单相桥式整流电路图及工作原理 (含参数计算)
- 格式:doc
- 大小:92.00 KB
- 文档页数:2
竭诚为您提供优质文档/双击可除单相桥式全控整流电路实验报告篇一:实验五单相桥式全控整流电路实验实验五单相桥式全控整流电路实验一.实验目的1.了解单相桥式全控整流电路的工作原理。
2.研究单相桥式全控整流电路在电阻负载、电阻—电感性负载及反电势负载时的工作。
3.熟悉mcL—05锯齿波触发电路的工作。
二.实验线路及原理参见图4-7。
三.实验内容1.单相桥式全控整流电路供电给电阻负载。
2.单相桥式全控整流电路供电给电阻—电感性负载。
3.单相桥式全控整流电路供电给反电势负载。
四.实验设备及仪器1.mcL系列教学实验台主控制屏。
2.mcL—18组件(适合mcL—Ⅱ)或mcL—31组件(适合mcL—Ⅲ)。
3.mcL—33组件或mcL—53组件(适合mcL—Ⅱ、Ⅲ、Ⅴ)4.mcL—05组件或mcL—05A组件5.meL—03三相可调电阻器或自配滑线变阻器。
6.meL—02三相芯式变压器。
7.双踪示波器8.万用表五.注意事项1.本实验中触发可控硅的脉冲来自mcL-05挂箱,故mcL-33(或mcL-53,以下同)的内部脉冲需断x1插座相连的扁平带需拆除,以免造成误触发。
2.电阻Rp的调节需注意。
若电阻过小,会出现电流过大造成过流保护动作(熔断丝烧断,或仪表告警);若电阻过大,则可能流过可控硅的电流小于其维持电流,造成可控硅时断时续。
3.电感的值可根据需要选择,需防止过大的电感造成可控硅不能导通。
4.mcL-05面板的锯齿波触发脉冲需导线连到mcL-33面板,应注意连线不可接错,否则易造成损坏可控硅。
同时,需要注意同步电压的相位,若出现可控硅移相范围太小(正常范围约30°~180°),可尝试改变同步电压极性。
5.逆变(:单相桥式全控整流电路实验报告)变压器采用meL-02三相芯式变压器,原边为220V,中压绕组为110V,低压绕组不用。
6.示波器的两根地线由于同外壳相连,必须注意需接等电位,否则易造成短路事故。
1 单相桥式全控整流电路的功能要求及设计方案介绍1.1 单相桥式全控整流电路设计方案1.1.1 设计方案图1设计方案1.1.2 整流电路的设计主电路原理图及其工作波形图2 主电路原理图及工作波形主电路原理说明:(1)在u2正半波的(0~α)区间,晶闸管VT1、VT4承受正向电压,但无触发脉冲,晶闸管VT2、VT3承受反向电压。
因此在0~α区间,4个晶闸管都不导通。
(2)在u2正半波的(α~π)区间,在ωt=α时刻,触发晶闸管VT1、VT4使其导通。
(3)在u2负半波的(π~π+α)区间,在π~π+α间,晶闸管VT2、VT3承受正向电压,因无触发脉冲而处于关断状态,晶闸管VT1、VT4承受反向电压也不导通。
(4)在u2负半波的(π+α~2π)区间,在ωt=π+α时刻,触发晶闸管VT2、VT3使其元件导通,负载电流沿b→VT3→R→VT2→α→T的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(ud=-u2)和电流,且波形相位相同。
2 触发电路的设计2.1 晶闸管触发电路触发电路在变流装置中所起的基本作用是向晶闸管提供门极电压和门极电流,使晶闸管在需要导通的时刻可靠导通。
根据控制要求决定晶闸管的导通时刻,对变流装置的输出功率进行控制。
触发电路是变流装置中的一个重要组成部分,变流装置是否能正常工作,与触发电路有直接关系,因此,正确合理地选择设计触发电路及其各项技术指标是保证晶闸管变流装置安全,可靠,经济运行的前提。
,开始启动A/D转换;在A/D转换期间,START应保持低电平。
2.1.1 晶闸管触发电路的要求晶闸管触发主要有移相触发、过零触发和脉冲列调制触发等。
触发电路对其产生的触发脉冲要求:(1)触发信号可为直流、交流或脉冲电压。
(2)触发信号应有足够的功率(触发电压和触发电流)。
(3)触发脉冲应有一定的宽度,脉冲的前沿尽可能陡,以使元件在触发导通后,阳极电流能迅速上升超过掣住电流而维持导通。
单相桥式全控整流电路一、原理图1.1为单相桥式全控整流带电阻电感性负载,图中DJK03是装置上的晶闸管触发装置。
假设电路已工作于稳态。
在u2正半周期,触发角α处给晶闸管VT1和VT4加触发脉冲使其开通,ud=u2。
负载中有电感存在时负载电流不能突变,电感对负载电流起平波作用,假设负载电感很大,负载电流id连续且波形近似为一水平线,u2过零变负时,由于电感的作用晶闸管VT1和VT4中仍流过电流id,并不关断。
至ωt=π+α时刻,给VT3和VT2加触发脉冲,因VT3和VT2本已承受正电压,故两管导通。
VT3和VT2导通后,u2通过VT3和VT2分别向VT1和VT4施加反压使VT1和VT4关断,流过VT1和VT4的电流迅速转移到VT3和VT2上,此过程成为换相,亦称换流。
至下一周期重复上述过程,如此循环下去,其平均值为Ud=0.9U2。
图1.2为单相桥式有源逆变电路实验原理图,三相电源经三相不控整流,得到一个上负下正的直流电源,供逆变桥路使用,逆变桥路逆变出的交流电压经升压变压器反馈回电网。
图中的电阻Rp、电抗Ld和触发电路与单相桥式整流电路相同。
产生有源逆变的条件如下:(1)要有直流电动势,其极性需和晶闸管的导通方向一致,其值应大于变流电路直流侧的平均电压。
(2)要求晶闸管的控制角α>π/2.,使Ud为负值。
两者必须同时具备才能实现有源逆变。
二、实验内容(1)单相桥式全控整流电路带电阻性负载。
(2)单相桥式有源逆变电路带电阻电感性负载。
(3)有源逆变电路逆变颠覆现象的观察。
(4)单相桥式整流、单相桥式有源逆变电路带电阻电感性负载时MATLAB的仿真。
三、实验仿真1.带电阻电感性负载的仿真启动MATLAB,进入SIMULINK后新建文档,绘制单相桥式全控整流电路模型,如图1.3所示。
双击各模块,在出现的对话框内设置相应的参数。
注意:触发脉冲“Pulse”和“Pulse2”的控制角设置必须相同,“Pulse1”和“Pulse3”的控制角设置必须相同,否则就会烧坏晶闸管。
目录第1章绪论 (1)1.1 什么是整流电路 (1)1.2 整流电路的发展与应用 (1)1.3 本设计的简介 (1)第二章总体设计方案介绍 (2)2.1总的设计方案 (2)2.2 单相桥式全控整流电路主电路设计 (3)2.3保护电路的设计 (5)2.4触发电路的设计 (9)第三章整流电路的参数计算与元件选取 (12)3.1 整流电路参数计算 (12)3.2 元件选取 (13)第四章设计总结 (15)4.1设计总结 (15)第五章心得体会 (16)参考文献 (17)第1章绪论1.1 什么是整流电路整流电路(rectifying circuit)把交流电能转换为直流电能的电路。
大多数整流电路由变压器、整流主电路和滤波器等组成。
它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。
整流电路通常由主电路、滤波器和变压器组成。
20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。
滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。
变压器设置与否视具体情况而定。
变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离。
可以从各种角度对整流电路进行分类,主要的分类方法有:按组成的期间可分为不可控,半控,全控三种;按电路的结构可分为桥式电路和零式电路;按交流输入相数分为单相电路和多相电路;按变压器二次侧电流的方向是单向还是双向,又可分为单拍电路和双拍电路.1.2 整流电路的发展与应用电力电子器件的发展对电力电子的发展起着决定性的作用,因此不管是整流器还是电力电子技术的发展都是以电力电子器件的发展为纲的,1947年美国贝尔实验室发明了晶体管,引发了电子技术的一次革命;1957年美国通用公司研制了第一个晶闸管,标志着电力电子技术的诞生;70年代后期,以门极可关断晶闸管(GTO)、电力双极型晶体管(BJT)和电力场效应晶体管(power-MOSFET)为代表的全控型器件迅速发展,把电力电子技术推上一个全新的阶段;80年代后期,以绝缘极双极型晶体管(IGBT)为代表的复合型器件异军突起,成为了现代电力电子技术的主导器件。
半波整流电路★工作原理电路如右图所示,设在u2的正半周,A点为正,B点为负,二极管外加正向电压,因而处于导通状态。
电流从A点流出,经过二极管D和负载电阻流入B点,。
在u2的负半周,B点为正,A点为负,二极管外加反向电压,因而处于截止状态。
波形如下图所示。
★主要参数◆输出电压的平均值:就是负载电阻上电压的平均值U O(A V)。
◆负载电流的平均值◆整流输出电压的脉动系数S:为整流输出电压的基波峰值U OM与输出电压平均值U O(A V)之比,即S愈大,脉动愈大。
半波整流电路的输出脉动很大。
★二极管的选择二极管的正向平均电流等于负载电流平均值,即二极管承受的最大反向电压等于变压器副边的峰值电压,即允许电源电压波动±10%,最大整流平均电流I F最高反向工作电压U R均应至少留有10%的余地,单相半波整流的特点:电路简单、所用二极管少。
输出电压低、交流分量大(即脉动大),效率低。
只适用于整流电流小,对脉动要求不高的场合。
单相桥式整流电路★工作原理设变压器,U2为其有效值。
◆当u2为正半周时,D1和D3管导通,D2和D4管截止,电流由A点流出,方向如右图所示。
u O=u2,D2和D4管承受的反向电压为-u2。
◆当u2为负半周时,D2和D4管导通,D1和D3管截止,电流由B点流出,方向如右图所示。
u O=-u2,D1和D3管承受的反向电压为u2。
由于D1、D3和D2、D4两对二极管交替导通,致使负载电阻R L上在u2的整个周期内都有电流通过,而且方向不变,输出电压。
如右图所示为其电压和电流的波形,实现了全波整流。
★输出电压平均值U O(A V)和输出电流平均值I O(A V)◆输出电压平均值结论:在输入电压相同的情况下,全波整流输出电压平均值为半波整流电路的两倍。
◆负载电流的平均值结论:在输入电压相同的情况下,全波整流输出电流平均值为半波整流电路的两倍。
◆整流输出电压的脉动系数S:结论:与半波整流电路相比,输出电压的脉动减小很多。
1.单相桥式全控整流电路(阻-感性负载)电路图如图1所示图1.单相桥式全控整流电路(阻-感性负载)1.2单相桥式全控整流电路工作原理(阻-感性负载)1) 在u2正半波的(0~α )区间:晶闸管VT1、VT4承受正压,但无触发脉冲,处于关断状态。
假设电路已工 作在稳定状态,则在O 〜α区间由于电感释放能量,晶闸管VT2、VT3维持导通。
2) 在u2正半波的ω t=α时刻及以后:在ω t=α处触发晶闸管 VT1、VT4使其导通,电流沿 a →VT1 → L → R →VT4 →b →Tr 的二次绕组→ a 流通,此时负载上有输出电压(ud=u2)和电流。
电源电 压反向加到晶闸管VT2、VT3上,使其承受反压而处于关断状态。
3) 在u2负半波的(π ~ π + α)区间:当ω t=π时,电源电压自然过零,感应电势使晶闸管 VT1、VT4继续导通。
1.1单相桥式全控整流电路电路结构(阻 -感性负载)单相桥式全控整流电路用四个晶闸管, 接成共阳极,每一只晶闸管是一个桥臂。
两只晶闸管接成共阴极,两只晶闸管 单相桥式全控整流电路(阻-感性负载)I!*-■\U/-1-kγ叫OO:Ow...0f ∣2√*-(b}≡r∣√在电压负半波,晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关 断状态。
4)在u2负半波的ω t=π +α时刻及以后:在ω t=π + α处触发晶闸管 VT2、VT3使其导通,电流沿 b →VT3→L →R → VT2→a →Tr 的二次绕组→ b 流通,电源电压沿正半周期的方向施加到负载上, 负载上有输出电压(Ud=-U2)和电流。
此时电源电压反向加到 VT1、VT4上,使其承受反压而变为关断状态。
晶闸管 VT2、VT3 一直要导通到下一周期ω t=2 π +α处再次触发晶闸管VT1、VT4为止。
1.3单相桥式全控整流电路仿真模型(阻-感性负载)单相桥式全控整流电路(阻-感性负载)仿真电路图如图2所示:图2单相双半波可控整流电路仿真模型(阻-感性负载)興朋rgui—B∣÷ FtJιIU lPUIHTfrIflηi pr1 ⅛B -∣S ,T⅛∏Ftor2电源参数,频率50hz,电压100v ,如图3⅞⅛ BIQCk Parameter5: AC VoItage SOUrCe AC Voltage SOUrCe (mask) CIink)Ideal S l innSOidaI AC VOlt age SIDUrCe-图3.单相桥式全控整流电路电源参数设置VT1,VT4脉冲参数,振幅3V ,周期0.02,占空比10%,时相延迟α /360*0.02, 如图4图4.单相桥式全控整流电路脉冲参数设置ApplyCancelHe :IPVT2,VT3脉冲参数,振幅3V,周期0.02,占空比10%,时相延迟(α+180)/360*0.02,如图5⅝∣ Source BloCk Parameters: PUISe Generator2图5.单相桥式全控整流电路脉冲参数设置1.4单相桥式全控整流电路仿真参数设置(阻-感性负载)设置触发脉冲α分别为30°、60°、90°、120°。
1、单相桥式全控整流电路(阻-感性负载)1、1单相桥式全控整流电路电路结构(阻-感性负载)单相桥式全控整流电路用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管就是一个桥臂。
单相桥式全控整流电路(阻-感性负载)电路图如图1所示图1、单相桥式全控整流电路(阻-感性负载)1、2单相桥式全控整流电路工作原理(阻-感性负载)1)在u2正半波得(0~α)区间:晶闸管VT1、VT4承受正压,但无触发脉冲,处于关断状态。
假设电路已工作在稳定状态,则在0~α区间由于电感释放能量,晶闸管VT2、VT3维持导通。
2)在u2正半波得ωt=α时刻及以后:在ωt=α处触发晶闸管VT1、VT4使其导通,电流沿a→VT1→L→R→VT4→b →Tr得二次绕组→a流通,此时负载上有输出电压(ud=u2)与电流。
电源电压反向加到晶闸管VT2、VT3上,使其承受反压而处于关断状态。
3)在u2负半波得(π~π+α)区间:当ωt=π时,电源电压自然过零,感应电势使晶闸管VT1、VT4继续导通。
在电压负半波,晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。
4)在u2负半波得ωt=π+α时刻及以后:在ωt=π+α处触发晶闸管VT2、VT3使其导通,电流沿b→VT3→L→R→VT2→a→Tr得二次绕组→b流通,电源电压沿正半周期得方向施加到负载上,负载上有输出电压(ud=-u2)与电流。
此时电源电压反向加到VT1、VT4上,使其承受反压而变为关断状态。
晶闸管VT2、VT3一直要导通到下一周期ωt=2π+α处再次触发晶闸管VT1、VT4为止。
1、3单相桥式全控整流电路仿真模型(阻-感性负载)单相桥式全控整流电路(阻-感性负载)仿真电路图如图2所示:图2 单相双半波可控整流电路仿真模型(阻-感性负载)电源参数,频率50hz,电压100v,如图3图3、单相桥式全控整流电路电源参数设置VT1,VT4脉冲参数,振幅3V,周期0、02,占空比10%,时相延迟α/360*0、02,如图4图4、单相桥式全控整流电路脉冲参数设置VT2,VT3脉冲参数,振幅3V,周期0、02,占空比10%,时相延迟(α+180)/360*0、02,如图5图5、单相桥式全控整流电路脉冲参数设置1、4单相桥式全控整流电路仿真参数设置(阻-感性负载)设置触发脉冲α分别为30°、60°、90°、120°。
引言整流电路是电力电子电路中的一种,它的作用是将交流电力变为直流电力供给直流用电设备,如直流电动机,电镀、电解电源,同步发电机励磁,通信系统等,在生产生活中应用十分广泛。
整流电路在不同角度有不同的分类方法,按组成电路的器件分:不可空、半空、全控和高功率PWM四种,按电路结构可分为:半波、全波、桥式三种,按交流输入相数分:单相、三相、多相多重三种,按控制方式分:相控式、PWM控制式两种,按变压器二次测电流方向分:单拍、双拍电路两种。
整流电路通常由主电路、滤波器和变压器组成。
单相桥式全控整流电路是单相整流电路中应用较为广泛的整流电路。
1 整流电路单相整流器的电路形式是多种多样的,整流的结构也是比较多,各有优缺点,因此在做设计之前我们主要考虑了以下几种方案:单相半波可控整流电路,单相全波可控整流电路,单相桥式半控整流电路,单相桥式全控整流电路 。
1.1 单相半波可控整流电路2图1-1 单相半波可控整流电路如图1-1所示为单相半波可控整流电路,此电路结构简单,只用了1个晶闸管,在一个通电周期内,输出电压为直流电压,输出电流为直流电流,电压电流均不连续,脉动较大,且含有谐波分量。
1.2 单相全波可控整流电路2212如图1-2 单相全波可控整流电路如图1-2所示为单相全波可控整流电路,变压器T 带中心抽头,结构比较复杂,只用两个可控器件,单相全波只用2个晶闸管,比单相全控桥少2个,因此少了一个管压降,相应地,门极驱动电路也少2个,但是晶闸管承受的最大电压是单相全控桥的2倍。
不存在直流磁化的问题,适用于输出低压的场合作电流脉冲大(电阻性负载时),且整流变压器二次绕组中存在直流分量,使铁心磁化,变压器不能充分利用。
而单相全控式整流电路具有输出电流脉动小,功率因数高,变压器二次电流为两个等大反向的半波,没有直流磁化问题,变压器利用率高的优点。
相同的负载下流过晶闸管的平单相全控式整流电路其输出平均电压是半波整流电路2倍,在均电流减小一半;且功率因数提高了一半。
桥式整流电路图及工作原理介绍图1 桥式整流电路图桥式整流电路的工作原理如图2所示。
在u2的正半周,D1、D3导通,D2、D4截止,电流由TR次级上端经D1→ RL →D3回到TR 次级下端,在负载RL上得到一半波整流电压在u2的负半周,D1、D3截止,D2、D4导通,电流由Tr次级的下端经D2→ RL →D4 回到Tr次级上端,在负载RL 上得到另一半波整流电压。
这样就在负载RL上得到一个与全波整流相同的电压波形,其电流的计算与全波整流相同,即UL = 0.9U2IL = 0.9U2/RL流过每个二极管的平均电流为ID = IL/2 = 0.45 U2/RL每个二极管所承受的最高反向电压为什么叫硅桥,什么叫桥堆目前,小功率桥式整流电路的四只整流二极管,被接成桥路后封装成一个整流器件,称"硅桥"或"桥堆",使用方便,整流电路也常简化为图Z图1(c)的形式。
桥式整流电路克服了全波整流电路要求变压器次级有中心抽头和二极管承受反压大的缺点,但多用了两只二极管。
在半导体器件发展快,成本较低的今天,此缺点并不突出,因而桥式整流电路在实际中应用较为广泛。
二极管整流电路原理与分析半波整流二极管半波整流电路实际上利用了二极管的单向导电特性。
当输入电压处于交流电压的正半周时,二极管导通,输出电压v o=v i-v d。
当输入电压处于交流电压的负半周时,二极管截止,输出电压v o=0。
半波整流电路输入和输出电压的波形如图所示。
二极管半波整流电路对于使用直流电源的电动机等功率型的电气设备,半波整流输出的脉动电压就足够了。
但对于电子电路,这种电压则不能直接作为半导体器件的电源,还必须经过平滑(滤波)处理。
平滑处理电路实际上就是在半波整流的输出端接一个电容,在交流电压正半周时,交流电源在通过二极管向负载提供电源的同时对电容充电,在交流电压负半周时,电容通过负载电阻放电。
电容输出的二极管半波整流电路仿真演示通过上述分析可以得到半波整流电路的基本特点如下:(1)半波整流输出的是一个直流脉动电压。
单相桥式全控整流电路实验一、实验目的1.加深理解单相桥式全控整流及逆变电路的工作原理。
2.研究单相桥式变流电路整流的全过程。
二、实验所需挂件及附件序号型号备注1 PE01 电源控制屏该控制屏包含“三相电源输出”, “励磁电源”等几个模块。
2 PE-11三相可控整流电路该挂件包含“晶闸管”3 PE-12 晶闸管触发电路该挂件包含“锯齿波同步触发电路”模块。
4 PE-25实验元器件该挂件包含“二极管”5 PE-43变压器、可调电阻模块6 双踪示波器自备7 万用表自备三、实验线路及原理本实验线路如图所示, 两组锯齿波同步移相触发电路均在PE-12挂件上, 它们由同一个同步变压器保持与输入的电压同步, 锯齿波触发脉冲G1, K1加到VT1的控制极和阴极, 锯齿波触发脉冲G4, K4加到VT6控制极和阴极。
锯齿波触发脉冲G2, K2加到VT4的控制极和阴极, 锯齿波触发脉冲G3, K3加到VT3控制极和阴极。
, 晶闸管主电路的“触发脉冲输入”端的扁平电缆不要接, 并将相应的触发脉冲的钮子开关关闭(防止误触发),图为单相桥式整流带电阻电感性负载, 其输出负载R用电源控制屏三相可调电阻器, 将两个900Ω接成并联形式, 电抗Ld用电源控制屏面板上的700mH, 直流电压、电流表均在电源控制屏面板上。
触发电路采用PE-12组件挂箱上的“锯齿波同步移相触发电路Ⅰ”和“Ⅱ”。
图2-7 单相桥式整流实验原理图四、实验内容1.单相桥式全控整流电路带电阻负载。
2.单相桥式全控整流电路带电阻电感负载。
五、实验方法1.触发电路的调试将PE01电源控制屏的电源使输出线电压为220V, 用两根导线将220V交流电压接到PE-12的“外接220V”端(电源控制屏的“A”用导线接到PE-12挂件的“外接220V”端的下端, 电源控制屏的“B”用导线接到PE-12挂件的“外接220V”端的上端), 按下“启动”按钮, 打开PE-12电源开关, 用示波器观察锯齿波同步触发电路各观察孔的电压波形。
单相桥式整流电路图及工作原理 (含参数计算)
1.工作原理单相桥式整流电路是最基本的将交流转换为直流的电路,其电路。
图10.1.2单相桥式整流电路(a)整流电路 (b)波形图在分析整流电路工作原理时,整流电路中的二极管是作为开关运用,具有单向导电性。
根据图10.1.2(a)的电路图可知:
当正半周时二极管D1、D3导通,在负载电阻上得到正弦波的正半周。
当负半周时二极管D2、D4导通,在负载电阻上得到正弦波的负半周。
在负载电阻上正负半周经过合成,得到的是同一个方向的单向脉动电压。
单相桥式整流电路的波形图见图10.1.2(b)。
2.参数计算根据图10.1.2(b)可知,输出电压是单相脉动电压。
通常用它的平均值与直流电压等效。
流过负载的脉动电压中包含有直流分量和交流分量,可将脉动电压做傅里叶分析。
此时谐波分量中的二次谐波幅度最大,最低次谐波的幅值与平均值的比值称为脉动系数S。
3.单相桥式整流电路的负载特性曲线单相桥式整流电路的负载特性曲线是指输出电压与负载电流之间的关系曲线该曲线。
曲线的斜率代表了整流电路的内阻。
图10.1.3 负载特性曲线。
电力电子技术实验报告实验名称:单相桥式全控整流电路的仿真与分析班级:自动化091组别: 08 成员:金华职业技术学院信息工程学院年月日一. 单相桥式全控整流电路(电阻性负载) .............................................. 错误!未定义书签。
1. 电路的结构与工作原理 (1)2. 单相桥式全波整流电路建模 (2)3. 仿真结果与分析 (4)4. 小结 (6)二. 单相桥式全控整流电路(阻-感性负载) ............................................. 错误!未定义书签。
1. 电路的结构与工作原理................................................................. 错误!未定义书签。
2. 建模................................................................................................. 错误!未定义书签。
3. 仿真结果与分析............................................................................. 错误!未定义书签。
4. 小结................................................................................................. 错误!未定义书签。
三. 单相桥式全控整流电路(反电势负载)......................................... 错误!未定义书签。
1. 电路的结构与工作原理................................................................. 错误!未定义书签。
单相桥式整流电路图及工作原理(含参数计算)
时间:2011-04-15 21:09:07 来源:作者:
1.工作原理
单相桥式整流电路是最基本的将交流转换为直流的电路,其电路如图10.1.2所示。
图10.1.2单相桥式整流电路
(a)整流电路(b)波形图
在分析整流电路工作原理时,整流电路中的二极管是作为开关运用,具有单向导电性。
根据图10.1.2(a)的电路图可知:
当正半周时二极管D1、D3导通,在负载电阻上得到正弦波的正半周。
当负半周时二极管D2、D4导通,在负载电阻上得到正弦波的负半周。
在负载电阻上正负半周经过合成,得到的是同一个方向的单向脉动电压。
单相桥式整流电路的波形图见图10.1.2(b)。
2.参数计算
根据图10.1.2(b)可知,输出电压是单相脉动电压。
通常用它的平均值与直流电压等效。
流过负载的脉动电压中包含有直流分量和交流分量,可将脉动电压做傅里叶分析。
此时谐波分量中的二次谐波幅度最大,最低次谐波的幅值与平均值的比值称为脉动系数S。
3.单相桥式整流电路的负载特性曲线
单相桥式整流电路的负载特性曲线是指输出电压与负载电流之间的关系曲线该曲线如图10.1.3所示。
曲线的斜率代表了整流电路的内阻。
图10.1.3 负载特性曲线。