遥感图像处理实验
- 格式:docx
- 大小:3.38 MB
- 文档页数:24
哈尔滨工业大学
遥感图像处理及遥感系统仿真
实验报告
项目名称:《遥感图像处理及遥感系统仿真创新》
姓名:蒋国韬
学号:24
院系:电子与信息工程学院
专业:遥感科学与技术
指导教师:胡悦
时间:2017年7月
实验一:遥感数字图像的增强
一、实验目的:
利用一幅城市多光谱遥感图像,分析其直方图,并利用对比度增强和去相关拉伸方法对遥感图像进行增强。
二、实验过程:
1.用multibandread语句读取一幅多光谱遥感图像(7波段,512x512图像)的可
见1,2,3波段(分别对应R,G,B层);
2.显示真彩色图像;
3.通过研究直方图(imhist),分析直接显示的真彩色图像效果差的原因;
4.利用对比度增强方法对真彩色图像进行增强(imadjust,stretchlim);
5.画出对比度增强后的图像红色波段的直方图;
6.利用Decorrelation去相关拉伸方法(decorrstretch)对图像进行增强;
7.显示两种图像增强方法的结果图像。
三、实验分析:
(1)高光谱影像由于含有近百个波段,用matlab自带的图像读写函数imread和imwrite往往不能直接操作,利用matlab函数库中的multibandred函数,可以读取多波段二进制图像。512×512为像素点,7位波段数,bil为图像数组的保存格式,uint8=>uint8为转换到matlab 的格式,[3 2 1]的波段分别对应RGB三种颜色。
(2)直接观察真彩复合图像发现,图像的对比度非常低,色彩不均匀。通过观察红绿蓝三色的波段直方图,可以观察到数据集中到很小的一段可用动态范围内,这是真彩色复合图像显得阴暗的原因之一。另外,根据三种颜色的三维散点图,如下
可知红、绿、蓝三维散点的明显线性趋势显示出可见波段数据的高度相关性,于是未增强的真彩色图像显示的像单色图像。
(3)图像经过对比度增强后,进行直方图检测发现数据被扩展到更大范围内的可用动态范围。地表特征变得较为容易识别。
(4)图像经过去相关拉伸后,由下图的三色散点图容易看出,此时波段数据已经没有了高度的相关性。经过线性对比度扩展和去相关,图像的地表特征可识别度得到了很大提高,画面中不同波段的不同被夸大了。
四、实验程序:
clear all;
clc;
Paris_img=multibandread('',[512,512,7],'uint8=>uint8',128','bil','iee e-le',{'Band','Direct',[3 2 1]});
figure(1);imshow(Paris_img);
r=Paris_img(:,:,3);g=Paris_img(:,:,2);b=Paris_img(:,:,1);
figure(2);
subplot(311);imhist(r);title('红色波段直方图');
subplot(312);imhist(g);title('绿色波段直方图');
subplot(313);imhist(b);title('蓝色波段直方图');
figure(3);
plot3(r(:),g(:),b(:),'.');
Stretch_img=imadjust(Paris_img,stretchlim(Paris_img));
figure(4);
subplot(211);imshow(Stretch_img);
subplot(212);imhist(Paris_img(:,:,3));
Decorrstretch_img=decorrstretch(Paris_img,'Tol',;
figure(5);imshow(Decorrstretch_img);
rd=Decorrstretch_img(:,:,3);gd=Decorrstretch_img(:,:,2);bd=Decorrstre
tch_img(:,:,1);
figure(6);
subplot(311);imhist(rd);
subplot(312);imhist(gd);
subplot(313);imhist(bd);
figure(7);
plot3(rd(:),gd(:),bd(:),'.');
实验二:遥感图像的配准
一、实验目的:
利用一幅未配准的机场图像和一幅同样场景正摄影获得的图像进行配准。
二、实验过程:
1.读取‘机场.png’和‘正摄影.png’两幅未配准图像(imread);
2.加载‘配准点.mat’文件,其中包含四组控制配准点;
3.用fitgeotrans语句找到配准参数;
5.显示正摄影图像为基础的配准后的图像(imshowpair)。
三、实验分析:
(1)寻找配准参数的函数fitgeotrans,由配准点得到movingPoints和fixedPoints,movingPoints 是图像上想要移动的点的坐标,至少是两个double型2维点,fixedPoints为目标点,与movingPoints规模相同,transformationType为变换类型,包括仿射变换、投影变化、相似变换等,这个函数主要描述了将movingPoints(设大小为:N*2,N>=2)通过某种变换变化到fixedPoints来,最后输出了变换矩阵。得到的fun_para是一个结构体类型,里面包含了变换矩阵。
(2)要求参加配准的图像满足一定灰度相似性,所以原图像对噪声较敏感,在配准后避免了直接对灰度图像的操作,所以抗噪性较强。
四、实验程序:
clear all;
airport=imread('机场.png');
figure(1);imshow(airport);
right=imread('正摄影.png');
figure(2);imshow(right);