6.整式加减的运算法则: 一般地,几个整式相加减,如果有括号就先去括号,
然后再合并同类项.
第三章 一元一次方程
1:等式的概念:用等号表示相等关系的式子叫做等式.
2:等式的基本性质(1)等式两边加上(或减去)同一个数或 同一个代数式,所得的结果仍是等式.
即若a=b,则 a±c=b±c. (2) 等式两边乘以(或除以)同一个不为0的数或代数式, 所 得的结果仍是等式.
说明:代数式不含等号,方程是用等号把代数式连接而成 的式子,且其中一定要含有未知数.
4:一元一次方程的概念:只含有一个未知数,并且未知数的次 数是1的方程叫一元一次方程.任何情势的一元一次方程,经变 形后,总能变成形为ax=b(a≠0,a、b为已知数)的情势,这种情 势的方程叫一元一次方程的一般式.
(分母含有字母的代数式不是整式)
2. 同类项:所含字母相同,并且相同字母的指数也相同的项 叫做同类项。几个常数项也是同类项。
3.把多项式中的同类项合并成一项,叫做合并同类项
合并同类项法则:合并同类项后,所得项的系数是合并前各同类 项的系数的和,且字母部分不变。
注意:①.若两个同类项的系数互为相反数,则两项的和等于零, 如:-3ab2+3ab2=(-3+3)ab2=0×ab2=0。
一个正数的绝对值是 是它本身 ,一个负数的绝对值是 它的相反数 ,
0的绝对值是
0
。
注意:①|a|≥0即对任意有理数a,它的绝对值是非负数 ②绝对值最小数为0
(5)、有理数数的比较: ①在数轴上表示的两个数右边的总 比左边的大。
②两个正数比较大小,绝对值大的数大; 两个负数绝对值大的反而小。
③正数都大于零,负数都小于零,正数大于负数。
②.多项式中只有同类项才能合并,不是同类项不能合并。 ③.通常我们把一个多项式的各项按照某个字母的指数从 大到小(降幂)或者从小到大(升幂)的顺序排列, 如:-4x2+5x+5或 写5+5x-4x2。