保护接地和保护接零有什么区别
- 格式:docx
- 大小:28.29 KB
- 文档页数:14
1.什么是保护接地和保护接零?低压电气设备应该采用保护接地还是保护接零?
为什么?
将电气设备正常情况下不带电的金属部分,如外壳、构架等,直接与接地装置相连称为保护接地。
保护接零是指在380/220V系统中,将电气设备不带电的外壳用导线直接与中性线相接。
低压电器采用保护接零的方式比采用保护接地好。
因为采用保护接地时,如果设备发生碰壳事故,由于供电变压器中性点接地电阻和保护接地电阻的共同影响,电路保护电器可能不会动作,导致设备外壳长期带电,仍有触电危险。
采用保护接零后,如果设备发生碰壳事故,短路电流经中性线形成回路,电流很大时能使保护电器迅速跳闸而断开电源。
接地和接零有什么区别?接地和接零的基本目的有2个,一是按电路的工作要求需要接地;二是为了保障人身和设备安全的需要接地或接零。
按其作用可分为四种。
1工作接地;2保护接地;3保护接零;4重复接地。
一)工作接地:工作接地就是在正常或故障情况下,为了保证电气设备的可靠运行,将变压器的中性点或中性线(N线)接地。
其主要作用是系统电位的稳定性,即减轻低压系统由于一相接地,由高压窜入低压系统等原因所产生过电压的危险性,并能防止绝缘击穿。
二)保护接地:保护接地,是为防止电气装置的金属外壳、配电装置的构架和线路杆塔等带电危及人身和设备安全而进行的接地。
所谓保护接地就是将正常情况下不带电,而在绝缘材料损坏后或其他情况下可能带电的电器金属部分(即与带电部分相绝缘的金属结构部分)用导线与接地体可靠连接起来的一种保护接线方式。
三)保护接零:保护接零是指电气设备正常情况下不带电的金属部分用金属导体与系统中的保护零线连接起来,当设备绝缘损坏碰壳时,就形成单相金属性短路,短路电流流经相线——零线回路,而不经过电源中性点接地装置,从而产生足够大的短路电流,使过流保护装置迅速动作,切断漏电设备的电源,以保障人身安全。
综上,保护接地的实质是降低人身触电电压,保护接零的实质是提高动作电流。
四)重复接地重复接地是指在接零保护系统中,将零线的一处或多处通过接地装置与大地做再次连接成为重复接地。
在保护零线发生断路后,当电器设备的绝缘损坏或相线碰壳时,零线重复接地能降低故障电器设备的对地电压,减小发生触电事故的危险性。
接地、接零的作用与区别,今天就聊到这了。
在以后的工作中,要加强现场临时用电与规范的对照学习,真正做到扎实掌握,进行专业的临电管理,杜绝现场因临时用电而发生的生产事故。
保护接地与保护接零的主要区别:(1)保护原理不同保护接地是限制设备漏电后的对地电压,使之不超过安全范围。
在高压系统中,保护接地除限制对地电压外,在某些情况下,还有促使电网保护装置动作的作用;保护接零是借助接零线路使设备漏电形成单相短路,促使线路上的保护装置动作,以及切断故障设备的电源。
此外,在保护接零电网中,保护零线和重复接地还可限制设备漏电时的对地电压。
(2)适用范围不同保护接地即适用于一般不接地的高低压电网,也适用于采取了其他安全措施(如装设漏电保护器)的低压电网;保护接零只适用于中性点直接接地的低压电网。
(3)线路结构不同如果采取保护接地措施,电网中可以无工作零线,只设保护接地线;如果采取了保护接零措施,则必须设工作零线,利用工作零线作接零保护。
保护接零线不应接开关、熔断器,当在工作零线上装设熔断器等开断电器时,还必须另装保护接地线或接零线。
保护接零的优点防电器外壳带电,若采用保护接地,在接地电阻RG符合要求不大于4欧姆的条件下,如果电器外壳带上220V的电压,则保护接地回路,短路电流I=U/(R0+RG)=220/(4+4)=27.5(A),其中R0是变压器中性点的接地电阻叫工作接地电阻。
为了保证保护设备可靠的动作,接地短路电流不小于自动开关整定电流的1.25倍或为容丝熔断电流的3倍,因此,上式中的短路电流仅能保证断开整定电流不超过27.5/1.25、即22A的自动开关,或27.5/3、即9.2A 的熔断器,如果保护设备的额定电流值大于上述值,保护设备就不能迅速、可靠的动作。
此时,电器设备外壳上将长期存在对地电压,对操作电器的人员是非常危险的。
而采用保护接零,电器外壳绝缘击穿时的短路电流远大于27.5(A),只要合理选择保护装置的动作电流,当绝缘击穿造成单相短路,短路电流通常很大,足以使保护装置迅速切断电源,消除触电的危险。
可见在接地电网中,为防止用电设备外壳带电伤人,采用保护接零比采用保护接地效果好的多。
保护接地与保护接零的主要区别
保护接地与保护接零的主要区别主要在以下几个部分:
(1)保护原理不同:保护接地是限制设备漏电后的对地电压,使之不超过安全范围。
在高压系统中,保护接地除限制对地电压外,在某些情况下,还有促使电网保护装置动作的作用;保护接零是借助接零线路使设备漏电形成单相短路,促使线路上的保护装置动作,以及切断故障设备的电源。
此外,在保护接零电网中,保护零线和重复接地还可限制设备漏电时的对地电压。
(2)适用范围不同:保护接地即适用于一般不接地的高低压电网,也适用于采取了其他安全措施(如装设漏电保护器)的低压电网;保护接零只适用于中性点直接接地(零点)的低压电网。
(3)线路结构不同:如果采取保护接地措施,电网中可以无工作零线,只设保护接地线;如果采取了保护接零措施,则必须设工作零线,利用工作零线作接零保护。
保护接零线不应接开关、熔断器,当在工作零线上装设熔断器等开断电器时,还必须另装保护接地线或接零线。
中性点直接接地系统,也称大接地电流系统。
这种系统中一相接地时,出现除中性点以外的另一个接地点,构成了短路回路,接地故障相电流很大,为了防止设备损坏,必须迅速切断电源,因而供电可靠性低,易发生停电事故。
但这种系统上发生单相接地故障时,由于系统中性点的钳位作用,使非故障相的对地电压不会有明显的上升,因而对系统绝缘是有利的。
接地保护与接零保护接地保护:为防止因电气设备绝缘损坏而遭受触电危险,将电气设备得金属外壳与接地体相连,称为接地保护。
接零保护:为防止因电气设备绝缘损坏而使人身遭受触电危险,将电气设备得金属外壳与变电器中性线相连接就称为接零保护。
接地:在电力系统中,将电气设备与用电装置得中性点、外壳或支架与接地装置,用导体作良好得电气联接叫接地。
接零:将电气设备与用电装置得金属外壳与系统零线相连接叫做接零。
接地与接零得目得:一就是为了电气设备得正常工作(工作性接地),另一目得就是为了人身与设备得安全(保护性接地与接零)接地保护适用于三相三线或三相四线制得电力系统。
在这种电网中,凡由于绝缘破坏或其它原因而可能呈现危险电压得金属部份,例如变压器、电动机以及其它电器等得金属外壳与底座均可采用接地保护。
(一般电厂均采用三相四线制系统)接零保护适用于三相四线制中性点直接接地得低压电力系统中,电气设备外壳可采用接零保护。
当采用接零保护时,除电源变压器得中性点必须采取工作接地以外,同时对零线要在规定得地点采取重复接地。
中性点:发电机、变压器与电动机得三相绕组星形联接得公共点称为中性点,如果三相绕组平衡,由中性点到各相外部接线端子间得电压绝对值必然相等.零点:如果中性点就是接地得则该点又称为零点。
中性线:从中性点引出得导线称作中性线;而从零点引出得导线称作零线。
三相五线制系统:三相四线制系统中,除中性线之外,再从电源中性点单独引出一根保护线(PE线)所形成得系统,称为三相五线制系统。
,通常用在低压配电系统中。
中性线具有如下功能:用来接使用相电压得设备;用来传导三相不平衡电流与单相电流;用来减少负荷中性点得电压偏移。
PE线功能:保障人身安全,防止发生触电及带电外壳时得触电事故.通过保护线(PE),将设备得外露可导电部份得金属外壳接到电源中性点得接地点去。
当电气设备发生单相接地时,即形成单相短路,使设备或系统得保护装置动作,切除故障设备,防止人身触电。
保护接地和保护接零是维护人身安全的两种技术措施,其不同处是:其一,保护原理不同。
低压系统保护接地的基本原理是限制漏电设备对地电压,使其不超过某一安全围;高压系统的保护接地,除限制对地电压外,在某些情况下,还有促成系统中保护装置动作的作用。
保护接零的主要作用是借接零线路使设备潜心电形成单相短路,促使线路上保护装置迅速动作。
其二,适用范围不同。
保护接地适用于一般的低压不接地电网及采取其它安全措施的低压接地电网;保护接地也能用于高压不接地电网。
不接地电网不必采用保护接零。
其三,线路结构不同。
保护接地系统除相线外,只有保护地线。
保护接零系统除相线外,必须有零线;必要时,保护零线要与工作零线分开;其重要地装置也应有地线。
接地和接零董振邦把电气设备的金属外壳及与外壳相连的金属构架用接地装置与大地可靠地连接起来,以保证人身安全的保护方式,叫保护接地,简称接地。
把电气设备的金属外壳及与外壳相连的金属构架与中性点接地的电力系统的零线连接起来,以保护人身安全的保护方式,叫保护接零(也叫保护接中线),简称接零。
保护接地一般用在1000伏以下的中性点不接地的电网与1000伏以上的电网中。
保护接零一般用在1000伏以下的中性点接地的三相四线制电网中,目前供照明用的380/220伏中性点接地的三相四线制电网中广泛采用保护接零措施。
在中性点不接地的系统中,假设电动机的A相绕组因绝缘损坏而碰金属外壳,外壳带电(参看图5-5),在没有保护接地的情况下,当人体接触外壳时,电流经过人体和另外两根火线的对地绝缘电阻Re 、RC(如果导线很长,还要考虑导线与大地间的电容)而形成回路。
如果另外两根火线对地绝缘不好,流过人体的电流会超过安全限度而发生危险。
在有保护接地的情况下,当人体接触带电的外壳时,电流在A 相碰壳处分为两路,一路经接地装置的电阻R d ,一路经人体电阻R r ,这两路汇合后再经另外两根火线的对地绝缘电阻R e 和R C 构成回路。
保护接地与保护接零在电气系统的设计和维护中,保护接地和保护接零这两个概念无疑是非常重要的。
因为它们直接涉及到系统的安全和稳定性。
本文将就这两个概念进行详细的介绍和论述。
一、保护接地保护接地(即PE)是指将电气设备的导电部分与地面连接起来,以确保工作场所的人员和设备能够得到良好的绝缘和保护,同时防止电气设备及其周围产生的静电和过电压等引起的意外事故。
保护接地一般使用黄绿相间的导线来连接。
具体来说,保护接地在以下几个方面起到了重要的作用:1、防止触电危险。
保护接地可以帮助释放电气设备中的漏电流,从而有效防止电气设备中的漏电流对人体产生的威胁。
2、防止设备损坏。
保护接地可以将电气设备产生的过电压引到地面,从而保护设备的安全。
3、防止静电危险。
保持设备的接地状态还可以有效预防产生静电危险。
4、提升信号质量。
一些信号接口需要保持接地状态,以确保数据和信号的质量不受干扰。
二、保护接零电气设备的保护接零(即PE/N)是指将电气设备的导电部分与0V(零位)相连接的一种电气保护措施。
其作用是将设备的零位有效地与地面连接起来,从而保护设备的安全和稳定运行。
通常情况下,保护接零和保护接地是同时存在的。
具体来说,保护接零可以在以下几个方面起到重要作用:1、确保电气设备的安全性。
保护接零可以防止漏电流对设备的损坏和对人员产生安全隐患。
2、提升设备的工作效率。
保护接零可以有效降低环境中电气噪声和干扰,从而提升设备的工作效率。
3、加强设备的稳定性。
保护接零可以通过连接零线和牢固的连接来加强设备的稳定运行。
三、保护接地和保护接零的区别保护接地和保护接零的共同点就是它们都是为了保证电气设备的稳定、安全运行而采取的措施。
但是,它们也存在一些区别。
1、连接方式不同。
保护接地是将设备的导电部分与地面连接,而保护接零是将设备的导电部分与零位相连。
2、作用不同。
保护接地主要是防止漏电流对设备和人员产生危害,同时降低环境中电气噪声和干扰;而保护接零则更加侧重于保证设备的稳定和安全运行。
保护接地、工作接地和保护接零的区别工作接地就是将变压器的中性点接地。
其主要作用是系统电位的稳定性,即减轻低压系统由于一相接地,高低压短接等原因所产生过电压的危险性,并能防止绝缘击穿。
保护接地是指将电气装置正常情况下不带电的金属部分与接地装置连接起来,以防止该部分在故障情况下突然带电而造成对人体的伤害。
保护接零是指电气设备正常情况下不带电的金属部分用金属导体与系统中的零线连接起来,当设备绝缘损坏碰壳时,就形成单相金属性短路,短路电流流经相线、零线回路,而不经过电源中性点接地装置,从而产生足够大的短路电流,使过流保护装置迅速动作,切断漏电设备的电源,以保障人身安全。
保护接地、工作接地和保护接零一般和低压配电系统的形式相对应,保护接地对应IT系统、工作接地对应TT系统、保护接零对应TN系统。
根据现行的国家标准《低压配电设计规范》(国标50054)的定义,将低压配电系统分为三种,即TN、TT、IT三种形式。
其中,第一个大写字母T表示电源变压器中性点直接接地;I则表示电源变压器中性点不接地(或通过高阻抗接地)。
第二个大写字母T表示电气设备的外壳直接接地,但和电网的接地系统没有联系;N表示电气设备的外壳与系统的接地中性线相连。
1.TT方式供电系统。
低压配电网都是采用的三相四相制,而中性点的接地就是工作接地,中性线就是工作零线。
2.TN方式供电系统。
这种供电系统是将电气设备的金属外壳与工作零线相接的保护系统,称作接零保护系统,用TN表示。
它的特点如下:(1)一旦设备出现外壳带电,接零保护系统能将漏电电流上升为短路电流,这个电流很大,实际上就是单相对地短路故障,熔断器的熔丝会熔断,低压断路器的脱扣器会立即动作而跳闸,使故障设备断电,比较安全。
(2)TN方式供电系统中,根据其保护零线是否与工作零线分开而划分为TN-C和TN-S等两种。
3.TN-C方式供电系统。
它是用工作零线兼作接零保护线,可以称作保护中性线,可用NPE表示。
保护接地与保护接零的主要区别(1)保护原理不同保护接地是限制设备漏电后的对地电压,使之不超过安全围。
在高压系统中,保护接地除限制对地电压外,在某些情况下,还有促使电网保护装置动作的作用;保护接零是借助接零线路使设备漏电形成单相短路,促使线路上的保护装置动作,以及切断故障设备的电源。
此外,在保护接零电网中,保护零线和重复接地还可限制设备漏电时的对地电压。
(2)适用围不同保护接地即适用于一般不接地的高低压电网,也适用于采取了其他安全措施(如装设漏电保护器)的低压电网;保护接零只适用于中性点直接接地的低压电网。
(3)线路结构不同如果采取保护接地措施,电网中可以无工作零线,只设保护接地线;如果采取了保护接零措施,则必须设工作零线,利用工作零线作接零保护。
保护接零线不应接开关、熔断器,当在工作零线上装设熔断器等开断电器时,还必须另装保护接地线或接零线。
三相五线制中五线指的是:3根相线加一根地线一根零线。
一般用途最广的低压输电方式是三相四线制,采用三根相线加零线供电,零线由变压器中性点引出并接地,电压为380/220V,取任意一根相线加零线构成220V供电线路供一般家庭用,三根相线间电压为380V,一般供电机使用。
三相五线制比三相四线制多一根地线,用于安全要求较高,设备要求统一接地的场所。
三相五线制的学问就在于这两跟"零线"上,在比较精密电子仪器的电网中使用时,如果零线和接地线共用一根线的话,对于电路中的工作零点会有影响的,虽然理论上它们都是0电位点,如果偶尔有一个电涌脉冲冲击到工作零线,而零线和地线却没有分开,比如这种脉冲却是因为相线漏电引起的,再如有些电子电路中如果零点飘移现象严重的话那么电器外壳就可能会带电,可能会损坏电气元件的,甚至损坏电器,造成人身安全的危险.零线和地线的根本差别在于一个构成工作回路,一个起保护作用叫做保护接地,一个回电网,一个回,在电子电路中这两个概念是要区别开来的,在正规公司里,这两根线规定要分开接.现在实际中还有一种三相六线的接法,除工作零线,保护接地外,还专门另配一路接地线,这根线跟设备地线分开来接,不与其他任何线相接,用做对仪器设备的保护,因为电气件的损坏往往只几微秒的时间,所以要将误动作电流更快的引回,需要仪器直接接地.中性点接地是指变压器或发电机的中性点通过导线与地线相连接,目前有用很广泛;中性点接零,没听讲过,你的意思可能是中性点直接相互连接,而不接地。
保护接地、工作接地、保护接零的区别保护接地、工作接地、保护接零同时用是否更好工作接地就是将变压器的中性点接地;其主要作用是系统电位的稳定性,即减轻低压系统由于一相接地,高低压短接等原因所产生过电压的危险性,并能防止绝缘击穿;保护接地是指将电气装置正常情况下不带电的金属部分与接地装置连接起来,以防止该部分在故障情况下突然带电而造成对人体的伤害;保护接零是指电气设备正常情况下不带电的金属部分用金属导体与系统中的零线连接起来,当设备绝缘损坏碰壳时,就形成单相金属性短路,短路电流流经相线——零线回路,而不经过电源中性点接地装置,从而产生足够大的短路电流,使过流保护装置迅速动作,切断漏电设备的电源,以保障人身安全;备注:保护接零适用于电压低于1KV且电源中性点接地的三相四线制供电电路;而采用保护接零时要特别注意,在同一台变压器供电的低压电网中;不允许将有的设备接地、有的设备接零;由于一般的低压系统的电源中性点一般都接地,所以用电设备的金属外壳大多采用保护接零,以确保安全;重复接地就是在中性点直接接地的系统中,在零干线的一处或多处用金属导线连接接地装置;在低压三相四线制中性点直接接地线路中,施工单位在安装时,应将配电线路的零干线和分支线的终端接地,零干线上每隔1千米做一次接地;对于距接地点超过50米的配电线路,接入用户处的零线仍应重复接地,重复接地电阻应不大于10欧;在TN-S三相五线制系统中,零线是不允许重复接地的;零线是久称,此处已经不准确,三相五线的各线为3根相线、一根中性线、一根接地保护线及pe线;不允许重复接地是因为如果中性线重复接地,三相五线制漏电保护检测就不准确,无法起到准确的保护作用;故,零线不允许重复接地实际上是漏电检测点后不能重复接地;为了人身安全和电力系统工作的需要,要求电气设备采取接地措施;平常按接地目的的不同,一般分为工作接地、保护接地和保护接零三种,如图所示;图中的接地体是埋入地中并且直接与大地接触的导体;工作接地电力系统由于运行和安全的需要,常将中性点接地见图,这种接地方式称为工作接地;工作接地有下列目的:降低触电电压在中性点不接地的系统中,当一相接地而人体触及另外两相之一时,触电电压为相电压的倍;而在中性点接地的系统中,触电电压就降低到等于或接近相电压;迅速切断故障设备在中性点不接地的系统中,当一相接地时,接地电流很小因为导线和地面间存在电容和绝缘电阻,也可构成电流的通路不足以使保护装置动作而切断电源,接地故障不易被发现,将长时间持续下去,对人身不安全;而中性点接地的系统中,一相接地后的接地电流较大接近单相短路保护装置迅速动作,断开故障点;降低电气设备对地的绝缘水平在中性点不接地的系统中,一相接地时将使另外两相的对地电压升高到线电压;而在中性点接地的系统中,则接近于相电压,故可降低电气设备和输电线的绝缘水平,节省投资;同时,中性点不接地也有好处;第一,一相接地往往是瞬间的,能自动消除,在中性点不接地的系统中,就不会跳闸而发生停电事故;第二,一相接地故障可以允许短时存在,这样,以便寻找故障和修复; 保护接地保护接地就是将电气设备的金属外壳正常情况下是不带电的接地,宜用于中性点不接地的低压系统中;我们可以分析一下电动机的保护接地; 当电动机某一相绕组的绝缘损坏使外壳带电未接地的情况下,人体触及外壳,相当于单相触电;这时接地电流经过故障点流入大地的电流的大小决定于人体电阻和绝缘电阻;当系统的绝缘性下降时,就有触电危险; 当电动机某一相绕组的绝缘损坏使外壳带电而外壳接地的情况下,人体触及外壳时, 由于人体的电阻与接地电阻并联,而通常人体电阻远大于接地电阻,所以通过人体的电流很小,不会有危险;这就是保护接地保证人身安全的作用;保护接零保护接零就是将电气设备的金属外壳接到零线上,宜用于中性点接地的低压系统中; 再以电动机为例,当电动机某一相绕组的绝缘损坏而与外壳相接时,就形成单相短路,迅速将这一相中的熔丝熔断,因而外壳便不再带电;即使在熔丝熔断前人体触及外壳时,也由于人体电阻远大于线路电压,通过人体的电流也是极为微小的; 同时注意,中性点接地的系统中不采用保护接地;。
接地保護和接零保護的區別以保護人身安全為目的,把電氣設備不帶電的金屬外殼接地或接零,叫做保護接地及保護接零。
一、保護接地在中性點不接地的三相電源系統中,當接到這個系統上的某電氣設備因絕緣損壞而使外殼帶電時,如果人站在地上用手觸及外殼,由於輸電線與地之間有分佈電容存在,將有電流通過人體及分佈電容回到電源,使人觸電,如圖6-7-13所示。
在一般情況下這個電流是不大的。
但是,如果電網分佈很廣,或者電網絕緣強度顯著下降,這個電流可能達到危險程度,這就必須採取安全措施。
圖6-7-13 沒有保護接地的電動機一相碰殼情況保護接地就是把電氣設備的金屬外殼用足夠粗的金屬導線與大地可靠地連接起來。
電氣設備採用保護接地措施後,設備外殼已通過導線與大地有良好的接觸,則當人體觸及帶電的外殼時,人體相當於接地電阻的一條並聯支路,如圖6-7-14所示。
由於人體電阻遠遠大於接地電阻,所以通過人體的電流很小,避免了觸電事故。
圖6-7-14 裝有保護接地的電動機一相碰殼情況保護接地應用於中性點不接地的配電系統中。
二、保護接零(一)保護接零的概念所謂保護接零(又稱接零保護)就是在中性點接地的系統中,將電氣設備在正常情況下不帶電的金屬部分與零線作良好的金屬連接。
圖6-7-15是採用保護接零情況下故障電流的示意圖。
當某一相絕緣損壞使相線碰殼,外殼帶電時,由於外殼採用了保護接零措施,因此該相線和零線構成回路,單相短路電流很大,足以使線路上的保護裝置(如熔斷器)迅速熔斷,從而將漏電設備與電源斷開,從而避免人身觸電的可能性。
圖6-7-15 保護接零保護接零用於380/220V、三相四線制、電源的中性點直接接地的配電系統。
在電源的中性點接地的配電系統中,只能採用保護接零,如果採用保護接地則不能有效地防止人身觸電事故。
如圖6-7-16所示,若採用保護接地,電源中性點接地電阻與電氣設備的接地電阻均按4Ω考慮,而電源電壓為220V,那麼當電氣設備的絕緣損壞使電氣設備外殼帶電時,則兩接地電阻間的電流將為:圖6-7-16 中性點接地系統採用保護接地的後果熔斷器熔體的額定電流是根據被保護設備的要求選定的,如果設備的容易較大,為了保證設備在正常情況下工作,所選用熔體的額定電流也會較大,在27.5A接地短路電流的作用下,將不斷熔斷,外殼帶電的電氣設備不能立即脫離電源,所以在設備的外殼上長期存在對地電壓Ud,其值為:Ud=27.5×4=110V顯然,這是很危險的。
保护接地和保护接零各在什么情况下使用This manuscript was revised by the office on December 10, 2020.保护接地和保护接零各在什么情况下使用以保护人身安全为目的,把电气设备不带电的金属外壳接地或接零,叫做保护接地及保护接零。
一、保护接地在中性点不接地的三相电源系统中,当接到这个系统上的某电气设备因绝缘损坏而使外壳带电时,如果人站在地上用手触及外壳,由于输电线与地之间有分布电容存在,将有电流通过人体及分布电容回到电源,使人触电,如图6-7-13所示。
在一般情况下这个电流是不大的。
但是,如果电网分布很广,或者电网绝缘强度显着下降,这个电流可能达到危险程度,这就必须采取安全措施。
保护接地就是把电气设备的金属外壳用足够粗的金属导线与大地可靠地连接起来。
电气设备采用保护接地措施后,设备外壳已通过导线与大地有良好的接触,则当人体触及带电的外壳时,人体相当于接地电阻的一条并联支路,如图6-7-14所示。
由于人体电阻远远大于接地电阻,所以通过人体的电流很小,避免了触电事故。
保护接地应用于中性点不接地的配电系统中。
二、保护接零(一)保护接零的概念所谓保护接零(又称接零保护)就是在中性点接地的系统中,将电气设备在正常情况下不带电的金属部分与零线作良好的金属连接。
图6-7-15是采用保护接零情况下故障电流的示意图。
当某一相绝缘损坏使相线碰壳,外壳带电时,由于外壳采用了保护接零措施,因此该相线和零线构成回路,单相短路电流很大,足以使线路上的保护装置(如熔断器)迅速熔断,从而将漏电设备与电源断开,从而避免人身触电的可能性。
保护接零用于380/220V、三相四线制、电源的中性点直接接地的配电系统。
在电源的中性点接地的配电系统中,只能采用保护接零,如果采用保护接地则不能有效地防止人身触电事故。
若采用保护接地,电源中性点接地电阻与电气设备的接地电阻均按4Ω考虑,而电源电压为220V,那么当电气设备的绝缘损坏使电气设备外壳带电时,则两接地电阻间的电流将为:熔断器熔体的额定电流是根据被保护设备的要求选定的,如果设备的容易较大,为了保证设备在正常情况下工作,所选用熔体的额定电流也会较大,在27.5A接地短路电流的作用下,将不断熔断,外壳带电的电气设备不能立即脱离电源,所以在设备的外壳上长期存在对地电压Ud,其值为:Ud=27.5×4=110V显然,这是很危险的。
接地保护和接零保护什么是接地保护,什么是接零保护,接地保护和接零保护的区别是什么?1、什么是保护接地?接地保护又常称保护接地,就是将电气设备的金属外壳与接地体连接,以防止因电气设备绝缘损坏使外壳带电时,操作人员接触设备外壳而触电。
使电工设备的金属外壳接地的措施。
可防止在绝缘损坏或意外情况下金属外壳带电时强电流通过人体,以保证人身安全。
所谓保护接地就是将正常情况下不带电,而在绝缘材料损坏后或其他情况下可能带电的电器金属部分(即与带电部分相绝缘的金属结构部分)用导线与接地体可靠连接起来的一种保护接线方式。
接地保护一般用于配电变压器中性点不直接接地(三相三线制)的供电系统中,用以保证当电气设备因绝缘损坏而漏电时产生的对地电压不超过安全范围。
如果家用电器未采用接地保护,当某一部分的绝缘损坏或某一相线碰及外壳时,家用电器的外壳将带电,人体万一触及到该绝缘损坏的电器设备外壳(构架)时,就会有触电的危险。
相反,若将电器设备做了接地保护,单相接地短路电流就会沿接地装置和人体这两条并联支路分别流过。
一般地说,人体的电阻大于1000欧,接地体的电阻按规定不能大于4欧,所以流经人体的电流就很小,而流经接地装置的电流很大。
这样就减小了电器设备漏电后人体触电的危险。
什么情况下采用保护接地?在中性点不接地的低压系统中,在正常情况下各种电力装置的不带电的金属外露部分,除有规定外都应接地。
如:1)电机、变压器、电器、携带式及移动式用电器具的外壳。
2)电力设备的传动装置。
3)配电屏与控制屏的框架。
4)电缆外皮及电力电缆接线盒,终端盒的外壳。
5)电力线路的金属保护管,敷设的钢索及起重机轨道。
6)装有避雷器电力线路的杆塔。
7)安装在电力线路杆塔上的开关、电容器等电力装置的外壳及支架。
保护接地与接零保护各适用于什么场合?在中性点直接接地的低压电力网中,电力装置应采用低压接零保护。
在中性点非直接接地的低压电力网中,电力装置应采用低压接地保护。
什么是保护接地与保护接零电气设备的绝缘性能,是保证人身生命安全和电气设备安全以及正常生产工作的前提条件。
为了实现这些保护功能,在用电过程中必须对电气设备进行保护接地和保护接零。
•什么是保护接地呢?•保护接地就是在正常情况下,电气设备的金属外壳与带电部分是绝缘的,正常情况下设备的外壳不会带电,但是如果由于电气设备内部绝缘体的老化或者损坏,与外壳短接在一起时,电源就会传递到用电设备的金属外壳上来,由此电气设备的外壳就会带电。
如果外壳没有接地,这时如果操作设备的人员碰到带电的电气设备外壳,电流就会经过人体回到电源形成回路,此时操作人员就会触电。
•如果电气设备的外壳是接地的,那么当操作人员碰到电气设备外壳后,由于接地的电阻值远远小于人体的电阻值,所以大部分电流会经过接地装置形成回路,电流就会通过地线流入大地,而经过人体的电流很小几乎没有,对人身的伤害也就降低了。
如果当漏电电流较大时,线路中的漏电保护器就会动作跳闸,从而切断线路的电源,对人体实现保护作用。
保护接地适用于不接地的电网系统中,在该系统中主要是正常情况下不带电,但由于绝缘损坏或由于其它原因可能出现危险电压的金属导体部分,均应采用保护接地措施。
什么是保护接零?•保护接零是指在中性点接地系统中,将电气设备正常情况下运行时不带电的金属部分与外壳连接的金属构架与系统的中性线连接起来,以来实现保护人身安全的目的。
•如下图所示,保护接零线路中,电气设备的金属外壳,底座等与线路中的中性线连接起来。
当电气设备的绝缘损坏会导致其中的一相与外壳相连,导致外壳带电。
由于外壳采用了保护接零的措施,此时形成相线与中性线的单相短路,由于短路电流较大使线路中的保护装置迅速动作,切断电源实现保护功能。
•保护接零主要用于1000伏以下,电源中性点直接接地的供电系统中。
常见于变压器低压侧中性点接地的380v/220v三相四线制电网中,如应急照明及消防供电等需要自用配电变压器的系统中。
首先要明白接零与接地的区别:接零是将保护零线(PE线)与用电设备的金属外壳作电气连接,当漏电发生时,相线与保护零线短接发生短路,短路电流瞬间熔断保险丝切断电源起保护作用;接地是将保护零线(PE线)与接地桩(地极)相连接,当发生漏电时,电流经PE线向大地释放,因为人体的电阻(几百欧以上)远远大于接地电阻(4Ω),因而流经人体的电流很小可保人身安全。
重复接地是将PE线在总配电箱处和PE线的主干线的中间处及末端处再次接地,作用是保证PE线接地的可靠性,因为三个接地点同时断开的概率很低,可保接零系统安全可靠。
在TN—S系统中,分配电箱和开关箱不应用PE线将箱壳与接地极相连,只需从箱内PE线接线端子板中用PE线与箱壳连接就好,也就是说要接零而不是接地。
简单地说:除了PE线主干线要有3点接地之外,用电设备的金属外壳只需用PE线(支线)与PE线的主干线相连即可,不需直接与大地(接地极)相连。
请注意JGJ46规范里TN-S系统图的表述.。
低压配电系统的供电方式低压配电系统按保护接地的形式不同可分为:IT系统、TT系统和TN系统。
其中IT系统和TT系统的设备外露可导电部分经各自的保护线直接接地(过去称为保护接地);TN系统的设备外露可导电部分经公共的保护线与电源中性点直接电气连接(过去称为接零保护)。
国际电工委员会(IEC)对系统接地的文字符号的意义规定如下:第一个字母表示电力系统的对地关系:T--一点直接接地;I--所有带电部分与地绝缘,或一点经阻抗接地。
第二个字母表示装置的外露可导电部分的对地关系:T--外露可导电部分对地直接电气连接,与电力系统的任何接地点无关;N--外露可导电部分与电力系统的接地点直接电气连接(在交流系统中,接地点通常就是中性点)。
后面还有字母时,这些字母表示中性线与保护线的组合:S--中性线和保护线是分开的;O--中性线和保护线是合一的。
(1)IT系统:IT系统的电源中性点是对地绝缘的或经高阻抗接地,而用电设备的金属外壳直接接地。
即:过去称三相三线制供电系统的保护接地。
其工作原理是:若设备外壳没有接地,在发生单相碰壳故障时,设备外壳带上了相电压,若此时人触摸外壳,就会有相当危险的电流流经人身与电网和大地之间的分布电容所构成的回路。
而设备的金属外壳有了保护接地后,由于人体电阻远比接地装置的接地电阻大,在发生单相碰壳时,大部分的接地电流被接地装置分流,流经人体的电流很小,从而对人身安全起了保护作用。
IT系统适用于环境条件不良,易发生单相接地故障的场所,以及易燃、易爆的场所。
(2)TT系统:TT系统的电源中性点直接接地;用电设备的金属外壳亦直接接地,且与电源中性点的接地无关。
即:过去称三相四线制供电系统中的保护接地。
其工作原理是:当发生单相碰壳故障时,接地电流经保护接地装置和电源的工作接地装置所构成的回路流过。
此时如有人触带电的外壳,则由于保护接地装置的电阻小于人体的电阻,大部分的接地电流被接地装置分流,从而对人身起保护作用。
TT系统在确保安全用电方面还存在有不足之处,主要表现在:①当设备发生单相碰壳故障时,接地电流并不很大,往往不能使保护装置动作,这将导致线路长期带故障运行。
②当TT系统中的用电设备只是由于绝缘不良引起漏电时,因漏电电流往往不大(仅为毫安级),不可能使线路的保护装置动作,这也导致漏电设备的外壳长期带电,增加了人身触电的危险。
因此,TT系统必须加装剩余电流动作保护器,方能成为较完善的保护系统。
目前,TT系统广泛应用于城镇、农村居民区、工业企业和由公用变压器供电的民用建筑中。
(3)TN系统:在变压器或发电机中性点直接接地的380/220V三相四线低压电网中,将正常运行时不带电的用电设备的金属外壳经公共的保护线与电源的中性点直接电气连接。
即:过去称三相四线制供电系统中的保护接零。
当电气设备发生单相碰壳时,故障电流经设备的金属外壳形成相线对保护线的单相短路。
这将产生较大的短路电流,令线路上的保护装置立即动作,将故障部分迅速切除,从而保证人身安全和其他设备或线路的正常运行。
TN系统的电源中性点直接接地,并有中性线引出。
按其保护线形式,TN系统又分为:TN-C系统、TN-S系统和TN-C-S 系统等三种。
①TN-C系统(三相四线制),该系统的中性线(N)和保护线(PE)是合一的,该线又称为保护中性线(PEN)线。
它的优点是节省了一条导线,但在三相负载不平衡或保护中性线断开时会使所有用电设备的金属外壳都带上危险电压。
在一般情况下,如保护装置和导线截面选择适当,TN-C系统是能够满足要求的(见图1)。
②TN-S系统(三相五线制),该系统的N线和PE线是分开的。
它的优点是PE线在正常情况下没有电流通过,因此不会对接在PE线上的其他设备产生电磁干扰。
此外,由于N线与PE线分开,N 线断开也不会影响PE线的保护作用。
但TN-S系统耗用的导电材料较多,投资较大(见图2)。
这种系统多用于对安全可靠性要求较高、设备对电磁抗干扰要求较严、或环境条件较差的场所使用。
对新建的大型民用建筑、住宅小区,特别推荐使用TN-S 系统。
③TN-C-S系统(三相四线与三相五线混合系统),系统中有一部分中性线和保护是合一的;而且一部分是分开的。
它兼有TN-C系统和TN-S系统的特点,常用于配电系统末端环境较差或有对电磁抗干扰要求较严的场所(见图3)。
在TN-C、TN-S和TN-S-C系统中,为确保PE线或PEN线安全可靠,除在电源中性点进行工作接地外,对PE线和PEN 线还必须进行必要的重复接地。
PE线PEN线上不允许装设熔断器和开关。
在同一供电系统中,不能同时采用TT 系统和TN系统保护。
保护接地和保护接零有什么区别?做了保护接零还有必要再做保护接地吗?1、首先弄明白电力系统的接地方式:TT、TN-S、TN-C、TN-S-C2、保护接地是设备不带电外壳通过导体和大地可靠连接的接地方式,保护接零是设备不带电外壳和电气系统中的零线(N)可靠连接。
3、最好两者皆有之。
1、在所有关于用电设备的保护方式的阐述中,都用“保护接地或保护接零”这样一句话;2、字面意义就是只能是其中的一种,不能都用;3、那选用那一种保护方式呢?4、由不得你,得看你用的电源中性点是那种运行方式:1)电源中性点是接地的,只能选用接零保护;2)电源中性点不是接地的,只能选用保护接地;5、有人说,我们车间的电机是保护接零,又接地了;6、那不叫保护接地,那叫重复接地,起重复接地的作用;7、电源中性点不是接地的,只能选用保护接地;8、如果接零,零线不接地有电,你的设备会带电很不安全;9、如果电源中性点是接地的,你选用接地保护,漏电时设备外壳有大于110V的电压,很不安全;10,如果不管电源中性点是否接地,两种方式混用,这样回出现接地保护家的设备漏电,把接零保护家的人打死了11、保护原理也不一样:1)保护接地,是限制漏电设备的外壳电压在50V 以下,安全可靠;2)保护接零,是设备漏电时,就回火、零短路,保险跳闸保护,这种保护是把漏电故障人为扩大为短路,靠短路保护;12、大型设备,在保护接零后,要求重复接地,为什么不叫保护接地,而叫重复接地:1)这个接地,是在有保护接零措施后接的地,保护方式是漏电短路保护,不是限制漏电电压在50V以下的保护接地;2)这个接地的作用是重复接地的作用;建筑工程供电使用的基本供电系统有三相三线制三相四线制等,但这些名词术语内涵不是十分严格。
国际电工委员会(IEC )对此作了统一规定,称为TT 系统、TN 系统、IT 系统。
其中TN 系统又分为TN-C 、TN-S 、TN-C-S 系统。
下面内容就是对各种供电系统做一个扼要的介绍。
(一)工程供电的基本方式根据IEC 规定的各种保护方式、术语概念,低压配电系统按接地方式的不同分为三类,即TT 、TN 和IT 系统,分述如下。
( 1 )TT 方式供电系统TT 方式是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统,也称TT 系统。
第一个符号T 表示电力系统中性点直接接地;第二个符号T 表示负载设备外露不与带电体相接的金属导电部分与大地直接联接,而与系统如何接地无关。
在TT 系统中负载的所有接地均称为保护接地,如图1-1 所示。
这种供电系统的特点如下。
1 )当电气设备的金属外壳带电(相线碰壳或设备绝缘损坏而漏电)时,由于有接地保护,可以大大减少触电的危险性。
但是,低压断路器(自动开关)不一定能跳闸,造成漏电设备的外壳对地电压高于安全电压,属于危险电压。
2 )当漏电电流比较小时,即使有熔断器也不一定能熔断,所以还需要漏电保护器作保护,困此TT 系统难以推广。
3 )TT 系统接地装置耗用钢材多,而且难以回收、费工时、费料。
现在有的建筑单位是采用TT 系统,施工单位借用其电源作临时用电时,应用一条专用保护线,以减少需接地装置钢材用量。
把新增加的专用保护线PE 线和工作零线N 分开,其特点是:①共用接地线与工作零线没有电的联系;②正常运行时,工作零线可以有电流,而专用保护线没有电流;③TT 系统适用于接地保护占很分散的地方。
( 2 )TN 方式供电系统这种供电系统是将电气设备的金属外壳与工作零线相接的保护系统,称作接零保护系统,用TN 表示。
它的特点如下。
1 )一旦设备出现外壳带电,接零保护系统能将漏电电流上升为短路电流,这个电流很大,是TT 系统的 5.3 倍,实际上就是单相对地短路故障,熔断器的熔丝会熔断,低压断路器的脱扣器会立即动作而跳闸,使故障设备断电,比较安全。
2 )TN 系统节省材料、工时,在我国和其他许多国家广泛得到应用,可见比TT 系统优点多。
TN 方式供电系统中,根据其保护零线是否与工作零线分开而划分为TN-C 和TN-S 等两种。
( 3 )TN-C 方式供电系统它是用工作零线兼作接零保护线,可以称作保护中性线,可用NPE 表示( 4 )TN-S 方式供电系统它是把工作零线N 和专用保护线PE 严格分开的供电系统,称作TN-S 供电系统,TN-S 供电系统的特点如下。
1 )系统正常运行时,专用保护线上不有电流,只是工作零线上有不平衡电流。
PE 线对地没有电压,所以电气设备金属外壳接零保护是接在专用的保护线PE 上,安全可靠。
2 )工作零线只用作单相照明负载回路。
3 )专用保护线PE 不许断线,也不许进入漏电开关。
4 )干线上使用漏电保护器,工作零线不得有重复接地,而PE 线有重复接地,但是不经过漏电保护器,所以TN-S 系统供电干线上也可以安装漏电保护器。
5 )TN-S 方式供电系统安全可靠,适用于工业与民用建筑等低压供电系统。
在建筑工程工工前的“三通一平”(电通、水通、路通和地平——必须采用TN-S 方式供电系统。
( 5 )TN-C-S 方式供电系统在建筑施工临时供电中,如果前部分是TN-C 方式供电,而施工规范规定施工现场必须采用TN-S 方式供电系统,则可以在系统后部分现场总配电箱分出PE 线,TN-C-S 系统的特点如下。
1 )工作零线N 与专用保护线PE 相联通,如图1-5ND 这段线路不平衡电流比较大时,电气设备的接零保护受到零线电位的影响。
D 点至后面PE 线上没有电流,即该段导线上没有电压降,因此,TN-C-S 系统可以降低电动机外壳对地的电压,然而又不能完全消除这个电压,这个电压的大小取决于ND 线的负载不平衡的情况及ND 这段线路的长度。
负载越不平衡,ND 线又很长时,设备外壳对地电压偏移就越大。
所以要求负载不平衡电流不能太大,而且在PE 线上应作重复接地。
2 )PE 线在任何情况下都不能进入漏电保护器,因为线路末端的漏电保护器动作会使前级漏电保护器跳闸造成大范围停电。
3 )对PE 线除了在总箱处必须和N 线相接以外,其他各分箱处均不得把N 线和PE 线相联,PE 线上不许安装开关和熔断器,也不得用大顾兼作PE 线。