电气绝缘基础理论
- 格式:docx
- 大小:35.96 KB
- 文档页数:4
技术|电气绝缘基础理论2016-03-18绝缘是指利用绝缘材料和构件将电位不等的导体分隔开,使其没有电气连接以保持不同的电位,从而保证带电部件能够正常运行。
绝缘是电气设备结构中的重要组成部分。
具有绝缘作用的材料称为绝缘材料(电介质),电气设备的绝缘就是各种绝缘材料构成的。
电力系统正常运行时,电气设备绝缘是长期处在工作电压作用之下的。
但是,由于各种原因,电力线路中的电压有时会出现短时升高的现象,即产生过电压。
过电压可分为:雷电过电压和内过电压。
雷电过电压:由于设备遭受雷击造成的或在设备附近发生雷击而感应产生的过电压;内过电压有分为暂时过电压和操作过电压。
暂时过电压是由于系统中发生事故或发生谐振而引起的过电压;操作过电压是由于系统中的操作(投、切)引起的过电压。
过电压的作用时间虽然很短,但过电压的数值却大大超过正常工作电压,因此,易造成绝缘的破坏。
所以,设备绝缘应能耐受工作电压的持续作用外,还必须能耐受过电压的作用。
为了电气设备安全可靠地运行,除应搞清楚过电压的数值、波形等参数并设法降低或限制作用于设备上的过电压的数值外,还要保证及提高绝缘本身的耐受电压,这两个方面就构成了高电压技术的主要内容。
如何保证及提高设备绝缘的耐受电压,设计出先进的绝缘结构则是高电压绝缘所讨论的内容。
在工作电压和过电压作用下,绝缘会发生电导、极化、损耗、老化、放电击穿等现象。
为了设计出技术先进、经济合理而又安全可靠的绝缘结构,首先必须掌握各类绝缘材料在电场作用下的电气物理性能,绝缘材料在强电场中的击穿特性及其规律尤为重要。
只有知道了绝缘材料本身耐受电压的规律之后,才能进行绝缘的设计(考虑绝缘结构、选择绝缘距离或绝缘厚度等)。
其次,绝缘的破坏决定于作用在其上的电场强度,在满足电气设备基本要求的前提下,应设法改善绝缘结构,使其电场分布尽可能地均匀,以减少电场强度。
另外,采用新型绝缘材料。
电气设备必须在常年使用中保持高度的可靠性,为此,必须对设备按设计的规格进行各种试验。
P52第二章电气绝缘基础知识电气设备的绝缘性能与所使用的绝缘介质性能密切相关。
为了正确判断电气设备的绝缘状况,在对电气设备进行绝缘试验时,针对不同的绝缘介质所采用的试验手段也有不同的考虑。
因此,电气试验人员必须了解有关电气绝缘的基础知识。
本章介绍不同电气介质的绝缘性能及影响介质击穿的有关因素。
第一节击穿电压的各种因素。
除了空气间隙绝缘之外,还有一些特殊气体,例如SF6(六氟化硫)气体。
它们作为电气绝缘介质在开关设备中得到广泛使用,因此,对这一类气体的绝缘性能也作相应介绍。
一、空气间隙的击穿机理1. 电离如果没有外界影响,在通常情况下,气体是不导电的良好绝缘体。
但是,由于受各种因素的影响,气体原子可能会出现电离(也,形成自由电子和正离子,从而在空气中产生少量带电粒子。
根据引起电离因素不同,通常分为1碰撞电离、2光电离、3热电离和4表面电离。
碰撞电离——带电质点在强电场作用下高速运动,撞击中性气体分子引起的电离。
光电离——光辐射引起的气体原子的电离称为。
表面电离(或表面发射)——在外界因素作用下,电子可能从电极表面逸出。
引起表面发射电子的因素有多种,例如在强电场作用下,可使阴极表面释放出电子;正离子快速运动碰撞阴极表面,也可能使阴极释放出电子;金属表面受到光照射也会放射电子。
热电离——是指气体热状态下引起的电离过程。
例如,在高温下,气体质点高速运动,互相碰撞产生碰撞电离。
此外,高温气体的热辐射也能引起光电离。
2. 空气间隙的击穿过程由于受各种电离因素的影响,空气间隙中会产生少量带电粒子。
在电场作用下,这些带电质点沿电场方向运动。
如果空气间隙上施加的电压足够高,电场强度足够大,带电粒子的运动速度加快,出现强烈的碰撞电离,形成电子崩。
由许多电子崩产生大量正负带电质点形成的游离通道称为“流注”。
当流注发展到把空气间隙两极接(1)碰撞电离。
空气间隙中,处于电场中的带电质点,除了经常作不规则的热运动外,还受极间电压电场力的作用,沿电场方向运动,并不断加速积累动能。
电气绝缘基础知识电气绝缘是指在高电压、高电流和强磁场环境中,能够保持电路之间的绝缘状态,保证电路中电子设备的正常运行。
电气绝缘是现代电子工程和电力系统中不可或缺的基本要求。
一、电气绝缘的原理电气绝缘的原理主要基于两个因素:电导率和介电常数。
电导率是指材料传导电流的性能,而介电常数则表示材料在电场中的极化能力。
电气绝缘材料通常具有较高的电导率和介电常数,能够有效地阻挡电流的通过,从而保持电路之间的绝缘状态。
二、电气绝缘材料的选择在选择电气绝缘材料时,需要考虑其电气性能、机械性能、耐候性和环境适应性等方面。
常用的电气绝缘材料包括:塑料、橡胶、陶瓷、玻璃等。
不同的材料具有不同的特点和应用场景,需要根据具体需求进行选择。
三、电气绝缘的测试为了保证电气绝缘的性能和质量,需要进行一系列的测试。
其中包括:耐电压测试、绝缘电阻测试、介质损耗测试等。
耐电压测试是为了检验电气绝缘材料在高压电场中的绝缘性能;绝缘电阻测试是为了检测材料的电阻值和绝缘性能;介质损耗测试则是为了评估材料的损耗因子和绝缘性能的稳定性。
四、电气绝缘的重要性电气绝缘是保证电力系统安全运行的重要因素之一。
如果电气绝缘失效,会导致电路短路、设备损坏甚至人员伤亡等严重后果。
因此,加强电气绝缘的维护和管理,是保障电力系统和电子设备安全运行的重要措施。
电气绝缘是电力系统和电子设备正常运行的基础,需要充分了解其原理、材料选择、测试方法和重要性等方面。
只有做好电气绝缘的维护和管理,才能确保电力系统和电子设备的安全稳定运行。
一、电气CAD概述电气CAD,全称电气计算机辅助设计,是计算机技术应用于电气工程领域的一种新型设计方法。
它使得电气工程师能够更高效地进行设计、模拟和分析,极大地提高了设计效率和质量。
二、电气图的基本组成电气图主要由以下几个基本元素构成:1、图纸:电气图的基础,通常由一张或若干张图纸组成,用来表示各种电气元件、设备以及它们之间的连接关系。
2、元件:包括各种电气元件,如电阻、电容、电感、开关、电机等。
电气绝缘基础必学知识点
1. 绝缘材料的种类和特性:常见的电气绝缘材料有塑料、橡胶、纸、绝缘漆等,它们具有不导电、耐高温、绝缘强度高的特点。
2. 绝缘材料的工作原理:绝缘材料能阻断电流的流动,通过在电场中形成隔离层来实现绝缘效果。
3. 绝缘材料的电气强度和击穿电压:电气强度是指绝缘材料能承受的最大电场强度,击穿电压是指绝缘材料发生击穿的最低电压。
4. 绝缘材料的绝缘阻抗:绝缘材料的绝缘阻抗是指在电场中绝缘材料对电流的阻碍能力,通常用来评估绝缘材料的绝缘性能。
5. 绝缘材料的耐热性能:绝缘材料的耐热性能是指在高温环境下绝缘材料的绝缘性能是否保持稳定。
6. 绝缘材料的湿度特性:湿度对绝缘材料的绝缘性能有一定的影响,因此绝缘材料的湿度特性是评估其在潮湿环境下的绝缘性能的一个重要指标。
7. 绝缘材料的应用范围:电气绝缘材料广泛应用于电力系统、电机、电器设备等领域,用于保护电器设备不受电场的干扰和损坏。
8. 绝缘材料的选择和应用注意事项:在选择和应用绝缘材料时,需要考虑其绝缘性能、耐热性能、耐湿性能等因素,并根据具体应用场景进行合理选择。
9. 绝缘材料的维护和检测方法:绝缘材料需要定期进行维护和检测,
可以采用绝缘电阻测试、局部放电检测等方法来评估绝缘材料的绝缘性能是否正常。
10. 绝缘材料的故障分析和处理方法:当绝缘材料发生故障时,需要进行故障分析并采取相应的处理措施,以确保电器设备的安全运行。
《电气绝缘基础知识综合性概述》一、引言在现代社会中,电气设备的广泛应用使得电气绝缘成为至关重要的领域。
从家庭用电设备到大型工业设施,电气绝缘的可靠性直接关系到设备的安全运行、人员的生命安全以及电力系统的稳定。
本文将深入探讨电气绝缘的基础知识,包括基本概念、核心理论、发展历程、重要实践以及未来趋势,为读者提供一个全面而深入的理解。
二、电气绝缘的基本概念(一)定义电气绝缘是指利用不导电的物质将带电体隔离或包裹起来,以防止电流泄漏和触电事故的发生。
绝缘材料通常具有高电阻率,能够阻止电流的流动。
(二)作用1. 防止触电:确保人员在接触电气设备时不会受到电击。
2. 保护设备:防止电气设备因短路、漏电等故障而损坏。
3. 保证电力系统的稳定运行:减少电气故障对整个电力系统的影响。
(三)绝缘材料的分类1. 固体绝缘材料:如橡胶、塑料、陶瓷、玻璃等。
2. 液体绝缘材料:如变压器油、电容器油等。
3. 气体绝缘材料:如空气、六氟化硫等。
三、电气绝缘的核心理论(一)电阻率与电导率电阻率是衡量材料导电性能的物理量,电阻率越大,材料的导电性能越差,绝缘性能越好。
电导率则是电阻率的倒数,电导率越大,材料的导电性能越好。
(二)介电常数与介质损耗介电常数是衡量材料在电场作用下储存电能能力的物理量。
介质损耗是指在电场作用下,绝缘材料由于内部的电导和极化等原因而产生的能量损耗。
(三)击穿电场强度当电场强度超过一定值时,绝缘材料会发生击穿,失去绝缘性能。
击穿电场强度是衡量绝缘材料耐压能力的重要指标。
四、电气绝缘的发展历程(一)早期发展在人类早期的电气应用中,主要使用天然材料如丝绸、橡胶等作为绝缘材料。
随着电力工业的发展,对绝缘材料的性能要求不断提高。
(二)近代发展19 世纪中叶,随着电磁学理论的建立和电力工业的兴起,电气绝缘技术得到了迅速发展。
合成橡胶、塑料等新型绝缘材料开始出现,并逐渐取代了天然材料。
(三)现代发展20 世纪以来,随着科技的进步,电气绝缘技术不断创新。
简述
绝缘是指利用绝缘材料和构件将电位不等的导体分隔开,使其没有电气连接以保持不同的电位,从而保证带电部件能够正常运行。
绝缘是电气设备结构中的重要组成部分。
具有绝缘作用的材料称为绝缘材料(电介质),电气设备的绝缘就是各种绝缘材料构成的。
一、绝缘基础知识
绝缘是指利用绝缘材料和构件将电位不等的导体分隔开,使其没有电气连接以保持不同的电位,从而保证带电部件能够正常运行。
绝缘是电气设备结构中的重要组成部分。
具有绝缘作用的材料称为绝缘材料(电介质),电气设备的绝缘就是各种绝缘材料构成的。
电力系统正常运行时,电气设备绝缘是长期处在工作电压作用之下的。
但是,由于各种原因,电力线路中的电压有时会出现短时升高的现象,即产生过电压。
过电压可分为:雷电过电压和内过电压。
雷电过电压:由于设备遭受雷击造成的或在设备附近发生雷击而感应产生的过电压;内过电压有分为暂时过电压和操作过电压。
暂时过电压是由于系统中发生事故或发生谐振而引起的过电压;操作过电压是由于系统中的操作(投、切)引起的过电压。
过电压的作用时间虽然很短,但过电压的数值却大大超过正常工作电压,因此,易造成绝缘的破坏。
所以,设备绝缘应能耐受工作电压的持续作用外,还必须能耐受过电压的作用。
为了电气设备安全可靠地运行,除应搞清楚过电压的数值、波形等参数并设法降低或限制作用于设备上的过电压的数值外,还要保证及提高绝缘本身的耐受电压,这两个方面就构成了高电压技术的主要内容。
如何保证及提高设备绝缘的耐受电压,设计出先进的绝缘结构则是高电压绝缘所讨论的内容。
在工作电压和过电压作用下,绝缘会发生电导、极化、损耗、老化、放电击穿等现象。
为了设计出技术先进、经济合理而又安全可靠的绝缘结构,首先必须掌握各类绝缘材料在电场作用下的电气物理性能,绝缘材料在强电场中的击穿特性及其规律尤为重要。
只有知道了绝缘材料本身耐受电压的规律之后,才能进行绝缘的设计(考虑绝缘结构、选择绝缘距离或绝缘厚度等)。
其次,绝缘的破坏决定于作用在其上的电场强度,在满足电气设备基本要求的前提下,应设法改善绝缘结构,使其电场分布尽可能地均匀,以减少电场强度。
另外,采用新型绝缘材料。
二、绝缘的缺陷及试验种类
电气设备必须在常年使用中保持高度的可靠性,为此,必须对设备按设计的规格进行各种试验。
在制造厂有:对所有原材料的试验,制造过程的中间试验,产品定型及出厂试验;在使用场合有:安装后的交接试验,使用中为维护运行安全而进行的绝缘预防性试验等。
通过试验,掌握电气设备绝缘情况,可保证产品质量或及早发现其缺陷,从而进行相应的维护与检修,以保证设备的正常运行。
电气设备的绝缘缺陷,有些是制造时潜伏下的,另一些则是运行中在外界作用影响下发展起来的,即累积效应。
外界作用有:工作电压、过电压、大气影响(如潮湿等)、机械力、热、化学等,当然这些外界作用的影响程度亦和制造质量有关。
目前,还不能做到使电气设备的绝缘在运行中不发生明显的劣化,所以,在电力系统中经常进行预防性试验,及时发现缺陷,可减少许多事故的发生。
绝缘的缺陷通常可分为两大类
第一类:集中性缺陷。
例如悬式绝缘子的瓷质开裂;发电机绝缘局部磨损、挤压破裂;电缆由于局部有气隙在工作电压作用下发生局部放电而损坏,以及其他的机械损伤、受潮等。
第二类是分布性的缺陷,指电气设备整体绝缘性能下降,如电机、变压器、套管等绝缘中的有机材料受潮、老化、变质等等。
绝缘内部有上述两种类型缺陷后,它的特性就往往发生一定的变化。
这样,我们就可以通过一些试验把隐藏的缺陷检查出来。
绝缘试验
绝缘特性试验
(非破坏性试验)
绝缘电阻试验
介质损失角正切值的试验
局部放电试验
介质损失角正切值的局部放电试验
绝缘耐压试验
交流电压试验
直流电压试验
雷电冲击电压试验
操作冲击电压试验
绝缘特性试验亦称非破坏性试验,是指在较低的电压下或使用其他不会损伤绝缘的办法来测
量绝缘的各种特性,从而判断绝缘内部有无缺陷。
实践证明,这类方法是有效的,但目前还不能只靠它来可靠地判断绝缘的耐压水平。
绝缘耐压试验亦称破坏性试验,这类试验对绝缘的考验是严格的,特别是能揭露那些危险性较大的集中性缺陷,它能保证绝缘有一定的水平或裕度,缺点是可能会在耐压试验时给绝缘造成一定的损伤。
耐压试验是在绝缘特性试验之后才进行,如果非破坏性试验已表明绝缘存在不正常情况,则必须在查明原因并加以消除后再进行耐压试验,以避免不应有的击穿。
例如套管大修时,当用非破坏性试验判断出绝缘受潮后,首先是进行干燥,待受潮现象消除后才做耐压试验。
以上主要内容主要介绍各种绝缘试验方法的基本原理以及能发现什么样的缺陷。
在具体判断电气设备的绝缘状况时,应注意对各项试验结果进行综合判断,并注意和历史资料(出厂及往年数据)以及该设备的其它相进行互相比较。
为便于历次试验结果相互比较,最好在相近温度和试验条件下进行试验,以免因温度换算带来误差。
试验应尽量在良好天气下进行,执行标准有:
GB50150--2006《电气装置安装工程电气设备交接试验标准》
DL/T596--1996《电力设备预防性试验规程》
DL/T393--2010《输变电设备状态检修试验规程》
状态检修工作的核心是确定设备的状态,依据设备的状态开展相应的试验、检修工作。
“应修必修,修必修好”。
三、高压设备的绝缘水平及试验方法
高压设备绝缘能否安全可靠地运行,起主要作用的是其耐受电压的能力。
各种额定电压等级的设备,绝缘都需要具有相应的耐受电压的能力。
设备绝缘耐受电压能力的大小称为绝缘水平。
电气身背的绝缘水平应保证绝缘在最大工作电压的持续作用下和过电压的短时作用下都能安全运行。
影响绝缘水平的因素有:
(1)工作电压的持续作用下的老化是决定绝缘使用寿命的主要条件;
(2)雷电过电压下的冲击,时间短但数值高;
(3)暂时过电压下的冲击,如谐振,持续时间较长;
(4)操作过电压下的冲击。
对绝缘水平考核的试验方法有:
(1)雷电过电压试验--雷电冲击电压模拟装置;
(2)操作冲击试验—操作冲击试验模拟装置;
(3)工频电压等效试验为了检验绝缘在暂时过电压作用下运行的可靠性,通常用短时工频电压等效地来进行试验,判断其绝缘水平的高低。
各种设备的一分钟耐压就是根据电力系统中内过电压的大小制定的。
其最大的有点就是适合于在现场进行设备的试验。
我国现行的绝缘预防性试验项目:
(1)测定绝缘电阻;
(2)测量泄露电流;
(3)直流耐压试验;
(4)测量介损(介质损耗角正切值δ);
(5)绝缘油介电强度试验;
(6)微量水分测定;
(7)油中溶解气体色谱分析;
(8)局部放电试验;
(9)交流耐压试验。
以上试验均是在停电(离线)状态下进行,通过试验预判电气设备的绝缘性能。
通常绝缘要开展三个项目:
事故抢修---亡羊补牢;
预防性试验---居安思危;
状态检修---需修即修。