性单元的复合映射而获得较强的非线性处理能力,实现静态_非线性映射___。
2. 基于神经网络的学习是研究如何使用人工神经网络来模拟生理神经元的特性,并讨论了__反向传播__如何改变一个模拟神经元对另一个模拟神经元的作用
3. 生理神经元由一个细胞体和突两部分组成。
突分两类,即轴突和_树突___。
三、简答题:
1. 人工神经网络为什么具有诱人的发展前景和潜在的广泛应用领域?
人工神经网络具有如下至关重要的特性:
(1) 并行分布处理
适于实时和动态处理
(2)非线性映射
给处理非线性问题带来新的希望
(3) 通过训练进行学习
一个经过适当训练的神经网络具有归纳全部数据的能力,能够解决那些由数学模型或描述规则难以处理的问题
(4) 适应与集成
神经网络的强适应和信息融合能力使得它可以同时输入大量不同的控制信号,实现信息集成和融合,适于复杂,大规模和多变量系统
(5) 硬件实现
一些超大规模集成是电路实现硬件已经问世,使得神经网络成为具有快速和大规模处理能力的网络。
2. 简述生物神经元及人工神经网络的结构和主要学习算法。
生物神经元
大多数神经元由一个细胞体(c ell b ody或s o ma)和突(p r o c e ss)两部分组成。
突
分两类, 即轴突(a xo n)和树突(de n d r i t e),轴突是个突出部分,长度可达
1m,把本神经元的输出发送至其它相连接的神经元。
树突也是突出部分,但一般较短,且分枝很多,与其它神经元的轴突相连,以接收来自其它神经元的生物信号。
轴突的末端与树突进行信号传递的界面称为突触(s y na p s e),通过突触向其它神经元发送信息。
对某些突触的刺激促使神经元触发(fi r e)。
只有神经元所有输入的总效应达到阈值电平,它才能开始工作。
此时,神经元就产生一个全强度的输出窄脉冲,从细胞体经轴突进入轴突分枝。
这时的神经元就称为被触发。
突触把经过一个神经元轴突的脉冲转化为下一个神经元的兴奋或抑制。
学习就发生在突触附近。
每个人脑大约含有10^11-10^12个神经元,每一神经元又约有10^3-10^4个突触。
神经元通过突触形成的网络,传递神经元间的兴奋与抑制。
大脑的全部神经元构成极其复杂的拓扑网络群体,用于实现记忆与思维。
人工神经网络的结构
人工神经网络由神经元模型构成。
每个神经元具有单一输出,并且能够与其它神经元连接,存在许多输出连接方法,每种连接方法对应于一个连接权系数。
人工神经网络的结构分为2类,
(1)递归(反馈)网络
有些神经元的输出被反馈至同层或前层神经元。
信号能够从正向和反向流通。
Hopfield网络,E l mman网络和J o r d an网络是代表。
(2) 前馈网络
具有递阶分层结构,由一些同层神经元间不存在互连的层级组成。
从输入层至输出层的信号通过单向连接流通,神经元从一层连接至下一层,不存在同层神经元之间的连接。
多层感知器(ML P),学习矢量量化网络(LVQ),小脑模型连接控制网络(C M AC)和数据处理方法网络(GM DH)是代表。
人工神经网络的主要学习算法
(1) 指导式(有师)学习
根据期望和实际的网络输出之间的差来调整神经元连接的强度或权。
包括Del ta
规则,广义Del ta规则,反向传播算法及LVQ算法。
(2) 非指导(无导师)学习
训练过程中,神经网络能自动地适应连接权,以便按相似特征把输入模式分组聚集。
包括K o h o n e n算法,C ar pe nt e r-Gr o ssb e rg自适应谐振理论(A RT) (3) 强化学习
是有师学习的一种特例。
它不需要老师给出目标输出,而是由一个“评论员”来评介与给定输入相对应的神经网络输出的优度。
例如遗传算法(G A)。