中考数学一模试卷(含答案).doc
- 格式:doc
- 大小:1.20 MB
- 文档页数:32
安徽省芜湖市中考数学一模试卷一、选择题:每小题给出的四个选项中,其中只有一个是正确的.请把正确选项的代号写在下面的答题表内,(本大题共10小题,每题4分,共40分.)1.已知5x=6y(y≠0),那么下列比例式中正确的是()A.B.C.D.2.若如图所示的两个四边形相似,则∠α的度数是()A.75°B.60°C.87°D.120°3.若△ABC∽△DEF,相似比为3:2,则对应高的比为()A.3:2B.3:5C.9:4D.4:94.如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积为4,则△ABC的面积为()A.8B.12C.14D.165.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为()A.56°B.62°C.68°D.78°6.把一个小球以20米/秒的速度竖直向上弹出,它在空中的高度h(米)与时间t(秒),满足关系h=20t﹣5t2,当小球达到最高点时,小球的运动时间为()A.1秒B.2秒C.4秒D.20秒7.联欢会主持人小亮、小莹、大明三位同学随机地站成一排,小亮恰好站在中间的概率是()A.B.C.D.8.如图,一张矩形纸片ABCD的长AB=a,宽BC=b.将纸片对折,折痕为EF,所得矩形AFED 与矩形ABCD相似,则a:b=()A.2:1B.:1C.3:D.3:29.欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=.则该方程的一个正根是()A.AC的长B.AD的长C.BC的长D.CD的长10.如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B出发,以cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A.B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分.)11.抛物线y=x2向左平移1个单位,所得的新抛物线的解析式为.12.如图,在边长为4的正方形ABCD中,以点B为圆心,以AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π).13.如图所示,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴、y轴分别交于点A、B,且AB=BC,已知△AOB的面积为1,则k的值为.14.如图所示,已知AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点P为AB边上一动点,若△PAD与△PBC相似,则AP=.三、(本大题共2小题,每小题8分,满分16分.)15.解方程:x(x+2)=0.16.已知△OAB在平面直角坐标系中的位置如图所示.请解答以下问题:(1)按要求作图:先将△ABO绕原点O逆时针旋转90°得△OA1B1,再以原点O为位似中心,将△OA1B1在原点异侧按位似比2:1进行放大得到△OA2B2;(2)直接写出点A1的坐标,点A2的坐标.四、(本大题共2小题,每小题8分,满分16分.)17.某地区投入教育经费2500万元,投入教育经费3025万元,求至该地区投入教育经费的年平均增长率.18.为了估计河的宽度,勘测人员在河的对岸选定一个目标点A,在近岸分别取点B、D、E、C,使点A、B、D在一条直线上,且AD⊥DE,点A、C、E也在一条直线上,且DE∥BC.经测量BC=24米,BD=12米,DE=40米,求河的宽度AB为多少米?五、(本大题共2小题,每小题10分,满分20分.)19.如图,⊙O中弦AB与CD交于M点.(1)求证:DM•MC=BM•MA;(2)若∠D=60°,⊙O的半径为2,求弦AC的长.20.在平面直角坐标系xOy中,已知抛物线y=x2﹣4x+2m﹣1的顶点为C,图象与x轴交于A、B 两点(点A在点B的左侧).(1)求m的取值范围;(2)当m取最大整数时,求△ABC的面积.六、(本题满分12分)21.在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,他们的形状、大小、质地等完全相同.小兰先从盒子里随机取出一个小球,记下数字为x,放回盒子,摇匀后,再由小田随机取出一个小球,记下数字为y(1)用列表法或画树状图法表示出(x,y)的所有可能出现的结果;(2)求小兰、小田各取一次小球所确定的点(x,y)落在反比例函数y=的图象上的频率;(3)求小兰、小田各取一次小球所确定的数x,y满足y的概率.七、(本题满分12分)22.如图,Rt△ABP的直角顶点P在第四象限,顶点A、B分别落在反比例函数y=图象的两支上,且PB⊥x轴于点C,PA⊥y轴于点D,AB分别与x轴,y轴相交于点F和E.已知点B的坐标为(1,3).(1)填空:k=;(2)证明:CD∥AB;(3)当四边形ABCD的面积和△PCD的面积相等时,求点P的坐标.八、(本题满分14分)23.如图1,四边形ABCD中,AB⊥BC,AD∥BC,点P为DC上一点,且AP=AB,分别过点A 和点C作直线BP的垂线,垂足为点E和点F.(1)证明:△ABE∽△BCF;(2)若=,求的值;(3)如图2,若AB=BC,设∠DAP的平分线AG交直线BP于G.当CF=1,=时,求线段AG的长.安徽省芜湖市中考数学一模试卷参考答案与试题解析一、选择题:每小题给出的四个选项中,其中只有一个是正确的.请把正确选项的代号写在下面的答题表内,(本大题共10小题,每题4分,共40分.)1.已知5x=6y(y≠0),那么下列比例式中正确的是()A.B.C.D.【分析】比例的基本性质:组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项,根据两内项之积等于两外项之积可得答案.【解答】解:A、=,则5y=6x,故此选项错误;B、=,则5x=6y,故此选项正确;C、=,则5y=6x,故此选项错误;D、=,则xy=30,故此选项错误;故选:B.【点评】此题主要考查了比例的性质,关键是掌握两内项之积等于两外项之积.2.若如图所示的两个四边形相似,则∠α的度数是()A.75°B.60°C.87°D.120°【分析】根据相似多边形对应角的比相等,就可以求解.【解答】解:根据相似多边形的特点可知对应角相等,所以∠α=360°﹣60°﹣138°﹣75°=87°.故选C.【点评】主要考查了相似多边形的性质和四边形的内角和是360度的实际运用.3.若△ABC∽△DEF,相似比为3:2,则对应高的比为()A.3:2B.3:5C.9:4D.4:9【分析】直接利用相似三角形对应高的比等于相似比进而得出答案.【解答】解:∵△ABC∽△DEF,相似比为3:2,∴对应高的比为:3:2.故选:A.【点评】此题主要考查了相似三角形的性质,正确记忆相关性质是解题关键.4.如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积为4,则△ABC的面积为()A.8B.12C.14D.16【分析】直接利用三角形中位线定理得出DE∥BC,DE=BC,再利用相似三角形的判定与性质得出答案.【解答】解:∵在△ABC中,点D、E分别是AB、AC的中点,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∵=,∴=,∵△ADE的面积为4,∴△ABC的面积为:16,故选:D.【点评】此题主要考查了三角形的中位线以及相似三角形的判定与性质,正确得出△ADE∽△ABC 是解题关键.5.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为()A.56°B.62°C.68°D.78°【分析】由点I是△ABC的内心知∠BAC=2∠IAC、∠ACB=2∠ICA,从而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC),再利用圆内接四边形的外角等于内对角可得答案.【解答】解:∵点I是△ABC的内心,∴∠BAC=2∠IAC、∠ACB=2∠ICA,∵∠AIC=124°,∴∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(∠IAC+∠ICA)=180°﹣2(180°﹣∠AIC)=68°,又四边形ABCD内接于⊙O,∴∠CDE=∠B=68°,故选:C.【点评】本题主要考查三角形的内切圆与内心,解题的关键是掌握三角形的内心的性质及圆内接四边形的性质.6.把一个小球以20米/秒的速度竖直向上弹出,它在空中的高度h(米)与时间t(秒),满足关系h=20t﹣5t2,当小球达到最高点时,小球的运动时间为()A.1秒B.2秒C.4秒D.20秒【分析】已知函数式为二次函数解析式,最高点即为抛物线顶点,求达到最高点所用时间,即求顶点的横坐标.【解答】解:∵h=20t﹣5t2=﹣5t2+20t中,又∵﹣5<0,∴抛物线开口向下,有最高点,此时,t=﹣=2.故选:B.【点评】本题考查的是二次函数在实际生活中的应用,比较简单.7.联欢会主持人小亮、小莹、大明三位同学随机地站成一排,小亮恰好站在中间的概率是()A.B.C.D.【分析】先利用列表法展示所以6种等可能的结果,其中小亮恰好站在中间的占2种,然后根据概率定义求解.【解答】解:列表如下:共有6种等可能的结果,其中小亮恰好站在中间的占2种,所以小亮恰好站在中间的概率为=,故选:C.【点评】本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.8.如图,一张矩形纸片ABCD的长AB=a,宽BC=b.将纸片对折,折痕为EF,所得矩形AFED 与矩形ABCD相似,则a:b=()A.2:1B.:1C.3:D.3:2【分析】根据折叠性质得到AF=AB=a,再根据相似多边形的性质得到=,即=,然后利用比例的性质计算即可.【解答】解:∵矩形纸片对折,折痕为EF,∴AF=AB=a,∵矩形AFED与矩形ABCD相似,∴=,即=,∴()2=2,∴=.故选:B.【点评】本题考查了相似多边形的性质:相似多边形对应边的比叫做相似比.相似多边形的对应角相等,对应边的比相等.9.欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=.则该方程的一个正根是()A.AC的长B.AD的长C.BC的长D.CD的长【分析】表示出AD的长,利用勾股定理求出即可.【解答】解:欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=,设AD=x,根据勾股定理得:(x+)2=b2+()2,整理得:x2+ax=b2,则该方程的一个正根是AD的长,故选:B.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.10.如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B出发,以cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A.B.C.D.【分析】作AH⊥BC于H,根据等腰三角形的性质得BH=CH,利用∠B=30°可计算出AH=AB =2,BH=AH=2,则BC=2BH=4,利用速度公式可得点P从B点运动到C需4s,Q 点运动到C需8s,然后分类讨论:当0≤x≤4时,作QD⊥BC于D,如图1,BQ=x,BP=x,DQ=BQ=x,利用三角形面积公式得到y=x2;当4<x≤8时,作QD⊥BC于D,如图2,CQ=8﹣x,BP=4,DQ=CQ=(8﹣x),利用三角形面积公式得y=﹣x+8,于是可得0≤x≤4时,函数图象为抛物线的一部分,当4<x≤8时,函数图象为线段,则易得答案为D.【解答】解:作AH⊥BC于H,∵AB=AC=4cm,∴BH=CH,∵∠B=30°,∴AH=AB=2,BH=AH=2,∴BC=2BH=4,∵点P运动的速度为cm/s,Q点运动的速度为1cm/s,∴点P从B点运动到C需4s,Q点运动到C需8s,当0≤x≤4时,作QD⊥BC于D,如图1,BQ=x,BP=x,在Rt△BDQ中,DQ=BQ=x,∴y=•x•x=x2,当4<x≤8时,作QD⊥BC于D,如图2,CQ=8﹣x,BP=4在Rt△BDQ中,DQ=CQ=(8﹣x),∴y=•(8﹣x)•4=﹣x+8,综上所述,y=.故选:D.【点评】本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题. 二、填空题(本大题共4小题,每小题5分,满分20分.)11.抛物线y =x 2向左平移1个单位,所得的新抛物线的解析式为 y =(x +1)2 .【分析】先确定抛物线y =x 2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后对应点的坐标为(﹣1,0),然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y =x 2的顶点坐标为(0,0),把点(0,0)向左平移1个单位所得对应点的坐标为(﹣1,0),所以新抛物线的解析式为y =(x +1)2. 故答案为y =(x +1)2.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.12.如图,在边长为4的正方形ABCD 中,以点B 为圆心,以AB 为半径画弧,交对角线BD 于点E ,则图中阴影部分的面积是 8﹣2π (结果保留π).【分析】根据S 阴=S △ABD ﹣S 扇形BAE 计算即可; 【解答】解:S 阴=S △ABD ﹣S 扇形BAE =×4×4﹣=8﹣2π,故答案为8﹣2π.【点评】本题考查扇形的面积的计算,正方形的性质等知识,解题的关键是学会用分割法求阴影部分面积.13.如图所示,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴、y轴分别交于点A、B,且AB=BC,已知△AOB的面积为1,则k的值为4.【分析】根据题意可以设出点A的坐标,从而以得到点C和点B的坐标,再根据△AOB的面积为1,即可求得k的值.【解答】解:设点A的坐标为(﹣a,0),∵过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,∴点C(a,),∴点B的坐标为(0,),∴=1,解得,k=4,故答案为:4.【点评】本题考查反比例函数系数k的几何意义、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.14.如图所示,已知AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点P为AB边上一动点,若△PAD与△PBC相似,则AP=或2或6.【分析】由AD∥BC,∠ABC=90°,易得∠PAD=∠PBC=90°,又由AB=8,AD=3,BC=4,设AP的长为x,则BP长为8﹣x,然后分别从△APD∽△BPC与△APD∽△BCP去分析,利用相似三角形的对应边成比例求解即可求得答案.【解答】解:∵AB⊥BC,∴∠B=90°.∵AD∥BC,∴∠A=180°﹣∠B=90°,∴∠PAD=∠PBC=90°.AB=8,AD=3,BC=4,设AP的长为x,则BP长为8﹣x.若AB边上存在P点,使△PAD与△PBC相似,那么分两种情况:①若△APD∽△BPC,则AP:BP=AD:BC,即x:(8﹣x)=3:4,解得x=;②若△APD∽△BCP,则AP:BC=AD:BP,即x:4=3:(8﹣x),解得x=2或x=6.所以AP=或AP=2或AP=6.故答案是:或2或6.【点评】此题考查了相似三角形的性质.注意利用分类讨论思想求解是关键.三、(本大题共2小题,每小题8分,满分16分.)15.解方程:x(x+2)=0.【分析】原方程转化为x=0或x+2=0,然后解一次方程即可.【解答】解:∵x=0或x+2=0,∴x1=0,x2=﹣2.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解.16.已知△OAB在平面直角坐标系中的位置如图所示.请解答以下问题:(1)按要求作图:先将△ABO绕原点O逆时针旋转90°得△OA1B1,再以原点O为位似中心,将△OA1B1在原点异侧按位似比2:1进行放大得到△OA2B2;(2)直接写出点A1的坐标,点A2的坐标.【分析】(1)直接利用位似图形的性质得出对应点位置进而得出答案;(2)利用(1)中所画图形进而得出答案.【解答】解:(1)如图所示:△OA1B1,△OA2B2,即为所求;(2)点A1的坐标为:(﹣1,3),点A2的坐标为:(2,﹣6).【点评】此题主要考查了位似变换以及旋转变换,正确得出对应点位置是解题关键.四、(本大题共2小题,每小题8分,满分16分.)17.某地区投入教育经费2500万元,投入教育经费3025万元,求至该地区投入教育经费的年平均增长率.【分析】一般用增长后的量=增长前的量×(1+增长率),要投入教育经费是2500(1+x)万元,在的基础上再增长x,就是的教育经费数额,即可列出方程求解.【解答】解:设增长率为x,根据题意为2500(1+x)万元,为2500(1+x)2万元.则2500(1+x)2=3025,解得x=0.1=10%,或x=﹣2.1(不合题意舍去).答:这两年投入教育经费的平均增长率为10%.【点评】本题考查了一元二次方程中增长率的知识.增长前的量×(1+年平均增长率)年数=增长后的量.18.为了估计河的宽度,勘测人员在河的对岸选定一个目标点A,在近岸分别取点B、D、E、C,使点A、B、D在一条直线上,且AD⊥DE,点A、C、E也在一条直线上,且DE∥BC.经测量BC=24米,BD=12米,DE=40米,求河的宽度AB为多少米?【分析】根据题意得出△ABE∽△CDE,进而利用相似三角形的性质得出答案.【解答】解:设宽度AB为x米,∵DE∥BC,∴△ABC∽△ADE,∴=,又∵BC=24,BD=12,DE=40代入得∴=,解得x=18,答:河的宽度为18米.【点评】本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE∽△CDE是解答此题的关键.五、(本大题共2小题,每小题10分,满分20分.)19.如图,⊙O中弦AB与CD交于M点.(1)求证:DM•MC=BM•MA;(2)若∠D=60°,⊙O的半径为2,求弦AC的长.【分析】(1)根据圆周角定理得到∠D=∠B,证明△DMA∽△BMC,根据相似三角形的性质列出比例式,即可证明结论;(2)连接OA,OC,过O作OH⊥AC于H点,根据圆周角定理、垂径定理计算即可.【解答】(1)证明:∵=,∴∠D=∠B,又∵∠DMA=∠BMC,∴△DMA∽△BMC,∴=,∴DM•MC=BM•MA;(2)连接OA,OC,过O作OH⊥AC于H点,∵∠D=60°,∴∠AOC=120°,∠OAH=30°,AH=CH,∵⊙O半径为2,∴AH=∵AC=2AH,∴AC=2.【点评】本题考查的是相似三角形的判定和性质、圆周角定理、垂径定理,掌握圆周角定理、相似三角形的判定定理和性质定理是解题的关键.20.在平面直角坐标系xOy中,已知抛物线y=x2﹣4x+2m﹣1的顶点为C,图象与x轴交于A、B 两点(点A在点B的左侧).(1)求m的取值范围;(2)当m取最大整数时,求△ABC的面积.【分析】(1)根据抛物线与x轴有两个交点,得到△>0,由此求得m的取值范围.(2)利用(1)中m的取值范围确定m=2,然后根据抛物线解析式求得点A、B的坐标,利用三角形的面积公式解答即可.【解答】解:(1)∵抛物线y=x2﹣4x+2m﹣1与x轴有两个交点,令y=0.∴x2﹣4x+2m﹣1=0.∵与x轴有两个交点,∴方程有两个不等的实数根.∴△>0.即△=(﹣4)2﹣4•(2m﹣1)>0,∴m<2.5.(2)∵m<2.5,且m取最大整数,∴m=2.当m=2时,抛物线y=x2﹣4x+2m﹣1=x2﹣4x+3=(x﹣2)2﹣1.∴C坐标为(2,﹣1).令y=0,得x2﹣4x+3=0,解得x1=1,x2=3.∴抛物线与x轴两个交点的坐标为A(1,0),B(3,0),∴△ABC的面积为=1.【点评】考查了抛物线与x轴的交点坐标,二次函数图象上点的坐标特征,二次函数图象与系数的关系等知识点,解题时,注意二次函数与一元二次方程间的转化关系.六、(本题满分12分)21.在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,他们的形状、大小、质地等完全相同.小兰先从盒子里随机取出一个小球,记下数字为x,放回盒子,摇匀后,再由小田随机取出一个小球,记下数字为y(1)用列表法或画树状图法表示出(x,y)的所有可能出现的结果;(2)求小兰、小田各取一次小球所确定的点(x,y)落在反比例函数y=的图象上的频率;(3)求小兰、小田各取一次小球所确定的数x,y满足y的概率.【分析】(1)列表得出所有等可能的情况数即可;(2)找出点(x,y)落在反比例函数y=的图象上的情况数,即可求出所求的概率;(3)找出所确定的数x,y满足y的情况数,即可求出所求的概率.【解答】解:(1)列表如下:1234 1(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)(4,4)所有等可能的结果有16种,分别为(1,1);(1,2);(1,3);(1,4);(2,1);(2,2);(2,3);(2,4);(3,1);(3,2);(3,3);(3,4);(4,1);(4,2);(4,3);(4,4);(2)其中点(x,y)落在反比例函数y=的图象上的情况有:(2,3);(3,2)共2种,则P(点(x,y)落在反比例函数y=的图象上)==;(3)所确定的数x,y满足y的情况有:(1,1);(1,2);(1,3);(1,4);(2,1);(2,2);(3,1);(4,1)共8种,则P(所确定的数x,y满足y)==.【点评】此题考查了列表法与树状图法,以及反比例函数图象上点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.七、(本题满分12分)22.如图,Rt△ABP的直角顶点P在第四象限,顶点A、B分别落在反比例函数y=图象的两支上,且PB⊥x轴于点C,PA⊥y轴于点D,AB分别与x轴,y轴相交于点F和E.已知点B的坐标为(1,3).(1)填空:k=3;(2)证明:CD∥AB;(3)当四边形ABCD的面积和△PCD的面积相等时,求点P的坐标.【分析】(1)由点B的坐标,利用反比例函数图象上点的坐标特征可求出k值;(2)设A点坐标为(a,),则D点坐标为(0,),P点坐标为(1,),C点坐标为(1,0),进而可得出PB,PC,PA,PD的长度,由四条线段的长度可得出,结合∠P=∠P 可得出△PDC∽△PAB,由相似三角形的性质可得出∠CDP=∠A,再利用“同位角相等,两直线平行”可证出CD∥AB;(3)由四边形ABCD的面积和△PCD的面积相等可得出S△PAB =2S△PCD,利用三角形的面积公式可得出关于a的方程,解之取其负值,再将其代入P点的坐标中即可求出结论.【解答】(1)解:∵B点(1,3)在反比例函数y=的图象,∴k=1×3=3.故答案为:3.(2)证明:∵反比例函数解析式为,∴设A点坐标为(a,).∵PB⊥x轴于点C,PA⊥y轴于点D,∴D点坐标为(0,),P点坐标为(1,),C点坐标为(1,0),∴PB=3﹣,PC=﹣,PA=1﹣a,PD=1,∴,,∴.又∵∠P=∠P,∴△PDC∽△PAB,∴∠CDP=∠A,∴CD∥AB.(3)解:∵四边形ABCD的面积和△PCD的面积相等,∴S△PAB =2S△PCD,∴×(3﹣)×(1﹣a)=2××1×(﹣),整理得:(a﹣1)2=2,解得:a1=1﹣,a2=1+(舍去),∴P点坐标为(1,﹣3﹣3).【点评】本题考查了反比例函数图象上点的坐标特征、相似三角形的判定与性质、平行线的判定以及三角形的面积,解题的关键是:(1)根据点的坐标,利用反比例函数图象上点的坐标特征求出k值;(2)利用相似三角形的判定定理找出△PDC∽△PAB;(3)由三角形的面积公式,找出关于a的方程.八、(本题满分14分)23.如图1,四边形ABCD中,AB⊥BC,AD∥BC,点P为DC上一点,且AP=AB,分别过点A 和点C作直线BP的垂线,垂足为点E和点F.(1)证明:△ABE∽△BCF;(2)若=,求的值;(3)如图2,若AB=BC,设∠DAP的平分线AG交直线BP于G.当CF=1,=时,求线段AG的长.【分析】(1)由余角的性质可得∠ABE=∠BCF,即可证△ABE∽△BCF;(2)由相似三角形的性质可得==,由等腰三角形的性质可得BP=2BE,即可求的值;(3)由题意可证△DPH∽△CPB,可得==,可求AE=,由等腰三角形的性质可得AE平分∠BAP,可证∠EAG=∠BAH=45°,可得△AEG是等腰直角三角形,即可求AG 的长.【解答】证明:(1)∵AB⊥BC,∴∠ABE+∠FBC=90°又∵CF⊥BF,∴∠BCF+∠FBC=90°∴∠ABE=∠BCF又∵∠AEB=∠BFC=90°,∴△ABE∽△BCF(2)∵△ABE∽△BCF,∴==又∵AP=AB,AE⊥BF,∴BP=2BE∴==(3)如图,延长AD与BG的延长线交于H点∵AD∥BC,∴△DPH∽△CPB∴==∵AB=BC,由(1)可知△ABE≌△BCF∴CF=BE=EP=1,∴BP=2,代入上式可得HP=,HE=1+=∵△ABE∽△HAE,∴=,=,∴AE=∵AP=AB,AE⊥BF,∴AE平分∠BAP又∵AG平分∠DAP,∴∠EAG=∠BAH=45°,∴△AEG是等腰直角三角形.∴AG=AE=3【点评】本题是相似综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,添加恰当辅助线构造相似三角形是本题的关键.。
一、选择题(每小题3分,共计36分)1.如图,若数轴上不重合的A、B两点到原点的距离相等,则点B所表示的数为( )A.3 B.2 C.1 D.02.在探索因式分解的公式时,可以借助几何图形来解释某些公式.如图,从左图到右图的变化过程中,解释的因式分解公式是( )A.(a+b)(a﹣b)=a2﹣b2B.a2﹣b2=(a+b)(a﹣b)C.a2+b2=(a+b)2D.(a﹣b)2=a2﹣2ab+b23.如果a2+2a﹣3=0,那么代数式(a4a-)•22aa-的值是( )A.3 B.﹣1 C.1 D.﹣34.x的取值范围在数轴上表示为( )A.B.C.D.5.《九章算术》中有”盈不足术”的问题,原文如下:”今有共買羊,人出五,不足四十五;人出七,不足三.问人数,羊價各幾何?”题意是:若干人共同出资买羊,每人出5元,则差45元;每人出7元,则差3元求人数和羊价各是多少?设买羊人数为x人,则根据题意可列方程为( )A .5x +45=7x +3B .5x +45=7x ﹣3C .5x ﹣45=7x +3D .5x ﹣45=7x ﹣36.在矩形ABCD 中,放入六个形状、大小相同的长方形,所标尺寸如图所示,设小长方形的长、宽分别为x cm,y cm,则下列方程组正确的是( )A .26314x y y x y -+=⎧⎨+=⎩B .31426x y x y +=⎧⎨+=⎩C .31426x y x y +=⎧⎨-=⎩D .3146x y x y +=⎧⎨+=⎩7.对于实数a 、b ,定义一种新运算”⊗”为:23a b a ab⊗=-,这里等式右边是通常的四则运算.若(﹣3)⊗x =2⊗x ,则x 的值为( ) A .﹣2B .﹣1C .1D .28.已知a ,b 是一元二次方程x 2+3x ﹣1=0的两个根,则代数式a 2+b 2的值是( ) A .1B .9C .7D .119.光明文具店销售某品牌钢笔,当它的售价为14元/支时,月销量为180支,若每支钢笔的售价每涨价1元,月销量就相应减少15支,设每支钢笔涨价后的售价为x 元/支,若使该种钢笔的月销量不低于105支,则x 应满足的不等式为( ) A .180﹣15x ≥105 B .180﹣(x ﹣14)≤105C .180+15(x +14)≥105D .180﹣15(x ﹣14)≥10510.如图,若在象棋盘上建立平面直角坐标系xOy ,使”帅”的坐标为(﹣1,﹣2)”马”的坐标为(2,﹣2),则”兵”的坐标为( )A.(﹣3,1) B.(﹣2,1) C.(﹣3,0) D.(﹣2,3)11.直线y=﹣2x﹣1关于y轴对称的直线与直线y=﹣2x+m的交点在第四象限,则m的取值范围是( )A.m>﹣1 B.m<1 C.﹣1<m<1 D.﹣1≤m≤112.二次函数y12(x﹣4)2+5的图象的开口方向、对称轴、顶点坐标分别是( )A.向上,直线x=4,(4,5) B.向上,直线x=﹣4,(﹣4,5)C.向上,直线x=4,(4,﹣5) D.向下,直线x=﹣4,(﹣4,5)二、填空题(每小题3分,共计12分)13.将一张矩形纸片ABCD沿直线EF折成如图所示的形状,若∠HED=50°,则∠EFG=__________.14.如图,矩形ABCD的对角线AC,BD相交于点O,过点O作OE⊥AC交AB于点E,若BC=4,△AOE的面积为6,则BE=__________.15.若△ABC∽△DEF,且相似比是2:3,它们周长之和是40,则△ABC的周长是__________.16.如图,在△ABC中,DE∥BC,交AB于点D,交AC于点E,点F为BC边上一点,AF与DE交于点G.若13 DEBC=,则AGGF=__________.三、简答题(17-21每题8分,22-23每题10分,24题12分)17.先化简:(1-32x)÷244xx x-1,再将x=-1代入求值.18.如图所示,在菱形ABCD中,点E.F分别为A D.CD边上的点,DE=DF,求证:∠1=∠2.19.某初中学校餐厅为了解学生对早餐的要求,随即抽样调查了该校的部分学生,并根据其中两个单选问题的调查结果,绘制了如下尚不完整的统计图表.学生能接受的早餐价格统计表价格分组(单位:元) 频数频率0<x≤2 60 0.152<x≤4 180 c4<x≤6 92 0.236<x≤8 a0.12x>8 20 0.05合计b 1根据以上信息解答下列问题:(1)统计表中,a=__________,b=__________,c=__________.(2)扇形统计图中,m的值为__________,”甜”所对应的圆心角的度数是__________.(3)该餐厅计划每天提供早餐2000份,其中咸味大约准备多少份较好?20.如图是长沙九龙仓国际金融中心,位于长沙市黄兴路与解放路交会处的东北角,投资160亿元人民币,总建筑面积达98万平方米,中心主楼BC高452m,是目前湖南省第一高楼,大楼顶部有一发射塔AB,已知和BC处于同一水平面上有一高楼DE,在楼DE底端D点测得A的仰角为α,tanα247,在顶端E点测得A的仰角为45°,AE(1)求两楼之间的距离CD;(2)求发射塔AB的高度.21.一次函数y=kx+b的图象与反比例函数y2x-=的图象相交于A(﹣1,m),B(n,﹣1)两点.(1)求出这个一次函数的表达式.(2)求△OAB的面积.(3)直接写出使一次函数值大于反比例函数值的x的取值范围.22.网约车越来越受到大众的欢迎.某种网约车的总费用由里程费和耗时费组成,其中里程费按p元/千米计算,耗时费按q元/分钟计算(总费用不足10元按10元计价).李明、王刚两人用该打车方式出行,按上述计价规则,其行驶里程数、耗时以及打车总费用如表:里程数s(千米) 耗时t(分钟) 车费(元)李明8 8 12王刚10 12 16(1)求p,q的值;(2)若张华也用该打车方式出行,平均车速为50千米/时,行驶了15千米,那么张华的打车总费用为多少? 23.如图,AG 是∠HAF 的平分线,点E 在AF 上,以AE 为直径的⊙O 交AG 于点D,过点D 作AH 的垂线,垂足为点C,交AF 于点B .(1)求证:直线BC 是⊙O 的切线;(2)若AC=2CD,设⊙O 的半径为r,求BD 的长度.24.如图,抛物线62++=bx ax y 经过点A (-2,0),B (4,0)两点,与y 轴交于点C ,点D 是抛物线上一个动点,设点D 的横坐标为)41(<<m m .连接AC ,BC ,DB ,D C.(1)求抛物线的函数表达式; (2)△BCD 的面积等于△AOC 的面积的43时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上的一个动点,点N 是抛物线上一动点,试判断是否存在这样的点M ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,若存在,请直接写出点M 的坐标;若不存在,请说明理由.答案与解析一、选择题(每小题3分,共计36分)1.如图,若数轴上不重合的A、B两点到原点的距离相等,则点B所表示的数为( )A.3 B.2 C.1 D.0【答案】B【解析】∵A、B两点到原点的距离相等,A为﹣2,则B为﹣2的相反数,即B表示2.2.在探索因式分解的公式时,可以借助几何图形来解释某些公式.如图,从左图到右图的变化过程中,解释的因式分解公式是( )A.(a+b)(a﹣b)=a2﹣b2B.a2﹣b2=(a+b)(a﹣b)C.a2+b2=(a+b)2D.(a﹣b)2=a2﹣2ab+b2【答案】B【解析】如图,从左图到右图的变化过程中,解释的因式分解公式是:a2﹣b2=(a+b)(a﹣b).3.如果a2+2a﹣3=0,那么代数式(a4a-)•22aa-的值是( )A.3 B.﹣1 C.1 D.﹣3 【答案】A【解析】原式24a a -=•22a a - 22a a a +-=()()•22a a - =a (a +2)=a 2+2a ,∵a 2+2a ﹣3=0,∴a 2+2a =3, 故原式=3.4.x 的取值范围在数轴上表示为( ) A . B .C .D .【答案】A【解析】由题意可知:3010x x -≥⎧⎨-≠⎩,∴x ≤3且x ≠1. 5.《九章算术》中有”盈不足术”的问题,原文如下:”今有共買羊,人出五,不足四十五;人出七,不足三.问人数,羊價各幾何?”题意是:若干人共同出资买羊,每人出5元,则差45元;每人出7元,则差3元求人数和羊价各是多少?设买羊人数为x 人,则根据题意可列方程为( ) A .5x +45=7x +3 B .5x +45=7x ﹣3C .5x ﹣45=7x +3D .5x ﹣45=7x ﹣3【答案】A【解析】设买羊人数为x 人,则根据题意可列方程为5x +45=7x +3.6.在矩形ABCD 中,放入六个形状、大小相同的长方形,所标尺寸如图所示,设小长方形的长、宽分别为x cm,y cm,则下列方程组正确的是( )A .26314x y y x y -+=⎧⎨+=⎩B .31426x y x y +=⎧⎨+=⎩C .31426x y x y +=⎧⎨-=⎩D .3146x y x y +=⎧⎨+=⎩【答案】A【解析】设小长方形的长为x ,宽为y ,如图可知,31426x y x y y +=⎧⎨+-=⎩.7.对于实数a 、b ,定义一种新运算”⊗”为:23a b a ab⊗=-,这里等式右边是通常的四则运算.若(﹣3)⊗x =2⊗x ,则x 的值为( ) A .﹣2 B .﹣1C .1D .2【答案】B【解析】根据题中的新定义化简得:339342x x=+-,去分母得:12﹣6x =27+9x , 解得:x =﹣1,经检验x =﹣1是分式方程的解.8.已知a ,b 是一元二次方程x 2+3x ﹣1=0的两个根,则代数式a 2+b 2的值是( ) A .1 B .9C .7D .11【答案】D【解析】∵a、b是一元二次方程x2+3x﹣1=0的两个根,∴a+b=﹣3,ab=﹣1,∴a2+b2=(a+b)2﹣2ab=(﹣3)2﹣2×(﹣1)=9+2=11.9.光明文具店销售某品牌钢笔,当它的售价为14元/支时,月销量为180支,若每支钢笔的售价每涨价1元,月销量就相应减少15支,设每支钢笔涨价后的售价为x元/支,若使该种钢笔的月销量不低于105支,则x应满足的不等式为( )A.180﹣15x≥105 B.180﹣(x﹣14)≤105C.180+15(x+14)≥105 D.180﹣15(x﹣14)≥105【答案】D【解析】依题意有180﹣15(x﹣14)≥105.10.如图,若在象棋盘上建立平面直角坐标系xOy,使”帅”的坐标为(﹣1,﹣2)”马”的坐标为(2,﹣2),则”兵”的坐标为( )A.(﹣3,1) B.(﹣2,1) C.(﹣3,0) D.(﹣2,3)【答案】A【解析】如图所示:可得”炮”是原点,则”兵”位于点:(﹣3,1).11.直线y=﹣2x﹣1关于y轴对称的直线与直线y=﹣2x+m的交点在第四象限,则m的取值范围是( )A.m>﹣1 B.m<1 C.﹣1<m<1 D.﹣1≤m≤1【答案】C【解析】联立212y x y x m =-⎧⎨=-+⎩,解得1412m x m y +⎧=⎪⎪⎨-⎪=⎪⎩, ∵交点在第四象限,∴104102m m +⎧>⎪⎪⎨-⎪<⎪⎩①②, 解不等式①得,m >﹣1,解不等式②得,m <1, 所以,m 的取值范围是﹣1<m <1. 12.二次函数y 12=(x ﹣4)2+5的图象的开口方向、对称轴、顶点坐标分别是( ) A .向上,直线x =4,(4,5) B .向上,直线x =﹣4,(﹣4,5) C .向上,直线x =4,(4,﹣5) D .向下,直线x =﹣4,(﹣4,5)【答案】A【解析】二次函数y 12=(x ﹣4)2+5的图象的开口向上、对称轴为直线x =4、顶点坐标为(4,5). 二、填空题(每小题3分,共计12分)13.将一张矩形纸片ABCD 沿直线EF 折成如图所示的形状,若∠HED =50°,则∠EFG =__________.【答案】65°【解析】设∠EFG =α,则由折叠可得∠BFE =α, ∵AD ∥BC ,∴∠DEF =∠BFE =α,∠FEH =α+50°,由折叠可得∠AEF=∠HEF=α+50°,又∵∠AED=180°,∴α+50°+α=180°,解得α=65°,∴∠EFG=65°.14.如图,矩形ABCD的对角线AC,BD相交于点O,过点O作OE⊥AC交AB于点E,若BC=4,△AOE的面积为6,则BE=__________.【答案】【解析】连接E C.∵四边形ABCD是矩形∴AO=CO,且OE⊥AC,∴OE垂直平分AC∴CE=AE,S△AOE=S△COE=6,∴S△AEC=2S△AOE=12.∴12AE•BC=12,又∵BC=4,∴AE=6,∴EC=6.∴BE==15.若△ABC∽△DEF,且相似比是2:3,它们周长之和是40,则△ABC的周长是__________.【答案】16【解析】∵△ABC与△DEF的相似比为2:3,∴△ABC的周长:△DEF的周长=2:3,∴△ABC的周长2 23 =⨯+40=16.16.如图,在△ABC 中,DE ∥BC ,交AB 于点D ,交AC 于点E ,点F 为BC 边上一点,AF 与DE 交于点G .若13DE BC =,则AGGF=__________.【答案】12. 【解析】∵DE ∥BC ,∴△ADE ∽△ABC ,∴13AD DE AB BC ==.同理:△ADG ∽△ABF , ∴13AG AD AF AB ==,又∵AF =AG +GF ,∴11312AG AG GF AF AG ===--. 三、简答题(17-21每题8分,22-23每题10分,24题12分)17.先化简:(1-32x )÷244x x x -1,再将x=-1代入求值. 【答案】见解析.【解析】先把括号内的分式进行通分相减,再把除法化为乘法进行约分化简,最后代入求值.原式=2x x -1×22x x -1=x+2.当x=-1时,原式=-1+2=1.18.如图所示,在菱形ABCD 中,点E.F 分别为A D.CD 边上的点,DE =DF , 求证:∠1=∠2.【答案】见解析.【解析】由菱形的性质得出AD=CD,由SAS证明△ADF≌△CDE,即可得出结论.证明:∵四边形ABCD是菱形,∴AD=CD,在△ADF和△CDE中,,∴△ADF≌△CDE(SAS),∴∠1=∠2.19.某初中学校餐厅为了解学生对早餐的要求,随即抽样调查了该校的部分学生,并根据其中两个单选问题的调查结果,绘制了如下尚不完整的统计图表.学生能接受的早餐价格统计表价格分组(单位:元) 频数频率0<x≤2 60 0.152<x≤4 180 c4<x≤6 92 0.236<x≤8 a0.12x>8 20 0.05合计b 1根据以上信息解答下列问题:(1)统计表中,a=__________,b=__________,c=__________.(2)扇形统计图中,m的值为__________,”甜”所对应的圆心角的度数是__________.(3)该餐厅计划每天提供早餐2000份,其中咸味大约准备多少份较好?【解析】(1)b=60÷0.15=400,a=400×0.12=48,c=180÷400=0.45,故答案为:400,48,0.45;(2)m%=1﹣26%﹣12%﹣23%﹣9%=30%,即m的值是30,“甜”所对应的圆心角的度数是:360°×30%=108°,故答案为:30,108°;(3)2000×26%=520(份),答:该餐厅计划每天提供早餐2000份,其中咸味大约准备520份较好.20.如图是长沙九龙仓国际金融中心,位于长沙市黄兴路与解放路交会处的东北角,投资160亿元人民币,总建筑面积达98万平方米,中心主楼BC高452m,是目前湖南省第一高楼,大楼顶部有一发射塔AB,已知和BC处于同一水平面上有一高楼DE,在楼DE底端D点测得A的仰角为α,tanα247,在顶端E点测得A的仰角为45°,AE(1)求两楼之间的距离CD;(2)求发射塔AB的高度.【解析】(1)过点E作EF⊥AC于点F,∵∠AEF=45°,AE∴EF=140,由矩形的性质可知:CD=EF=140,故两楼之间的距离为140m;(2)在Rt△ADC中,tanαACCD=,∴AC=140247⨯=480,∴AB=AC﹣BC=480﹣452=28,故发射塔AB的高度为28m.21.一次函数y=kx+b的图象与反比例函数y2x-=的图象相交于A(﹣1,m),B(n,﹣1)两点.(1)求出这个一次函数的表达式.(2)求△OAB的面积.(3)直接写出使一次函数值大于反比例函数值的x的取值范围.【解析】(1)把A(﹣1,m),B(n,﹣1)分别代入y2x-=得﹣m=﹣2,﹣n=﹣2,解得m=2,n=2,所以A点坐标为(﹣1,2),B点坐标为(2,﹣1),把A(﹣1,2),B(2,﹣1)代入y=kx+b得221k bk b-+=⎧⎨+=-⎩,解得11kb=-⎧⎨=⎩,所以这个一次函数的表达式为y=﹣x+1;(2)设直线AB交y轴于P点,如图,当x=0时,y=1,所以P点坐标为(0,1),所以S△OAB=S△AOP+S△BOP12=⨯1×112+⨯1×232=;(3)使一次函数值大于反比例函数值的x的取值范围是x<﹣1或0<x<2.22.网约车越来越受到大众的欢迎.某种网约车的总费用由里程费和耗时费组成,其中里程费按p元/千米计算,耗时费按q元/分钟计算(总费用不足10元按10元计价).李明、王刚两人用该打车方式出行,按上述计价规则,其行驶里程数、耗时以及打车总费用如表:里程数s(千米) 耗时t(分钟) 车费(元)李明8 8 12王刚10 12 16(1)求p,q的值;(2)若张华也用该打车方式出行,平均车速为50千米/时,行驶了15千米,那么张华的打车总费用为多少?【解析】(1)小明的里程数是8km,时间为8min;小刚的里程数为10km,时间为12min.由题意得8812 101216p qp q+=⎧⎨+=⎩,解得112 pq=⎧⎪⎨=⎪⎩;(2)张华的里程数是15km,时间为18min.则总费用是:15p+18q=24(元).答:总费用是24元.23.如图,AG是∠HAF的平分线,点E在AF上,以AE为直径的⊙O交AG于点D,过点D作AH的垂线,垂足为点C,交AF于点B.(1)求证:直线BC是⊙O的切线;(2)若AC=2CD,设⊙O的半径为r,求BD的长度.【分析】(1)根据角平分线的定义和同圆的半径相等可得OD∥AC,证明OD⊥CB,可得结论;(2)在Rt△ACD中,设CD=a,则AC=2a,AD=a,证明△ACD∽△ADE,表示a=,由平行线分线段成比例定理得:,代入可得结论.【解答】(1)证明:连接OD,∵AG是∠HAF的平分线,∴∠CAD=∠BAD,∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠ODA,∴OD∥AC,∵∠ACD=90°,∴∠ODB=∠ACD=90°,即OD⊥CB,∵D在⊙O上,∴直线BC是⊙O的切线;(4分)(2)解:在Rt△ACD中,设CD=a,则AC=2a,AD=a,连接DE,∵AE是⊙O的直径,∴∠ADE=90°,由∠CAD=∠BAD,∠ACD=∠ADE=90°,∴△ACD∽△ADE,∴,即,∴a=,由(1)知:OD ∥AC,∴,即,∵a=,解得BD=r .24.如图,抛物线62++=bx ax y 经过点A (-2,0),B (4,0)两点,与y 轴交于点C ,点D 是抛物线上一个动点,设点D 的横坐标为)41(<<m m .连接AC ,BC ,DB ,D C.(4)求抛物线的函数表达式;(5)△BCD 的面积等于△AOC 的面积的43时,求m 的值; (6)在(2)的条件下,若点M 是x 轴上的一个动点,点N 是抛物线上一动点,试判断是否存在这样的点M ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,若存在,请直接写出点M 的坐标;若不存在,请说明理由.【答案】见解析.【解析】(1)抛物线c bx ax y ++=2经过点A (-2,0),B (4,0),∴426016460a b a b -+=⎧⎨++=⎩,解得3432a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线的函数表达式为233642y x x =-++ (2)作直线DE ⊥x 轴于点E ,交BC 于点G ,作CF ⊥DE ,垂足为F . ∵点A 的坐标为(-2,0),∴OA =2由0=x ,得6=y ,∴点C 的坐标为(0,6),∴OC =6∴S △OAC =1126622OA OC ⋅⋅=⨯⨯=,∵S △BCD =43S △AOC =29643=⨯ 设直线BC 的函数表达式为n kx y +=,由B ,C 两点的坐标得406k n n +=⎧⎨=⎩,解得326k n ⎧=-⎪⎨⎪=⎩ ∴直线BC 的函数表达式为623+-=x y . ∴点G 的坐标为3(,6),2m m -+ ∴2233336(6)34224DG m m m m m =-++--+=-+ ∵点B 的坐标为(4,0),∴OB =4S △BCD =S △CDG +S △BDG =1111()2222DG CF DG BE DG CF BE DG BO ⋅⋅+⋅⋅=⋅+=⋅⋅ =22133346242m m m m -+⨯=-+() ∴239622m m -+=,解得11=m (舍),32=m ,∴m 的值为3(3)1234(8,0),(0,0),(M M M M如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图 以BD 为边进行构图,有3种情况,采用构造全等发进行求解. ∵D 点坐标为)415,3(,所以21,N N 的纵坐标为415 233156424x x -++=,解得3,121=-=x x (舍) 可得2215(1,),(0,0)4N M -∴∴34,N N 的纵坐标为415-时,2123315611424x x x x -++=-==+,∴3315(1),4N M +-∴,4415(1),(4N M -∴ 以BD 为对角线进行构图,有1种情况,采用中点坐标公式进行求解. ∵111151515(1,),(34(1),0),(8,0)444N M M -∴+--+-∴。
【九年级】中考数学第一次模拟考试题(附答案)卷ⅰ(,共24分)一、(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案涂在答题卡上)1.的绝对值就是()a.4b.c.d.2.以下运算中恰当的就是()a.b.c.d.3.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.若∠1=20°,那么∠3的度数是()a.25°b.30°c.60°d.65°4.不等式3x+1≥2x的解集在数轴上表示为()5.未知四边形中,,如果嵌入一个条件,即可面世该四边形就是正方形,那么这个条件可以就是()a.b.c.d.6.例如图,未知⊙o的直径ab⊥弦cd于点e.以下结论一定恰当的就是()a.ae=oeb.ce=dec.oe=12ced.∠aoc=60°7.某人沿着存有一定坡度的坡面跑了10米,此时他与水平地面的垂直距离为6米,则他水平行进的距离为()米.a.5 b.6 c.8 d.108.种饮料比种饮料单价太少1元,小峰买了2瓶种饮料和3瓶种饮料,一共花掉了13元,如果设种饮料单价为元/瓶,那么下面所列方程恰当的就是()a.b.c.d.9.如图,是一种古代计时器――“漏壶”的示意图,在壶内盛一定量的水,水从壶下的小孔漏出,壶壁内画出刻度,人们根据壶中水面的位置计算时间.若用表示时间,表示壶底到水面的高度,下面的图象适合表示一小段时间内与的函数关系的是(不考虑水量变化对压力的影响)()abcd10.如图所示,半圆ab平移到半圆cd的位置时所扫过的面积为()a.3b.3+c.6d.6+11.未知抛物线的开口向上,顶点座标为(2,-3),那么该抛物线有()a.最小值-3b.最大值-3c.最小值2d.最大值212.在平面直角坐标系中,对于平面内任一点(,n),规定以下两种变换:①,如;②,如.按照以上变换有:,那么等于()a.(3,2)b.(3,-2)c.(-3,2)d.(-3,-2)卷ii(非选择题,共96分)请把答案写在答题纸上二、题(本大题共6个小题;每小题3分后,共18分后)13.计算:=;14.例如图,若a就是实数a在数轴上对应的点,则关于a,-a,1的大小关系是.15.学校精心安排三辆车,非政府九年级学生团员回去敬老院看望老人,其中小王与小菲都可以从这三辆车中自由选择一辆乘坐,则小王与小菲同车的概率为__________.16.如果,那么代数式的值是。
浙江省衢州市中考数学一模试卷一、选择题(本大题有10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项填在相应的答案栏内,不选、多选、错选均不给分.1.已知点(1,﹣2)在反比例函数的图象上,那么这个函数图象一定经过点()A.(﹣1,2)B.(﹣2,﹣1)C.(﹣1,﹣2)D.(2,1)2.如果=,则=()A.B.C.D.3.小芳从正面(图示“主视方向”)观察如图的热水瓶时,得到的主视图是()A.B.C.D.4.抛物线y=2(x﹣3)2+4的顶点坐标是()A.(3,4)B.(4,3)C.(﹣3,4)D.(﹣3,﹣4)5.已知:⊙O1和⊙O2的半径分别为10cm和4cm,圆心距为6cm,则⊙O1和⊙O2的位置关系是()A.外切 B.相离 C.相交 D.内切6.下列计算正确的是()A.a2•a3=a6B.a2+a2=a4C.3a2×2a2=6a4D.5a﹣a=47.若用半径为9,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是()A.9 B.3 C.1 D.68.已知函数y=﹣x2+x+2,则当y<0时,自变量x的取值范围是()A.x<﹣1或x>2 B.﹣1<x<2 C.x<﹣2或x>1 D.﹣2<x<19.如图,将宽为1cm的纸条沿BC折叠,使∠CAB=45°,则折叠后重叠部分的面积为()A.cm2B.cm2C.cm2D.cm210.如图,C为⊙O直径AB上一动点,过点C的直线交⊙O于D,E两点,且∠ACD=45°,DF⊥AB于点F,EG⊥AB于点G,当点C在AB上运动时.设AF=x,DE=y,下列中图象中,能表示y与x的函数关系式的图象大致是()A.B.C.D.二、填空题(本大题共有6小题,每小题4分,共24分.)11.若二次根式有意义,则x的取值范围是.12.将y=2x2的函数图象向左平移1个单位,再向上平移3个单位,得到二次函数解析式为.13.工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小圆孔的宽口AB的长度为mm.14.如图,是小李设计用手电来测量某古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.1米,BP=1.9米,PD=19米,那么该古城墙CD的高度是米.15.一个滑轮起重装置如图所示,滑轮的半径是10cm,当重物上升10cm时,滑轮的一条半径OA绕轴心O按逆时针方向旋转的角度约为度.(假设绳索与滑轮之间没有滑动,π取3.14,结果精确到1°)16.在反比例函数y=(x>0)的图象上,有一系列点A1、A2、A3、…、A n、A n,若+1A1的横坐标为2,且以后每点的横坐标与它前一个点的横坐标的差都为2.现分别过点A1、A2、A3、…、A n、A n作x轴与y轴的垂线段,构成若干个矩形如图所示,将图中阴影部分+1的面积从左到右依次记为S1,S2,S3,…,S n,则S1=,S1+S2+S3+…+S n=.(用n的代数式表示).三、解答题(共66分)17.计算:.18.学校组织初三数学备课组全体教师去外校听课,安排了两辆车,按1~2编号,程、李两位教师可任意选坐一辆车.(1)用画树状图的方法或列表法列出所有可能的结果;(2)求程、李两位教师同坐2号车的概率.19.如图,直线y1=2x+b与x轴、y轴交于点A、B,与双曲线(x<0)交于点C、D,已知点C的坐标为(﹣1,4).(1)求直线和双曲线的解析式;(2)利用图象,说出x在什么范围内取值时,有y1>y2.20.如图所示,小杨在广场上的A处正面观测一座楼房墙上的广告屏幕,测得屏幕下端D 处的仰角为30°,然后他正对大楼方向前进5m到达B处,又测得该屏幕上端C处的仰角为45°.若该楼高为26.65m,小杨的眼睛离地面1.65m,广告屏幕的上端与楼房的顶端平齐.求广告屏幕上端与下端之间的距离.(≈1.732,结果精确到0.1m)21.如图,在Rt△ABC中,∠C=90°,∠ABC的平分线交AC于点D,点O是AB上一点,⊙O过B、D两点,且分别交AB、BC于点E、F.(1)求证:AC是⊙O的切线;(2)已知AB=10,BC=6,求⊙O的半径r.22.为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示.(1)求月销售量y(万件)与销售单价x(元)之间的函数关系式;(2)当销售单价定为50元时,为保证公司月利润达到5万元(利润=销售额﹣生产成本﹣员工工资﹣其它费用),该公司可安排员工多少人?(3)若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?23.如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°,【操作1】将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板DEF 绕点E旋转,并使边DE与边AB交于点P,边EF与边BC于点Q.在旋转过程中,如图2,当时,EP与EQ满足怎样的数量关系?并给出证明.【操作2】在旋转过程中,如图3,当时EP与EQ满足怎样的数量关系?,并说明理由.【总结操作】根据你以上的探究结果,试写出当时,EP与EQ满足的数量关系是什么?其中m的取值范围是什么?(直接写出结论,不必证明).24.如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处.分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线y=ax2+bx+c经过O,D,C三点.(1)求AD的长及抛物线的解析式;(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M,N,C,E为顶点的四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.浙江省衢州市中考数学一模试卷参考答案与试题解析一、选择题(本大题有10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项填在相应的答案栏内,不选、多选、错选均不给分.1.已知点(1,﹣2)在反比例函数的图象上,那么这个函数图象一定经过点()A.(﹣1,2)B.(﹣2,﹣1)C.(﹣1,﹣2)D.(2,1)【考点】反比例函数图象上点的坐标特征.【分析】先根据点(1,﹣2)在反比例函数的图象上求出k的值,再根据k=xy的特点对各选项进行逐一判断.【解答】解:∵点(1,﹣2)在反比例函数的图象上,∴k=1×(﹣2)=﹣2,A、∵(﹣1)×2=﹣2,∴此点在反比例函数图象上;B、∵(﹣2)×(﹣1)=2≠﹣2,∴此点不在反比例函数图象上;C、∵(﹣1)×(﹣2)=2≠﹣2,∴此点不在反比例函数图象上;D、∵2×1=2≠﹣2,∴此点不在反比例函数图象上.故选A.2.如果=,则=()A.B.C.D.【考点】比例的性质.【分析】先根据比例的性质可得+1=+1,进而可得=,再求倒数即可.【解答】解:∵=,∴+1=+1,∴=.故选:C.3.小芳从正面(图示“主视方向”)观察如图的热水瓶时,得到的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看下面是一个矩形,中间是一个梯形,上边是一个矩形,左边是一个矩形,故选:A.4.抛物线y=2(x﹣3)2+4的顶点坐标是()A.(3,4)B.(4,3)C.(﹣3,4)D.(﹣3,﹣4)【考点】二次函数的性质.【分析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标,从而得出对称轴.【解答】解:y=2(x﹣3)2+4是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(3,4).故选A.5.已知:⊙O1和⊙O2的半径分别为10cm和4cm,圆心距为6cm,则⊙O1和⊙O2的位置关系是()A.外切 B.相离 C.相交 D.内切【考点】圆与圆的位置关系.【分析】由⊙O1和⊙O2的半径分别为10cm和4cm,两圆的圆心距是6cm,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.【解答】解:∵⊙O1和⊙O2的半径分别为10cm和4cm,两圆的圆心距是6cm,又∵10﹣4=6,∴两圆的位置关系是内切.故选D.6.下列计算正确的是()A.a2•a3=a6B.a2+a2=a4C.3a2×2a2=6a4D.5a﹣a=4【考点】单项式乘单项式;合并同类项;同底数幂的乘法.【分析】根据同底数幂的乘法底数不变指数相加,单项式的乘法,系数乘系数,同底数的幂相乘;合并同类项系数相加字母及指数不变,可得答案【解答】解:A、同底数幂的乘法底数不变指数相加,故A错误;B、合并同类项系数相加字母及指数不变,故B错误;C、系数乘系数,同底数的幂相乘,故C正确;D、合并同类项系数相加字母及指数不变,故D错误;故选:C.7.若用半径为9,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是()A.9 B.3 C.1 D.6【考点】圆锥的计算.【分析】根据扇形的周长=圆锥的底面周长,列式计算.【解答】解:设这个圆锥的底面半径是r,=2πr,r=3,故选B.8.已知函数y=﹣x2+x+2,则当y<0时,自变量x的取值范围是()A.x<﹣1或x>2 B.﹣1<x<2 C.x<﹣2或x>1 D.﹣2<x<1【考点】二次函数与不等式(组).【分析】先求出函数的图象与x轴的交点坐标,再根据函数的图象开口向下,即可得出当y <0时自变量x的取值范围.【解答】解:当y=0时,﹣x2+x+2=0,(x+1)(﹣x+2)=0,x1=﹣1,x2=2,由于函数开口向下,可知当y<0时,自变量x的取值范围是x<﹣1或x>2.故选A9.如图,将宽为1cm的纸条沿BC折叠,使∠CAB=45°,则折叠后重叠部分的面积为()A.cm2B.cm2C.cm2D.cm2【考点】解直角三角形的应用.【分析】由题可知△ABC是一个顶角为45°的等腰三角形,即∠A=45°,AC=AB,过C作CD⊥AB,垂足为D,根据三角函数定义求出AC,AB,然后就可以求出△ABC面积.【解答】解:如图,由题可知△ABC是一个顶角为45°的等腰三角形,即∠A=45°,AC=AB.作CD⊥AB,垂足为D,则CD=1.∵sin∠A=,∴==AB,=×AB×CD=,∴S△ABC∴折叠后重叠部分的面积为cm2.故选D.10.如图,C为⊙O直径AB上一动点,过点C的直线交⊙O于D,E两点,且∠ACD=45°,DF⊥AB于点F,EG⊥AB于点G,当点C在AB上运动时.设AF=x,DE=y,下列中图象中,能表示y与x的函数关系式的图象大致是()A.B.C.D.【考点】动点问题的函数图象.【分析】本题考查动点函数图象的问题.【解答】解:点C从点A运动到点B的过程中,x的值逐渐增大,DE的长度随x值的变化先变大再变小,当C与O重合时,y有最大值,∵x=0,y=ABx=AB﹣AB时,DE过点O,此时:DE=ABx=AB,y=AB所以,随着x的增大,y先增后降,类抛物线故选:A.二、填空题(本大题共有6小题,每小题4分,共24分.)11.若二次根式有意义,则x的取值范围是x≥1.【考点】二次根式有意义的条件.【分析】根据二次根式的性质可知,被开方数大于等于0,列出不等式即可求出x的取值范围.【解答】解:根据二次根式有意义的条件,x﹣1≥0,∴x≥1.故答案为:x≥1.12.将y=2x2的函数图象向左平移1个单位,再向上平移3个单位,得到二次函数解析式为y=2(x+1)2+3.【考点】二次函数图象与几何变换.【分析】利用平移的规律“左加右减,上加下减”可得到答案.【解答】解:将y=2x2的函数图象向左平移1个单位,其解析式为y=2(x+1)2,再把y=2(x+1)2图象向上平移3个单位,其解析式为y=2(x+1)2+3,故答案为:y=2(x+1)2+3.13.工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小圆孔的宽口AB的长度为8mm.【考点】垂径定理的应用;勾股定理.【分析】先求出钢珠的半径及OD的长,连接OA,过点O作OD⊥AB于点D,则AB=2AD,在Rt△AOD中利用勾股定理即可求出AD的长,进而得出AB的长.【解答】解:连接OA,过点O作OD⊥AB于点D,则AB=2AD,∵钢珠的直径是10mm,∴钢珠的半径是5mm,∵钢珠顶端离零件表面的距离为8mm,∴OD=3mm,在Rt△AOD中,∵AD===4mm,∴AB=2AD=2×4=8mm.故答案为:8.14.如图,是小李设计用手电来测量某古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.1米,BP=1.9米,PD=19米,那么该古城墙CD的高度是11米.【考点】相似三角形的应用.【分析】利用入射与反射得到∠APB=∠CPD,则可判断Rt△ABP∽Rt△CDP,于是根据相似三角形的性质即可求出CD.【解答】解:根据题意得∠APB=∠CPD,∵AB⊥BD,CD⊥BD,∴∠ABP=∠CDP=90°,∴Rt△ABP∽Rt△CDP,∴=,即=,解得CD=11.答:该古城墙的高度为11米.故答案为11.15.一个滑轮起重装置如图所示,滑轮的半径是10cm,当重物上升10cm时,滑轮的一条(假设绳索与滑轮之间没有滑动,半径OA绕轴心O按逆时针方向旋转的角度约为57度.π取3.14,结果精确到1°)【考点】弧长的计算.【分析】设OA旋转的角度为n,由于重物上升10 cm,则点A逆时针旋转的弧长为10 cm,根据弧长公式即可求出.【解答】解:设OA旋转的角度为n,由于重物上升10 cm,则点A逆时针旋转的弧长为10 cm,由弧长公式l=,可求n=≈57度.16.在反比例函数y=(x>0)的图象上,有一系列点A1、A2、A3、…、A n、A n,若+1A1的横坐标为2,且以后每点的横坐标与它前一个点的横坐标的差都为2.现分别过点A1、A2、A3、…、A n、A n作x轴与y轴的垂线段,构成若干个矩形如图所示,将图中阴影部分+1的面积从左到右依次记为S1,S2,S3,…,S n,则S1=5,S1+S2+S3+…+S n=.(用n的代数式表示).【考点】反比例函数综合题.【分析】由已知条件横坐标成等差数列,再根据点A1、A2、A3、…、A n、A n在反比例函+1数上,求出各点坐标,再由面积公式求出S n的表达式,把n=1代入求得S1的值.在反比例函数y=(x>0)的图象上,且【解答】解:∵点A1、A2、A3、…、A n、A n+1每点的横坐标与它前一个点的横坐标的差都为2,又点A1的横坐标为2,∴A1(2,5),A2(4,)∴S1=2×(5﹣)=5;(2n+2,),由题图象知,A n(2n,),A n+1∴S2=2×()=,∴图中阴影部分的面积知:S n=2×()=,(n=1,2,3,…)∵=,∴S1+S2+S3+…+S n=10(++…+)=10(1)=.故答案为:5,.三、解答题(共66分)17.计算:.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】分别进行零指数幂、负整数指数幂及绝对值的运算,然后代入特殊角的三角函数值代入运算即可.【解答】解:原式=1+3+2×﹣=4.18.学校组织初三数学备课组全体教师去外校听课,安排了两辆车,按1~2编号,程、李两位教师可任意选坐一辆车.(1)用画树状图的方法或列表法列出所有可能的结果;(2)求程、李两位教师同坐2号车的概率.【考点】列表法与树状图法.【分析】(1)依据题意列表法或画树状图法分析所有等可能的出现结果即可,(2)根据概率公式程、李两位教师同坐2号车的概率.【解答】解:(1)画树形图得:(2)由(1)可知P(程、李两位教师同坐2号车)=.19.如图,直线y1=2x+b与x轴、y轴交于点A、B,与双曲线(x<0)交于点C、D,已知点C的坐标为(﹣1,4).(1)求直线和双曲线的解析式;(2)利用图象,说出x在什么范围内取值时,有y1>y2.【考点】反比例函数与一次函数的交点问题.【分析】(1)因为两个函数的图象都过C点,将C点坐标代入求得b、k的值,所以易求它们的解析式;(2)先求出D点的横坐标,再观察直线落在双曲线上方的部分对应的x的取值范围即可.【解答】解:(1)将C(﹣1,4)分别代入y1=2x+b,,得4=2×(﹣1)+b,4=,解得k=﹣4,b=6,∴y1=2x+6,y2=﹣;(2)∵y1=2x+6,y2=﹣,∴当2x+6=﹣时,x1=﹣1,x2=﹣2,∴D点的横坐标为﹣2,∴当﹣2<x<﹣1时,y1>y2.20.如图所示,小杨在广场上的A处正面观测一座楼房墙上的广告屏幕,测得屏幕下端D 处的仰角为30°,然后他正对大楼方向前进5m到达B处,又测得该屏幕上端C处的仰角为45°.若该楼高为26.65m,小杨的眼睛离地面1.65m,广告屏幕的上端与楼房的顶端平齐.求广告屏幕上端与下端之间的距离.(≈1.732,结果精确到0.1m)【考点】解直角三角形的应用-仰角俯角问题.【分析】易得CE=BE,利用30°的正切值即可求得CE长,进而可求得DE长.CE减去DE 长即为广告屏幕上端与下端之间的距离.【解答】解:设AB、CD的延长线相交于点E.∵∠CBE=45°,CE⊥AE,∴CE=BE.∵CE=26.65﹣1.65=25,∴BE=25.∴AE=AB+BE=30.在Rt△ADE中,∠DAE=30°,∴DE=AE×tan30°=30×=10,∴CD=CE﹣DE=25﹣10≈25﹣10×1.732=7.68≈7.7(m).答:广告屏幕上端与下端之间的距离约为7.7m.21.如图,在Rt△ABC中,∠C=90°,∠ABC的平分线交AC于点D,点O是AB上一点,⊙O过B、D两点,且分别交AB、BC于点E、F.(1)求证:AC是⊙O的切线;(2)已知AB=10,BC=6,求⊙O的半径r.【考点】切线的判定;相似三角形的判定与性质.【分析】(1)连接OD.欲证AC是⊙O的切线,只需证明AC⊥OD即可;(2)利用平行线截线段成比例推知=;然后将图中线段间的和差关系代入该比例式,通过解方程即可求得r的值,即⊙O的半径r的值.【解答】(1)证明:连接OD.∵OB=OD,∴∠OBD=∠ODB(等角对等边);∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ODB=∠DBC(等量代换),∴OD∥BC(内错角相等,两直线平行);又∵∠C=90°(已知),∴∠ADO=90°(两直线平行,同位角相等),∴AC⊥OD,即AC是⊙O的切线;(2)解:由(1)知,OD∥BC,∴=(平行线截线段成比例),∴=,解得r=,即⊙O的半径r为.22.为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示.(1)求月销售量y(万件)与销售单价x(元)之间的函数关系式;(2)当销售单价定为50元时,为保证公司月利润达到5万元(利润=销售额﹣生产成本﹣员工工资﹣其它费用),该公司可安排员工多少人?(3)若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?【考点】一次函数的应用;分段函数.【分析】(1)从图中看,这是一个分段一次函数,40≤x≤60和60<x<100时,函数的表达式不同,每段函数都经过两点,使用待定系数法即可求出函数关系式;(2)利用(1)中的函数关系,当销售单价定为50元时,可计算出月销售量,设可安排员工m人,利润=销售额一生产成本﹣员工工资﹣其它费用,列出方程即可解;(3)先分情况讨论出利润的最大值,即可求解.【解答】解:(1)当40≤x≤60时,令y=kx+b,则,解得,故,同理,当60<x<100时,.故y=;(2)设公司可安排员工a人,定价50元时,由5=(﹣×50+8)(50﹣40)﹣15﹣0.25a,得30﹣15﹣0.25a=5,解得a=40,所以公司可安排员工40人;(3)当40≤x≤60时,利润w1=(﹣x+8)(x﹣40)﹣15﹣20=﹣(x﹣60)2+5,则当x=60时,w max=5万元;当60<x<100时,w2=(﹣x+5)(x﹣40)﹣15﹣0.25×80=﹣(x﹣70)2+10,∴x=70时,w max=10万元,∴要尽早还清贷款,只有当单价x=70元时,获得最大月利润10万元,设该公司n个月后还清贷款,则10n≥80,∴n≥8,即n=8为所求.23.如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°,【操作1】将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板DEF 绕点E旋转,并使边DE与边AB交于点P,边EF与边BC于点Q.在旋转过程中,如图2,当时,EP与EQ满足怎样的数量关系?并给出证明.【操作2】在旋转过程中,如图3,当时EP与EQ满足怎样的数量关系?,并说明理由.【总结操作】根据你以上的探究结果,试写出当时,EP与EQ满足的数量关系是什么?其中m的取值范围是什么?(直接写出结论,不必证明).【考点】相似形综合题.【分析】(操作1)连接BE,根据已知条件得到E是AC的中点,根据等腰直角三角形的性质可以证明DE=CE,∠PBE=∠C.根据等角的余角相等可以证明∠BEP=∠CEQ.即可得到全等三角形,从而证明结论;(操作2)作EM⊥AB,EN⊥BC于M、N,根据两个角对应相等证明△MEP∽△NWQ,发现EP:EQ=EM:EN,再根据等腰直角三角形的性质得到EM:EN=AE:CE;(总结操作)根据(2)中求解的过程,可以直接写出结果;要求m的取值范围,根据交点的位置的限制进行分析.【解答】(操作1)EP=EQ,证明:连接BE,根据E是AC的中点和等腰直角三角形的性质,得:BE=CE,∠PBE=∠C=45°,∵∠BEC=∠FED=90°∴∠BEP=∠CEQ,在△BEP和△CEQ中,∴△BEP≌△CEQ(ASA),∴EP=EQ;如图2,EP:EQ=EM:EN=AE:CE=1:2,理由是:作EM⊥AB,EN⊥BC于M,N,∴∠EMP=∠ENC,∵∠MEP+∠PEN=∠PEN+∠NEF=90°,∴∠MEP=∠NEF,∴△MEP∽△NEQ,∴EP:EQ=EM:EN=AE:CE=1:2;如图3,过E点作EM⊥AB于点M,作EN⊥BC于点N,∵在四边形PEQB中,∠B=∠PEQ=90°,∴∠EPB+∠EQB=180°,又∵∠EPB+∠MPE=180°,∴∠MPE=∠EQN,∴Rt△MEP∽Rt△NEQ,∴=,Rt△AME∽Rt△ENC,∴=m=,∴=1:m=,EP与EQ满足的数量关系式1:m,即EQ=mEP,∴0<m≤2+,(因为当m>2+时,EF和BC变成不相交).24.如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处.分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线y=ax2+bx+c经过O,D,C三点.(1)求AD的长及抛物线的解析式;(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M,N,C,E为顶点的四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据折叠图形的轴对称性,△CED、△CBD全等,首先在Rt△CEO中求出OE的长,进而可得到AE的长;在Rt△AED中,AD=AB﹣BD、ED=BD,利用勾股定理可求出AD的长.进一步能确定D点坐标,利用待定系数法即可求出抛物线的解析式.(2)由于∠DEC=90°,首先能确定的是∠AED=∠OCE,若以P、Q、C为顶点的三角形与△ADE相似,那么∠QPC=90°或∠PQC=90°,然后在这两种情况下,分别利用相似三角形的对应边成比例求出对应的t的值.(3)由于以M,N,C,E为顶点的四边形,边和对角线都没明确指出,所以要分情况进行讨论:①EC做平行四边形的对角线,那么EC、MN必互相平分,由于EC的中点正好在抛物线对称轴上,所以M点一定是抛物线的顶点;②EC做平行四边形的边,那么EC、MN平行且相等,首先设出点N的坐标,然后结合E、C的横、纵坐标差表示出M点坐标,再将点M代入抛物线的解析式中,即可确定M、N的坐标.【解答】方法一:解:(1)∵四边形ABCO为矩形,∴∠OAB=∠AOC=∠B=90°,AB=CO=8,AO=BC=10.由题意,△BDC≌△EDC.∴∠B=∠DEC=90°,EC=BC=10,ED=BD.由勾股定理易得EO=6.∴AE=10﹣6=4,设AD=x,则BD=ED=8﹣x,由勾股定理,得x2+42=(8﹣x)2,解得,x=3,∴AD=3.∵抛物线y=ax2+bx+c过点D(3,10),C(8,0),O(0,0)∴,解得∴抛物线的解析式为:y=﹣x2+x.(2)∵∠DEA+∠OEC=90°,∠OCE+∠OEC=90°,∴∠DEA=∠OCE,由(1)可得AD=3,AE=4,DE=5.而CQ=t,EP=2t,∴PC=10﹣2t.当∠PQC=∠DAE=90°,△ADE∽△QPC,∴=,即=,解得t=.当∠QPC=∠DAE=90°,△ADE∽△PQC,∴=,即=,解得t=.∴当t=或时,以P、Q、C为顶点的三角形与△ADE相似.(3)假设存在符合条件的M、N点,分两种情况讨论:①EC为平行四边形的对角线,由于抛物线的对称轴经过EC中点,若四边形MENC是平行四边形,那么M点必为抛物线顶点;则:M(4,);而平行四边形的对角线互相平分,那么线段MN必被EC中点(4,3)平分,则N(4,﹣);②EC为平行四边形的边,则EC MN,设N(4,m),则M(4﹣8,m+6)或M(4+8,m﹣6);将M(﹣4,m+6)代入抛物线的解析式中,得:m=﹣38,此时N(4,﹣38)、M(﹣4,﹣32);将M(12,m﹣6)代入抛物线的解析式中,得:m=﹣26,此时N(4,﹣26)、M(12,﹣32);综上,存在符合条件的M、N点,且它们的坐标为:①M1(﹣4,﹣32),N1(4,﹣38);②M2(12,﹣32),N2(4,﹣26);③M3(4,),N3(4,﹣).方法二:(1)略.(2)∵E(0,6),C(8,0),∴l EC:y=﹣x+6,∵,EP=2t,∴P x=t,∴P(t,﹣t+6),Q(8﹣t,0),∵△PQC∽△ADE,且∠ECO=∠AED,∴PQ⊥OC或PQ⊥PC.当PQ⊥OC时,Px=Qx,即t=8﹣t,∴t1=,当PQ⊥PC时,K PQ•K PC=﹣1,∴t2=.(3)M,N,C,E为顶点的四边形是平行四边形.设N(4,t),C(8,0),E(0,6),∴,∴M1(4,6﹣t),同理M2(﹣4,t+6),M3(12,t﹣6),∴﹣t,∴t=﹣,﹣×(﹣4)2+(﹣4)=t+6,∴t=﹣38,﹣×122+×12=t﹣6,∴t=﹣26,综上,存在符合条件的M、N点,且它们的坐标为:①M1(4,),N1(4,﹣);②M2(12,﹣32),N2(4,﹣26);③M3(﹣4,﹣32),N3(4,﹣38).11月4日。
2023年山东省临沂市沂水县中考一模数学试题学校:___________姓名:___________班级:___________考号:___________A.中线【答案】D【分析】根据折叠后使点性质即可求解.【详解】解:如图所示,折叠后使点C边落在BCC B E三点共线,∵,,⊥,∴AD EC的高线,即m是ABC故选:D.【点睛】本题考查了折叠的性质,3.已知2=-,QP x xA.在A的右边B.介于A 【答案】BA .75︒B .85︒【答案】D【分析】根据正六边形对边平行,得出【详解】解:∵四边形ABCDEF ∴AB DE ∥,∴175EQP ∠=∠=︒,∴180180PQD EQP ∠=︒-∠=故选:D .【点睛】本题考查了正多边形的性质,平行线的性质,邻补角互补,熟练掌握以上知识是解题的关键.6.估计()123323+⨯的值应在A .4和5之间B .5和【答案】A【分析】根据二次根式的混合运算法则进行计算,再估算无理数的大小【详解】()123323+⨯=11233233⨯+⨯=2+6,∵4<6<9,A .4cm 2B .6cm 2C .8cm 2【答案】D【详解】试题分析:根据题意,正方体的俯视图是矩形,它的长是积=4×3=12(cm 2),故选D .考点:由三视图判断几何体.A .49【答案】B【分析】根据DE BC ∥【详解】解:∵DE ∥∴ADE ABC △△∽,∴23AD DE AB BC ==∴12BD AD =,故选:B .【点睛】本题考查了相似三角形的性质与判定,题的关键.9.下表为某餐厅的价目表,今日每份餐点价格均为价目表价格的九折.若慧慧今日在此餐厅点了橙汁鸡丁饭后想再点第二份餐点,且两份餐点的总花费不超过A.16B.112C.110D.120【答案】C【分析】采用列表法列举即可求解.即总的情况有20种,满足条件的有2种,即:则小明抽中《满江红》和《流浪地球2》的概率是故选:C.【点睛】本题考查列表法或树状图法求简单随机事件的概率,果是正确解答的关键.11.张老师在化学实验室做实验时,将一杯100是这杯水冷却时的温度变化图,根据图中所显示的信息,下列说法不正确的是(A.水温从100℃逐渐下降到35℃时用了6分钟B.15℃C.实验室的室内温度是15℃D.水被自然冷却到了【答案】C【分析】根据函数图像分析判断即可求解.【详解】解:A.水温从100℃逐渐下降到35℃时用了意;B.从开始冷却后14分钟时的水温是15℃,故该选项正确,不符合题意;C.实验室的室内温度是10℃,故该选项不正确,符合题意;D.水被自然冷却到了10℃,故该选项正确,不符合题意;故选:C .【点睛】本题考查了从函数图像获取信息,数形结合是解题的关键.12.已知日升租车公司有甲、乙两个营业点,顾客租车后于当日营业结束前必须在任意一个营业点还车.某日营业结束清点车辆时,发现在甲归还的车辆比从甲出租的多4辆.若当日从甲出租且在甲归还的车辆为13辆,从乙出租且在乙归还的车辆为11辆,则关于当日从甲、乙出租车的数量下列比较正确的是()A .从甲出租的比从乙出租的多2辆B .从甲出租的比从乙出租的少2辆C .从甲出租的比从乙出租的多6辆D .从甲出租的比从乙出租的少6辆【答案】B【分析】设当日从甲、乙出租的车数量分别为x 辆,y 辆,根据题意列方程解答即可.【详解】解:设当日从甲、乙出租的车数量分别为x 辆,y 辆,根据题意得:13(11)4y x +--=,所以2y x -=,即从甲出租的比从乙出租的少2辆.故选:B .【点睛】此题主要考查了二元一次方程在实际生活中的应用,关键是找出题目中的等量关系,列出方程.二、填空题13.已知()()()()12233445a =-⨯-⨯-⨯-,()()()123234345b =-⨯-⨯-,则a ,b 的大小关系是______.【答案】a b >/b a<【分析】根据有理数的乘法法则得出,0,0a b ><即可求解.【详解】解:∵()()()()122334450a =-⨯-⨯-⨯->,()()()1232343450b =-⨯-⨯-<,∴a b >,故答案为:a b >.【点睛】本题考查了有理数的乘法运算,熟练掌握有理数的乘法运算中的符号问题是解题的关键.14.若多项式2936m m +-可因式分解成()()m a m b ++,其中a 、b 均为整数,则a b +的值是______.【答案】9【分析】根据因式分解的结果,进行多项式的乘法运算,进而即可求解.【详解】解:∵()()m a m b ++()2m a b m ab =+++,且,a b 为整数,∴9a b +=,故答案为:9.【点睛】本题考查了因式分解与多项式的乘法的关系,熟练掌握多项式乘以多项式是解题的关键.15.如图,将ABC 先向右平移3个单位,再绕原点O 旋转180︒,得到A B C ''' ,则点A 的对应点A '的坐标是______.【答案】(1,3)--【分析】根据平移的性质,以及中心对称的性质画出图形,根据坐标系写出点的坐标即可求解.【详解】解:如图所示,∴(1,3)A '--,故答案为:(1,3)--.【点睛】本题考查了平移的性质,中心对称线的性质,根据题意作出图形是解题的关键.16.如图,在Rt ABC 中,90ACB ∠=︒,5AC BC ==.以点B 为圆心,以BC 的长为半径画弧交AB 于点D ,连接CD ,以点D 为圆心,DC 的长为半径作弧,交BC 于点E (异于点C ),连接DE ,则BE 的长为______.【答案】525-/552-+【分析】过点,D E 分别作AC 则四边形CEDG 是矩形,AED △根据等腰三角形的性质得出CG 【详解】解:如图所示,过点DG BC ⊥于点G ,则四边形CEDG 是矩形,∴ED CG =,∵在Rt ABC 中,90ACB ∠=︒∴2252AB AC BC =+=,∠∴AED △,BEF △是等腰直角三角形,∴525AD AB DB =-=-,∴()2252522DE AD ==-根据作图可知,BD BC AC CD ==∴CG GE DE ==,∴2BE BC CE BC DE =-=-()2525255102=-⨯-=-+故答案为:525-.【点睛】本题考查了等腰三角形的性质,矩形的性质与判定,勾股定理,熟练掌握基本作图,以及以上知识是解题的关键.三、解答题17.(1)计算:4sin60°﹣12【答案】雕塑的高为7.2m【分析】先证明四边形DEFG 为平行四边形.得出DG Rt APG 中,sin PGA AG=,进而即可求解.【详解】解:AB CD ∥ ,CDG A∴∠=∠FEC A ∠=∠ ,FEC CDG ∴∠=∠.EF DG∴∥∴四边形DEFG 为平行四边形.过点G 作GP AB ⊥于P ,∵四边形DEFG 为平行四边形,∴6DG EF ==.∵ 1.5AD =,∴6 1.5AG DG AD =+=+在Rt APG 中,sin PGA AG=∴0.967.5PG=,∴7.50.967.2PG =⨯=(答:雕塑的高为7.2m .【点睛】本题考查了解直角三角形的应用,平行四边形的性质与判定,熟练掌握三角函数的定义是解题的关键.20.如图是某型号冷柜循环制冷过程中温度变化的部分示意图.该冷柜的工作过程是:当冷柜温度达到4-℃时制冷开始,(1)求t 的值;(2)当前冷柜的温度10-℃,经过多长时间温度下降到【答案】(1)20(2)当在温度下降过程中时,经过再经过16分钟温度可降至20-℃【分析】(1)由函数图像可知当时间为像上()4,20-点求出反比例函数的关系式,值即可;(2)分别求得10x =-时的函数值,分类讨论即可求解.【详解】(1)解:设反比例函数的关系式为把()4,20-代入,得:204k -=∴80k =-.∴80y x-=.当4y =-时,804t--=,(1)求证:2BOC BCD ∠=∠;(2)延长CD 交O 于点E ,连接2AC CD =,求证:直线CF 【答案】(1)证明见解析(2)证明见解析【分析】(1)根据AB 是O 出A ACO ∠=∠,根据三角形外交的性质得出(2)根据2AC CD =得出∠出60ECF ∠=︒,即可得出∠【详解】(1)证明:AB 是90ACB CDB ∴∠=∠=︒.∴90A B BCD B ∠+∠=∠+∠=A BCD ∴∠=∠.又OA OC = ,A ACO ∴∠=∠.2AC CD = ,∴1tan 2CD A AC ==30A ∴∠=︒.30E A ︒∴∠=∠=,60BOC ∠=︒30OCD ∴∠=︒.又CF EB ⊥ ,60ECF ∴∠=︒.90OCF OCD ECF ︒∴∠=∠+∠=CF ∴是O 的切线.【点睛】本题考查了直径所对的圆周角是直角,切线的判定,根据特殊角的三角函数值求角度,熟练掌握以上知识是解题的关键.22.【问题情境】某超市销售一种进价为销售量(千克)与销售单价(元销售单价(元/千克)…25销售量(千克)…50【建立模型】(1)请你利用所学知识,分别建立能够刻画每天销售量与销售单价、价之间的关系式;【模型应用】(2)当销售单价为多少时,超市每天获利最多?每天最多获利是多少元?(3)超市本着“尽量让顾客享受实惠【答案】(1)答案见解析(2)销售单价定为35元/千克时,超市每天获利最多,最多获利450元(3)销售单价应为30元/千克【分析】(1)如图,设销售单价为x 元/千克,每天的销售量为y 千克,将表中的数据作为点的坐标,在平面直角坐标系中描出各点,并用平滑的曲线连接,发现各点都在同一直线上,故y 与x 可以用一次函数关系来表示,进而待定系数法求解析式即可求解;(2)设超市销售该商品每天的利润为w 元,根据题意列出函数关系式,根据二次函数的性质求得最值即可求解;(3)根据题意列出一元二次方程,解一元二次方程即可求解.【详解】(1)解:如图,设销售单价为x 元/千克,每天的销售量为y 千克,将表中的数据作为点的坐标,在平面直角坐标系中描出各点,并用平滑的曲线连接,发现各点都在同一直线上,故y 与x 可以用一次函数关系来表示,设y kx b =+,则30404020k b k b +=⎧⎨+=⎩,解得2100k b =-⎧⎨=⎩,2100y x ∴=-+.设超市销售该商品每天的利润为w 元,则2(20)(2100)21402000w x x x =--+=-+-.(2)22214020002(35)450w x x x =-+-=--+,20a =-< ,∴当x =35时,w 取得最大值,450w =最大.因此销售单价定为35元/千克时,超市每天获利最多,最多获利450元.(3)超市利润400元时,221402000400x x -+-=,解得130x =,240x =.因为超市本着“尽量让顾客享受实惠”的销售原则,30x ∴=.因此,销售单价应为30元/千克.【点睛】本题考查了二次函数的应用,一次函数的应用,一元二次方程的应用,根据题意列出函数关系式是解题的关键.23.【操作发现】在实践活动课上,同学们对菱形和轴对称进行了研究.如图,在菱形ABCD 中,B ∠为锐角,E 为BC 中点,连接DE ,点A ,B 关于直线DE 的对称点分别为点A ',B ',连接A B '',B C '.请补全图形解答下列问题:(1)直线B C '与DE 有怎样的位置关系,请说明理由;(2)延长DC 交A B ''于点G .线段CG 与B G '相等吗?若相等,给出证明;若不相等,请说明理由;【拓展应用】(3)在(2)的条件下,连接EG ,请探究DEG ∠的度数,并说明理由.【答案】(1)直线B 'C 与DE 平行,理由见解析(2)线段CG 与B 'G 相等,证明见解析(3)90GED ∠=︒,理由见解析【分析】(1)连接B 'B ,交DE 的延长线于点H ,由轴对称的性质可得DE B ⊥B ',BE E =B ',得出BE EC E ==B ',根据等边对等角得出,EBB EB B EB C ECB ''''∠=∠∠=∠,进而根据三角形内角和定理得出90BB C '∠=︒,则B C DE'∥(2)根据菱形的性质得出DG AB ∥,则BCG ABC ∠=∠,根据轴对称得出ABC A B E ∠=∠'',则BCG A B E ∠=∠'',根据(1)的结论得出EB C ECB ''∠=∠,可得CB G B CG ∠='∠',根据等角对等边即可求解;(3)根据GC GB '=,EC EB '=,得出GE BC ⊥,根据(1)的结论得出EG ED ⊥,即可求解.由轴对称的性质可得DE B ⊥BE EC = ,BE EC E ∴==B '.,EBB EB B EB C '''∴∠=∠∠=∴(12BB C EBB EB '''∠=∠+∠C ∴B 'B ⊥B '.∴B C DE '∥.(2)线段CG 与B 'G 相等.证明:∵DG AB ∥,∴BCG ABC ∠=∠.又∵ABC A B E ∠=∠'',∴BCG A B E ∠=∠''.又∵B E EC '=,∴EB C ECB ''∠=∠.∴CB G B CG ∠='∠'.∴GC GB '=.(3)90GED ∠=︒.∵GC GB '=,EC EB '=,∴GE BC ⊥,∵B C DE '∥,∴EG ED ⊥,∴90GED ∠=︒.【点睛】本题考查了菱形的性质,轴对称的性质,等腰三角形的性质与判定,垂直平分线的性质与判定,熟练掌握以上知识是解题的关键.。
中考模拟测试数学卷学校________ 班级________ 姓名________ 成绩________第Ⅰ卷一、选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.–2020的倒数是A.2020 B.–2020 C.12020D.12020-2.4月24日是中国航天日.1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439000米,将439000用科学记数法表示应为A.0.439×106B.4.39×106C.4.39×105D.439×1033.下列各式计算结果为1n(n1)+的是A.11n n1++B.111n n-+C.111n n-+D.111n n--4.将一副三角板(含30︒、45︒的直角三角形)摆放成如图所示的形状,图中1∠的度数是A.120︒B.130︒C.135︒D.150︒5.如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为A.80πcm2B.60πcm2C.48πcm2D.30πcm26.一个不透明的口袋中有4个除标号外其余均相同的小球,分别标有数字1,2,3,4,充分混合后随机摸出一个小球记下标号,放回后混合再随机摸出一个小球记下标号,则两次摸出的小球的标号之和等于5的概率是A.12B.13C.14D.157.如图,已知△ABC 为直角三角形,90B ∠=︒,若沿图中虚线剪去∠B ,则∠1+∠2等于A .270°B .315°C .180°D .135°8.如图,ABC ∆中,AD 是角平分线,BE 是ABD ∆中的中线,若ABC ∆的面积是24,5AB =,3AC =,则ABE ∆的面积是A .6B .7.5C .12D .159.如图,在Rt △ABC 中,∠C =90°,AC =3,BC =4,点D 是AB 的中点,点P 是直线BC 上一点,将△BDP 沿DP 所在的直线翻折后,点B 落在B 1处,若B 1D ⊥BC ,则点P 与点B 之间的距离为A .1B .54C .1或3D .54或5 10.在同一直角坐标系中,二次函数2y ax b =+(0a ≠,0b ≠)与反比例函数aby x=的图象可能是 A . B .C .D .第Ⅱ卷二、填空题(本大题共6小题,每小题5分,共30分) 11.分解因式:33a b ab -=_______________12.将一个圆分割成三个扇形,它们圆心角度数的比1:3:5,则最大扇形的圆心角的度数为_____. 13.甲、乙两同学在最近的5次数学测验中数学成绩的方差分别为2S 甲 2.518=,2S 乙 3.69=,则数学成绩比较稳定的同学是____________14.济南大明湖畔的“超然楼”被称作“江北第一楼”.某校数学社团的同学对超然楼的高度进行了测量.如图,他们在A 处仰望塔顶,测得仰角为30°,再往楼的方向前进60m 至B 处,测得仰角为60°,若学生的身高忽略不计,3≈1.7,结果精确到1m ,则该楼的高度CD 为_______.15.如图,已知双曲线12(0)y x x=<和(0)ky x x =>,直线OA 与双曲线12y x =交于点A ,将直线OA 向下平移与双曲线12y x =交于点B ,与y 轴交于点P ,与双曲线k y x=交于点C ,6ABC S =V ,:2:1BP CP =,,则k 的值为__________.16.如图,在菱形ABCD 中,tan A 43=,M ,N 分别在边AD ,BC 上,将四边形AMNB 沿MN 翻折,使AB 的对应线段EF 经过顶点D ,延长NF 交DC 于点H ,当EF ⊥AD 时,DHHC的值为_____.三、解答题(本大题共8小题,共80分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)(1)计算:()()-2201921-2 3.14---12π⎛⎫++ ⎪⎝⎭; (2)化简:(x +5)(2x -3)-2x (x 2-2x +3).18.(本小题满分8分)如图,△ABC 中,AB =AC ,点E ,F 在边BC 上,BE =CF ,点D 在AF 的延长线上,AD =AC .(1)求证:△ABE ≌△ACF ;(2)若∠BAE =30°,则∠ADC =__________°.19.(本小题满分8分)在下列网格图中,每个小正方形的边长均为1个单位长度.已知ABC ∆在网格图中的位置如图所示.(1)请在网格图中画出ABC ∆向右平移7单位后的图形111A B C ∆,并直接写出平移过程中线段BC 扫过的面积;(2)请在网格图中画出ABC ∆以P 为对称中心的图形222A B C ∆.(保留作图痕迹)20.(本小题满分8分)为了解某地区中学生一周课外阅读时长的情况,随机抽取部分中学生进行调查,根据调查结果,将阅读时长分为四类:2小时以内,2~4小时(含2小时),4~6小时(含4小时),6小时及以上,并绘制了如图所示尚不完整的统计图.(1)本次调查共随机抽取了名中学生,其中课外阅读时长“2~4小时”的有人;(2)扇形统计图中,课外阅读时长“4~6小时”对应的圆心角度数为°;(3)若该地区共有20000名中学生,估计该地区中学生一周课外阅读时长不少于4小时的人数.21.(本小题满分10分)如图,已知在矩形ABCD中,E是BC边上的一个动点,点F,G,H分别是AD,AE,DE的中点.(1)求证:四边形AGHF是平行四边形;(2)若BC=10cm,当四边形EHFG是正方形时,求矩形ABCD的面积.22.(本小题满分10分)在一条笔直的公路上有A、B两地.甲、乙两人同时出发,甲骑电动车从A地到B地,中途出现故障后停车维修,修好车后以原速继续行驶到B地;乙骑摩托车从B地到A地,到达A地后立即按原原速返回,结果两人同时到B地.如图是甲、乙两人与B地的距离y(km)与乙行驶时间x(h)之间的函数图象.(1)A、B两地间的距离为km;(2)求乙与B地的距离y(km)与乙行驶时间x(h)之间的函数关系式;(3)求甲、乙第一次相遇的时间;(4)若两人之间的距离不超过10km时,能够用无线对讲机保持联系,请求出乙在行进中能用无线对讲机与甲保持联系的x取值范围.23.(本小题满分12分)给出如下定义:对于⊙O的弦MN和⊙O外一点P(M,O,N三点不共线,且点P,O在直线MN的异侧),当∠MPN+∠MON=180°时,则称点P是线段MN关于点O的关联点.图1是点P为线段MN关于点O的关联点的示意图.在平面直角坐标系xOy中,⊙O的半径为1.(1)如图2,已知M 22),N22,在A(1,0),B(1,1),C2,0)三点中,是线段MN关于点O的关联点的是;(2)如图3,M(0,1),N(32,﹣12),点D是线段MN关于点O的关联点.①∠MDN的大小为;②在第一象限内有一点E(3m,m),点E是线段MN关于点O的关联点,判断△MNE的形状,并直接写出点E的坐标;③点F在直线y=﹣3x+2上,当∠MFN≥∠MDN时,求点F的横坐标x的取值范围.24.(本小题满分14分)如图1,抛物线y=34x2﹣94x﹣3,与x轴交于A和B两点(点A在点B的左侧),与y轴交于点C,过点A的直线与抛物线在第一象限的交点M的横坐标为163,直线AM与y轴交于点D,连接BC、A C.(1)求直线AD和BC的解折式;(2)如图2,E为直线BC下方的抛物线上一点,当△BCE的面积最大时,一线段FG=42(点F在G的左侧)在直线AM上移动,顺次连接B、E、F、G四点构成四边形BEFG,请求出当四边形BEFG 的周长最小时点F的坐标;(3)如图3,将△DAC绕点D逆时针旋转角度α(0°<α<180°),记旋转中的三角形为△DA′C′,若直线A′C′分别与直线BC、y轴交于M、N,当△CMN是等腰三角形时,请直接写出CM的长度.答案与解析1.【答案】D【解析】–2020的倒数是12020-,故选D.2.【答案】C【解析】将439000用科学记数法表示为4.39×105.故选C.3.【答案】C【解析】A、111211(1)(1)(1)n n nn n n n n n n n+++=+=++++,故A错误;B、1111(1)(1)(1)1nn n n n n n nnn+-=-=-++++,故B错误;C、11111(1)(1)(1)n nn n n n n n n n+-=-=++++,故C正确;D、111(1)(1))1(11n nn n n n n n n n-=-=-----,故D错误,故选C.4.【答案】A【解析】由三角形的外角性质得:∠1=30°+90°=120°.故答案为:A.5.【答案】B【解析】∵h=8,r=6,可设圆锥母线长为l,由勾股定理,l,圆锥侧面展开图的面积为:S侧=12×2×6π×10=60π,所以圆锥的侧面积为60πcm2.故选B.6.【答案】C【解析】画树状图得:∵共有16种等可能的结果,两次摸出的小球的标号之和等于5的有4种情况, ∴两次摸出的小球的标号之和等于5的概率是:41=164,故选C . 7.【答案】A【解析】∵90B ∠=︒,180A B C ∠+∠+∠=︒,∴90A C ∠+∠=︒, ∵12360A C ∠+∠+∠+∠=︒,∴1236090270∠+∠=︒-︒=︒,故选A . 8.【答案】B【解析】如图,过点D 作DF ⊥AB ,DG ⊥AC ,垂足分别为F 、G , ∵AD 是角平分线,∴DF =DG ,设DF =DG =h ,S △ABC =S △ABD +S △ADC ,即112422AB DF AC DG =⋅+⋅, ∴5h +3h =48,解得h =6,∴156152ABD S =⨯⨯=V ,∵BE 是△ABD 中的中线,∴7.512ABE BDE ABD S S S ===V V V ,故选B .9.【答案】D【解析】如图,若点B 1在BC 左侧,∵∠C =90°,AC =3,BC =4,∴AB =225AC BC +=,∵点D 是AB 的中点,∴BD =12BA =52, ∵B 1D ⊥BC ,∠C =90°,∴B 1D ∥AC ,∴12BD BE DE AB BC AC ===, ∴BE =EC =12BC =2,DE =12AC =32,∵折叠,∴B 1D =BD =52,B 1P =BP ,∴B 1E =B 1D –DE =1,∴在Rt △B 1PE 中,B 1P 2=B 1E 2+PE 2, ∴BP 2=1+(2–BP )2,∴BP =54,如图,若点B 1在BC 右侧,∵B 1E =DE +B 1D =32+52,∴B 1E =4, 在Rt △EB 1P 中,B 1P 2=B 1E 2+EP 2,∴BP 2=16+(BP –2)2,∴BP =5,故选D . 10.【答案】B【解析】A .由二次函数图象可知,0,0a b >>,由反比例函数图象可知0ab <,错误; B .由二次函数图象可知,0,0a b >>,由反比例函数图象可知0ab >,正确; C .由二次函数图象可知,0,0a b ><,由反比例函数图象可知0ab >,错误; D .由二次函数图象可知,0,0a b <>,由反比例函数图象可知0ab >,错误; 故答案为:B .11.【答案】()()ab a b a b +-【解析】3322()()()a b ab ab a b ab a b a b -=-=+-,故答案为:()()ab a b a b +-. 12.【答案】200°【解析】最大扇形的圆心角的度数=360°×5135++=200°.故答案为200°. 13.【答案】甲【解析】由于2S 甲<2S 乙,则数学成绩较稳定的同学是甲.故答案为:甲. 14.【答案】51m【解析】根据题意得:∠A =30°,∠DBC =60°,DC ⊥AC ,∴∠ADB =∠DBC ﹣∠A =30°,∴∠ADB=∠A=30°,∴BD=AB=60m,∴CD=BD•sin60°=6032⨯=303≈51(m).故答案为:51m.15.【答案】3-【解析】如图,连接OB,OC,作BE⊥OP于E,CF⊥OP于F.∵OA∥BC,∴S△OBC=S△ABC=6,∵:2:1BP CP=,∴S△OPB=4,S△OPC=2,又由反比例函数的几何意义可知6OBES∆=,∴64=2PBES∆=-.∵△BEP∽△CFP,∴2()CFPPBES PCS PB∆∆=,∴11242CFPS∆=⨯=,∴S△OCF=S△OPC–S△CFP=32,∴k=﹣3.故答案为:﹣3.16.【答案】87【解析】如图,由翻折不变性可知:∠A=∠E,∴tan A=tan E4DM3DE==,∴可以假设:DM=4k,DE=3k,则EM=5k,AD=EF=CD=9k.∵AD∥BC,∴∠A+∠B=180°,∵∠DFH+∠EFN=180°,∠B=∠EFN,∴∠A=∠DFH,∵EF⊥AD,∴∠ADF=90°,∵AB ∥CD ,∴∠A +∠ADC =180°,∴∠A +∠HDF =90°,∴∠HDF +∠DFH =90°, ∴tan ∠DFH =tan A DH 4FH 3==,设FH =3x ,则DH =4x 在R △DHF 中,DF =EF ﹣DE =6k ,根据勾股定理得,DH 2+FH 2=DF 2,∴16x 2+9x 2=36k 2,∴x 65=k ,∴DH 245=k , ∴CH =9k 245-k 215=k ,∴24kDH 8521HC 7k 5==.故答案为:87. 17.【解析】(1)()()-2201921-2 3.14---12π⎛⎫++ ⎪⎝⎭=414(1)++--- =2.(2)()2(5)(23)223+---+x x x x x232=231015246-+--+-x x x x x x 32=2615-++-x x x .18.【解析】(1)∵AB =AC ,∴∠B =∠ACF ,在△ABE 和△ACF 中,AB ACB ACF BE CF =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACF (SAS );(2)∵△ABE ≌△ACF ,∠BAE =30°,∴∠CAF =∠BAE =30°, ∵AD =AC ,∴∠ADC =∠ACD , ∴∠ADC =280013︒-︒=75°,故答案为75. 19.【解析】(1)如图,△A 1B 1C 1为所作,线段BC 扫过的面积=7×4=28; (2)如图,△A 2B 2C 2为所作.20.【解析】(1)本次调查共随机抽取了:50÷25%=200(名)中学生,其中课外阅读时长“2~4小时”的有:200×20%=40(人),故答案为:200,40;(2)扇形统计图中,课外阅读时长“4~6小时”对应的圆心角度数为:360°×(1﹣30200﹣20%﹣25%)=144°,故答案为:144;(3)20000×(1﹣30200﹣20%)=13000(人),答:该地区中学生一周课外阅读时长不少于4小时的有13000人.21.【解析】证明:(1)∵点F,G,H分别是AD,AE,DE的中点,∴FH∥AE,GH∥AD,∴四边形AGHF是平行四边形;(2)当四边形EGFH是正方形时,连接EF,可得:EF⊥GH且EF=GH,∵在△BEC中,点,H分别是BE,CE的中点,∴GH=12BC=12AD=5cm,且GH∥BC,∴EF⊥BC,∵AD∥BC,AB⊥BC,∴AB=EF=GH=5cm,∴矩形ABCD 的面积=211010502AB ADcm ⨯=⨯⨯=. 22.【解析】(1)由题意,得A 、B 两地间的距离为30km .故答案为30;(2)设乙前往A 地的距离y (km )与乙行驶时间x (h )之间的关系式为y 乙1=k 1x ,由题意,得30=k 1,∴y 乙1=30x ;设乙返回B 地距离B 地的距离y (km )与乙行驶时间x (h )之间的关系式为y 乙2=k 2x +b 2,由题意,得22223002k b k b =+⎧⎨=+⎩,解得:223060k b =-⎧⎨=⎩,∴y =–30x +60. (3)由函数图象,得(30+20)x =30,解得x =0.6. 故甲、乙第一次相遇是在出发后0.6小时;(4)设甲在修车前y 与x 之间的函数关系式为y 甲1=kx +b ,由题意得30150.75b k b =⎧⎨=+⎩,解得:k 20b 30=-⎧⎨=⎩,y 甲1=﹣20x +30,设甲在修车后y 与x 之间的函数关系式为y 甲2=k 3x +b 3,由题意,得333315 1.25k b 02k b =+⎧⎨=+⎩,解得:332040k b =-⎧⎨=⎩,∴y 甲2=﹣20x +40, 当20303010301510x x x -+-≤⎧⎨-⎩„时,∴25≤x ≤56;306015102x x -+-⎧⎨⎩„„,解得:76≤x ≤2.∴25≤x ≤56或76≤x ≤2.23.【解析】(1)由题意线段MN 关于点O 的关联点的是以线段MN 的中点为圆心,22为半径的圆上,所以点C 满足条件,故答案为C . (2)①如图3–1中,作NH ⊥x 轴于H .∵N(32,–12),∴tan∠NOH=33,∴∠NOH=30°,∠MON=90°+30°=120°,∵点D是线段MN关于点O的关联点,∴∠MDN+∠MON=180°,∴∠MDN=60°.故答案为60°.②如图3–2中,结论:△MNE是等边三角形.理由:作EK⊥x轴于K.∵E(3,1),∴tan∠EOK=3,∴∠EOK=30°,∴∠MOE=60°,∵∠MON+∠MEN=180°,∴M、O、N、E四点共圆,∴∠MNE=∠MOE=60°,∵∠MEN=60°,∴∠MEN=∠MNE=∠NME=60°,∴△MNE是等边三角形.③如图3–3中,由②可知,△MNE是等边三角形,作△MNE的外接圆⊙O′,易知E3,1),∴点E在直线y=–3x+2上,设直线交⊙O′于E、F,可得F(3,32),观察图象可知满足条件的点F的横坐标x的取值范围3≤x F≤3.24.【解析】(1)在抛物线y=239344x x--中,令x=0,得y=﹣3,∴C(0,﹣3),令y=0,得239x x3044--=,解得x1=﹣1,x2=4,∴A(﹣1,0),B(4,0),令x=163,得y=231691634343⎛⎫⨯-⨯-⎪⎝⎭=193,∴M(163,193),设直线AD的解析式为y=k1x+b1,将A(﹣1,0),M(163,193)代入得1111k b01619k b33-+=⎧⎪⎨+=⎪⎩,解得11k1b1=⎧⎨=⎩,∴直线AD的解析式为y=x+1.设直线BC的解析式为y=k2x+b2,将B(4,0),C(0,﹣3)代入,得2224k b0b3+=⎧⎨=-⎩,解得223k4b3⎧=⎪⎨⎪=-⎩,∴直线BC的解析式为y=34x﹣3;(2)如图2,过点E 作EH ∥y 轴交BC 于H ,设E (t ,239344t t --),H(t ,334t -), ∴HE =233933444t t t ⎛⎫---- ⎪⎝⎭=2334t t -+ ∴12BCE S OB HE =⨯V =2134324t t ⎛⎫⨯-+ ⎪⎝⎭=2362t t -+=23(2)62t --+∵32-<0, ∴当t =2时,S △BCE 的最大值=6,此时E (2,92-),作点B 关于直线y =x +1的对称点B 1,连接B 1G ,过点F 作B 2F ∥B 1G ,且B 2F =B 1G ,∴B 1(﹣1,5),∵FG 2,且FG 在直线y =x +1上,∴F 可以看作是G 向左平移4个单位,向下平移4个单位后的对应点, ∴B 2(﹣5,1),当B 2、F 、E 三点在同一直线上时,BEFG 周长最小,设直线B 2E 解析式为y =mx +n ,将B 2(﹣5,1),E (2,92-)分别代入,得5m n 192m n 2-+=⎧⎪⎨+=-⎪⎩,解得11144114 mn⎧=-⎪⎪⎨⎪=-⎪⎩,∴直线B2E解析式为y=11411414x--,联立方程组111411414y xy x=+⎧⎪⎨=-⎪⎩,解得11565xy⎧=-⎪⎪⎨⎪=⎪⎩.∴F(115-,65-).(3)如图,分三种情况:在1y x=+中,令0x=,则1y=(0,1)D∴(1,0),(4,0)(0,3)A B C--Q,1,4,1,3,4AD OB OD OC DC∴=====2210AC AO OC∴=+=,设AC边上的高为h,根据等面积法得,1122AC h CD AO⨯=⋅⋅210510AO DChAC⋅∴===4,3OB OC==Q且OB⊥OC,4tan3OBBCDOC∴∠==①CM =MN 时,如图,过点M 作MG ⊥OC ,过点D 作DP ⊥MN 于点P4tan 3BCD ∠=Q∴设3CG a =,则3,4NG a MG a ==, 由勾股定理得,5MN MC a ==,,MNO DNP DPN MGN ∠=∠∠=∠QMGN DPN ∴∠:VMG MN DP PN∴=,即45246105a aa =- 解得,81012a -=,0a =(舍去) 405105CM a -∴==②当MC CN =时,如图,过点M 作MG ⊥OC ,过点D 作DP ⊥MN 于点P4tan 3BCD ∠=Q 设3CG a =,则4MG a =5CM CN a ∴==2GN CN CG a ∴=-=25MN a ∴=45DN DC CN a ∴=-=-DPN MGN ∆QV :DP DNMG MN∴=210455425aa a-∴=,解得:0a=(舍去),425a-=,42CM=-Q;③当CN MN=时,如图,作CQ MN⊥,NG CM⊥,4tan3BCD∠=Q设3CG a=,则4,5NG a CN MN a===3,6MG a CM a∴==45DN a∴=-MN CQ CM NG⋅=⋅Q245CQ a∴=DPN CQN∆QV:DP DNQC CN∴=,即2104552455aaa-=,解得,0a=(舍去),4105a=-2410652CM a∴==-;④当CM CN=时,过M作MG DC⊥,过点D作DP⊥MN于点P4tan 3BCD ∠=Q 设3CG a =,则4,5MG a CM CN a === 45DN a ∴=+tan MG DP PND NG NP∴∠== 4553a NP a a=+NP ∴= 在Rt DPN ∆中,222DN DP NP =+ 222(45)a ∴+=+解得,a a ==(舍去)54CM a ∴==-+综上,CM ,4245或4。
镇海区2024年初三模拟考试试卷数学 学科考生须知:1.全卷共三个大题,24个小题.满分为120分,考试时间为120分钟.2.请将学校、姓名、班级填写在答题卡的规定位置上.3.请在答题卡的规定区域作答,在试卷上作答或超出答题卡的规定区域作答无效.试题卷Ⅰ一、选择题(每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求)1. 在实数,中,最小的数是( )A. B. C. D. 【答案】D【解析】【分析】本题考查了实数的大小比较,根据负数小于0,0小于正数,即可求解.【详解】解:∴最小,故选:D .2. 据统计,2024年春节期间,国内旅游出行474000000人次,其中数474000000用科学记数法表示为( )A. B. C. D. 【答案】C【解析】【分析】此题考查科学记数法表示较大的数的方法.科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.【详解】解:数474000000用科学记数法表示为.故选:C .3. 下列计算正确的是( )102-102-201-<<<2-74.7410⨯747.410⨯84.7410⨯90.47410⨯10n a ⨯1||10a ≤<n n a n 84.7410⨯A. B. C. D. 【答案】C【解析】【分析】本题考查整式的运算.利用合并同类项法则,同底数幂乘法法则,幂的乘方法则,平方差公式逐项判断即可.【详解】解:与不是同类项,无法合并,则选项A 不符合题意;,则选项B 不符合题意;,则选项C 符合题意;,则选项D 不符合题意;故选:C .4. 一城市准备选购一千株高度大约为2m 的某种风景树来进行街道绿化, 有四个苗圃生产基地投标(单株树的价格都一样). 采购小组从四个苗圃中都任意抽查了20株树苗的高度,得到的数据如下:树苗平均高度(单位:m )标准差甲苗圃1.8 0.2乙苗圃1.8 0.6丙苗圃2.0 0.6丁苗圃2.0 0.2请你帮采购小组出谋划策,应选购( )A. 甲苗圃的树苗B. 乙苗圃的树苗;C. 丙苗圃的树苗D. 丁苗圃的树苗【答案】D【解析】【分析】根据标准差和方差可以反映数据的波动大小,选出合适苗圃的树苗;再比较它们的高度,进而确32a a a-=326a a a ⋅=()236a a =()()2212121a a a +-=-3a 2a 3256a a a a ⋅=≠()236a a =()()2221214121a a a a +-=-≠-定选购哪家的树苗.【详解】由于标准差和方差可以反映数据的波动大小,所以甲苗圃与丁苗圃比较合适;又因为丁苗圃树苗平均高度大于甲苗圃,所以应选丁苗圃的树苗.故选D .【点睛】考查了标准差,标准差也均称方差,方差是反映一组数据波动大小的特征数,方差越大,数据的波动性越大;方差越小,稳定性越好.5. 若点是第二象限的点,则a 的取值范围是( )A. B. C. D. 或【答案】A【解析】【分析】本题考查了象限内点的坐标特征,解不等式方程组,掌握第二象限内点的坐标特征是解题关键.根据第二象限内的点横坐标小于0,纵坐标大于0,列不等式组求解即可.【详解】解:点是第二象限的点,,解得:,故选:A .6. 如图是一架人字梯,已知米,AC 与地面BC 的夹角为,则两梯脚之间的距离BC 为( )A. 米B. 米C. 米D. 米【答案】A【解析】(),2G a a -a<02a <02a <<a<02a > (),2G a a -020a a <⎧∴⎨->⎩a<02AB AC ==α4cos α4sin α4tan α4cos α【分析】根据等腰三角形的性质得到,根据余弦的定义即可,得到答案.【详解】过点A 作,如图所示:∵,,∴,∵,∴,∴,故选:A .【点睛】本题考查的是解直角三角形的应用,明确等腰三角形的性质是解题的关键.7. 一次数学课上,老师让大家在一张长12cm ,宽5cm 的矩形纸片内,折出一个菱形;甲同学按照取两组对边中点的方法折出菱形见方案一,乙同学沿矩形的对角线AC 折出,的方法得到菱形见方案二,请你通过计算,比较这两种折法中,菱形面积较大的是( ).A. 甲B. 乙C. 甲乙相等D. 无法判断【答案】B【解析】【分析】方案一中,通过图可知四个小直角三角形全等,用矩形面积减去4个小直角三角形的面积,即可得菱形面积;方案二中,两个小直角三角形全等,设菱形边长为x ,在直角三角形中利用勾股定理可求x ,再利用底高可求菱形面积然后比较两者面积大小.12BD DC BC ==AD BC ⊥AB AC =AD BC ⊥BD DC =DC co ACα=cos 2cos DC AC αα=⋅=24cos BC DC α==(EFGH )CAE DAC ∠=∠ACF ACB ∠=∠(AECF )⨯.【详解】解:方案一中,、F 、G 、H 都是矩形ABCD 的中点,≌≌≌,,,,;方案二中,设,则,,,,≌,在中,,,,由勾股定理得,解得,,,,,,故甲乙.E HAE ∴ HDG △△FCG FBE 11111111551222222222HAE S AE AH AB AD =⋅=⨯⨯=⨯⨯⨯⨯= 4HAE ABCD EFGH S S S =- 矩形菱形1512542=⨯-⨯30=BE x =12CE AE x ==-AF EC = AB CD =AE CF =ABE ∴ CDF Rt ABE 5AB =BE x =12AE x =-222(12)5x x -=+11924x =111195955222448ABE S BE AB =⋅=⨯⨯= 2ABE ABCD EFGH S S S =- 矩形菱形595125248=⨯-⨯6025≈-3530=><故选B .【点睛】本题考查菱形的性质、勾股定理以及矩形的性质.注意掌握数形结合思想与方程思想的应用.8. 甲乙两人练习跑步,如果乙先跑10米,甲跑5秒就可追上乙;如果乙先跑2秒,甲跑4秒就可追上乙.设甲速度为x 米/秒,乙的速度为y 米/秒,则可列出的方程组为( )A. B. C. D. 【答案】B【解析】【分析】根据题意,确定等量关系即甲行驶路程等于乙的两次行驶路程的和,列出方程即可,本题考查了二元一次方程组的应用,熟练掌握方程组的应用是解题的关键.【详解】根据题意,得,故选B .9. 二次函数的图象如图所示.下列结论:①;②;③;④若图象上有两点,且,则.其中正确结论的个数为( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】本题主要考查了二次函数的图象与性质.依据题意,由抛物线开口向下,从而,又抛物线为,故,再结合抛物线与轴交于负半轴,可得,进而可以判断①;又,从而可以判断②;又当时,,又,故,进而可以判断的551046x y y x =+⎧⎨=⎩551046x y x y=+⎧⎨=⎩510546x y x y+=⎧⎨=⎩551046y x y x=+⎧⎨=⎩551046x y x y =+⎧⎨=⎩2(0)y ax bx c a =++≠0abc >40b a +=0b c +>()11,x y ()22,x y 1204x x <<<12y y <a<022b x a=-=40b a =->y 0c <4b a =-1x =0y a b c =++>a<00b c a +>->③;由抛物线的对称轴是直线,从而当时与当时函数值相等,进而可得当,则,故可以判断④.【详解】解:由题意,抛物线开口向下,.又抛物线为..抛物线与轴交于负半轴,.,故①正确.又,,故②正确.由题意,当时,.又,,故③正确.抛物线的对称轴是直线,当时与当时函数值相等.当,则,故④错误.综上,正确的有:①②③.故选:C .10. 如图,点E 、F 分别是正方形的边、上的点,将正方形沿折叠,使得点B 的对应点恰好落在边上,则的周长等于( )A B. C. D. 【答案】A【解析】.2x =0x =4x =1204x x <<<12y y > <0a ∴22b x a=-=40b a ∴=-> y 0c ∴<0abc ∴>4b a =-40b a ∴+=1x =0y a b c =++>a<00b c a ∴+>-> 2x =∴0x =4x =∴1204x x <<<12y y >ABCD AD BC ABCD EF B 'CD DGB '△2AB ABBF+【分析】本题考查正方形的性质,全等三角形的判定与性质,如图,作,连接,,可证,,根据全等三角形的性质可得,,等量代换即可求解.【详解】解:如图,作,连接,,∵四边形是正方形,∴,由折叠可得,∴,∵ ∴,∴,∴,在和中,∴∴,,在和中,BH A B ''⊥BG BB 'BB C BB H ''≌ BHG BAG ≌ HB CB ''=GH AG =BH A B ''⊥BG BB 'ABCD 90ABC C A ∠=∠=∠=︒BF B F '=90FB A ABC ''∠=∠=︒23∠∠=BHG ∠=90FB A ''∠=︒BH FB ∥24∠∠=3=4∠∠BCB 'V BHB ' 9034BHB C BB BB ∠=∠=︒⎧⎪∠==''∠⎨'⎪⎩()AAS BB C BB H ''≌ BC BH =HB CB ''=Rt BAG Rt BHG BG BG BH AB=⎧⎨=⎩∴,∴,∴,故选:A .试题卷Ⅱ二、填空题(每小题4分,共24分)11. 若分式的值为0,则x 的值是______.【答案】2【解析】【分析】根据分式的值为0,即分母不为0,分子为0得到x-2=0,且x+3≠0,求出x 即可.【详解】解:∵分式的值为0,∴x-2=0,且x+3≠0,∴x=2.故答案为:2.【点睛】本题考查了分式的值为0的条件:分式的值为0,要满足分母不为0,分子为0.也考查了解方程和不等式.12. 分解因式:_____.【答案】【解析】【分析】此题主要考查了提取公因式法以及公式法分解因式,首先提取公因式,进而利用平方差公式分解因式即可,正确应用平方差公式是解题关键.【详解】解:,,故答案为:.13. 在平行四边形中,,的平分线交边于点E ,则的长为______.()HL BHG BAG ≌ GH AG =2DGB C DG GH B H B D AD CD AD '''=+++=+= 23x x -+23x x -+24mx m -=()()22m x x +-m ()2244mx m m x -=-()()22m x x =+-()()22m x x +-ABCD 58AB BC ==,B ∠BE AD DE【答案】3【解析】【分析】本题考查平行四边形的性质、等腰三角形的判定和性质.根据平行四边形的性质可得,则,再由角平分线的定义可得,从而求得,则,从而求得结果.【详解】解:∵四边形是平行四边形,∴,∴,∵的平分线交于点E ,∴,∴,∴,∵,∴,故答案为:3.14. 一个圆锥的高为4,母线长为6,则这个圆锥的侧面积是______.【答案】【解析】【分析】本题考查了圆锥的计算.先利用勾股定理计算出这个圆锥的底面圆的半径,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算即可.【详解】解:这个圆锥的底面圆的半径,所以这个圆锥的侧面积.故答案为:.15. 有三面镜子如图放置,其中镜子和相交所成的角,已知入射光线经反射后,反射光线与入射光线平行,若,则镜子和相交所成的角AD BC ∥AEB CBE ∠=∠ABE CBE ∠=∠AEB ABE ∠=∠AE AB =ABCD AD BC ∥AEB CBE ∠=∠B ∠BE AD ABE CBE ∠=∠AEB ABE ∠=∠AE AB =58AB BC ==,853DE AD AE BC AB =-=-=-===1262π=⨯⨯=AB BC 110ABC ∠=︒EF ,,AB BC CD EF AEF α∠=BC CD______.(结果用含的代数式表示)【答案】【解析】【分析】本题考查了入射角和反射角、平行线以及三角形内角和等知识,解题的关键在于正确画出辅助线【详解】根据入射光线画出反射光线,交于点,同理根据入射光线画出反射光线,交于点,根据入射光线画出反射光线,过点作的平行线,使得.入射角等于反射角入射角等于反射角根据入射角等于反射角,可知:的BCD ∠=α90α︒+FE EG BC G EG GH CD H GH HK G EF GP EF HK BEG AEF α∴∠=∠=1802GEF α∴∠=︒-110ABC ∠=︒18011070BGE αα∴∠=︒-︒-=︒- 70HGC BGE α∴∠=∠=︒-()180270402EGH αα∴∠=︒-⨯︒-=︒+GP EF HK180,180GEF EGP PGH GHK ∴∠+∠=︒∠+∠=︒402EGP PGH EGH α∠+∠=∠=︒+ 360GEF EGH GHK ∴∠+∠+∠=︒()()3601802402140GHK αα∴∠=︒-︒--︒+=︒()1180140202GHC KHD ∠=∠=︒-︒=︒18090BCD CGH GHC α∴∠=︒-∠-∠=︒+故答案为:.16. 如图,已知矩形,过点A 作交的延长线于点E ,若,则______.【解析】【分析】利用矩形的性质,证明,,,变形计算,结合勾股定理,解方程,正切函数解答即可.【详解】∵矩形,∴,∴,,∵,∴,∴,,∴,∴,∴,∴,90α︒+ABCD AE AC ⊥CB AED ACB ∠=∠2tan BAE ∠=1-ADF CEF △∽△ADE FEC ∽BAE BCA △△∽ABCD ,,90,AD BC AB CD ABC BCD AD BC ==∠=∠=︒ ADF CEF △∽△ADE CEF ∠=∠AED ACB ∠=∠ADE FEC ∽AD DF EC EF=EF EC AD ED =AD ED EF EC EF-=ED EC EF AD EC =+ ()·ED EC EC AD AD EC ED=+22ED AD AD EC =+根据勾股定理,得,∴,∴,∴,∴,∵,∴,∵,∴,∴,∴,∴,解得,解得(舍去),∵∴,.【点睛】本题考查了矩形的性质,三角形相似的判定和性质,勾股定理,正切函数,直角三角形的性质,解方程,熟练掌握三角形相似的判定和性质,正切函数,勾股定理,解方程是解题的关键.三、解答题(第17-19题每小题6分,第20、21题每小题8分,第22、23题每小题10分,第24题12分,共66分)17. 计算:(1)222ED CD EC =+222CD EC AD AD EC +=+ ()()222·AB EB BC BC BC EB BC ++=++222222AB EB EB BC BC BC EB BC BC +++=++ 2220AB EB EB BC BC ++-= AE AC ⊥90BAE AEB BCA ∠︒-∠=∠=90ABE CBA ∠∠=︒=BAE BCA △△∽AB BE BC AB=2AB BE BC = 2220EB EB BC BC +-= (1EB BC ==-±1,1EB EB BC BC=-=tan BE BAE AB ∠=2222tan 1BE BE BE BAE AB BE BC BC ∠====- 102212024(3)33-+-⨯--(2)先化简,再求值:,其中【答案】(1) (2),2【解析】【分析】本题主要考查了实数的运算,整式的化简求值,对于(1),根据,,,,再根据有理数运算法则计算;对于(2),先根据整式的乘法法则及公式化简,再代入求值即可.【小问1详解】;【小问2详解】原式.当时,原式.18. 某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分10分,成绩均记为整数分),并按测试成绩m (单位:分)分成四类:类,类,类,类,绘制出如图两幅不完整的统计图,请根据图中信息,解答下列问题:(1)本次抽样调查的人数为______,并补全条形统计图:(1)(1)(2)x x x x +-++12x =5312x +020241=2(93)-=2139-=1133-=02212024(3)33-+-⨯--111993=+⨯-213=+53=2212x x x=-++12x =+12x =11222=+⨯=A (10)m =B (79)m ≤≤C (46)m ≤≤D (3)m ≤(2)扇形统计图中A 类所对的圆心角是______°,测试成绩的中位数落在______类;(3)若该校九年级男生有500名,请估计该校九年级男生“引体向上”项目成绩为A 类或B 类的共有多少名?【答案】(1)50人,图见解析(2)72,B (3)估计该校九年级男生“引体向上”项目成绩为类或类的约有320名.【解析】【分析】本题考查条形统计图,扇形统计图,用样本估计总体,中位数;通过统计图之间的联系求出样本容量是解题的关键.(1)由统计图之间的联系求出样本容量,进一步求出组人数,补齐图形;(2)由组的占比求出对应圆心角;根据中位数定义,可知第25,26个数在组,故中位数在组;(3)由样本占比估计总本的人数.【小问1详解】解:本次抽样调查的人数为(人),组人数为(人),补全的条形统计图如图;故答案为:50人;【小问2详解】解:类所对的圆心角是;样本量为50,可知数据从大到小排列,第25,26个数在组,故中位数在类;故答案为:72,;小问3详解】解:类或类的共有(名),答:估计该校九年级男生“引体向上”项目成绩为类或类的共有320名.19. 如图,直线与双曲线相交于点.【A B C A B B 1020%50÷=C 501022315---=A 36020%72︒⨯=︒B B B A B 500(20%44%)320⨯+=A B y kx b =+(0)m y x x=>()()2,6,1A n B(1)求直线及双曲线对应的函数表达式;(2)直接写出关于x 的不等式的解集;(3)求的面积.【答案】(1)直线:,双曲线: (2)(3)8【解析】【分析】本题主要考查了一次函数,反比例函数的交点坐标,将点的坐标代入函数关系式是确定函数关系式的常用方法,理解交点坐标与不等式解集之间的关系是解本题的关键.(1)将代入到反比例函数解析式可得其解析式;先根据反比例函数解析式求得点的坐标,再由,坐标可得直线解析式;(2)根据图象得出不等式的解集即可;(3)设一次函数的图象与坐标轴交于,两点,分别过,两点作轴于,作轴于,根据题意可得,,从而求出,和,进而求出的值.【小问1详解】把代入,得:,∴反比例函数的解析式为;把代入,得:,∴,(0)m kx b x x +>>ABO 142y x =-+6(0)y x x =>26x <<()6,1B ()2,3A A B (0)m kx b x x+>>C D A B AE y ⊥E BF x ⊥F 2,1AE BF ==48OC OD ==,AOC S BOD S COD S △AOB S ()6,1B m y x=6m =6y x=()2,A n 6y x =3n =()2,3A把、代入,得:,解得:,∴一次函数的解析式为;故答案为:;.【小问2详解】由图象可知当时,,∴不等式的解集是,【小问3详解】设一次函数的图象与坐标轴交于,两点,分别过,两点作轴于,作轴于,∵、,∴,∵一次函数的解析式为,当时,,当当时,,解得,,∴点C 的坐标是,点D 的坐标是∴.∴,,()2,3A ()6,1B y kx b =+2361k b k b +=⎧⎨+=⎩124k b ⎧=-⎪⎨⎪=⎩142y x =-+5y x =-+4y x =26x <<(0)m kx b x x+>>(0)m kx b x x+>>26x <<C D A B AE y ⊥E BF x ⊥F ()2,3A ()6,1B 2,1AE BF ==142y x =-+0x =4y =0y =1042x =-+8x =()0,4()8,048OC OD ==,114,422AOC BOD S OC AE S OD BF =⋅==⋅= 1162COD S OC OD =⋅=△∴.20. 如图,已知和均是等边三角形,F 点在上,延长交于点D ,连接.(1)求证:四边形是平行四边形;(2)当点D 在线段上什么位置时,四边形是矩形?请说明理由.【答案】(1)见解析(2)当点D 在中点时,四边形是矩形,见解析【解析】【分析】本题考查了等边三角形的性质,平行四边形的判定与性质,矩形的判定等知识.熟练掌握等边三角形的性质,平行四边形的判定与性质,矩形的判定是解题的关键.(1)由和均是等边三角形,可得,则,进而可证四边形是平行四边形;(2)由,点D 在中点,可得,则,可证四边形是平行四边形,由,可证四边形是矩形.【小问1详解】证明:∵和均是等边三角形,∴,∴,∴四边形是平行四边形;【小问2详解】解:当点D 在中点时,四边形是矩形,理由如下;∵,点D 在中点,∴,∵四边形是平行四边形,∴,∴,∵,16448AOB COD AOC BOD S S S S =--=--= ABC AEF △AC EF BC AD CE ,ABDE BC ADCE BC ADCE ABC AEF △6060BAC AFE ACB FAE ∠=∠=︒∠=∠=︒,AB DE AE BD ∥,∥ABDE AB AC =BC AD BC BD CD ⊥=,AE CD =ADCE AD BC ⊥ADCE ABC AEF △6060BAC AFE ACB FAE ∠=∠=︒∠=∠=︒,AB DE AE BD ∥,∥ABDE BC ADCE AB AC =BC AD BC BD CD ⊥=,ABDE AE BD =AE CD =AE CD ∥∴四边形是平行四边形,∵,∴四边形是矩形.21. 如图的正方形网格中,每个小正方形的边长均为,的各个顶点都在格点上.(1)在边上作一点,使得的面积是,并求出的值;(2)作出边上的高,并求出高的长.(说明:只能使用没有刻度尺的直尺进行作图,并保留画图痕迹)【答案】(1)画图见解析,; (2)见解析,.【解析】【分析】()根据网格特征作即可;()根据网格特征作即可,本题考查了无刻度尺的直尺作图—作垂线,熟练掌握无刻度尺的直尺作图的方法是解题的关键.【小问1详解】如图,由网格的特征可知:,∴,∴,∴面积为,∴即为所求;ADCE AD BC ⊥ADCE 1ABC BC M ABM 83BM CMAC BD BD 12BM CM =165BD =112BM CM =2BD AC ⊥BG CH ∥CHM BGM ∽12BG BM CH CM ==ABM 1118443323ABC S =⨯⨯⨯= ABM【小问2详解】如图,根据网格作垂线的方法即可,∴即为所求,由网格的特征可知:,∴,∴.22. 星期日上午,小明从家里出发步行前往离家的镇海书城参加读书会活动,他以的速度步行了后发现忘带入场券,于是他停下来.打电话给家里的爸爸寻求帮助,爸爸骑着自行车从家里出发,沿着同一路线以的速度行进,同一时刻小明继续按原速步行赶往目的地.爸爸追上小明后载上他以相同的车速前往书城(停车载人时间忽略不计),到达书城后爸爸原速返回家.爸爸和小明离家的路程与小明所用时间的函数关系如图所示.(1)求爸爸在到达镇海书城前,他离开家的路程s 关于t 的函数表达式及a 的值.(2)爸爸出发后多长时间追上小明?此时距离镇海书城还有多远?【答案】(1),(2)爸爸出发3分钟后追上小明,此时距离镇海书城1275米【解析】【分析】本题考查一次函数的应用以及路程、速度、时间之间关系的应用,关键是用待定系数法求出函数解析式.(1)根据爸爸行驶的路程和爸爸的速度,求出爸爸到达书城所用时间,再根据待定系数法求函数解析式,再求出的值;BD 5AC ==1144522ABC S BD =⨯⨯=⨯⨯ 165BD =9:00 2.4km 75m/min 12min 9:15375m/min ()m s ()min t 3755625s t =-27.8a =a(2)设爸爸出发后分钟追上小明,根据两人路程相等列出方程,解方程求出,并求出距离书城的距离.【小问1详解】解:爸爸到达达镇海书城所用时间为,设爸爸在到达镇海书城前,他离开家的路程关于的函数表达式为,把,代入,得:,解得,爸爸在到达镇海书城前,他离开家的路程关于的函数表达式为;爸爸的速度不变,他返回家的时间和到达书城的时间均为,;【小问2详解】设爸爸出发后分钟追上小明,则,解得,此时,,答:爸爸出发后3分钟追上小明,此时距离镇海书城还有1275米.23. 根据以下素材,探索完成任务.设计跳长绳方案素材1:某校组织跳长绳比赛,要求如下:(1)每班需报名跳绳同学9人,摇绳同学2人;(2)跳绳同学需站成一路纵队,原地起跳,如图1.素材2:某班进行赛前训练,发现:(1)当绳子摇至最高处或最低处时,可近似看作两条对称分布的抛物线.已知摇绳同学之间水平距离为,绳子最高点为,摇绳同学的出手高度均为,如图x x 2400 6.4(min)375=s t s kt b =+(15,0)(21.4,2400)s kt b =+15021.42400k b k b +=⎧⎨+=⎩3755625k b =⎧⎨=-⎩∴s t 3755625s t =- ∴ 6.4min 152 6.427.8a ∴=+⨯=x 37575(12)x x =+3x =240037531275(m)-⨯=6m 2m 1m2;(2)9名跳绳同学身高如右表.【答案】任务1:;任务2:当绳子在最高点时,长绳不会触碰到位于最边侧的同学;任务3:方案可行【解析】【分析】本题考查了二次函数的应用,任务1:建立平面直角坐标系,待定系数法求解析式,即可求解;任务2,得出最右侧同学横坐标为代入解析式,结合按照排列方式可知最右(左)侧同学屈膝后身高即可求解;任务3,求得平移后的抛物线解析式,进而将代入,结合题意,即可求解.【详解】解:任务1:以两个摇绳人的中点所在直线与地面的交点为原点,地面所在直线为轴,建立直角坐标系,如图:由已知可得,在抛物线上,且抛物线顶点的坐标为,设抛物线解析式为,∴,解得:,∴抛物线的函数解析式为:任务2:∵抛物线的对称轴为直线,名同学,以轴为对称轴,分布在对称轴两侧,将同学按“中间高,两边低”的方式对称排列,同时保持的间距,则最右边侧的同学的坐标为即,当时,的21129y x =-+()1.8,1.7 1.8x =x ()()3,1,3,1-()0,222y ax =+192a =+19a =-21129y x =-+3x =9y 0.45m ()0.454,1.70⨯()1.8,1.71.8x =211.82 1.649y =-⨯+=按照排列方式可知最右(左)侧同学屈膝后身高:∴当绳子在最高点时,长绳不会触碰到位于最边侧的同学;任务3:∵当绳子摇至最高处或最低处时,可近似看作两条对称分布的抛物线.设开口向上的抛物线解析式为,对称轴为直线,则的顶点坐标为,∵,的开口大小不变,开口方向相反,∴当绳子摇至最低处时,抛物线的解析式为:∵将出手高度降低至.∴抛物线向下平移∴改变方案后的抛物线解析式为将,代入因此,方案可行24. 如图1,已知四边形内接于,且为直径.作交于点E ,交于点F .(1)证明:;(2)若,,求半径r ;(3)如图2,连接并延长交于点G ,交于点H .若,.①求;②连接,设,用含x 的式子表示的长.(直接写出答案)【答案】(1)见解析 (2) (3)①;②191.70 1.615 1.6420⨯=<2y1y =2y ()0,01y 2y 2219y x =-0.85m 10.850.15-=2310.159y x =--1.8x =223110.15 1.80.150.210.2599y x =-=⨯-=<ABCD O BD AF BC ∥CD O AF CD ⊥4cos 5DAF ∠=4AC =BE DF O AF CD =AEB BDC ∠=∠tan BDC ∠OE OE x =GH 52r =1tan 2BDC ∠=GH x =【解析】【分析】(1)根据圆周角定理得出,根据平行线的得出,即可证明结论;(2)证明,得出,根据,得出,根据,求出结果即可;(3)①过点O 作于点P ,于点Q ,证明矩形是正方形,设,,得出,,证明,得出,求出,得出;②连接,证明,得出,即,求出,证明,得出,根据,得出,证明,得出,证明,得出【小问1详解】证明:∵为直径,∴,∵,∴,即.【小问2详解】解:∵,∴,又∵,∴,90BCD ∠=︒90AED BCD ∠=∠=︒AEC DAB ∽ AC AE BD AD =4cos 5AE DAF AD ∠==45AC BD =4AC =OP DC ⊥OQ AF ⊥OPEQ OP a PE ==CE b =2BC a =()22CD PC a b ==+BEC DBC ∽ 2BC CE CD =⋅1b a =1tan 2OP a BDC DP a b ∠===+HF ODP MDE ∽OP DP ME DE ==ME x =AMN CBN ∽ 37AN AC x ==ODP MDE ∽CEB CBD ∠∠=DEG DAN ∽ AN AD EG DE ==EG AN ==ABE HFE ∽ EH AE ==BD 90BCD ∠=︒AF BC ∥90AED BCD ∠=∠=︒AF CD ⊥AF BC ∥EAC ACB ∠=∠ACB ADB Ð=ÐEAC ADB ∠=∠∵,∴,∴,∴,∴,∵,∴,即.【小问3详解】①如图2,过点O 作于点P ,于点Q ,如图所示:∵,∴四边形是矩形,∵,∴,∴矩形是正方形设,,∵,∴,∵,90AEC BAD ∠=∠=︒AEC DAB ∽ AC AE BD AD=4cos 5AE DAF AD ∠==45AC BD =4AC =5BD =52r =OP DC ⊥OQ AF ⊥90OPE PEQ OQE ∠=∠=∠=︒OPEQ AF CD =OP OQ =OPEQ OP a PE ==CE b =OP CD ⊥DP CP =DO OB =∴,,∵,∴,∵,∴,∵,∴,∴,∴,即:,解得:,∴;②如图,连接,由(3)①得,四边形为正方形,2BC a =()22CD PC a b ==+AF BC ∥AEB EBC ∠=∠AEB BDC ∠=∠EBC BDC ∠=∠BCE BCD ∠=∠BEC DBC ∽ BC EC DC BC=2BC CE CD =⋅()()222a b a b =⋅+1b a=1tan 2OP a BDC DP a b ∠===+HF OPEQ∵,∴,由,得,∴,∴,,∵,,∴为等腰直角三角形,∴,,∴,∵,,∴,∴,,解得:,∴,∵,∴,∴,∴,OE x =OP PE QE x ===1tan 2BDC ∠=DP =CP DP ==CE CP EP x =-=CD =AF CD =AF CD ⊥ADE V x AE DE ==EF CE x ==AC ==90OPD DEM ∠=∠=︒ODP MDE ∠=∠ODP MDE ∽OP DP ME DE==ME x =AM AE ME x x x =-==AF BC ∥AMN CBN ∽ 34AN AM NC BC ===37AN AC x ==∵,∴,∵,∴,∵,∴,∵,∴,∵,∴,∵,∴,∴,∴,∴∴,∵,∴,∵,∴,∴∴,∴.【点睛】本题主要考查了相似三角形的判定和性质,勾股定理,圆周角定理,等腰三角形的判定和性质,ODP MDE ∽CEB CBD∠∠= CDCD =CBD CAD ∠=∠CEB DEG ∠=∠DAN DEG ∠=∠ CFCF =EDG CAE ∠=∠AF BC ∥CAE ACB ∠=∠ AB AB =ADN ACB ∠=∠ADN EDG ∠=∠DEG DAN ∽ AN AD EG DE==EG AN x == BFBF =EAB EHF ∠=∠AEB HEF ∠=∠ABE HFE ∽ EH EF AE BE ==EH AE ==GH EH EG x =-=解题的关键是熟练掌握相关的判定和性质,数形结合,作出辅助线.。
河南省信阳市中考数学一模试卷一、选择题:1.下列各组数中,互为倒数的是()A.2和﹣2 B.﹣2和C.﹣2和﹣D.﹣和22.下列不是三棱柱展开图的是()A.B. C.D.3.据统计,今年春节期间(除夕到初五),微信红包总收发次数达321亿次,几乎覆盖了全国75%的网民,数据“321亿”用科学记数法可表示为()A.3.21×108B.321×108C.321×109D.3.21×10104.如图,把等腰直角三角板的直角顶点放在刻度尺的一边上,若∠1=60°,则∠2的度数为()A.30°B.40°C.50°D.60°5.为了解某社区居民的用电情况,随机对该社区10户居民进行调查,下表是这10户居民4月份用电量的调查结果:居民(户) 1 2 3 4月用电量(度/户) 30 42 50 51那么关于这10户居民月用电量(单位:度),下列说法错误的是()A.中位数是50 B.众数是51 C.方差是42 D.极差是216.一次函数y=kx+b的图象如图,则当0<x≤1时,y的范围是()A.y>0 B.﹣2<y≤0 C.﹣2<y≤1 D.无法判断7.如图,▱ABCD中,AE平分∠BAD,若CE=3cm,AB=4cm,则▱ABCD的周长是()A.20cm B.21cm C.22cm D.23cm8.如图,平面直角坐标系中,直线y=﹣x+a与x、y轴的正半轴分别交于点B和点A,与反比例函数y=﹣的图象交于点C,若BA:AC=2:1,则a的值为()A.2 B.﹣2 C.3 D.﹣3二、填空题:每小题3分,共21分.9.计算:﹣14+﹣4cos30°=.10.不等式组的解集为.11.某市初中毕业女生体育中招考试项目有四项,其中“立定跳远”、“1000米跑”、“篮球运球”为必测项目,另一项从“掷实心球”、“一分钟跳绳”中选一项测试.则甲、乙、丙三位女生从“掷实心球”或“一分钟跳绳”中选择一个考试项目的概率是.12.如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=102°,则∠ADC=度.13.在平面直角坐标系中,点A(2,3),B(5,﹣2),以原点O为位似中心,位似比为1:2,把△ABO缩小,则点B的对应点B′的坐标是.14.如图,在矩形ABCD中,AB=4,BC=2,以A为圆心,AB的长为半径画弧,交DC于点E,交AD延长线于点F,则图中阴影部分的面积为.15.如图,有一张长为8cm,宽为7cm的矩形纸片ABCD,现要剪下一个腰长为6cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为cm2.三、解答题:本大题8个小题,共75分.16.先化简分式:(),若该分式的值为2,求x的值.17.如图,AB是⊙O的直径,C、D为半圆O上的两点,CD∥AB,过点C作CE⊥AD,交AD 的延长线于点E,tanA=.(1)求证:CE是⊙O的切线;(2)猜想四边形AOCD是什么特殊的四边形,并证明你的猜想.18.手机给人们的生活带来了很多的方便,但也出现了过度使用手机的现象,出现了所谓的“手机控”、“低头族”等,某校九年级数学兴趣小组的同学调查了若干名家长对“初中学生带手机上学”这一现象的看法,统计整理并制作了如下的条形与扇形统计图.依据图中信息,解答下列问题:(1)本次调查的学生家长有名,“很赞同”初中生带手机上学的家长所对应的圆心角度数是;(2)请补全报“无所谓”态度的家长所对应的条形统计图(标上柱高数值);(3)请你对初中生是否应该带手机上学提出一个合理化的建议.19.已知关于x的一元二次方程x2﹣(k+3)x+3k=0.(1)求证:不论k取何实数,该方程总有实数根.(2)若等腰△ABC的一边长为2,另两边长恰好是方程的两个根,求△ABC的周长.20.如图1,被誉为“中原第一高楼”的郑州会展宾馆(俗称“玉米楼”)就坐落在风景如画的如意湖畔,也是来郑观光的游客留影的最佳景点.学完了三角函数后,刘明和王华决定用自己学到的知识测量“玉米楼”的高度.如图2,刘明在点C处测得楼顶B的仰角为45°,王华在高台上测得楼顶的仰角为30°.若高台高DE为5米,点D到点C的水平距离EC为187.5米,A、C、E三点共线,求“玉米楼”AB的高(,结果保留整数).21.“红星”中学准备为校“教学兴趣小组”购进甲、乙两种学习用具,已知5件甲种学习用具的进价与3件乙种学习用具的进价的和为231元,2件甲种学习用具的进价与3件乙种学习用具的进价的和为141元.(1)求每件甲种、乙种学习用具的进价分别是多少元?(2)如果购进甲种学习用具有优惠,优惠方法是:购进甲种学习用具超过20件,超出部分可以享受7折优惠,若购进x(x>0)件甲种学习用具需要花费y元,请你求出y与x的函数关系式;(3)在(2)的条件下,学校决定在甲、乙两种学习用具中选购其中一种,且数量超过20件,请你帮助学校判断购进哪种学习用具更省钱.22.阅读并完成下面的数学探究:(1)【发现证明】如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,小颖把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.(2)【类比延伸】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足关系时,仍有EF=BE+FD.(3)【结论应用】如图(3),四边形ABCD中,AB=AD=80,∠B=60°,∠ADC=120°,∠BAD=150°,点E、F分别在边BC、CD上,且AE⊥AD,DF=40(),连E、F,求EF 的长(结果保留根号).23.如图,在平面直角坐标系中,一次函数y=﹣的图象与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c关于直线x=对称,且经过A、C两点,与x轴交于另一点为B.(1)①求点B的坐标;②求抛物线的解析式.(2)若点P为直线AC上方的抛物线上的一点,连接PA、PC,若△PAC的面积是△ABC面积的,求出此时点P的坐标.(3)在抛物线的对称轴上是否存在点D,使△ADC为直角三角形?若存在,直接写出点D的坐标;若不存在,请说明理由.河南省信阳市中考数学一模试卷参考答案与试题解析一、选择题:1.下列各组数中,互为倒数的是()A.2和﹣2 B.﹣2和C.﹣2和﹣D.﹣和2【考点】倒数.【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数.【解答】解:2×(﹣)=1,故C正确;故选:C.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.下列不是三棱柱展开图的是()A.B. C.D.【考点】几何体的展开图.【分析】根据三棱柱的两底展开是三角形,侧面展开是三个四边形,可得答案.【解答】解:∵三棱柱展开图有3个四边形,2个三角形,∴C选项不是三棱柱展开图,故选:C.【点评】本题考查了几何体的展开图,注意两底面是对面,展开是两个全等的三角形,侧面展开是三个矩形.3.据统计,今年春节期间(除夕到初五),微信红包总收发次数达321亿次,几乎覆盖了全国75%的网民,数据“321亿”用科学记数法可表示为()A.3.21×108B.321×108C.321×109D.3.21×1010【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:321亿=32100000000=3.21×1010,故选D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.如图,把等腰直角三角板的直角顶点放在刻度尺的一边上,若∠1=60°,则∠2的度数为()A.30°B.40°C.50°D.60°【考点】平行线的性质.【分析】先根据平行线的性质求出∠3的度数,再由余角的定义即可得出结论.【解答】解:∵直尺的两边互相平行,∠1=60°,∴∠3=∠1=60°.∵∠3+∠2=90°,∴∠2=90°﹣∠3=90°﹣60°=30°.故选A.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.5.为了解某社区居民的用电情况,随机对该社区10户居民进行调查,下表是这10户居民4月份用电量的调查结果:居民(户) 1 2 3 4月用电量(度/户) 30 42 50 51那么关于这10户居民月用电量(单位:度),下列说法错误的是()A.中位数是50 B.众数是51 C.方差是42 D.极差是21【考点】方差;中位数;众数;极差.【专题】计算题.【分析】根据表格中的数据,求出平均数,中位数,众数,极差与方差,即可做出判断.【解答】解:10户居民4月份用电量为30,42,42,50,50,50,51,51,51,51,平均数为(30+42+42+50+50+50+51+51+51+51)=46.8,中位数为50;众数为51,极差为51﹣30=21,方差为[(30﹣46.8)2+2(42﹣46.8)2+3(50﹣46.8)2+4(51﹣46.8)2]=42.96.故选C.【点评】此题考查了方差,中位数,众数,以及极差,熟练掌握各自的求法是解本题的关键.6.一次函数y=kx+b的图象如图,则当0<x≤1时,y的范围是()A.y>0 B.﹣2<y≤0 C.﹣2<y≤1 D.无法判断【考点】一次函数的性质.【分析】根据一次函数的图象与两坐标轴的交点直接解答即可.【解答】解:因为一次函数y=kx+b的图象与两坐标轴的交点分别为(1,0)、(0,﹣2),所以当0<x≤1,函数y的取值范围是:﹣2<y≤0,故选B【点评】本题考查的是用数形结合的方法求函数的取值范围,解答此题的关键是正确观察函数在平面直角坐标系内的图象,属较简单题目.7.如图,▱ABCD中,AE平分∠BAD,若CE=3cm,AB=4cm,则▱ABCD的周长是()A.20cm B.21cm C.22cm D.23cm【考点】平行四边形的性质.【分析】由平行四边形的性质得出AD=BC=4cm,AB=DC,AD∥BC,由平行线的性质和角平分线求出BE=AB=4cb,得出BC=7cm,即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC=10,AB=DC,AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BCD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BE=AB=4cm,∴BC=BE+CE=7cm,∴▱ABCD的周长=2(DC+BC)=2(4+7)=22cm;故选:C.【点评】本题考查了平行四边形的性质、等腰三角形的判定、平行线的性质;熟练掌握平行四边形的性质,证出BE=AB是解决问题的关键.8.如图,平面直角坐标系中,直线y=﹣x+a与x、y轴的正半轴分别交于点B和点A,与反比例函数y=﹣的图象交于点C,若BA:AC=2:1,则a的值为()A.2 B.﹣2 C.3 D.﹣3【考点】反比例函数与一次函数的交点问题.【分析】想办法把C点坐标用a表示出来,然后代入y=﹣即可.【解答】解:作CE⊥x轴于E,∵AO∥CE,BA:AC=2:1,AO=OB=a,∴=,∴EB=,CE=,∴点C坐标(﹣,a),又∵点C在y=﹣上,∴﹣=﹣3,∵a>0,∴a=2.故选A.【点评】本题考查反比例函数与一次函数的有关知识,学会用转化的思想解决,把问题变成方程是解题的关键,属于中考常考题型.二、填空题:每小题3分,共21分.9.计算:﹣14+﹣4cos30°=﹣1.【考点】实数的运算;特殊角的三角函数值.【分析】首先化简二次根式以及利用特殊角的三角函数值代入求出答案.【解答】解:﹣14+﹣4cos30°=﹣1+2﹣4×=﹣1.故答案为:﹣1.【点评】此题主要考查了特殊角的三角函数值以及二次根式的性质,正确化简各数是解题关键.10.不等式组的解集为﹣3<x<﹣2.【考点】解一元一次不等式组.【分析】分别求得各不等式的解集,然后求出公共部分即可.【解答】解:,由①得:x>﹣3,由②得:x<﹣2,则不等式组的解集为﹣3<x<﹣2.故答案为:﹣3<x<﹣2.【点评】】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.11.某市初中毕业女生体育中招考试项目有四项,其中“立定跳远”、“1000米跑”、“篮球运球”为必测项目,另一项从“掷实心球”、“一分钟跳绳”中选一项测试.则甲、乙、丙三位女生从“掷实心球”或“一分钟跳绳”中选择一个考试项目的概率是.【考点】列表法与树状图法.【分析】首先分别用A,B代表“掷实心球”、“一分钟跳绳”,然后根据题意画树状图,继而求得所有等可能的结果与甲、乙、丙三位女生从“掷实心球”或“一分钟跳绳”选择同一个测试项目的情况,利用概率公式即可求得答案.【解答】解:分别用A,B代表“掷实心球”、“一分钟跳绳”,画树状图得:∵共有8种等可能的结果,甲、乙、丙三位女生从“掷实心球”或“一分钟跳绳”中选择一个考试项目的有2种情况,∴其概率是:=.故答案为:.【点评】此题考查了树状图法求概率的知识.注意树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.12.如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=102°,则∠ADC=52度.【考点】等腰三角形的性质.【分析】设∠ADC=α,然后根据AC=AD=DB,∠BAC=102°,表示出∠B和∠BAD的度数,最后根据三角形的内角和定理求出∠ADC的度数.【解答】解:∵AC=AD=DB,∴∠B=∠BAD,∠ADC=∠C,设∠ADC=α,∴∠B=∠BAD=,∵∠BAC=102°,∴∠DAC=102°﹣,在△ADC中,∵∠ADC+∠C+∠DAC=180°,∴2α+102°﹣=180°,解得:α=52°.故答案为:52.【点评】本题考查了等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等.13.在平面直角坐标系中,点A(2,3),B(5,﹣2),以原点O为位似中心,位似比为1:2,把△ABO缩小,则点B的对应点B′的坐标是(,﹣1)或(﹣,1).【考点】位似变换;坐标与图形性质.【分析】由以原点O 为位似中心,位似比为1:2,把△ABO 缩小,直接利用位似图形的性质求解即可求得答案.【解答】解:∵以原点O 为位似中心,位似比为1:2,把△ABO 缩小,B (5,﹣2),∴点B 的对应点B ′的坐标是:(,﹣1)或(﹣,1).故答案为:(,﹣1)或(﹣,1).【点评】此题考查了位似图形的性质.注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或﹣k .14.如图,在矩形ABCD 中,AB=4,BC=2,以A 为圆心,AB 的长为半径画弧,交DC 于点E ,交AD 延长线于点F ,则图中阴影部分的面积为 8﹣4+π .【考点】扇形面积的计算.【分析】根据直角三角形30°角所对的直角边等于斜边的一半可得∠AED=30°,进而求得∠1=60°;由勾股定理求出DE ,再根据阴影FDE 的面积S 1=S 扇形AEF ﹣S △ADE 、阴影ECB 的面积S 2=S 矩形﹣S △ADE ﹣S 扇形ABE 列式计算即可得解.【解答】解:∵在矩形ABCD 中,AB=4,BC=2,∴AB=2DA ,AB=AE (扇形的半径),∴AE=2DA ,∴∠AED=30°,∴∠1=90°﹣30°=60°,∵DA=2∴AB=2DA=4,∴AE=4,∴DE==2,∴阴影FDE 的面积S 1=S 扇形AEF ﹣S △ADE =﹣×2×2=π﹣2.阴影ECB 的面积S 2=S 矩形﹣S △ADE ﹣S 扇形ABE =2×4﹣×2×2﹣=8﹣2﹣π;. 则图中阴影部分的面积为=8﹣2﹣π+π﹣2=8﹣4+π.故答案为:8﹣4+π. 【点评】本题考查了矩形的性质,扇形的面积计算,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记性质并求出∠AED=30°是解题的关键,也是本题的难点.15.如图,有一张长为8cm ,宽为7cm 的矩形纸片ABCD ,现要剪下一个腰长为6cm 的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为 18或3或12 cm 2.【考点】勾股定理;等腰三角形的判定;矩形的性质. 【专题】分类讨论. 【分析】因为等腰三角形腰的位置不明确,所以分三种情况进行讨论: (1)△AEF 为等腰直角三角形,直接利用面积公式求解即可;(2)先利用勾股定理求出AE 边上的高BF ,再代入面积公式求解;(3)先求出AE 边上的高DF ,再代入面积公式求解.【解答】解:分三种情况计算:(1)当AE=AF=6时,如图:∴S△AEF=AE•AF=×6×6=18(cm2);(2)当AE=EF=6时,如图:则BE=7﹣6=1,BF===,∴S△AEF=•AE•BF=×6×=3(cm2);(3)当AE=EF=6时,如图:则DE=8﹣6=2,DF===4,∴S△AEF=AE•DF=×6×4=12(cm2);故答案为:18或3或12.【点评】本题主要考查了勾股定理的运用,矩形的性质,三角形的面积,要根据三角形的腰长的不确定分情况讨论,有一定的难度.三、解答题:本大题8个小题,共75分.16.先化简分式:(),若该分式的值为2,求x的值.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再由该分式的值为2,求出x的值即可.【解答】解:原式=•=,∵该分式的值为2,∴=2,即2(x+2)=4,解得x=0,经检验x=0是分式方程的解.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.17.如图,AB是⊙O的直径,C、D为半圆O上的两点,CD∥AB,过点C作CE⊥AD,交AD 的延长线于点E,tanA=.(1)求证:CE是⊙O的切线;(2)猜想四边形AOCD是什么特殊的四边形,并证明你的猜想.【考点】切线的判定;菱形的判定.【分析】(1)连接OD,由锐角三角函数得出∠A=60°,证出△OAD是等边三角形,得出∠ADO=∠AOD=60°,再证明△COD是等边三角形,得出∠COD=60°=∠ADO,证出OC∥AE,由已知条件得出CE⊥OC,即可得出结论;(2)由(1)得:△OAD和△COD是等边三角形,得出OA=AD=OD=CD=OC,即可证出四边形AOCD是菱形.【解答】(1)证明:连接OD,如图所示:∵tanA=,∴∠A=60°,∵OA=OD,∴△OAD是等边三角形,∴∠ADO=∠AOD=60°,∵CD∥AB,∴∠ODC=60°,∵OC=OD,∴△COD是等边三角形,∴∠COD=60°=∠ADO,∴OC∥AE,∵CE⊥AE,∴CE⊥OC,∴CE是⊙O的切线;(2)解:四边形AOCD是菱形;理由如下:由(1)得:△OAD和△COD是等边三角形,∴OA=AD=OD=CD=OC,∴四边形AOCD是菱形.【点评】本题考查了切线的判定、等边三角形的判定与性质、三角函数、菱形的判定;熟练掌握切线的判定方法,证明三角形是等边三角形是解决问题的关键.18.手机给人们的生活带来了很多的方便,但也出现了过度使用手机的现象,出现了所谓的“手机控”、“低头族”等,某校九年级数学兴趣小组的同学调查了若干名家长对“初中学生带手机上学”这一现象的看法,统计整理并制作了如下的条形与扇形统计图.依据图中信息,解答下列问题:(1)本次调查的学生家长有200名,“很赞同”初中生带手机上学的家长所对应的圆心角度数是36°;(2)请补全报“无所谓”态度的家长所对应的条形统计图(标上柱高数值);(3)请你对初中生是否应该带手机上学提出一个合理化的建议.【考点】条形统计图;扇形统计图.【分析】(1)根据赞同的人数和所占的百分比求出总人数,再乘以无所谓所占的百分比求出无所谓的人数,用总人数减去其它的人数求出很赞同的人数,然后乘以360°求出“很赞同”初中生带手机上学的家长所对应的圆心角的度数;(2)根据(1)求出无所谓的人数可直接画出条形统计图;(3)根据学生现在正需要好好地学习,不应该带手机,网络这么发达,会影响学习.【解答】解:(1)本次调查的学生家长有=200(名),无所谓的人数是:200×20%=40(人),很赞同的人数是:200﹣50﹣40﹣90=20(人),则“很赞同”初中生带手机上学的家长所对应的圆心角度数是360°×=36°;故答案为:200,36°;(2)根据(1)求出的无所谓的人数是40,补图如下:(3)初中生不应该带手机,影响学习.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.已知关于x的一元二次方程x2﹣(k+3)x+3k=0.(1)求证:不论k取何实数,该方程总有实数根.(2)若等腰△ABC的一边长为2,另两边长恰好是方程的两个根,求△ABC的周长.【考点】根的判别式;三角形三边关系;等腰三角形的性质.【分析】(1)求出根的判别式,利用偶次方的非负性证明;(2)分△ABC的底边长为2、△ABC的一腰长为2两种情况解答.【解答】(1)证明:△=(k+3)2﹣4×3k=(k﹣3)2≥0,故不论k取何实数,该方程总有实数根;(2)解:当△ABC的底边长为2时,方程有两个相等的实数根,则(k﹣3)2=0,解得k=3,方程为x2﹣6x+9=0,解得x1=x2=3,故△ABC的周长为:2+3+3=8;当△ABC的一腰长为2时,方程有一根为2,方程为x2﹣5x+6=0,解得,x1=2,x2=3,故△ABC的周长为:2+2+3=7.【点评】本题考查的是一元二次方程根的判别式、等腰三角形的性质,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.20.如图1,被誉为“中原第一高楼”的郑州会展宾馆(俗称“玉米楼”)就坐落在风景如画的如意湖畔,也是来郑观光的游客留影的最佳景点.学完了三角函数后,刘明和王华决定用自己学到的知识测量“玉米楼”的高度.如图2,刘明在点C处测得楼顶B的仰角为45°,王华在高台上测得楼顶的仰角为30°.若高台高DE为5米,点D到点C的水平距离EC为187.5米,A、C、E三点共线,求“玉米楼”AB的高(,结果保留整数).【考点】解直角三角形的应用-仰角俯角问题.【分析】作DM⊥AB于M,交BC于F,作CG⊥DM于G,设BM=x米,根据题意和正切的定义表示出DM、FM,列出方程,计算即可.【解答】解:作DM⊥AB于M,交BC于F,作CG⊥DM于G,设BM=x米,由题意得,DG=187.5米,CG=5米,∠BFM=45°,∠BDM=30°,则GF=CG=5米,DF=DG+GF=192.5米,FM=BM=x米,∴DM==x,∵DM﹣FM=DF,∴x﹣x=192.5,解得,x=≈275,275+5=280(米).答:“玉米楼”AB的高约为280米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,正确理解仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.21.“红星”中学准备为校“教学兴趣小组”购进甲、乙两种学习用具,已知5件甲种学习用具的进价与3件乙种学习用具的进价的和为231元,2件甲种学习用具的进价与3件乙种学习用具的进价的和为141元.(1)求每件甲种、乙种学习用具的进价分别是多少元?(2)如果购进甲种学习用具有优惠,优惠方法是:购进甲种学习用具超过20件,超出部分可以享受7折优惠,若购进x(x>0)件甲种学习用具需要花费y元,请你求出y与x的函数关系式;(3)在(2)的条件下,学校决定在甲、乙两种学习用具中选购其中一种,且数量超过20件,请你帮助学校判断购进哪种学习用具更省钱.【考点】一次函数的应用;二元一次方程组的应用.【分析】(1)设每件甲种学习用具的进价是a元,每件乙种学习用具的进价是b元,根据花费钱数=单价×数量,结合两种不同购进方式可列出关于a、b的二元一次方程组,解方程组即可得出结论;(2)结合优惠政策对x进行分段考虑,由花费钱数=单价×数量,可得出y关于x的函数关系式;(3)找出购进乙种学习用具x件的花费,令乙种的花费<甲种的花费找出关于x的一元一次不等式,解出不等式即可得出结论.【解答】解(1)设每件甲种学习用具的进价是a元,每件乙种学习用具的进价是b元,根据题意得:,解得:.答:每件甲种学习用具的进价是30元,每件乙种学习用具的进价是27元.(2)当0<x≤20时,y=30x;当x>20时,y=20×30+0.7×30(x﹣20)=21x+180.(3)购买x件乙种学习用具的花费为27x元,购买x件甲种学习用具的花费为(21x+180)元,令27x<21x+180,解得:x<30.即:当20<x<30时,购进乙种学习用具更省钱;当x=30时,两种学习用具的花费一样;当x>30时,购买甲种学习用具更省钱.【点评】本题考查了解二元一次方程组、一次函数的应用以及解一元一次不等式,解题的关键是:(1)根据已知列出关于a、b的二元一次方程组;(2)结合优惠政策分段寻找函数解析式;(3)令购买乙种的花费<购买甲种的花费找出此时的x的取值范围.本题属于中档题,难度不大,解决该类型题目时,把握住数量关系是关键.22.阅读并完成下面的数学探究:(1)【发现证明】如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,小颖把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.(2)【类比延伸】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足关系∠EAF=∠BAD时,仍有EF=BE+FD.(3)【结论应用】如图(3),四边形ABCD中,AB=AD=80,∠B=60°,∠ADC=120°,∠BAD=150°,点E、F分别在边BC、CD上,且AE⊥AD,DF=40(),连E、F,求EF 的长(结果保留根号).【考点】四边形综合题.【分析】(1)根据旋转变换的性质和正方形的性质证明△EAF≌△GAF,得到EF=FG,证明结论;(2)把△ABE绕点A逆时针旋转至△ADH,使AB与AD重合,证明△EAF≌△HAF,证明即可;(3)延长BA交CD的延长线于P,连接AF,根据四边形内角和定理求出∠C的度数,得到∠P=90°,求出PD、PA,证明∠EAF=∠BAD,又(2)的结论得到答案.【解答】(1)证明:由旋转的性质可知,△ABE≌△ADG,∴BE=DG,AE=AG,∠BAE=∠DAG,∠ADG=∠ABE=90°,∴G、D、F在同一条直线上,∵四边形ABCD是正方形,∴∠BAD=90°,∴∠EAG=90°,又∠EAF=45°,∴∠FAG=45°,在△EAF和△GAF中,,∴△EAF≌△GAF,∴EF=FG,∴EF=BE+FD;(2)当∠EAF=∠BAD时,仍有EF=BE+FD.证明:如图(2),把△ABE绕点A逆时针旋转至△ADH,使AB与AD重合,则BE=DH,∠BAE=∠DAH,∠ADH=∠B,又∠B+∠D=180°,∴∠ADH+∠D=180°,即F、D、H在同一条直线上,当∠EAF=∠BAD时,∠EAF=∠HAF,由(1)得,△EAF≌△HAF,则EF=FH,即EF=BE+FD,故答案为:∠EAF=∠BAD;(3)如图(3),延长BA交CD的延长线于P,连接AF,∵∠B=60°,∠ADC=120°,∠BAD=150°,∴∠C=30°,∴∠P=90°,又∠ADC=120°,∴∠ADP=60°,∴PD=AD×cos∠ADP=40,AP=AD×sin∠ADP=40,∴PF=PD+DF=40,∴PA=PF,∴∠PAF=45°,又∠PAD=30°,∴∠DAF=15°,∴∠EAF=75°,∠BAE=60°,∴∠EAF=∠BAD,由(2)得,EF=BE+FD,又BE=BA=80,∴EF=BE+FD=40().【点评】本题考查的是正方形的性质、旋转变换的性质、全等三角形的判定和性质,掌握正方形的四条边都相等、四个角都是直角,旋转变换的旋转角相等、旋转后的三角形与原三角形全等是解题的关键.23.如图,在平面直角坐标系中,一次函数y=﹣的图象与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c关于直线x=对称,且经过A、C两点,与x轴交于另一点为B.(1)①求点B的坐标;②求抛物线的解析式.(2)若点P为直线AC上方的抛物线上的一点,连接PA、PC,若△PAC的面积是△ABC面积的,求出此时点P的坐标.(3)在抛物线的对称轴上是否存在点D,使△ADC为直角三角形?若存在,直接写出点D的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)①由直线过点A,可得出点A的坐标,由A、B关于直线x=对称可找出B点的坐标;②由直线经过点C可求出点C的坐标,利用待定系数法即可求出抛物线的解析式;(2)由△PAC的面积是△ABC面积的,结合同底三角形的面积公式即可得出点P到直线AC的距离为点B到直线AC的距离的,设出P点坐标,由点到直线的距离可列出关于m的一元二次方程,解方程即可得出结论;(3)假设存在,设出D点坐标,由两点间的距离公式用n表示出各边长度,结合勾股定理分别讨论即可得出结论.【解答】解:(1)①令y=﹣=0,解得:x=4,即点A的坐标为(4,0).∵A、B关于直线x=对称,∴点B的坐标为(﹣1,0).②令x=0,则y=2,∴点C的坐标为(0,2),∵抛物线y=ax2+bx+c经过点A、B、C,∴有,解得:.故抛物线解析式为y=﹣++2.(2)直线AC的解析式为y=﹣,即x+y﹣2=0,。
山东数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题1.5的相反数是( ) A. 15 B. 15- C. D.2.如图所示的几何体的主视图是( )A. B. C. D.3.2020庚子鼠年,新型冠状病毒席卷全国,据统计,截止到3月8号,全国已有346支医疗队、42600余名医护人员抵达湖北救援,数字42600用科学记数法表示为( )A. 0.426×105B. 4.26×104C. 4.26×105D. 42.6×103 4.下列智能手机的功能图标中,既是轴对称图形又是中心对称图形的是( )A. B.C. D.5.将等腰直角三角形纸片和矩形纸片按如图方式折叠放在一起,若130∠=︒,则2∠的度数为( )A. 10︒B. 15︒C. 20︒D. 306.下列运算正确的是( )A. a 3•a 2=a 6B. a 7÷a 4=a 3C. (﹣3a )2=﹣6a 2D. (a ﹣1)2=a 2﹣17.某射击运动员在训练中射击了10次,成绩如图所示,下列结论不正确的是( )A. 众数是8B. 中位数是8C. 平均数是8D. 极差是48.实数a、b、c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是( )A. B. C. D.9.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A. 1201508x x=-B.1201508x x=+C.1201508x x=-D.1201508x x=+10.如图,在Rt△ABC中,∠ABC=90°,AB=23,BC=2,以AB中点为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为( )A. 5342π- B.5342π+ C. 23π- D. 432π-11.如图,一艘船由港沿北偏东65°方向航行302km至港,然后再沿北偏西40°方向航行至港,港在港北偏东20°方向,则,两港之间的距离为()km.A. 30303+ B. 303+ C. 10303+ D. 312.在平面直角坐标系内,已知点A (﹣1,0),点B (1,1)都在直线1122y x =+上,若抛物线y =ax 2﹣x +1(a ≠0)与线段AB 有两个不同的交点,则a 的取值范围是( )A. a ≤﹣2B. a <98C. 1≤a <98或a ≤﹣2D. ﹣2≤a <98二.填空题13.分解因式:x 2+4x +4=_____.14.计算24142x x +-+的结果是_____. 15.在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球.己知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是110,则袋中黑球的个数为__________. 16.一个正多边形的中心角等于45,它的边数是________.17.小王骑车从甲地到乙地,小李骑车从乙地到甲地,小王的速度小于小李的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离y (km )与小王的行驶时间x (h )之间的函数关系.则根据图象求小李的速度是_____km /h .18.如图,在矩形ABCD 中,AD 2.将矩形ABCD 对折,得到折痕MN ;沿着CM 折叠,点D 的对应点为E ,ME 与BC 的交点为F ;再沿着MP 折叠,使得AM 与EM 重合,折痕为MP ,此时点B 的对应点为G .下列结论:①△CMP 直角三角形;②点C 、E 、G 不在同一条直线上;③PC =62MP ; ④BP =22AB ; ⑤PG =2EF .其中一定成立是_____(把所有正确结论的序号填在横线上).三.解答题19.计算:()101 3.142sin 30252π-⎛⎫+--︒+ ⎪⎝⎭. 20.解不等式组()352222x x x x ⎧-≥-⎪⎨>-⎪⎩,并写出它的所有整数解. 21.如图,在 ABCD 中,E 、F 为对角线BD 上的两点, 且∠BAE =∠DCF .求证:BF =DE .22.某商场用14500元购进甲、乙两种矿泉水共500箱,矿泉水的成本价与销售价如表(二)所示: 类别成本价(元/箱) 销售价(元/箱) 甲25 35 乙35 48求:(1)购进甲、乙两种矿泉水各多少箱?(2)该商场售完这500箱矿泉水,可获利多少元?23.如图AB 是⊙O 的直径,PA 与⊙O 相切于点A ,BP 与⊙O 相交于点D ,C 为⊙O 上的一点,分别连接CB 、CD,∠BCD=60°.(1)求∠ABD的度数;(2)若AB=6,求PD的长度.24.央视”经典咏流传”开播以来受到社会广泛关注,我市某校就”中华文化我传承﹣地方戏曲进校园”的喜爱情况进行了随机调查,对收集的信息进行统计,绘制了下面两副尚不完整的统计图,请你根据统计图所提供的信息解答下列问题:图中A表示”很喜欢”,B表示”喜欢”,C表示”一般”,D表示”不喜欢”.(1)被调查的总人数是人,扇形统计图中C部分所对应的扇形圆心角的度数为;(2)补全条形统计图;(3)若该校共有学生1800人,请根据上述调查结果,估计该校学生中D类有人;(4)在抽取的A类5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树形图或列表法求出被抽到的两个学生性别相同的概率.25.如图,一次函数y=﹣x+3的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A(1,a)和B两点,与x轴交于点C.(1)求反比例函数的解析式;(2)若点P在x轴上,且△APC的面积为5,求点P的坐标;(3)若点P在y轴上,是否存在点P,使△ABP是以AB为一直角边直角三角形?若存在,求出所有符合条件的P点坐标;若不存在,请说明理由.26.如图1,在Rt △ABC 中,∠B =90°,AB =4,BC =2,点D 、E 分别是边BC 、AC 的中点,连接DE .将△CDE 绕点C 逆时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,AE BD =_______; ②当α=180°时,AE BD =______. (2)拓展探究试判断:当0°≤α<360°时,AE BD的大小有无变化?请仅就图2的情形给出证明. (3)问题解决△CDE 绕点C 逆时针旋转至A 、B 、E 三点在同一条直线上时,求线段BD 的长.27.如图,已知抛物线25y ax bx =++经过(5,0)A -,(4,3)B --两点,与x 轴的另一个交点为C ,顶点为D ,连结CD .(1)求该抛物线表达式;(2)点P 为该抛物线上一动点(与点B 、C 不重合),设点P 的横坐标为t .①当点P 在直线BC 的下方运动时,求PBC ∆的面积的最大值;②该抛物线上是否存在点P ,使得PBC BCD ∠=∠若存在,求出所有点P 的坐标;若不存在,请说明理由.答案与解析一.选择题1.5的相反数是( )A. 15B.15C. D.【答案】D【解析】【分析】根据相反数的定义解答.【详解】解:只有符号不同的两个数称为互为相反数,则5的相反数为-5,故选D.【点睛】本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.2.如图所示的几何体的主视图是( )A. B. C. D.【答案】A【解析】【分析】根据主视图的定义判断几何体的主视图.【详解】解:根据主视图的定义,几何体的主视图为.故答案选A.【点睛】本题考查了三视图,解题的关键是熟练的掌握主视图的定义.3.2020庚子鼠年,新型冠状病毒席卷全国,据统计,截止到3月8号,全国已有346支医疗队、42600余名医护人员抵达湖北救援,数字42600用科学记数法表示为( )A. 0.426×105B. 4.26×104C. 4.26×105D. 42.6×103【答案】B科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:42600=4.26×104, 故选:B .【点睛】此题考查科学记数法的表示方法,表示时关键要正确确定a 的值以及n 的值.4.下列智能手机的功能图标中,既是轴对称图形又是中心对称图形的是( ) A. B. C. D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A 、图形既不是轴对称图形是中心对称图形,B 、图形是轴对称图形,C 、图形是轴对称图形,也是中心对称轴图形,D 、图形是轴对称图形.故选C .【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.将等腰直角三角形纸片和矩形纸片按如图方式折叠放在一起,若130∠=︒,则2∠的度数为( )A. 10︒B. 15︒C. 20︒D. 30【分析】根据平行的性质即可求解.【详解】根据平行线的性质得到∠3=∠1=30°,∴∠2=45°-∠3=15°.以及等腰直角三角形的性质,故选B【点睛】此题主要考查平行线的性质,解题的关键是熟知两直线平行,内错角相等.6.下列运算正确的是( )A. a3•a2=a6B. a7÷a4=a3C. (﹣3a)2=﹣6a2D. (a﹣1)2=a2﹣1【答案】B【解析】【分析】分别根据同底数幂的乘法法则,同底数幂的除法法则,积的乘方运算法则以及完全平方公式逐一判断即可.【详解】解:A.a3•a2=a5,故本选项不合题意;B.a7÷a4=a3,正确;C.(﹣3a)2=9a2,故本选项不合题意;D.(a﹣1)2=a2﹣2a+1,故本选项不合题意.故选:B.【点睛】本题考查同底数幂的乘除法,完全平方公式以及积的乘方,熟记相关运算法则是解答本题的关键.7.某射击运动员在训练中射击了10次,成绩如图所示,下列结论不正确的是( )A. 众数是8B. 中位数是8C. 平均数是8D. 极差是4【答案】C【解析】【分析】根据众数、中位数、平均数以及极差的算法进行计算,即可得到不正确的选项.【详解】解:由图可得,数据8出现3次,次数最多,所以众数为8,故A选项正确,不合题意;10次成绩排序后为:6,7,7,8,8,8,9,9,10,10,所以中位数是:12(8+8)=8,故B选项正确,不合题意;平均数为110(6+7×2+8×3+9×2+10×2)=2,故C选项错误,符合题意;极差为10﹣6=4,故D选项正确,不合题意;故选:C.【点睛】本题主要考查了众数、中位数、平均数以及极差,正确把握相关定义是解题关键.8.实数a、b、c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是( )A. B. C. D.【答案】A【解析】【分析】根据不等式的性质,先判断c的正负.再确定符合条件的对应点的大致位置.【详解】解:因为a>b且ac<bc,所以c<0.选项A符合a>b,c<0条件,故满足条件的对应点位置可以是A.选项B不满足a>b,选项C、D不满足c<0,故满足条件的对应点位置不可以是B、C、D.故选A.【点睛】本题考查了数轴上点位置和不等式的性质.解决本题的关键是根据不等式的性质判断c的正负.9.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A. 1201508x x=-B.1201508x x=+C.1201508x x=-D.1201508x x=+【答案】D【解析】【分析】首先用x表示甲和乙每小时做的零件个数,再根据甲做120个所用的时间与乙做150个所用的时间相等即可列出一元一次方程.【详解】解:∵甲每小时做x个零件,∴乙每小时做(x+8)个零件,∵甲做120个所用的时间与乙做150个所用的时间相等,∴1201508x x=+,故选D.【点睛】本题考查了分式方程的实际应用,熟练掌握是解题的关键.10.如图,在Rt△ABC中,∠ABC=90°,AB=23,BC=2,以AB的中点为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为( )A 532π- B.532πC. 23πD. 432π【答案】A【解析】【分析】连接OD,过点O作OH⊥AC,垂足为H,则有AD=2AH,∠AHO=90°,在Rt△ABC中,利用∠A的正切值求出∠A=30°,继而可求得OH、AH长,根据圆周角定理可求得∠BOC =60°,然后根据S阴影=S△ABC-S△AOD-S 扇形BOD进行计算即可.【详解】连接OD,过点O作OH⊥AC,垂足为H,则有AD=2AH,∠AHO=90°,在Rt△ABC中,∠ABC=90°,AB=3BC=2,tan∠A=3323BCAB==,∴∠A=30°,∴OH=12OA=32,AH=AO •cos ∠A=33322⨯=,∠BOC=2∠A=60°, ∴AD=2AH=,∴S 阴影=S △ABC -S △AOD -S 扇形BOD =()26031132323222360π⨯⨯⨯-⨯⨯-=5342π-, 故选A.【点睛】本题考查了垂径定理,圆周角定理,扇形面积,解直角三角形等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.11.如图,一艘船由港沿北偏东65°方向航行302km 至港,然后再沿北偏西40°方向航行至港,港在港北偏东20°方向,则,两港之间的距离为( )km .A. 303+B. 303+C. 103+D. 303【答案】B【解析】【分析】 根据题意作BD 垂直于AC 于点D ,根据计算可得45DAB ︒∠=,60BCD ︒∠=;根据直角三角形的性质求解即可.【详解】解:根据题意作BD 垂直于AC 于点D.可得AB=302,652045DAB ︒︒︒∠=-=204060DCB ︒︒︒∠=+= 所以可得2cos 45302302AD AB ︒==⨯= 2sin 45302302BD AB ︒==⨯= 30103tan 603BD CD ︒=== 因此可得30103AC AD CD =+=+故选B.【点睛】本题主要考查解直角三角形的应用,根据特殊角的三角函数值计算即可.12.在平面直角坐标系内,已知点A (﹣1,0),点B (1,1)都在直线1122y x =+上,若抛物线y =ax 2﹣x +1(a ≠0)与线段AB 有两个不同的交点,则a 的取值范围是( )A. a ≤﹣2B. a <98C. 1≤a <98或a ≤﹣2D. ﹣2≤a <98【答案】C【解析】【分析】 分a >0,a <0两种情况讨论,根据题意列出不等式组,可求a 的取值范围.【详解】∵抛物线y=ax2﹣x+1(a≠0)与线段AB有两个不同的交点,∴令1122x+=ax2﹣x+1,则2ax2﹣3x+1=0∴△=9﹣8a>0∴a<9 8①当a<0时,110111 aa++≤⎧⎨-+≤⎩解得:a≤﹣2 ∴a≤﹣2②当a>0时,110111 aa++≥⎧⎨-+≥⎩解得:a≥1∴1≤a<9 8综上所述:1≤a<98或a≤﹣2故选C.【点睛】本题考查二次函数图象与系数的关系,一次函数图象上点的坐标特征,二次函数图象点的坐标特征,利用分类讨论思想解决问题是本题的关键.二.填空题13.分解因式:x2+4x+4=_____.【答案】(x+2)2【解析】【分析】本题中没有公因式,总共三项,其中有两项能化为两个数的平方和,第三项正好为这两个数的积的2倍,直接运用完全平方公式进行因式分解.【详解】x2+4x+4=(x+2)2.故答案为:(x+2)2.【点睛】本题考查了利用完全平方公式分解因式,熟练运用完全平方公式是解决问题的关键.14.计算24142x x +-+的结果是_____. 【答案】12x - 【解析】【分析】首先通分,然后根据异分母的分式相加的法则计算即可. 【详解】解:24142x x +-+ =224442x x x -+-- =224+-x x =12x -. 故答案为:12x -. 【点睛】此题考查异分母分式的加法,正确掌握异分母分式的加法法则、多项式的因式分解是解此题的关键.15.在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球.己知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是110,则袋中黑球的个数为__________. 【答案】22【解析】【分析】 袋中黑球的个数为,利用概率公式得到5152310x =++,然后利用比例性质求出即可. 【详解】解:设袋中黑球的个数为, 根据题意得5152310x =++,解得22x =, 即袋中黑球的个数为22个.故答案为:22.【点睛】本题主要考查概率的计算问题,关键在于根据题意对概率公式的应用.16.一个正多边形的中心角等于45,它的边数是________.【答案】【解析】【分析】根据正n边形的中心角是°360n即可求解.【详解】∵正多边形的中心角等于45,∴正多边形的边数是:°°36045=8,故答案为8【点睛】本题主要考查了正多边形中心角的计算方法,熟练掌握正多边形中心角公式是解题关键.17.小王骑车从甲地到乙地,小李骑车从乙地到甲地,小王的速度小于小李的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离y(km)与小王的行驶时间x(h)之间的函数关系.则根据图象求小李的速度是_____km/h.【答案】20【解析】【分析】根据题意,可知甲乙两地的距离是30km,小王从甲地到乙地用的时间为3h,从而可以求得小王的速度,然后根据图象可知,两人1h时相遇,从而可以求得小李的速度,本题得以解决.【详解】由图象可得,小王的速度为30÷3=10(km/h),则小李的速度为:30÷1﹣10=30﹣10=20(km/h),故答案为:20.【点睛】此题考查一次函数的应用,解题的关键是明确题意,利用一次函数的性质解答.18.如图,在矩形ABCD中,AD2.将矩形ABCD对折,得到折痕MN;沿着CM折叠,点D的对应点为E,ME与BC的交点为F;再沿着MP折叠,使得AM与EM重合,折痕为MP,此时点B的对应点为G.下列结论:①△CMP是直角三角形;②点C、E、G不在同一条直线上;③PC=62MP;④BP=22AB;⑤PG=2EF.其中一定成立的是_____(把所有正确结论的序号填在横线上).【答案】①④⑤【解析】【分析】由折叠的性质,可得∠DMC=∠EMC,CD=CE,∠AMP=∠EMP,AB=GE,由平角的定义可求∠PME+∠CME=12×180°=90°,可判断①正确;由折叠的性质可得∠GEC=180°,可判断②正确;设AB=x,则AD2x,由勾股定理可求MP和PC的长,即可判断③错误,先求出PB 2x,即可判断④正确,由平行线分线段成比例可求PG=2EF,可判断⑤正确,即可求解.【详解】∵沿着CM折叠,点D的对应点为E,∴∠DMC=∠EMC,CD=CE,∵再沿着MP折叠,使得AM与EM重合,折痕为MP,∴∠AMP=∠EMP,AB=GE,∵∠AMD=180°,∴∠PME+∠CME=12×180°=90°,∴△CMP是直角三角形;故①正确;∵沿着CM折叠,点D的对应点为E,∴∠D=∠MEC=90°,∵再沿着MP折叠,使得AM与EM重合,折痕为MP,∴∠MEG =∠A =90°,∴∠GEC =180°,∴点C 、E 、G 在同一条直线上,故②错误;∵AD AB ,∴设AB =x ,则AD x ,∵将矩形ABCD 对折,得到折痕MN ;∴DM =12AD x ,∴=x ,∵∠PMC=90°,MN ⊥PC ,∴CM 2=CN•CP ,∴22= x ,∴PN=CP-CN=2x ,∴x ,∴PC PM == ,∴,故③错误,∵PC=2x ,∴x-2x=2x ,∴2BP AB x== ,∴AB ,故④正确, ∵∠MEC=∠G=90°,∴PG ∥ME , ∴CE EF CG PG= , ∵AB=GE=CD=CE ,∴CG=2CE ,∴PG=2EF ,故⑤正确,故答案为:①④⑤.【点睛】本题考查了翻折变换,平行线分线段成比例,直角三角形的性质,矩形的性质,正确的识别图形是解题的关键.三.解答题19.计算:()101 3.142sin 302π-⎛⎫+--︒+ ⎪⎝⎭ 【答案】7【解析】【分析】直接利用特殊角的三角函数值以及零指数幂的性质、二次根式的性质、负整数指数幂的性质分别化简得出答案.【详解】原式=12+1-2+52⨯=2+1﹣1+5=7.【点睛】此题考查特殊角的三角函数值以及零指数幂的性质、二次根式的性质、负整数指数幂的性质,解题关键在于掌握运算法则. 20.解不等式组()352222x x x x ⎧-≥-⎪⎨>-⎪⎩,并写出它的所有整数解. 【答案】1≤x <4,x =1;x =2;x =3【解析】【分析】分别求出不等式组中两不等式的解集,找出两解集的方法部分确定出不等式组的解集,进而求出整数解即可.【详解】()352222x x x x ⎧-≥-⎪⎨>-⎪⎩①② 解不等式①得:x ≥1,解不等式②得:x <4,所以,原不等式组的解集是1≤x <4,它的所有整数解有:x =1;x =2;x =3.【点睛】此题考查一元一次不等式组的整数解,解题关键在于掌握运算法则.21.如图,在 ABCD 中,E 、F 为对角线BD 上的两点, 且∠BAE =∠DCF .求证:BF =DE .【答案】见解析【解析】【分析】欲证明BF=DE ,只要证明△ABE ≌△CDF 即可.【详解】∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB=CD ,∴∠ABE=∠CDF ,在△ABE 和△DCF 中,,BAE DCF AB CDABE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABE ≌△CDF (ASA ),∴BE=DF ,∴BE+EF=DF+EF ,即BF=DE .【点睛】考查全等三角形的判定与性质,平行四边形的性质,掌握平行四边形的性质是解题的关键. 22.某商场用14500元购进甲、乙两种矿泉水共500箱,矿泉水的成本价与销售价如表(二)所示: 类别成本价(元/箱) 销售价(元/箱) 甲25 35 乙35 48求:(1)购进甲、乙两种矿泉水各多少箱?(2)该商场售完这500箱矿泉水,可获利多少元?【答案】(1)购进甲矿泉水300箱,购进乙矿泉水200箱;(2)该商场售完这500箱矿泉水,可获利5600元.【解析】【分析】(1)设购进甲矿泉水x箱,购进乙矿泉水y箱,根据该商场用14500元购进甲、乙两种矿泉水共500箱,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据总利润=单箱利润×销售数量,即可求出结论.【详解】解:(1)设购进甲矿泉水x箱,购进乙矿泉水y箱,依题意,得:500 253514500 x yx y+=⎧⎨+=⎩,解得:300200 xy=⎧⎨=⎩.答:购进甲矿泉水300箱,购进乙矿泉水200箱.(2)(3525)300(4835)2005600-⨯+-⨯=(元).答:该商场售完这500箱矿泉水,可获利5600元.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.23.如图AB是⊙O的直径,PA与⊙O相切于点A,BP与⊙O相交于点D,C为⊙O上的一点,分别连接CB、CD,∠BCD=60°.(1)求∠ABD的度数;(2)若AB=6,求PD的长度.【答案】(1)∠ABD=30°3【解析】【分析】(1)根据圆周角定理得:∠ADB=90°,由同弧所对的圆周角相等和直角三角形的性质可得结论;(2)如图1,根据切线的性质可得∠BAP=90°,根据直角三角形30°角的性质可计算AD的长,由勾股定理计算DB的长,由三角函数可得PB的长,从而得PD的长.【详解】(1)如图,连接AD.∵BA是⊙O直径,∴∠BDA=90°.∵BD BD=,∴∠BAD=∠C=60°.∴∠ABD=90°-∠BAD=90°-60°=30°.(2)如图,∵AP是⊙O的切线,∴∠BAP=90°.在Rt△BAD中,∵∠ABD=30°,∴DA=12BA=12×6=3.∴33.在Rt△BAP中,∵cos∠ABD=AB PB,∴cos30°=63 PB=∴3∴3-333.【点睛】本题考查切线的性质、等腰三角形的性质、圆周角定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.央视”经典咏流传”开播以来受到社会广泛关注,我市某校就”中华文化我传承﹣地方戏曲进校园”的喜爱情况进行了随机调查,对收集的信息进行统计,绘制了下面两副尚不完整的统计图,请你根据统计图所提供的信息解答下列问题:图中A表示”很喜欢”,B表示”喜欢”,C表示”一般”,D表示”不喜欢”.(1)被调查的总人数是 人,扇形统计图中C 部分所对应的扇形圆心角的度数为 ;(2)补全条形统计图;(3)若该校共有学生1800人,请根据上述调查结果,估计该校学生中D 类有 人;(4)在抽取的A 类5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树形图或列表法求出被抽到的两个学生性别相同的概率.【答案】(1)50; 216°;(2)画图见解析;(3)180;(4)25【解析】【分析】(1)由A 的人数除以所占百分比得出调查的总人数;由360°乘以C 部分所占的比例即可得出C 部分所对应的扇形圆心角的度数;(2)求出B 部分的人数,补全条形统计图即可;(3)由该校总人数乘以D 类所占的比例即可得出答案;(4)由列表法和概率公式即可得出答案.【详解】解:(1)5÷10%=50(人),扇形统计图中C 部分所对应的扇形圆心角的度数为360°×3050 =216°; 故答案为:50; 216°;(2)如图所示,总人数为50人,则B 的人数=50﹣5﹣30﹣5=10(人);补全条形统计图如图:(3)1800×550=180(人);故答案为:180;(4)设3个女生分别为女1,女2,女3,2个男生分别为男1,男2,所有可能出现的结果如下表:女1女2女3男1男2女1(女1,女2) (女1,女3) (女1,男1) (女1,男2)女2(女2,女1) (女2,女3) (女2,男1) (女2,男2)女3(女3,女1) (女3,女2) (女3,男1) (女3,男2)男1(男1,女1) (男1,女2) (男1,女3) (男1,男2)男2(男2,女1) (男2,女2) (男2,女3) (男2,男1)从中随机抽取两个同学担任两角色,所有可能的结果有20种,每种结果的可能性都相同,其中,抽到性别相同的结果有8种,所以P(被抽到的两个学生性别相同)=82 205.【点睛】此题考查数据相关知识,包含条形统计图的画法,概率的计算,属于中考常考题型.25.如图,一次函数y=﹣x+3的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A(1,a)和B两点,与x轴交于点C.(1)求反比例函数的解析式;(2)若点P在x轴上,且△APC的面积为5,求点P的坐标;(3)若点P在y轴上,是否存在点P,使△ABP是以AB为一直角边的直角三角形?若存在,求出所有符合条件的P点坐标;若不存在,请说明理由.【答案】(1)2yx=;(2)(﹣2,0)或(8,0);(3)存在,P(0,1)或P(0,﹣1)【解析】分析】(1)将点A坐标代入两个解析式可求a的值,k的值,即可求解;(2)设P(x,0),由三角形的面积公式可求解;(3)分两种情况讨论,由两点距离公式分别求出AP,AB,BP的长,由勾股定理可求解. 【详解】(1)把点A(1,a)代入y=﹣x+3,得a=2,∴A(1,2),把A(1,2)代入反比例函数y=kx,∴k=1×2=2;∴反比例函数的表达式为2yx =;(2)∵一次函数y=﹣x+3的图象与x轴交于点C,∴C(3,0),设P(x,0),∴PC=|3﹣x|,∴S△APC=12|3﹣x|×2=5,∴x=﹣2或x=8,∴P的坐标为(﹣2,0)或(8,0);理由如下:联立32y x y x =-+⎧⎪⎨=⎪⎩, 解得:12x y =⎧⎨=⎩或21x y =⎧⎨=⎩, ∴B 点坐标为(2,1),∵点P 在y 轴上,∴设P (0,m ),∴AB 22(12)(21)2-+-=AP 22(10)(2)m -+-,PB 22(20)(1)m -+-,若BP 为斜边,∴BP 2=AB 2+AP 2 ,即 222(20)(1)m -+-=2+222(10)(2)m -+-, 解得:m =1,∴P (0,1);若AP 为斜边,∴AP 2=PB 2+AB 2 ,即 222(10)(2)m -+-=(222(20)(1)m -+-+2, 解得:m =﹣1,∴P (0,﹣1);综上所述:P (0,1)或 P (0,﹣1).【点睛】此题考查一次函数的解析式,待定系数法求反比例函数的解析式,函数与动点构成的三角形面积问题,勾股定理,直角三角形的性质.26.如图1,在Rt △ABC 中,∠B =90°,AB =4,BC =2,点D 、E 分别是边BC 、AC 的中点,连接DE .将△CDE 绕点C 逆时针方向旋转,记旋转角为α.①当α=0°时,AEBD=_______;②当α=180°时,AEBD=______.(2)拓展探究试判断:当0°≤α<360°时,AEBD的大小有无变化?请仅就图2的情形给出证明.(3)问题解决△CDE绕点C逆时针旋转至A、B、E三点在同一条直线上时,求线段BD的长.【答案】(1)552)AEBD的大小没有变化,证明见解析;(3)BD的长为3555【解析】【分析】(1)①当α=0°时,在Rt△ABC中,由勾股定理,求出AC的值是多少;然后根据点D、E分别是边BC、AC的中点,分别求出AE、BD的大小,即可求出的AEBD值是多少.②α=180°时,可得AB∥DE,然后根据ACAE=BCDB,求出AEBD的值是多少即可.(2)首先判断出∠ECA=∠DCB,再根据ECDC=ACBC5判断出△ECA∽△DCB,然后由相似三角形的对应边成比例,求得答案.(3)分两种情形:①如图3﹣1中,当点E在AB的延长线上时,②如图3﹣2中,当点E在线段AB上时,分别求解即可.【详解】解:(1)①当α=0°时,∵Rt△ABC中,∠B=90°,∴AC22AB BC+2224+5∵点D、E分别是边BC、AC的中点,∴AE=12AC5BD=12BC=1,∴AEBD=5.②如图1中,当α=180°时,可得AB∥DE,∵ACAE=BCBD,∴AEBD=ACBC=5.故答案为:①5,②5.(2)如图2,当0°≤α<360°时,AEBD的大小没有变化,∵∠ECD=∠ACB,∴∠ECA=∠DCB,又∵ECDC=ACBC=5,∴△ECA∽△DCB,∴AEBD=ECDC=5..(3)①如图3﹣1中,当点E在AB的延长线上时,在Rt △BCE 中,CE =5,BC =2,∴BE =22EC BC -=54-=1,∴AE =AB+BE =5, ∵AE BD =5, ∴BD =55=5. ②如图3﹣2中,当点E 在线段AB 上时,BE 22EC BC -54-=1,AE =AB-BE =4﹣1=3,∵AE BD5 ∴BD =355, 综上所述,满足条件的BD 355 【点睛】本题属于几何变换综合题,考查了旋转变换,相似三角形的判定和性质,平行线的性质,解直角三角形等知识,解题的关键是正确寻找相似三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.27.如图,已知抛物线25y ax bx =++经过(5,0)A -,(4,3)B --两点,与x 轴的另一个交点为C ,顶点为D ,连结CD .(1)求该抛物线的表达式;(2)点P 为该抛物线上一动点(与点B 、C 不重合),设点P 的横坐标为t .①当点P 在直线BC 的下方运动时,求PBC ∆的面积的最大值;②该抛物线上是否存在点P ,使得PBC BCD ∠=∠若存在,求出所有点P 的坐标;若不存在,请说明理由.【答案】(1)265y x x =++;(2)①278;②存在,37,24P ⎛⎫-- ⎪⎝⎭或(0,5). 【解析】【分析】 (1)将点A 、B 坐标代入二次函数表达式,即可求解;(2)①()12PBC C B S PG x x ∆=-,即可求解; ②分点P 在直线BC 下方,则H 点在BC 的垂直平分线上,求出其垂直平分线及CD 的直线方程求出交点H,从而求出BP 的方程,并与二次函数联立即可求解.点P 在直线BC 上方时,BP 与CD 平行求出BP 的方程,并与二次函数联立即可求解.【详解】解:(1)将点A 、B 坐标代入二次函数表达式得:2555016453a b a b -+=⎧⎨-+=-⎩,解得:16a b =⎧⎨=⎩, 故抛物线的表达式为:265y x x =++…①,令=0y ,则=1x -或5-,即点(1,0)C -;(2)①如图1,过点P 作y 轴的平行线交BC 于点G ,将点B 、C 的坐标代入一次函数表达式并解得:直线BC 的表达式为:=+1y x …②,设点(,+1)G t t ,则点()2,65P t t t ++, ()()221331516562222PBC C B S PG x x t t t t t =-=+---=---, 302<,PBC S ∴有最大值,当52t =-时,其最大值为278; ②设直线BP 与CD 交于点H ,当点P 直线BC 下方时,PBC BCD ∠=∠,点H 在BC 的中垂线上,线段BC 的中点坐标为53,22⎛⎫-- ⎪⎝⎭, 过该点与BC 垂直的直线的k 值为﹣1,设BC 中垂线的表达式为:=+y x m -,将点53,22⎛⎫-- ⎪⎝⎭代入上式并解得: 直线BC 中垂线的表达式为:=4y x --…③,同理直线CD 表达式为:=2+2y x …④,联立③④并解得:=2x -,即点(2,2)H --,同理可得直线BH 的表达式为:112y x =-…⑤, 联立①⑤并解得:32x =-或4-(舍去4-),故点37,24P ⎛⎫-- ⎪⎝⎭; 当点()P P '在直线BC 上方时,PBC BCD ∠=∠,BP CD ∴',则直线BP ′的表达式为:=2+y x s ,将点B 坐标代入上式并解得:=5s , 即直线BP ′的表达式为:=2+5y x …⑥,联立①⑥并解得:=0x 或4-(舍去4-),故点(0,5)P ;故点P 的坐标为37,24P ⎛⎫-- ⎪⎝⎭或(0,5). 【点睛】本题考查的是二次函数综合运用,熟练掌握计算法则是解题关键.。
一、选择题(每小题3分,共30分)1. 已知函数f(x) = x^2 - 4x + 3,则f(2)的值为()A. -1B. 1C. 3D. 5答案:B 解析:将x=2代入函数f(x),得f(2) = 2^2 - 42 + 3 = 4 - 8 + 3 = -1。
故选B。
2. 在直角坐标系中,点A(1,2),点B(-2,1)关于直线y=x对称的点的坐标为()A. (2,-1)B. (-1,2)C. (-2,1)D. (1,2)答案:A 解析:点A关于直线y=x对称的点的坐标可以通过交换横纵坐标得到,即(2,-1)。
故选A。
3. 若等差数列{an}的前n项和为Sn,首项为a1,公差为d,则Sn+1 - Sn = ()A. a1B. dC. 2dD. 2a1答案:C 解析:等差数列的前n项和Sn = n/2 (2a1 + (n-1)d),则Sn+1 =(n+1)/2 (2a1 + nd)。
相减得Sn+1 - Sn = (n+1)/2 (2a1 + nd) - n/2 (2a1+ (n-1)d) = d。
故选C。
4. 若a,b,c为等比数列,且a + b + c = 12,b^2 = ac,则a + c的值为()A. 3B. 6C. 9D. 12答案:B 解析:由等比数列的性质,得b^2 = ac。
又因为a + b + c = 12,设b= 4,则a + c = 12 - b = 8。
故选B。
5. 已知函数f(x) = log2(x+1) - 1,若f(x)的值域为()A. (-∞,0)B. [0,∞)C. (0,1)D. (-1,0)答案:B 解析:函数f(x) = log2(x+1) - 1,x+1 > 0,即x > -1。
当x=-1时,f(x)取得最小值-1,当x趋向于正无穷时,f(x)趋向于正无穷。
故值域为[0,∞)。
故选B。
二、填空题(每小题5分,共25分)6. 已知方程x^2 - 3x + 2 = 0的两个根为a和b,则a + b的值为______。
2024年四川省泸州市部分中学中考数学一模试卷一、选择题:本题共12小题,每小题3分,共36分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.2024的相反数是( )A. 2024B. −2024C. |2024|D. 120242.据华夏时报报告,经综合研判,预计2024年全国国内旅游人数将超过60亿人次,将60亿用科学记数法表示应为( )A. 60×108B. 6×109C. 0.60×1010D. 6×1083.鲁班锁是一种广泛流传于民间的智力玩具,起源于中国古代建筑中首创的榫卯结构.如图是鲁班锁的其中一个部件,从正面看到的平面图形是( )A. B.C. D.4.下列各式中计算正确的是( )A. a2+a4=a6B. a2⋅a4=a8C. a12÷a6=a6(a≠0)D. (−3a2)3=9a65.如图AB//CD,∠A=72°,则∠1的度数是( )A. 72°B. 80°C. 82°D. 108°6.在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是7,10,9,8,7,9,9,8,对这组数据,下列说法正确的是( )A. 中位数是8B. 众数是9C. 平均数是8D. 方差是07.如果P点的坐标为(a,b),它关于y轴的对称点为P1,P1关于x轴的对称点为P2,已知P2的坐标为(−2,3),将点P向左平移4个单位后的坐标为( )A. (−2,−3)B. (−6,−3)C. (−6,3)D. (−2,3)8.如图,圆O的半径为1,点A,B,C在圆周上,∠C=45°,则弦AB的长度为( )A. 1B. 2C. 2D. 39.如果关于x的一元二次方程x2−2kx+1=0的两个根x1、x2,且x21+x22=2,则k的值是( )A. k=1B. k=−1C. k=0D. k=±110.如图,在菱形ABCD中,对角线AC,BD相交于点O,点M,N分别是边AD,CD的中点,连接MN,OM.若MN=3,S菱形ABCD=24,则OM的长为( )A. 3B. 3.5C. 2D. 2.511.如图,在平面直角坐标系中,有A(−1,0),B(0,1),P(−3,2)三点,若点C是以点P为圆心,1为半径的圆上一点,则△ABC的面积最大值为( )A. 2+22B. 2−22C. 2+2D. 212.在平面直角坐标系中,已知点A(−3,1),B(1,5),若二次函数y=mx2+3x−2(m≠0)与线段AB无交点,则m的取值范围是( )A. 12<m<4 B. m<43且m≠0 C. 12≤m<43D. m>4或m<43二、填空题:本题共4小题,每小题3分,共12分。
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________时间120分钟满分100分一.选择题(共8小题,满分16分,每小题2分)1.下面四个图形分别是可回收垃圾、其他垃圾、厨余垃圾、有害垃圾的标志,这四个标志中是轴对称图形的是()A.B.C.D.2.下列把2034000记成科学记数法正确的是()A.2.034×106B.20.34×105C.0.2034×106D.2.034×1033.如图,数轴上的点A所表示的数为x,则x的值为()A.B.+1C.﹣1D.1﹣4.若正多边形的内角和是1260°,则该正多边形的一个外角为()A.30°B.40°C.45°D.60°5.如图,AB∥CD,∠BAE=120°,∠DCE=30°,则∠AEC=()度.A.70B.150C.90D.1006.菲尔兹奖(FieldsMedal)是享有崇高声誉的数学大奖,每四年颁奖一次,颁给二至四名成就显著的年轻数学家.对截至2014年获奖者获奖时的年龄进行统计,整理成下面的表格.组别第一组第二组第三组第四组年龄段(岁)27<x≤3131<x≤3434<x≤3737<x≤40频数(人)8111720则这56个数据的中位数落在()A.第一组B.第二组C.第三组D.第四组7.如果a﹣b=5,那么代数式(﹣2)•的值是()A.﹣B.C.﹣5D.58.如图为某二次函数的部分图象,有如下四个结论:①此二次函数表达式为y=x2﹣x+9;②若点B(﹣1,n)在这个二次函数图象上,则n>m;③该二次函数图象与x轴的另一个交点为(﹣4,0);④当0<x<6时,m<y<8.所有正确结论的序号是()A.①③B.①④C.②③D.②④二.填空题(共8小题,满分16分,每小题2分)9.因式分解:4a3﹣16a=.10.设M=2x﹣3y,N=3x﹣2y,P=xy.若M=5,N=0,则P=.11.如图,已知点B、E、F、C在同一直线上,BE=CF,AF=DE,则添加条件,可以判断△ABF≌△DCE.12.如图,AB是⊙O的直径,C,D是圆上两点,∠AOC=50°,则∠D等于.13.在正方形网格中,A、B、C、D、E均为格点,则∠BAC﹣∠DAE=°.14.已知扇形的半径为6cm,弧长为5πcm,则扇形的圆心角为度.15.若关于x的一元二次方程x2+2x+k=0无实数根,则k的取值范围是.16.如图1,在△ABC中,AB>AC,D是边BC上一动点,设B,D两点之间的距离为x,A,D两点之间的距离为y,表示y与x的函数关系的图象如图2所示.则线段AC的长为,线段AB 的长为.三.解答题(共12小题,满分68分)17.(5分)计算:2sin45°+|﹣1|﹣tan60°+(π﹣2)0.18.(5分)解不等式:1﹣x≥﹣,并把它的解集在数轴上表示出来.19.(5分)已知x2﹣3x﹣1=0,求代数式(x+2)(x﹣2)﹣x(3x﹣6)的值.20.(5分)如图,AB为半圆O的直径,且AB=10,C为半圆上的一点,AC<BC.(1)请用尺规作图在BC上作一点D,使得BD=AC+CD;(不写作法,保留痕迹)(2)在(1)的条件下,连接OD,若OD=,求△ABC的面积.21.(6分)重庆是一个非常适合旅游打卡的城市,在渝中区有“洪崖洞”,南岸区有“南山一颗树”等等,为了解初三学生对重庆历史文化的了解程度,随机抽取了男、女各m名学生进行问卷测试,问卷共30道选择题,现将得分情况统计,并绘制了如图不完整的统计图(数据分组为A组:x<18,B组:18≤x<22,C组:22≤x<26,D组:26≤x≤30,x表示问卷测试的分数),其中男生得分处于C组的有14人,男生C组得分情况分别为:22,22,22,22,22,23,23,23,24,24,24,25,25,25.男生、女生得分的平均数、中位数、众数(单位:分)如表所示:组别平均数中位数众数男20n22女202320(1)直接写出m,n的值,并补全条形统计图;(2)通过以上数据分析,你认为成绩更好的是男生还是女生?说明理由(一条理由即可);(3)已知初三年级总人数为1800人,请估计参加问卷测试,成绩处于C组的人数.22.(5分)如图,在等边△ABC中,已知点E在直线AB上(不与点A、B重合),点D在直线BC上,且ED =EC.(1)若点E为线段AB的中点时,试说明DB=AE的理由;(2)若△ABC的边长为2,AE=1,求CD的长.23.(6分)探究一次函数y=kx+k﹣2(k是不为0的常数)图象的共同特点.(探究过程)小华尝试把x=﹣1代入时,发现可以消去k,竟然求出了y=﹣2.老师问:结合一次函数图象,这说明了什么?小组讨论得出:无论k取何值,一次函数y=kx+k﹣2的图象一定经过定点(﹣1,﹣2),老师:如果一次函数的图象是经过某一个定点的直线,那么我们把这样的一次函数图象称为“陀螺线”.若一次函数y=(k﹣1)x﹣(2k+3)的图象是“陀螺线”,(1)一次函数y=(k﹣1)x﹣(2k+3)的图象经过定点P的坐标是.(2)已知一次函数y=(k﹣1)x﹣(2k+3)的图象与x轴,y轴分别相交于点A、B.①若△OBP的面积为8,求k的值.②若S△AOB:S△OBP=3:2,求k的值.24.(6分)如图,P A、PB与⊙O相切于点A、B,过点B作BD∥AP交⊙O于点D.(1)求证:AD=AB;(2)若BD•BP=80,sin∠DAB=,求△ABP的面积.25.(5分)如图,已知△ABC中,BE平分∠ABC,且BE=BA,点F是BE延长线上一点,且BF=BC,过点F作FD⊥BC于点D.(1)求证:∠BEC=∠BAF;(2)判断△AFC的形状并说明理由.(3)若CD=2,求EF的长.26.(7分)如图,一次函数的图象y=ax+b(a≠0)与反比例函数y=(k≠0)的图象交于点A(,4),点B(m,1).(1)求这两个函数的表达式;(2)若一次函数图象与y轴交于点C,点D为点C关于原点O的对称点,点P是反比例函数图象上的一点,当S△OCP:S△BCD=1:3时,请直接写出点P的坐标.27.(6分)已抛物线y=x2+2x+m的顶点在x轴上.(1)求m的值;(2)若P(n,y1),Q(n+2,y2)是该二次函数的图象上的两点,且y1>y2,求实数n的取值范围.28.(7分)在平面直角坐标系xOy中,对于△ABC,点P在BC边的垂直平分线上,若以点P为圆心,PB 为半径的⨀P与△ABC三条边的公共点个数之和不小于3,则称点P为△ABC关于边BC的“Math点”.如图所示,点P即为△ABC关于边BC的“Math点”.已知点P(0,4),Q(a,0).(1)如图1,a=4,在点A(1,0)、B(2,2)、C(,)、D(5,5)中,△POQ关于边PQ的“Math点”为.(2)如图2,,①已知D(0,8),点E为△POQ关于边PQ的“Math点”,请直接写出线段DE的长度的取值范围;②将△POQ绕原点O旋转一周,直线交x轴、y轴于点M、N,若线段MN上存在△POQ关于边PQ的“Math点”,求b的取值范围.参考答案一.选择题(共8小题,满分16分,每小题2分)1.下面四个图形分别是可回收垃圾、其他垃圾、厨余垃圾、有害垃圾的标志,这四个标志中是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选:B.2.下列把2034000记成科学记数法正确的是()A.2.034×106B.20.34×105C.0.2034×106D.2.034×103【解答】解:数字2034000科学记数法可表示为2.034×106.故选:A.3.如图,数轴上的点A所表示的数为x,则x的值为()A.B.+1C.﹣1D.1﹣【解答】解:根据题意得:x=﹣1=﹣1,故选:C.4.若正多边形的内角和是1260°,则该正多边形的一个外角为() A.30°B.40°C.45°D.60°【解答】解:设该正多边形的边数为n,根据题意列方程,得(n﹣2)•180°=1260°解得n=9.∴该正多边形的边数是9,∵多边形的外角和为360°,360°÷9=40°,∴该正多边形的一个外角为40°.故选:B.5.如图,AB∥CD,∠BAE=120°,∠DCE=30°,则∠AEC=()度.A.70B.150C.90D.100【解答】解:如图,延长AE交CD于点F,∵AB∥CD,∴∠BAE+∠EFC=180°,又∵∠BAE=120°,∴∠EFC=180°﹣∠BAE=180°﹣120°=60°,又∵∠DCE=30°,∴∠AEC=∠DCE+∠EFC=30°+60°=90°.故选:C.6.菲尔兹奖(FieldsMedal)是享有崇高声誉的数学大奖,每四年颁奖一次,颁给二至四名成就显著的年轻数学家.对截至2014年获奖者获奖时的年龄进行统计,整理成下面的表格.组别第一组第二组第三组第四组年龄段(岁)27<x≤3131<x≤3434<x≤3737<x≤40频数(人)8111720则这56个数据的中位数落在()A.第一组B.第二组C.第三组D.第四组【解答】解:题目中数据共有56个,故中位数是按从小到大排列后第28、第29两个数的平均数,而第28、第29两个数均在第三组,故这组数据的中位数落在第三组.故选:C.7.如果a﹣b=5,那么代数式(﹣2)•的值是()A.﹣B.C.﹣5D.5【解答】解:∵a﹣b=5,∴原式=•=•=a﹣b=5,故选:D.8.如图为某二次函数的部分图象,有如下四个结论:①此二次函数表达式为y=x2﹣x+9;②若点B(﹣1,n)在这个二次函数图象上,则n>m;③该二次函数图象与x轴的另一个交点为(﹣4,0);④当0<x<6时,m<y<8.所有正确结论的序号是()A.①③B.①④C.②③D.②④【解答】解:①从图象看,抛物线的顶点坐标为(2,9),抛物线和x轴的一个交点坐标为(8,0),则设抛物线的表达式为y=a(x﹣2)2+9,将(8,0)代入上式得:0=a(8﹣2)2+9,解得a=﹣,故抛物线的表达式为y=x2﹣x+8,故①错误,不符合题意;②从点A、B的横坐标看,点A距离抛物线对称轴远,故n>m正确,符合题意;③抛物线的对称轴为直线x=2,抛物线和x轴的一个交点坐标为(8,0),则另外一个交点为(﹣4,0),故③正确,符合题意;④从图象看,当0<x<6时,m<y≤9,故④错误,不符合题意;故选:C.二.填空题(共8小题,满分16分,每小题2分)9.因式分解:4a3﹣16a=4a(a+2)(a﹣2).【解答】解:原式=4a(a2﹣4)=4a(a+2)(a﹣2),故答案为:4a(a+2)(a﹣2)10.设M=2x﹣3y,N=3x﹣2y,P=xy.若M=5,N=0,则P=6.【解答】解:由题意得,①+②得5x﹣5y=5,即x﹣y=1③,①﹣③×2得﹣y=3,解得y=﹣3,把y=﹣3代入③得,x=﹣2,∴P=xy=﹣2×(﹣3)=6,故答案为6.11.如图,已知点B、E、F、C在同一直线上,BE=CF,AF=DE,则添加条件∠AFB=∠DEC或AB=DC,可以判断△ABF≌△DCE.【解答】解:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,又∵AF=DE,∴若添加∠AFB=∠DEC,可以利用“SAS”证明△ABF≌△DCE,若添加AB=DC,可以利用“SSS”证明△ABF≌△DCE,所以,添加的条件为∠AFB=∠DEC或AB=DC.故答案为:∠AFB=∠DEC或AB=DC.12.如图,AB是⊙O的直径,C,D是圆上两点,∠AOC=50°,则∠D等于25°.【解答】解:∵∠AOC与∠D是同弧所对的圆心角与圆周角,∠AOC=50°,∴∠D=∠AOC=25°.故答案为25°.13.在正方形网格中,A、B、C、D、E均为格点,则∠BAC﹣∠DAE=45°.【解答】解:连接AF、EF,则∠CAB=∠F AD,∵∠F AD﹣∠DAE=∠F AE,∴∠BAC﹣∠DAE=∠F AE,设小正方形的边长为1,则AF=,EF=,AE=,∴AF2+EF2=AE2,∴△AFE是等腰直角三角形,∴∠F AE=45°,即∠BAC﹣∠DAE=45°,故答案为:45.14.已知扇形的半径为6cm,弧长为5πcm,则扇形的圆心角为150度.【解答】解:设扇形的圆心角为n°,∵扇形的半径为6cm,弧长为5πcm,∴5π=,解得n=150,故答案为:150.15.若关于x的一元二次方程x2+2x+k=0无实数根,则k的取值范围是k>1.【解答】解:根据题意得△=b2﹣4ac=22﹣4k<0,解得k>1.故答案为:k>1.16.如图1,在△ABC中,AB>AC,D是边BC上一动点,设B,D两点之间的距离为x,A,D两点之间的距离为y,表示y与x的函数关系的图象如图2所示.则线段AC的长为,线段AB的长为2.【解答】解:从图象看,当x=1时,y=,即BD=1时,AD=,当x=7时,y=,即BD=7时,C、D重合,此时y=AD=AC=,则CD=6,即当BD=1时,△ADC为以点A为顶点腰长为的等腰三角形,如下图:过点A作AH⊥BC于点H,在Rt△ACH中,AC=,CH=DH=CD=3,则AH===2,在Rt△ABH中,AB===2,故答案为:,2.三.解答题(共12小题,满分68分)17.(5分)计算:2sin45°+|﹣1|﹣tan60°+(π﹣2)0.【解答】解:原式=2×+﹣1﹣+1==.18.(5分)解不等式:1﹣x≥﹣,并把它的解集在数轴上表示出来.【解答】解:去分母得,6﹣4x≥3﹣(2x+1),去括号得,6﹣4x≥3﹣2x﹣1,移项、合并同类项得,﹣2x≥﹣4,把x的系数化为1得,x≤2.在数轴上表示此不等式的解集如下:19.(5分)已知x2﹣3x﹣1=0,求代数式(x+2)(x﹣2)﹣x(3x﹣6)的值.【解答】解:原式=x2﹣4﹣3x2+6x=﹣2x2+6x﹣4,∵x2﹣3x﹣1=0,∴x2﹣3x=1,∴原式=﹣2(x2﹣3x)﹣4=﹣2×1﹣4=﹣6.20.(5分)如图,AB为半圆O的直径,且AB=10,C为半圆上的一点,AC<BC.(1)请用尺规作图在BC上作一点D,使得BD=AC+CD;(不写作法,保留痕迹)(2)在(1)的条件下,连接OD,若OD=,求△ABC的面积.【解答】解:(1)如图,点D即为所求作.(2)连接AE,OD.∵OA=OB,DE=DB,∴AE=2OD=6,∵AB是直径,∴∠ACE=∠ACB=90°,在Rt△ACE中,AC=EC,∴AC=AE=6,∴BC===6,∴S△ABC=•AC•BC=×6×8=24.21.(6分)重庆是一个非常适合旅游打卡的城市,在渝中区有“洪崖洞”,南岸区有“南山一颗树”等等,为了解初三学生对重庆历史文化的了解程度,随机抽取了男、女各m名学生进行问卷测试,问卷共30道选择题,现将得分情况统计,并绘制了如图不完整的统计图(数据分组为A组:x<18,B组:18≤x<22,C组:22≤x<26,D组:26≤x≤30,x表示问卷测试的分数),其中男生得分处于C组的有14人,男生C组得分情况分别为:22,22,22,22,22,23,23,23,24,24,24,25,25,25.男生、女生得分的平均数、中位数、众数(单位:分)如表所示:组别平均数中位数众数男20n22女202320(1)直接写出m,n的值,并补全条形统计图;(2)通过以上数据分析,你认为成绩更好的是男生还是女生?说明理由(一条理由即可);(3)已知初三年级总人数为1800人,请估计参加问卷测试,成绩处于C组的人数.【解答】解:(1)m=14÷28%=50(人),50×(2%+24%)=12(人),∴男生中位数n=(25+25)÷2=25,女生C组人数=50﹣2﹣13﹣20=15(人),条形图如图所示:(2)男生的成绩比较好,因为男生的中位数比女生的中位数大(也可以根据众数的大小判断);(3)1800×=522(人),答:估计成绩处于C组的人数约为522人.22.(5分)如图,在等边△ABC中,已知点E在直线AB上(不与点A、B重合),点D在直线BC上,且ED =EC.(1)若点E为线段AB的中点时,试说明DB=AE的理由;(2)若△ABC的边长为2,AE=1,求CD的长.【解答】解:(1)∵△ABC是等边三角形,E为AB的中点,∴∠BCE=30°,BE=AE,∵ED=EC,∴∠EDB=∠BCE=30°,∵∠ABD=120°,∴∠DEB=30°,∴DB=EB,∴AE=DB;(2)如图1,E在线段AB上时,∵AB=2,AE=1,∴点E是AB的中点,由(1)知,BD=AE=1,∴CD=BC+BD=3;如图2,E在线段AB的反向延长线上时,∵AE=1,AB=2,∴BE=3,∵△ABC是等边三角形,∴∠BAC=∠BCA=60°,AB=BC=AC=2,过E作EH∥AC交BC的延长线于H,∴∠BEH=∠BHE=60°,∴△BEH是等边三角形,∴BE=EH=BH=3,∠B=∠H=60°,∵ED=EC,∴∠EDC=∠ECD,∴∠B+∠BED=∠H+∠HEC,∴∠BED=∠HEC,在△BDE和△HCE中,,∴△BDE≌△HCE(SAS),∴BD=HC=BH﹣BC=3﹣2=1,∴CD=BH﹣BD﹣HC=3﹣1﹣1=1.综上所述,CD的长为1或3.23.(6分)探究一次函数y=kx+k﹣2(k是不为0的常数)图象的共同特点.(探究过程)小华尝试把x=﹣1代入时,发现可以消去k,竟然求出了y=﹣2.老师问:结合一次函数图象,这说明了什么?小组讨论得出:无论k取何值,一次函数y=kx+k﹣2的图象一定经过定点(﹣1,﹣2),老师:如果一次函数的图象是经过某一个定点的直线,那么我们把这样的一次函数图象称为“陀螺线”.若一次函数y=(k﹣1)x﹣(2k+3)的图象是“陀螺线”,(1)一次函数y=(k﹣1)x﹣(2k+3)的图象经过定点P的坐标是(2,﹣5).(2)已知一次函数y=(k﹣1)x﹣(2k+3)的图象与x轴,y轴分别相交于点A、B.①若△OBP的面积为8,求k的值.②若S△AOB:S△OBP=3:2,求k的值.【解答】解:(1)当x=2时,y=(k﹣1)x﹣(2k+3)=2(k﹣1)﹣(2k+3)=﹣5;∴P (2,﹣5),故答案为:(2,﹣5);(2)解:①当x=0时,y=﹣(2k+3)∴OB=|2k+3|,∵P(2,﹣5),∴;∴2k+3=±8,解得:;②当y=0时,,∴,∴,∵S△OAB:S△OBP=3:2,∴,即,∴,解得:k=0或k=6,即k=0或k=6.24.(6分)如图,P A、PB与⊙O相切于点A、B,过点B作BD∥AP交⊙O于点D.(1)求证:AD=AB;(2)若BD•BP=80,sin∠DAB=,求△ABP的面积.【解答】(1)证明:连接AO,并延长交DB于点E,∵P A是⊙O的切线,∴OA⊥AP,∵BD∥AP,∴OA⊥BD于点E,∴DE=BE,即AE是BD的垂直平分线,∴AD=BD;(2)解:连接OB,OP交AB于点F,∵∠DAB=2∠OAB=∠EOB,且sin∠DAB=,∴sin∠EOB=,在Rt△EOB中,,设EB=4a,则OB=OA=5a,OE=3a,∴AE=8a,∴tan∠EAB=,又∵P A,PB与⊙O相切于点A,B,∴P A=PB,且OP平分∠APB,∴OP⊥AB,∴∠OP A+∠P AB=90°,∵∠OAB+∠P AB=90°,∴∠OAB=∠OP A,即tan∠OAB=tan∠OP A=,∴,即AP=BP=10a,又∵BD•BP=80,∴2BE•BP=80,即BE•BP=4a×10a=40a2=40,∴a=1,∴AE=8,BE=4,∴AB===4,设AF=b,则PF=2b,∴b2+(2b)2=102,∴b=2,∴FP=4,∴S△ABP=AB•FP==40.25.(5分)如图,已知△ABC中,BE平分∠ABC,且BE=BA,点F是BE延长线上一点,且BF=BC,过点F作FD⊥BC于点D.(1)求证:∠BEC=∠BAF;(2)判断△AFC的形状并说明理由.(3)若CD=2,求EF的长.【解答】解:(1)∵BE平分∠ABC,∴∠EBC=∠ABF,在△BEC和△BAF中,,∴△BEC≌△BAF(SAS),∴∠BEC=∠BAF;(2)△AFC是等腰三角形.证明:过F作FG⊥BA,与BA的延长线交于点G,如图,∵BA=BE,BC=BF,∠ABF=∠CBF,∴∠AEB=∠BCF,∵∠BEC=∠BAF,∴∠GAF=∠AEB=∠BCF,∵BF平分∠ABC,FD⊥BC,FG⊥BA,∴FD=FG,在△CDF和△AGF中,,∴△CDF≌△AGF(AAS),∴FC=F A,∵△ACF是等腰三角形;(3)设AB=BE=x,∵△CDF≌△AGF,CD=2,∴CD=AG=2,∴BG=BA+AG=x+2,在Rt△BFD和Rt△BFG中,,∴△BFD≌△BFG(HL),∴BD=BG=x+2,∴BF=BC=BD+CD=x+4,∴EF=BF﹣BE=x+4﹣x=4.26.(7分)如图,一次函数的图象y=ax+b(a≠0)与反比例函数y=(k≠0)的图象交于点A(,4),点B(m,1).(1)求这两个函数的表达式;(2)若一次函数图象与y轴交于点C,点D为点C关于原点O的对称点,点P是反比例函数图象上的一点,当S△OCP:S△BCD=1:3时,请直接写出点P的坐标.【解答】解:(1)把点A(,4)代入y=(k≠0)得:k=×4=2,∴反比例函数的表达式为:y=,∵点B(m,1)在y=上,∴m=2,∴B(2,1),∵点A(,4)、点B(2,1)都在y=ax+b(a≠0)上,∴,解得:,∴一次函数的表达式为:y=﹣2x+5;(2)∵一次函数图象与y轴交于点C,∴y=﹣2×0+5=5,∴C(0,5),∴OC=5,∵点D为点C关于原点O的对称点,∴D(0,﹣5),∴OD=5,∴CD=10,∴S△BCD=×10×2=10,设P(x,),∴S△OCP=×5×|x|=|x|,∵S△OCP:S△BCD=1:3,∴|x|=×10,∴|x|=,∴P的横坐标为或﹣,∴P(,)或(﹣,﹣).27.(6分)已抛物线y=x2+2x+m的顶点在x轴上.(1)求m的值;(2)若P(n,y1),Q(n+2,y2)是该二次函数的图象上的两点,且y1>y2,求实数n的取值范围.【解答】解:(1)∵抛物线y=x2+2x+m的顶点在x轴上,∴=0,解得,m=1.(2)(2)∵P(n,y1),Q(n+2,y2)是该二次函数的图象上的两点,且y1>y2,n2+2n+1>(n+2)2+2(n+2)+1,化简整理得,4n+8<0,∴n<﹣2,∴实数n的取值范围是n<﹣2.28.(7分)在平面直角坐标系xOy中,对于△ABC,点P在BC边的垂直平分线上,若以点P为圆心,PB 为半径的⨀P与△ABC三条边的公共点个数之和不小于3,则称点P为△ABC关于边BC的“Math点”.如图所示,点P即为△ABC关于边BC的“Math点”.已知点P(0,4),Q(a,0).(1)如图1,a=4,在点A(1,0)、B(2,2)、C(,)、D(5,5)中,△POQ关于边PQ的“Math点”为B,C.(2)如图2,,①已知D(0,8),点E为△POQ关于边PQ的“Math点”,请直接写出线段DE的长度的取值范围;②将△POQ绕原点O旋转一周,直线交x轴、y轴于点M、N,若线段MN上存在△POQ关于边PQ的“Math点”,求b的取值范围.【解答】解:(1)根据“Math点”的定义,观察图象可知,△POQ关于边PQ的“Math点”为B、C.故答案为:B,C.(2)如图2中,∵P(0,4),Q(4,0),∴OP=4,OQ=4,∴tan∠PQO=,∴∠PQO=30°,①当点E与PQ的中点K重合时,点E是△POQ关于边PQ的“Math点”,此时E(2,2),∵D(0,8),∴DE==4,当⊙E′与x轴相切于点Q时,E′(4,8),∴DE′=4,观察图象可知,当点E在线段KE′上时,点E为△POQ关于边PQ的“Math点”,∵E′Q⊥OQ,∴∠E′QO=90°,∴∠E′QK=60°,∴∠E′KQ=90°,∴∠EE′Q=30°,∵DE′∥OQ,∴∠DE′K=60°,∵DE′=DK,∴△DE′K是等边三角形,∵点D到E′K的距离的最小值为4•sin60°=6,∴.②如图3中,分别以O为圆心,4和4为半径画圆,当线段MN与图中圆环(包括小圆,不包据大圆)有交点时,线段MN上存在△POQ关于边PQ的“Math 点”,当直线MN与小圆交于(0,4)或(0,﹣4)时,b=±4,当直线MN与大圆相切时,b=±8,观察图象可知,满足条件的b的值为:4≤b<8或﹣8<b≤﹣4.。
吉林市2023—2024学年度初中毕业年级第一次阶段性教学质量检测数学本试卷包括六道大题,共26道小题.共8页.全卷满分120分.考试时间为120分钟.考试结束后,上交答题卡.注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、单项选择题(每小题2分,共12分)1.3-的绝对值是()A.3-B.3C.D.1 32.我国古代典籍《周易》用“卦”描述万物的变化,下图为部分“卦”的符号,其中是中心对称图形的是()A.B.C.D.3.下列命题:①对顶角相等;②同旁内角互补;③同角的余角相等;④垂线段最短.其中真命题的个数是()A.1个B.2个C.3个D.4个4.已知关于x的一元二次方程214x m-+=有两个相等的实数根,若n=,则m与n的大小关系为()A.m n>B.m n=C.m n<D.无法确定5.如图,AB,AC是O的弦,OB,OC是O的半径,点P为OB上任意一点(点P不与点B重合),连接CP,若45BAC∠=︒,则BPC∠的度数可能是()(第5题)A.50︒B.90︒C.110︒D.150︒6.某数学兴趣小组借助数学软件探究函数()2y ax x b=-的图象,输入了一组a,b的值,得到了它的函数图象如图所示,借助学习函数的经验,可以推断输入的a,b的值满足()A . 0a <,0b <B . 0a >,0b <C . 0a <,0b >D . 0a >,0b >二、填空题(每小题3分,共24分)7.分解因式:322a a a -+=______.8在实数范围内有意义,则x 的取值范围是______.9.2023年12月31日晚,“新时代新江城”吉林市2024迎新年大型烟花秀精彩上演,约有41万人前往现场观看,在线观看更是达到了1222.7万人次.数据1222.7万用科学记数法表示为______.10.若边长为5cm 的正多边形的一个外角是72︒,则该正多边形的周长为______cm .11.如图,在矩形ABCD 中,AB AD >,按以下步骤作图:①以点A 为圆心,AD 长为半径画弧,交AB 于点E ;②分别以点D ,E 为圆心,大于12DE 长为半径画弧,两弧交于点F ;③画射线AF ,交D C 于点G ,则AGC ∠______︒.(第11题)12.小莹计划购买一台圆形自动扫地机,有以下6种不同的尺寸可供选择,直径(单位:cm )分别是:34,34.5,37,39.5,40,42.如图是小莹家衣帽间的平面示意图,扫地机放置在该房间的角落(鞋柜、衣柜与地面均无缝隙),在没有障碍物阻挡的前提下,扫地机能从底座脱离后打扫全屋地面,小莹可选择的扫地机尺寸最多有______种.(第12题)13.如图是浩洋老师办公桌上的2024年台历,台历上显示的是2024年1月的月历,通过此月历,可以推算出2025年1月1日是星期______.14.如图,AD 平分BAC ∠,AE 平分BAD ∠,AF 平分DAC ∠,点O 为射线AF 上一点,以点O 为圆心,AO 长为半径画圆.若80BAC ∠=︒,3AO =,则图中阴影部分的面积是______(结果保留π).(第14题)三、解答题(每小题5分,共20分)15.先化简,再求值:2211x x x x+⋅-,其中521x =.16.舒兰大米种植区域处于北纬43度世界黄金水稻带.舒兰大米具有营养丰富、绵软柔糯等特点.某校食堂计划采购甲、乙两种舒兰大米,若购进甲种大米500千克和乙种大米300千克需花费11000元;若购进甲种大米200千克和乙种大米600千克需花费9200元.求每千克甲种大米和每千克乙种大米的价格.17.以下内容节选自人教版初中数学教材八年级上册.请说明内容中的尺规作图的原理,即求证O O '∠=∠.图12.2—4作法:(1)如图12.2—4,以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;(2)画一条射线O A '',以点O '为圆心,OC 长为半径画弧,交O A ''于点C ';(3)以点C '为圆心,CD 长为半径画弧,与第2步中所画的弧相交于点D ';(4)过点D '画射线O B '',则A O B AOB '''∠=∠.18.如图,在左边托盘A (固定)中放置一个重物,在右边托盘B (可左右移动)中放置一定质量的砝码,可使得仪器左右平衡.托盘B 中的砝码质量m 随着托盘B 与点O 的距离d 变化而变化,已知m 与d 是反比例函数关系,下面是它们的部分对应值:托盘B 与点O 的距离d /厘米510152025托盘B 中的砝码质量m /克3015107.56(1)根据表格数据求出m 关于d 的函数解析式.(2)当砝码质量为12克时,求托盘B 与点O 的距离.(第18题)四、解答题(每小题7分,共28分)19.在2023年高考期间,吉林市委“爱在江城温馨高考”的暖心举措温暖着江城每一位考生和家长.其中吉林市第一中学校考点设置了家长休息区,共搭建了121个遮阳篷.图①是一个遮阳篷的实物图,图②是它的侧面示意图,AD 长为2.13m ,太阳光线AB 与地面BC 的夹角为44︒时,求BD 的长(结果精确到0.01m ).(参考数据:sin 440.69︒≈,cos 440.72︒≈,tan 440.97︒≈)图①图②(第19题)20.游神民俗文化活动,主要在中国的闽台地区流行,是一项流传了数百年的习俗,在甲辰龙年春节爆火出圈,无数网友对游神前的掷筊杯仪式感到好奇.掷筊杯是民间一种问卜的方式,每次将两个筊杯掷向地面,根据筊杯落地后的状态来推测行事是否顺利.每个筊杯都有一个平面,一个凸面.筊杯落地的结果如图所示,如果是两个平面称之为笑杯,表示行事状况不明;如果是两个凸面称之为阴杯,表示不宜行事;如果是一个平面和一个凸面称之为圣杯,表示行事会顺利.假设每个筊杯形状大小相同,掷筊杯落地后平面朝上和凸面朝上的可能性也相同.笑杯阴杯圣杯(第20题)(1)笑笑同学想要计算将两个筊杯连续掷两次都得到圣杯的概率,她采用面树状图的方法,请将她的求解过程补充完整.解:根据题意,可以画出如下的树状图:(2)在中国台湾电影《周处除三害》中有一段场景,主角陈桂林用签杯问卜,将两个筊杯连续掷九次.请问连续掷筊杯九次都出现圣杯的概率是______.21.图①、图②、图③均是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1,点A ,B ,C 均在格点上.只用无刻度的直尺,在给定的网格中,分别按要求画图,保留作图痕迹,不要求写面法.(1)在图①中画线段EF 平分AB ,且点E ,F 均在格点上.(2)在图②中画线段CD ,线段CD 平分ABC △的面积.(3)如图③,点P ,Q 均在格点上,连接PQ 交AC 于点M ,连接BM ,则BCM △的面积是______.图①图②图③(第21题)22.书籍是人类进步的阶梯,中国图书出版已有十多年保持着持续、稳定、快速发展的良性态势.下面的统计图反映了2013年到2022年国家图书总印数和图书总印数年变化率的情况.说明:图书总印数年变化率100%-=⨯当年图书总印数上一年图书总印数上一年图书总印数.根据图中信息,解答下列问题:(1)计算2018年到2022年这五年国家图书总印数的平均数.(2)下列说法正确的是______(下列选项中,有多项符合题目要求,全部选对得满分,部分选对得部分分,选错或未选得0分).A .2013年到2022年国家图书总印数变化率最低的是2022年,所以2022年国家图书总印数最少.B .2013年到2022年国家图书总印数出现增长量最大的是2021年.C .2013年到2022年国家图书总印数变化率的中位数是4.65%.D .2013年到2017年国家图书总印数的方差记为21s ,2018年到2022年国家图书总印数的方差记为22s ,则2212s s <.五、解答题(每小题8分,共16分)23.新能源汽车中的油电混合动力汽车,兼具纯电动汽车和燃油汽车的优势.某油电混合动力汽车先采用锂电池工作,当锂电池电量耗完后自动转换为油路工作,汽车油路工作时不能为锂电池进行充电.该汽车一次充满电,可以行驶最大里程是120千米;油电混合行驶时,满电满油可以行驶最大里程是720千米.下图为该汽车仪表盘显示电量1y (单位:%),仪表盘显示油量2y (单位:%)与某次行驶里程x (单位:千米)之间的函数图象.(1) m =______,n =______.(2)求2y 关于x 的函数解析式,并写出自变量x 的取值范围.(第23题)24.【实践操作】操作一:如图①,将正方形纸片ABCD 对折,使点A 与点D 重合,点B 与点C 重合,再将正方形纸片ABCD 展开,得到折痕PQ .操作二:如图②,将正方形纸片ABCD 的左上角沿AP 折叠,得到点B 的对应点为B ',AB '交PQ 于点E .操作三:如图③,将正方形纸片ABCD 的右上角沿PB '折叠再展开,折痕PB '交CD 于点M .【问题解决】(1)求证B M DM '=.(2)tan EAQ ∠=______·【拓展应用】(3)在图③中延长AB '交CD 于点N ,则MNCD=______.图①图②图③(第24题)六、解答题(每小题10分,共20分)25.如图,四边形ABCD 是矩形,6AB =,BC =,连接AC .点G 从点D 出发,以每秒2个单位长度的速度沿着边DC 向终点C 匀速运动,线段DG 绕点D 逆时针方向旋转60︒得到线段DE ,以线段DG ,DE 为边作菱形DEFG .设菱形DEFG 与ABC △重叠部分图形的面积为y (0y >),点G 运动的时间为x 秒.(1)ACD ∠=______︒.(2)当点F 落在AC 上时,x =______秒.(3)求y 关于x 的函数解析式,并写出自变量x 的取值范围.(第25题)(备用图)26.如图,在平面直角坐标系中,点O 为坐标原点,点P 为抛物线211:262W y x x =--上任意一点.连接OP ,设点P '为线段OP 的中点,通过求出相应的点P ',再把相应的点P '用平滑的曲线连接起来,可以得到一条新的抛物线记为W .(1)求抛物线1W 与x 轴的交点坐标.(2)求抛物线2W 的解析式.(3)过点P 作线段PQ x ∥轴,点P 在点Q 的右侧,6PQ ,设点P 的横坐标为m .①当线段PQ 与抛物线2W 没有公共点时,直接写出m 的取值范围.②当线段PQ 与抛物线1W 和2W 一共有3个公共点时,直接写出m 的取值范围.(第26题)吉林市2023—2024学年度初中毕业年级第一次阶段性教学质量检测数学参考答案一、单项选择题1.B2.B3.C4.A5.C6.D二、填空题7. ()21a a -8. 1x ≥9. 71.222710⨯10.2511.13512.213.三14.3π+三、解答题15.解:原式()()21111x x xx x x x +=⋅=+--当521x =时,原式5215215211520==-16.解:设每千克甲种大米价格是x 元,每千克乙种大米价格是y 元.500300110002006009200x y x y +=⎧⎨+=⎩,解得1610x y =⎧⎨=⎩答:每千克甲种大米价格是16元,每千克乙种大米价格是10元.17.证明:由作图得DC OD O C O D ''''===,CD C D ''=,在COD △和C O D '''△中OC O C OD O D CD C D ''=⎧⎪''=⎨⎪''=⎩,∴()SSS COD C O D '''≌△△,∴O O'∠=∠(第17题)18.解:(1)设m 关于d 的函数解析式为()0kmk d=≠当5d =时,30m =,所以305k=,解得150k =∴m 关于d 的函数解析式为150m d=.(2)把12m =代入150m d =得15012d=,解得12.5d =答:托盘B 与点O 的距离为12.5厘米.19.解:在Rt ABD △中,44ABD ∠=︒, 2.13AD =,∵tan AD ABD BD ∠=,∴ 2.132.20tan tan 44AD BD ABD ==≈∠︒答:BD 的长约为2.20m .20.解:(1)根据题意,可以画出如下的树状图:由树状图可以看出,所有等可能出现的结果共有16种,其中两次都得到圣杯的情况有4种,所以()41164P ==两次都得到圣杯;(2)151221.解(1)图①(2)图②(3)23.22.解:(1)()1100.1106103.7119.6114108.685++++=(亿)答:2018年到2022年国家图书总印数的平均数为108.68亿.(2)B ,C ,D23.解:(1)120,270.(2)当120270x <≤时,设()20y kx b k =+≠,将()120,25和()270,0代入得120252700k b k b +=⎧⎨+=⎩,解得1645k b ⎧=-⎪⎨⎪=⎩∴()1451202706y x x =-+<≤.(第23题)24.(1)证明:∵四边形ABCD 是正方形,∴90B D ∠=∠=︒,AB AD =,由折叠得90AB P B '∠=∠=︒,AB AB '=,∴18090AB M AB P ''∠=︒-∠=︒,AB AD '=,连接AM ,在Rt AB M '△和Rt ADM △中,AM AMAB AD=⎧⎨'=⎩,∴()Rt Rt HL AB M ADM'≌△△,∴B M DM '=.(2)34.(3)512.(第24题)25.解:(1)30.(2)1.(3)当312x <≤时,622332x x x --=-,()))21333312y x x x =⨯--=-当322x <≤时,()2123332y x x x =-+-=-.当23x <≤时,)())2111613333222y x x x =⨯-⨯-⨯-=-.综上,)))2223102322323x x y x x x x ⎛⎫-<≤ ⎪⎝⎭⎛⎫=-<≤ ⎪⎝⎭⎪⎪-<≤⎪⎩(第25题)备用图26.解:(1)把0y =代入21262y x x =--,得212602x x --=,解得12x =-,26x =,∴抛物线1W 与x 轴的交点坐标为()2,0-,()6,0.(2)把0x =代入21262y x x =--,得6y =-.∴抛物线1W 与y 轴交点为()0,6-∴()1,0-,()3,0,()0,3-均为点P '的坐标.设抛物线2W 的解析式为()20y ax bx c a =++≠,把()1,0-,()3,0,()0,3-代入2y ax bx c =++得09303a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得123a b c =⎧⎪=-⎨⎪=-⎩∴抛物线2W 的解析式为223y x x =--.(3)①2m <+12m >+.②2+或512m <≤-.(第26题。
一、选择题(共12题36分,每题3分) 1.(2019·宿迁)2019的相反数是 A .12019B .-2019C .12019-D .20192.(2019·重庆A 卷)下列各数中,比1-小的数是 A .2B .1C .0D .-23.(2019•河南)成人每天维生素D 的摄入量约为0.0000046克.数据”0.0000046”用科学记数法表示为 A .46×10-7B .4.6×10-7C .4.6×10-6D .0.46×10-54.(2019·浙江杭州)在平面直角坐标系中,点A (m ,2)与点B (3,n )关于y 轴对称,则A .m =3,n =2B .m =﹣3,n =2C .m =2,n =3D .m =﹣2,n =﹣35.(2019·浙江温州)计算:(–3)×5的结果是A .–15B .15C .–2D .26.(2019•山西)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与”点”字所在面相对面上的汉字是 A .青B .春C .梦D .想7.(2019•甘肃)甲,乙两个班参加了学校组织的2019年”国学小名士”国学知识竞赛选拔赛,他们成绩的平均数、中位数、方差如下表所示,规定成绩大于等于95分为优异,则下列说法正确的是 A .甲、乙两班的平均水平相同 B .甲、乙两班竞赛成绩的众数相同 C .甲班的成绩比乙班的成绩稳定D .甲班成绩优异的人数比乙班多 8.(2019年广东省深圳市福田区中考数学三模试卷)下列命题是真命题的是A .对角线互相平分的四边形是平行四边形B .对于反比例函数y =kx,y 随x 的增大而增大 C .有一个角是直角的四边形是矩形 D .一元二次方程一定有两个实数根9.(2019·山西)如图,在△ABC 中,AB=AC ,△A=30°,直线a△b ,顶点C 在直线b 上,直线a 交AB 于点D ,交AC 于点E ,若△1=145°,则△2的度数是( )A. 30°B. 35°C. 40°D. 45°参加人数 平均数 中位数 方差 甲 45 94 93 5.3 乙4594954.810.(2019•河北)如图,函数y =1(0)1(0)x xx x⎧>⎪⎪⎨⎪-<⎪⎩的图象所在坐标系的原点是A .点MB .点NC .点PD .点Q第9题图 第10题图 第11题图 第12题图 11.(2019·益阳)如图,PA 、PB 为圆O 的切线,切点分别为A 、B ,PO 交AB 于点C ,PO 的延长线交圆O 于点D ,下列结论不一定成立的是( )A. PA =PBB. △BPD =∠APDC. AB△PDD. AB 平分PD12.(2019•张家界)如图,在平面直角坐标系中,将边长为1的正方形OABC 绕点O 顺时针旋转45°后得到正方形OA 1B 1C 1,依此方式,绕点O 连续旋转2019次得到正方形OA 2019B 2019C 2019,那么点A 2019的坐标是 A .(22,-22) B .(1,0) C .(-22,-22)D .(0,-1)二、填空题(共6题18分,每题3分) 13.(2019·娄底市)函数y x 3=-中,自变量x 的取值范围是 .14.(2019•江西)设x 1,x 2是一元二次方程x 2–x –1=0的两根,则x 1+x 2+x 1x 2= . 15.(2019•新疆)同时掷两枚质地均匀的骰子,两枚骰子点数之和小于5的概率是__________. 16.(2019·浙江金华)元朝朱世杰的《算学启蒙》一书记载:”今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路程s 关于行走时间t 的函数图象,则两图象交点P 的坐标是__________.17.(2019•青岛)如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走__________个小立方块.18.(2019·广东省广州市增城区一模)如图,点P 为等边ABC △内一点,若3PC =,4PB =,5PA =,则BPC ∠的度数是__________.三、解答题(共8题66分)19.(6分)(2019·浙江绍兴)计算:4sin60°+(π﹣2)0﹣(﹣12)-2﹣20.(6分)(2019·浙江台州)先化简,再求值:22332121x x x x x --+-+,其中x =12.21.(6分)(2019·浙江金华)如图,在7×6的方格中,△ABC 的顶点均在格点上.试按要求画出线段EF (E ,F 均为格点),各画出一条即可.22. (8分)为了扎实推进精准扶贫工作,某地出台了民生兜底、医保脱贫、教育救助、产业扶持、养老托管和易地搬迁这六种帮扶措施,每户贫困户都享受了2到5种帮扶措施,现把享受了2种、3种、4种和5种帮扶措施的贫困户分别称为A、B、C、D类贫困户.为检査帮扶措施是否落实,随机抽取了若干贫困户进行调查,现将收集的数据绘制成下面两幅不完整的统计图:请根据图中信息回答下面的问题:(1)本次抽样调查了多少户贫困户?(2)抽查了多少户C类贫困户?并补全统计图;(3)若该地共有13000户贫困户,请估计至少得到4项帮扶措施的大约有多少户?(4)为更好地做好精准扶贫工作,现准备从D类贫困户中的甲、乙、丙、丁四户中随机选取两户进行重点帮扶,请用树状图或列表法求出恰好选中甲和丁的概率.23.(9分)(2019·浙江衢州)如图,在等腰△AB C中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE ⊥AB,垂足为E.(1)求证:DE是⊙O的切线.(2)若DE3,∠C=30°,求AD的长.24. (9分)(2019·广东)某校为了开展”阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.(1)若购买这两类球的总金额为4600元,求篮球、足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球?25.(10分)(2019·山东滨州)如图,矩形ABCD 中,点E 在边CD 上,将BCE △沿BE 折叠,点C 落在AD 边上的点F 处,过点F 作FGCD 交BE 于点G ,连接CG .(1)求证:四边形CEFG 是菱形;(2)若6,10AB AD ==,求四边形CEFG 的面积.26.(12分)(2019·海南)如图,已知抛物线y =ax 2+bx +5经过A (–5,0),B (–4,–3)两点,与x 轴的另一个交点为C ,顶点为D ,连结C D . (1)求该抛物线的表达式;(2)点P 为该抛物线上一动点(与点B 、C 不重合),设点P 的横坐标为t . ①当点P 在直线BC 的下方运动时,求△PBC 的面积的最大值;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.答案与解析一、选择题(共12题36分,每题3分)1.(2019·宿迁)2019的相反数是A.12019B.-2019 C.12019-D.2019【答案】B【解析】2019的相反数是-2019.故选B.2.(2019·重庆A卷)下列各数中,比1-小的数是A.2 B.1 C.0 D.-2【答案】D【解析】根据负数小于0,0小于正数,且负数的绝对值越大,本身就越小,即可确定-2最小,故选D.3.(2019•河南)成人每天维生素D的摄入量约为0.0000046克.数据”0.0000046”用科学记数法表示为A.46×10-7B.4.6×10-7C.4.6×10-6D.0.46×10-5【答案】C【解析】0.0000046=4.6×10-6.故选C.4.(2019·浙江杭州)在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则A.m=3,n=2 B.m=﹣3,n=2C.m=2,n=3 D.m=﹣2,n=﹣3【答案】B【解析】∵点A(m,2)与点B(3,n)关于y轴对称,∴m=﹣3,n=2.故选B.【名师点睛】(1)一般地,点P与点P1关于x轴(横轴)对称,则横坐标相同,纵坐标互为相反数;(2)点P与点P2关于y轴(纵轴)对称,则纵坐标相同,横坐标互为相反数;(3)点P与点P3关于原点对称,则横、纵坐标分别互为相反数.简单记为”关于谁谁不变,关于原点都改变”.5.(2019·浙江温州)计算:(–3)×5的结果是A.–15 B.15 C.–2 D.2【答案】A【解析】(–3)×5=–15;故选A.【名师点睛】本题考查有理数的乘法;熟练掌握正数与负数的乘法法则是解题的关键.6.(2019•山西)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与”点”字所在面相对面上的汉字是A.青B.春C.梦D.想【答案】B【解析】展开图中”点”与”春”是对面,”亮”与”想”是对面,”青”与”梦”是对面;故选B.【名师点睛】本题考查正方体的展开图;熟练掌握正方体展开图找对面的方法是解题的关键.7.(2019•甘肃)甲,乙两个班参加了学校组织的2019年”国学小名士”国学知识竞赛选拔赛,他们成绩的平均数、中位数、方差如下表所示,规定成绩大于等于95分为优异,则下列说法正确的是参加人数平均数中位数方差甲45 94 93 5.3乙45 94 95 4.8A.甲、乙两班的平均水平相同B.甲、乙两班竞赛成绩的众数相同C.甲班的成绩比乙班的成绩稳定D.甲班成绩优异的人数比乙班多【答案】A【解析】A、由表格信息可得甲、乙两班的平均水平相同;A选项正确;B、由表格信息无法得出甲、乙两班竞赛成绩的众数相同;B选项不正确;C、由表格信息可以得出乙班的成绩比甲班的成绩稳定;C选项不正确;D、由表格信息可以得出甲班中位数小于乙班的中位数,所以乙班成绩优异的人数比甲班多,D选项不正确;故选A.【名师点睛】本题考查了平均数,众数,中位数,方差;正确的读懂题目中所给出的信息,理解各个统计量的意义是解题的关键.8.(2019年广东省深圳市福田区中考数学三模试卷)下列命题是真命题的是A.对角线互相平分的四边形是平行四边形B.对于反比例函数y=kx,y随x的增大而增大C.有一个角是直角的四边形是矩形D.一元二次方程一定有两个实数根【答案】A【解析】A、对角线互相平分的四边形是平行四边形,正确,是真命题;B、对于反比例函数y=kx,当k<0时,在每一象限y随x的增大而增大,故错误,是假命题;C、有一个角是直角的平行四边形是矩形,故错误,是假命题;D、一元二次方程不一定有两个实数根,故错误,是假命题,故选A.【名师点睛】本题考查平行四边形的性质、反比例函数的性质、矩形的性质和一元二次方程的根与系数的关系,解题的关键是熟练掌握平行四边形的性质、反比例函数的性质、矩形的性质和一元二次方程的根与系数的关系.9.(2019·山西)如图,在△ABC中,AB=AC,△A=30°,直线a△b,顶点C在直线b上,直线a交AB于点D,交AC 于点E,若△1=145°,则△2的度数是( )A. 30°B. 35°C. 40°D. 45°【答案】C【解析】【分析】根据等边对等角可得△ACB=∠B=75°,再根据三角形外角的性质可得△AED=△1-△A=115°,继而根据平行线的性质即可求得答案.【详解】∵AB=AC,△A=30°,∴△ACB=∠B=(180°-30°)÷2=75°,∵△1=△A+△AED,∴△AED=△1-△A=145°-30°=115°,△a//b,∴∠2+∠ACB=△AED=115°(两直线平行,同位角相等),∴△2=115°-△ACB=115°-75°=40°,故选C.【点睛】本题考查了等腰三角形的性质,三角形外角的性质,平行线的性质等知识,熟练掌握相关知识是解题的关键.10.(2019•河北)如图,函数y =1(0)1(0)x xx x⎧>⎪⎪⎨⎪-<⎪⎩的图象所在坐标系的原点是A .点MB .点NC .点PD .点Q【答案】A【解析】由已知可知函数y =1(0)1(0)x xx x⎧>⎪⎪⎨⎪-<⎪⎩关于y 轴对称,所以点M 是原点;故选A .【名师点睛】本题考查反比例函数的图象及性质;熟练掌握反比例函数的图象及性质是解题的关键. 11.(2019·益阳)如图,PA 、PB 为圆O 的切线,切点分别为A 、B ,PO 交AB 于点C ,PO 的延长线交圆O 于点D ,下列结论不一定成立的是( )A. PA =PBB. △BPD =∠APDC. AB△PDD. AB 平分PD【答案】D 【解析】先根据切线长定理得到PA =PB ,∠APD =∠BPD ;再根据等腰三角形的性质得OP ⊥AB ,根据菱形的性质,只有当AD ∥PB ,BD ∥PA 时,AB 平分PD ,由此可判断D 不一定成立. 【详解】∵PA ,PB 是⊙O 的切线, ∴PA =PB ,所以A 成立; ∠BPD =∠APD ,所以B 成立;∴AB ⊥PD ,所以C 成立; ∵PA ,PB 是⊙O 的切线, ∴AB ⊥PD ,且AC =BC ,只有当AD ∥PB ,BD ∥PA 时,AB 平分PD ,所以D 不一定成立, 故选D .【点睛】本题考查了切线长定理,垂径定理,等腰三角形的性质等,熟练掌握相关知识是解题的关键. 12.(2019•张家界)如图,在平面直角坐标系中,将边长为1的正方形OABC 绕点O 顺时针旋转45°后得到正方形OA 1B 1C 1,依此方式,绕点O 连续旋转2019次得到正方形OA 2019B 2019C 2019,那么点A 2019的坐标是A .(2,-2)B .(1,0)C .(-2,-2)D .(0,-1)【答案】A【解析】∵四边形OABC 是正方形,且OA =1,∴A (0,1),∵将正方形OABC 绕点O 逆时针旋转45°后得到正方形OA 1B 1C 1,∴A 1),A 2(1,0),A 3,-),…,发现是8次一循环,所以2019÷8=252……3,∴点A 2019的坐标为(2,-2),故选A .【名师点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.也考查了坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法,属于中考常考题型.二、填空题(共6题18分,每题3分)13.(2019·娄底市)函数y=,自变量x的取值范围是.【答案】x3≥.【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,二次根式有意义的条件是:被开方数为非负数.【详解】依题意,得x-3≥0,解得:x≥3.【点睛】本题考查的知识点为:二次根式的被开方数是非负数.14.(2019•江西)设x1,x2是一元二次方程x2–x–1=0的两根,则x1+x2+x1x2=__________.【答案】0【解析】∵x1、x2是方程x2–x–1=0的两根,∴x1+x2=1,x1x2=–1,∴x1+x2+x1x2=1–1=0.故答案为:0.【名师点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两根为x1,x2,则x1+x2=–ba,x1•x2=ca.15.(2019•新疆)同时掷两枚质地均匀的骰子,两枚骰子点数之和小于5的概率是__________.【答案】1 6【解析】画树状图为:共有36种等可能的结果数,其中两枚骰子点数的和是小于5的结果数为6,∴两枚骰子点数之和小于5的概率是16,故答案为:16.【名师点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.16.(2019·浙江金华)元朝朱世杰的《算学启蒙》一书记载:”今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路程s关于行走时间t的函数图象,则两图象交点P 的坐标是__________.【答案】(32,4800) 【解析】令150t =240(t –12), 解得t =32,则150t =150×32=4800, ∴点P 的坐标为(32,4800), 故答案为:(32,4800).【名师点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答. 17.(2019•青岛)如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走__________个小立方块.【答案】16【解析】若新几何体与原正方体的表面积相等,最多可以取走16个小正方体,只需留11个,分别是正中心的3个和四角上各2个,如图所示:故答案为:16.【名师点睛】本题主要考查了几何体的表面积.18.(广东省广州市增城区2019届九年级综合测试一模数学试题)如图,点P 为等边ABC △内一点,若3PC =,4PB =,5PA =,则BPC ∠的度数是__________.【答案】150°【解析】以BP 为边作等边BPD △,连接AD ,如图,则460BD BP DP DBP BDP ===∠=∠=︒,, ∵ABC △是等边三角形,∴60AB BC ABC =∠=︒,, ∵60ABD ABP CBP ABP ∠+∠=∠+∠=︒,∴ABD CBP ∠=∠,在△ABD 与△CBF 中,AB BCABD CBP BD BP =⎧⎪∠=∠⎨⎪=⎩,∴ABD CBP △≌△,∴3BPC BDA AD PC ∠=∠==,,在ADP △中,∵543PA PD AD ===,,, ∴222AP DP AD +=, ∴APD △是直角三角形, ∴90ADP ∠=︒,∴150ADB ADP BDP ∠=∠+∠=︒, ∴150BPC ∠=︒.【名师点睛】本题考查了等边三角形的性质,全等三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和,勾股定理逆定理,作出辅助线,把PA PB PC 、、的长度转化为一个三角形三条边,构造出直角三角形是解题的关键.三、解答题(共8题66分)19.(2019·浙江绍兴)计算:4sin60°+(π﹣2)0﹣(﹣12)-2【答案】﹣3【解析】原式+1﹣4﹣=﹣3. 20.(2019·浙江台州)先化简,再求值:22332121x x x x x --+-+,其中x =12. 【答案】31x -,–6. 【解析】22332121x x x x x --+-+ =23(1)(1)x x --=31x -, 当x =12时,原式=3112-=–6. 【名师点睛】本题考查的是分式的化简求值,掌握同分母分式的减法法则是解题的关键.21.(2019·浙江金华)如图,在7×6的方格中,△ABC 的顶点均在格点上.试按要求画出线段EF (E ,F 均为格点),各画出一条即可.【答案】见解析.【解析】如图1,从图中可得到AC 边的中点在格点上设为E ,过E 作AB 的平行线即可在格点上找到F ,则EF 平分BC ;如图2,EC=EF=FC=,借助勾股定理确定F点,则EF⊥AC;如图3,借助圆规作AB的垂直平分线即可.【名师点睛】本题考查三角形作图;在格点中利用勾股定理,三角形的性质作平行、垂直、中点是解题的关键.22.为了扎实推进精准扶贫工作,某地出台了民生兜底、医保脱贫、教育救助、产业扶持、养老托管和易地搬迁这六种帮扶措施,每户贫困户都享受了2到5种帮扶措施,现把享受了2种、3种、4种和5种帮扶措施的贫困户分别称为A、B、C、D类贫困户.为检査帮扶措施是否落实,随机抽取了若干贫困户进行调查,现将收集的数据绘制成下面两幅不完整的统计图:请根据图中信息回答下面的问题:(1)本次抽样调查了多少户贫困户?(2)抽查了多少户C类贫困户?并补全统计图;(3)若该地共有13000户贫困户,请估计至少得到4项帮扶措施的大约有多少户?(4)为更好地做好精准扶贫工作,现准备从D类贫困户中的甲、乙、丙、丁四户中随机选取两户进行重点帮扶,请用树状图或列表法求出恰好选中甲和丁的概率.【答案】(1)500 (2)120,补全图形见解析(3)5200 (4)1 6【解析】【分析】(1)由A类别户数及其对应百分比可得答案;(2)总数量乘以C对应百分比可得;(3)利用样本估计总体思想求解可得;(4)画树状图或列表将所有等可能的结果列举出来,利用概率公式求解即可.【详解】(1)本次抽样调查的总户数为26052%500÷=(户);(2)抽查C类贫困户为50024%120⨯=(户),补全图形如下:(3)估计至少得到4项帮扶措施的大约有()1300024%16%5200⨯+=(户); (4)画树状图如下:由树状图知共有12种等可能结果,其中恰好选中甲和丁的有2种结果, 所以恰好选中甲和丁的概率为21126=. 【点睛】本题考查了扇形统计图,条形统计图,树状图等知识点,能正确画出条形统计图和树状图是解此题的关键.23.(2019·浙江衢州)如图,在等腰△AB C 中,AB =AC ,以AC 为直径作⊙O 交BC 于点D ,过点D 作DE ⊥AB ,垂足为E .(1)求证:DE 是⊙O 的切线.(2)若DE =∠C =30°,求AD 的长.【答案】(1)见解析;(2)AD 的长为23π. 【解析】(1)如图,连接OD ;∵OD=OC,∴∠C=∠ODC,∵AB=AC,∴∠B=∠C,∴∠B=∠ODC,∴OD∥AB,∴∠ODE=∠DEB;∵DE⊥AB,∴∠DEB=90°,∴∠ODE=90°,即DE⊥OD,∴DE是⊙O的切线.(2)如图,连接AD,∵AC是直径,∴∠ADC=90°,∵AB=AC,∴∠B=∠C=30°,BD=CD,∴∠OAD=60°,∵OA=OD,∴△AOD是等边三角形,∴∠AOD=60°,∵DE=∠B=30°,∠BED=90°,∴CD=BD=2DE,∴OD=AD=tan30°•CD==2,∴AD的长为:6022 1803π⋅π=.【名师点睛】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.24.(2019·广东)某校为了开展”阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.(1)若购买这两类球的总金额为4600元,求篮球、足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球?【答案】(1)篮球、足球各买了20个,40个;(2)最多可购买篮球32个.【解析】(1)设篮球、足球各买了x,y个,根据等量关系:篮球、足球共60个,篮球、足球共用4600元,列出方程组,解方程组即可得;(2)设购买了a个篮球,根据购买篮球的总金额不超过购买足球的总金额,列出不等式进行求解即可.【详解】(1)设篮球、足球各买了x ,y 个,根据题意,得6070804600x y x y +=⎧⎨+=⎩, 解得2040x y =⎧⎨=⎩,答:篮球、足球各买了20个,40个; (2)设购买了a 个篮球,根据题意,得()708060a a ≤-,解得32a ≤,△最多可购买篮球32个.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,弄清题意,找准等量关系或不等关系列出方程或不等式是解题的关键.25.(2019·山东滨州)如图,矩形ABCD 中,点E 在边CD 上,将BCE △沿BE 折叠,点C 落在AD 边上的点F 处,过点F 作FG CD 交BE 于点G ,连接CG .(1)求证:四边形CEFG 是菱形;(2)若6,10AB AD ==,求四边形CEFG 的面积.【答案】(1)详见解析;(2)203. 【解析】(1)由题意可得,BCE BFE △≌△, ∴,BEC BEF FE CE ∠=∠=, ∵FG CE ∥,∴FGE CEB ∠=∠,∴FGE FEG ∠=∠,∴FG FE =,∴FG EC =, ∴四边形CEFG 是平行四边形,又∵,CE FE =∴四边形CEFG 是菱形; (2)∵矩形ABCD 中,6,10,AB AD BC BF === , ∴90,10BAF AD BC BF ∠=︒===, ∴8AF =,∴2DF=,设EF x =,则,6CE x DE x ==-,∵90FDE ∠=︒,∴()22226x x +-=,解得103x =, ∴103CE =,∴四边形CEFG 的面积是:1020233CE DF ⋅=⨯=.【名师点睛】本题主要考查菱形的判定,关键在于首先证明其是平行四边形,再证明两条邻边相等即可. 26.(2019·海南)如图,已知抛物线y =ax 2+bx +5经过A (–5,0),B (–4,–3)两点,与x 轴的另一个交点为C ,顶点为D ,连结C D .(1)求该抛物线的表达式;(2)点P 为该抛物线上一动点(与点B 、C 不重合),设点P 的横坐标为t . ①当点P 在直线BC 的下方运动时,求△PBC 的面积的最大值;②该抛物线上是否存在点P ,使得∠PBC =∠BCD ?若存在,求出所有点P 的坐标;若不存在,请说明理由.【答案】(1)y =x 2+6x +5.(2)①△PBC 的面积的最大值为278.②存在满足条件的点P 的坐标为(0,5)和(–32,–74). 【解析】(1)将点A 、B 坐标代入二次函数表达式得:2555016453a b a b -+=⎧⎨-+=-⎩,解得16a b =⎧⎨=⎩, 故抛物线的表达式为:y =x 2+6x +5.(2)①如图1,过点P 作PE ⊥x 轴于点E ,交直线BC 于点F .在抛物线y =x 2+6x +5中,令y =0,则x 2+6x +5=0,解得x =–5,x =–1,∴点C 的坐标为(–1,0).由点B (–4,–3)和C (–1,0),可得直线BC 的表达式为y =x +1.设点P 的坐标为(t ,t 2+6t +5),由题知–4<t <–1,则点F (t ,t +1),∴FP =(t +1)–(t 2+6t +5)=–t 2–5t –4,∴S △PBC =S △FPB +S △FPC =12·FP ·3 =()23542t t --- =2315622t t --- =23527228t ⎛⎫-++ ⎪⎝⎭.∵–4<–52<–1,∴当t =–52时,△PBC 的面积的最大值为278.②存在.∵y =x 2+6r +5=(x +3)2–4,∴抛物线的顶点D 的坐标为(–3,–4).由点C (–l ,0)和D (–3,–4),可得直线CD 的表达式为y =2x +2.分两种情况讨论:(i)当点P在直线BC上方时,有∠PBC=∠BCD,如图2.若∠PBC=∠BCD,则PB∥CD,∴设直线PB的表达式为y=2x+b.把B(–4,–3)代入y=2x+b,得b=5,∴直线PB的表达式为y=2x+5.由x2+6x+5=2x+5,解得x1=0,x2=–4(舍去),∴点P的坐标为(0,5).(ii)当点P在直线BC下方时,有∠PBC=∠BCD,如图3.设直线BP与CD交于点M,则MB=M C.过点B作BN⊥x轴于点N,则点N(–4,0),∴NB=NC=3,∴MN垂直平分线段B C.设直线MN与BC交于点G,则线段BC的中点G的坐标为53,22⎛⎫--⎪⎝⎭,由点N(–4,0)和G53,22⎛⎫--⎪⎝⎭,得直线NG的表达式为y=–x–4.∵直线CD:y=2x+2与直线NG:y=–x–4交于点M, 由2x+2=–x–4,解得x=–2,∴点M的坐标为(–2,–2).由B(–4,–3)和M(–2.–2),得直线BM的表达式为y=11 2x-.由x2+6x+5=112x-,解得x1=–32,x2=–4(含去),∴点P的坐标为(–32,–74).综上所述,存在满足条件的点P的坐标为(0,5)和(–32,–74).【名师点睛】本题考查的是二次函数综合运用,涉及到一次函数、等腰三角形性质、图形的面积计算等,其中(2),要主要分类求解,避免遗漏。
人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共有10个小题,每小题3分,共30分)1.在下列四个实数-3,-0.5,0,2中,最小的是( )A. -3B. - 0.5C. 0D. 22.下列计算结果正确的是( )A. a6 ÷a2=a3B. (ab)2=a2b2C. a4 ·a2=a8D. (a4)2=a63.下列立体图形中,俯视图与主视图不同是( )A 正方体 B. 圆柱 C. 圆锥 D. 球4.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为( )A. 80°B. 90°C. 100°D. 102°5.防范新冠病毒感染要养成戴口罩、勤洗手、多通风、常消毒等卫生习惯,其中对物体表面进行消毒可以采用浓度为75%的酒精.现有一瓶浓度为95%的酒精500ml,需将其加入适量的水,使浓度稀释为75%.设加水量为x ml,可列方程为( )A. 75%x=95%×500B. 95%x=75%×500C. 75%(500+x)=95%×500D. 95%(500+x)=75%×5006.若单项式-3x2y2m+n与2x m+n y4是同类项,则m2+2mn的算术平方....根.为( )A 0 B. 2 C. -2 D. ±2--,1)的一元二次方程有两个实7.定义(a,b,c)为方程20ax bx c++=的特征数.若特征数为(2k,12k数根,则k 的取值范围是( )A.<14-B. k > 14-C. k > 14-且0k ≠D. k ≥14-且0k ≠ 8.如图,将⊙O 沿弦AB 折叠,圆弧恰好经过圆心O ,点P 是优弧AMB 上一点,则∠APB 的度数为( )A. 45°B. 30°C. 75°D. 60°9.二次函数y =ax 2+bx +c 的图象如图所示,则一次函数y =bx +ac 的 图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限10.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点. 已知菱形的一个角(∠O )为60°,A ,B ,C 都在格点上,则tan ∠ABC 的值是 .333 D. 36二、填空题(本大题共6个小题,每小题3分,共18分)11.将3x 2﹣27分解因式的结果是 _______________________.12.若点(1,k )关于y 轴的对称点为(-1,1),则y 关于x 的函数k x y -=的取值范围是_______. 13.点P 的坐标是(a,b),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P(a,b)在平面直角坐标系中第二象限内的概率是 .14.如图,在Rt∆ABC 中,∠C =90°,以顶点B 为圆心,适当长度为半径画弧,分别交AB ,BC 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D .当∠A =30°时,小敏正确求得∆BCD S :ABD S ∆=1:2.写出两条..小敏求解中用到的数学依据....:__________________.15.如图,某办公大楼正前方有一根高度是15米的旗杆ED ,从办公大楼顶端A 测得旗杆顶端E 的俯角α是45°,旗杆底端D 到大楼前梯坎底边的距离DC 是20米,梯坎坡长BC 是12米,梯坎坡度i =1:3,则大楼AB 的高度为________米.(精确到0.1米,参考数据:2 1.41≈,3 1.73≈,6 2.45≈)16.定义新运算:对于任意实数a ,b ,都有a ⊕b =ab +a +b ,其中等式右边是通常的加法、乘法运算,例如2⊕3=2×3+2+3=11.若y 关于x 的函数y =(kx +1)⊕(x -1)图象与x 轴仅有一个公共点,则实数k 的值为_______.三、解答题(本大题共有8小题,共72分)17.先化简,再求值:226(2)369x x x x -÷+++,其中x 是不等式组20218x x ->⎧⎨+<⎩的整数解. 18.若实数m ,n 满足210m m n -++-=,请用配方法...解关于x 的一元二次方程20x mx n ++=. 19.如图,在正方形ABCD 中,E 为边BC 上一点(不与点B ,C 重合),垂直于AE 的一条直线MN 分别交AB ,AE ,CD 于点M ,P ,N .小聪过点B 作BF ∥MN 分别交AE ,CD 于点G ,F 后,猜想线段EC ,DN ,MB 之间的数量关系为EC =DN +MB .他的猜想正确吗?请说明理由.20.为了解”停课不停学”过程中学生对网课内容的喜爱程度,某校开展了一次网上问卷调查.随机抽取部分学生,按四个类别统计,其中A 表示”很喜欢”,B 表示”喜欢”,C 表示”一般”,D 表示”不喜欢”,并将调查结果绘制成下面两幅不完整的统计图.请根据图中提供的信息,解决下列问题:(1)这次共抽取名学生进行统计调查,扇形统计图中D类所在扇形的圆心角度数为;(2)将条形统计图补充完整;(3)若该校共有3000名学生,估计该校表示”喜欢”的B类学生大约有多少人?21.参照学习函数的过程与方法,探究函数y=2(0)xxx-≠的图象与性质.因y=221-=-xx x,即y=﹣2x+1,所以我们对比函数y=﹣2x来探究.列表:x …﹣4 ﹣3 ﹣2 ﹣1 ﹣12121 2 3 4 …y=﹣2x…12231 2 4 ﹣4 ﹣1 1 ﹣23﹣12…y=2xx-…32532 3 5 ﹣3 ﹣1 01312…描点:在平面直角坐标系中,以自变量x的取值为横坐标,以y=2xx-相应的函数值为纵坐标,描出相应的点,如图所示:(1)请把y轴左边各点和右边各点,分别用一条光滑曲线顺次连接起来;(2)观察图象并分析表格,回答下列问题:①当x<0时,y随x的增大而;(填”增大”或”减小”)②y=2xx-的图象是由y=﹣2x的图象向平移个单位而得到;③图象关于点中心对称.(填点的坐标)(3)设A(x1,y1),B(x2,y2)是函数y=2xx-的图象上的两点,且x1+x2=0,试求y1+y2+3的值.22.已知:在△ABC中,AB=AC,点D为BC边的中点,点F是AB边上一点,点E在线段DF的延长线上,∠BAE=∠BDF,点M在线段DF上,∠ABE=∠DBM.(1)如图1,当∠ABC=45°时,求证:AE2MD;(2)如图2,当∠ABC=60°时,①直接写出....线段AE,MD之间的数量关系;②延长BM到P,使MP=BM,连接CP,若AB=7,AE=27,探求sin∠PCB的值.23.为了抗击新冠病毒疫情,全国人民众志成城,守望相助.春节后某地一水果购销商安排15辆汽车装运A,B,C三种水果120吨销售,所得利润全部捐赠湖北抗疫.已知按计划15辆汽车都要装满且每辆汽车只能装同一种水果,每种水果所用车辆均不少于3辆,汽车对不同水果的运载量和每吨水果销售获利情况如下表.水果品种 A B C汽车运载量(吨/辆) 10 8 6水果获利(元/吨) 800 1200 1000(1)设装运A种水果的车辆数为x辆,装运B种水果车辆数为y辆,根据上表提供的信息,①求y与x之间的函数关系式;②设计车辆的安排方案,并写出每种安排方案;(2)若原有获利不变的情况下,当地政府按每吨50元的标准实行运费补贴,该经销商打算将获利连同补贴全部捐出.问应采用哪种车辆安排方案,可以使这次捐款数w(元)最大化?捐款w(元)最大是多少?24.在平面直角坐标系xOy中,已知点P是反比例函数23(0)y xx=>图象上一个动点,以P为圆心的圆始终与y轴相切,设切点为A.(1)如图1,⊙P运动到与x轴相切,设切点为K,试判断四边形OKP A的形状,并说明理由.(2)如图2,⊙P运动到与x轴相交,设交点为B,C.当四边形ABCP是菱形时,①求过点A,B,C三点的抛物线解析式;②在过A,B,C三点的抛物线上是否存在点M,使△MBP的面积是菱形ABCP面积的12?若存在,直接写...出.所有满足条件的M点的坐标;若不存在,试说明理由.答案与解析一、选择题(本大题共有10个小题,每小题3分,共30分)1.在下列四个实数-0.5,0中,最小的是( )A. B. - 0.5 C. 0 D.【答案】A【解析】【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,由此时行比较即可.【详解】∵正实数都大于0,负实数都小于0,∴最小的数是-0.5,又∵|-0.5|∴,∴实数-0.5,0中,最小是故选:A.【点睛】考查了实数大小比较,解题关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.下列计算结果正确的是( )A. a6 ÷a2=a3B. (ab)2=a2b2C. a4 ·a2=a8D. (a4)2=a6【答案】B【解析】分析】根据同底数幂的乘除法、幂的乘方和积的乘方计算法则进行计算,再进行判断即可.【详解】A选项:a6 ÷a2=a6-2=a4,故计算错误;B选项:(ab)2=a2b2,计算正确;C选项:a4 ·a2=a4+2=a6,故计算错误;⨯=,故计算错误;D选项:(a4)2=428a a故选:B.【点睛】考查了同底数幂的乘除法、幂的乘方和积的乘方,解题关键是熟记其计算法则,根据计算法则进行计算.3.下列立体图形中,俯视图与主视图不同的是( )A. 正方体B. 圆柱C. 圆锥D. 球【答案】C【解析】【分析】从正面看所得到的图形是主视图,从上面看到的图象是俯视图,再根据判断即可.【详解】A选项:俯视图与主视图都是正方形,故不合题意;B选项:俯视图与主视图都是长方形,故不合题意;C选项:俯视图是圆,主视图是三角形;故符合题意;D选项:俯视图与主视图都是圆,故不合题意;故选:C.【点睛】考查了立体图形的三视图,解题关键是理解:从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.4.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为( )A. 80°B. 90°C. 100°D. 102°【答案】A【解析】分析:根据平行线性质求出∠A,根据三角形内角和定理得出∠2=180°∠1−∠A,代入求出即可.详解:∵AB∥CD.∴∠A=∠3=40°,∵∠1=60°,∴∠2=180°∠1−∠A=80°,故选:A.点睛:本题考查了平行线的性质:两直线平行,内错角相等.三角形内角和定理:三角形内角和为180°.5.防范新冠病毒感染要养成戴口罩、勤洗手、多通风、常消毒等卫生习惯,其中对物体表面进行消毒可以采用浓度为75%的酒精.现有一瓶浓度为95%的酒精500ml,需将其加入适量的水,使浓度稀释为75%.设加水量为x ml,可列方程为( )A. 75%x=95%×500B. 95%x=75%×500C. 75%(500+x)=95%×500D. 95%(500+x)=75%×500【答案】C【解析】【分析】根据稀释前后纯酒精的量不变列方程即可.【详解】设加水量为x ml,则稀释前纯酒精的量为95%×500,稀释后纯酒精的量为75%(500+x),根据稀释前后纯酒精的量不变可得:75%(500+x)=95%×500.故选:C.【点睛】考查了一元二次方程应用,解题关键是设未知数,根据题意找出等量关系:稀释前后纯酒精的量不变列方程.6.若单项式-3x2y2m+n与2x m+n y4是同类项,则m2+2mn的算术平方根.....为( )A. 0B. 2C. -2D. ±2【答案】B【解析】【分析】直接利用同类项的定义得出m,n的值,进而求得m2+2mn的值,再求其算术平方根即可.【详解】∵单项式-3x2y2m+n与2x m+n y4是同类项,∴224m nm n+=⎧⎨+=⎩,∴2mn=⎧⎨=⎩,∴m2+2mn=4,∴m2+2mn的算术平方根为2.故选:B .【点睛】考查了解二元一次方程组、算术平方根和同类项的概念,解题关键是根据同类项的概念得到关于m 、n 的二元一次方程组,并正确求解.7.定义(a ,b ,c )为方程20ax bx c ++=的特征数.若特征数为(2k ,12k --,1)的一元二次方程有两个实数根,则k 的取值范围是( )A.<14-B. k > 14-C. k > 14-且0k ≠D. k ≥14-且0k ≠ 【答案】C【解析】【分析】根据特征数的定义得到一个一元二次方程,再由方程有两个实数根得到k 的取值范围即可.【详解】∵定义(a ,b ,c )为方程20ax bx c ++=的特征数,∴特征数为(2k ,12k --,1)的一元二次方程为:22(12)10k x k x +--+=,又∵特征数为(2k ,12k --,1)的一元二次方程有两个实数根,∴0>且0k ≠,即22(12)40k k --->且0k ≠,∴k > 14-且0k ≠. 故选:C .【点睛】考查了一元二次方程的根与系数的关系,解题关键是熟记:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程没有实数根.8.如图,将⊙O 沿弦AB 折叠,圆弧恰好经过圆心O ,点P 是优弧AMB 上一点,则∠APB 的度数为( )A. 45°B. 30°C. 75°D. 60°【答案】D【解析】 【详解】作半径OC ⊥AB 于点D ,连结OA ,OB ,∵将O 沿弦AB 折叠,圆弧较好经过圆心O ,∴OD=CD,OD=12OC=12OA,∴∠OAD=30°(30°所对的直角边等于斜边的一半),同理∠OBD=30°,∴∠AOB=120°,∴∠APB=12∠AOB=60°.(圆周角等于圆心角的一半)故选D.9.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+ac的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】【分析】根据二次函数y=ax2+bx+c的图象可以判断a、b、c的正负,从而可以判断一次函数y=bx+ac的图象经过哪几个象限即可.【详解】由二次函数y=ax2+bx+c的图象可得:a>0,b>0,c>0,∴ac>0,∴一次函数y=bx+ac的图象经过第一、二、三象限,不经过第四象限.故选:D.【点睛】考查了二次函数的图象与系数的关系,解题关键是根据函数的图象得到a>0,b>0,c>0,由此再判断一次函数的图象.10.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C 都在格点上,则tan∠ABC的值是.A.32B.33C.34D.36【答案】A【解析】如图,连接EA,EC,设菱形的边长为a,由题意得∠AEF=30°,∠BEF=60°,AE=3a,EB=2a,∴∠AEB=90°,∴tan∠ABC=AEBE=32aa=32,故选A.二、填空题(本大题共6个小题,每小题3分,共18分)11.将3x2﹣27分解因式的结果是_______________________.【答案】3(x-3)(x+3)【解析】【分析】先提取公因式3,再利用平方差公式进行因式分解.【详解】3x2﹣27=3(x2-9)=3(x-3)(x+3).故答案为:3(x-3)(x+3).【点睛】考查了综合因式分解,解题关键先提取公式后再利用平方差公式进行因式分解.12.若点(1,k)关于y轴的对称点为(-1,1),则y关于x的函数k xy-=的取值范围是_______.【答案】x≤1且x≠0 【解析】【分析】由关于坐标轴对称两点坐标特点求得k的值,再代入k xy-=中求得取值范围.【详解】∵点(1,k)关于y轴的对称点为(-1,1),∴k=1,∴y关于x的函数为1-=xyx,∴1-x≥0且x≠0,∴x ≤1且x ≠0.故答案为:x ≤1且x ≠0.【点睛】考查了分式和根式有意义的条件,解题关键是关于坐标轴对称两点坐标特点求得k 的值和根式被开方数≥0,分式的分母不能为0.13.点P 的坐标是(a,b),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P(a,b)在平面直角坐标系中第二象限内的概率是 .【答案】【解析】画树状图为:共有20种等可能的结果数,其中点P(a ,b)在平面直角坐标系中第二象限内的结果数为4,所以点P(a ,b)在平面直角坐标系中第二象限内的概率=420=15. 故答案为15. 14.如图,在Rt∆ABC 中,∠C =90°,以顶点B 为圆心,适当长度为半径画弧,分别交AB ,BC 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D .当∠A =30°时,小敏正确求得∆BCD S :ABD S ∆=1:2.写出两条..小敏求解中用到的数学依据....:__________________.【答案】答案不唯一,如直角三角形30度角所对直角边等于斜边的一半和等边对等角【解析】【分析】由已知条件得到∆BCD S :ABD S ∆=1:2,写出其中的2条依据即可.【详解】由作法得BD 平分∠ABC ,∵∠C=90°,∠A=30°,∴∠ABC=60°,(三角形的内角和为180º)∴∠ABD=∠CBD=30°(角平分线的性质),∴DA=DB (等角对等边),在Rt △BCD 中,BD=2CD ,(直角三角形30度角所对直角边等于斜边的一半)∴AD=2CD (等量代换),∴∆BCD S :ABD S ∆=1:2.故答案为:答案不唯一,如直角三角形30度角所对直角边等于斜边的一半和等边对等角.【点睛】考查了含30度角的直角三角形的性质和基本作图,解题关键是理解题意,并根据已知条件得到结论:∆BCD S :ABD S ∆=1:2.15.如图,某办公大楼正前方有一根高度是15米的旗杆ED ,从办公大楼顶端A 测得旗杆顶端E 的俯角α是45°,旗杆底端D 到大楼前梯坎底边的距离DC 是20米,梯坎坡长BC 是12米,梯坎坡度i =1:3,则大楼AB 的高度为________米.(精确到0.1米,参考数据:2 1.41≈,3 1.73≈,6 2.45≈)【答案】3【解析】【分析】延长AB 交DC 于H ,作EG ⊥AB 于G ,则GH =DE =15米,EG =DH ,设BH =x 米,则CH 3米,在Rt △BCH 中,BC =12米,由勾股定理得出方程,解方程求出BH =6米,CH =3BG 、EG 的长度,证明△AEG 是等腰直角三角形,得出AG =EG =3+20(米),即可得出大楼AB 的高度.【详解】延长AB 交DC 于H ,作EG ⊥AB 于G ,如图所示:则GH =DE =15米,EG =DH , ∵梯坎坡度i =13∴BH :CH =13设BH =x 米,则CH 3米,在Rt △BCH 中,BC =12米,由勾股定理得:x 2+3)2=122,解得:x=6,∴BH=6米,CH=63米,∴BG=GH﹣BH=15﹣6=9(米),EG=DH=CH+CD=63+20(米),∵∠α=45°,∴∠EAG=90°﹣45°=45°,∴△AEG是等腰直角三角形,∴AG=EG=63+20(米),∴AB=AG+BG=63+20+9=(63+29)m.故答案为:3.【点睛】考查了解直角三角形的应用-坡度、俯角问题;解题关键是作辅助线运用勾股定理求出BH,得出EG.16.定义新运算:对于任意实数a,b,都有a⊕b=ab+a+b,其中等式右边是通常的加法、乘法运算,例如2⊕3=2×3+2+3=11.若y关于x的函数y=(kx+1)⊕(x-1)图象与x轴仅有一个公共点,则实数k的值为_______.【答案】-1【解析】【分析】由定义的新运算求得y关于x的函数为:y=kx2+2x-1,再由y关于x函数的图象与x轴仅有一个公共点得到4+4k=0,求解即可.【详解】∵(kx+1)⊕(x-1)=(kx+1)(x-1)+(kx+1)+(x-1)=kx2+2x-1,∴y= kx2+2x-1,又∵y= kx2+2x-1图象与x轴仅有一个公共点,∴△=0,即4+4k=0,∴k=-1.故答案是:-1.【点睛】考查了一元二次方程的根与二次函数图像和x 轴交点坐标的关系,解题关键是熟记:一元二次方程有两个根,说明二次函数图像和x 轴的横坐标有两个交点;一元二次方程有一个根,说明二次函数图像和x 轴的横坐标有一个交点;一元二次方程(在实数范围)无解,说明二次函数图像和x 轴的横坐标没有交点.三、解答题(本大题共有8小题,共72分)17.先化简,再求值:226(2)369x x x x -÷+++,其中x 是不等式组20218x x ->⎧⎨+<⎩的整数解. 【答案】4【解析】【分析】先化简和求得x 的整数解,再代入计算即可. 【详解】226(2)369x x x x -÷+++ =22(3)(3)3x x x x x++⨯+ =22(3)x x x + =26x x+ =2+6x ; 20218x x ->⎧⎨+<⎩①② 解不等式①得:x>2,解不等式②得:x<72, 所以不等式的解集为:722x ,则其整数解为3, 把x =3代入原式=6243+=. 【点睛】考查了分式的混合运算和解不等式组,解题关键是正确化简分式和求得x 的值.18.若实数m ,n满足20m -=,请用配方法...解关于x 的一元二次方程20x mx n ++=. 【答案】x=1【解析】【分析】根据绝对值、算术平方根的非负性求得m 、n 的值,再代入一元二次方程中,再求解即可.【详解】∵m ,n 满足210m m n -++-=,∴m-2=0,m+n-1=0,∴m=2,n=-1,∴一元二次方程为2210x x +-=,∴221110x x ++--=,即2(1)2x +=,∴x=21±-.【点睛】考查了利用配方法解一元二次方程,解题关键是根据绝对值、算术平方根的非负性求得m 、n 的值和熟记完全平方公式的特点.19.如图,在正方形ABCD 中,E 为边BC 上一点(不与点B ,C 重合),垂直于AE 的一条直线MN 分别交AB ,AE ,CD 于点M ,P ,N .小聪过点B 作BF ∥MN 分别交AE ,CD 于点G ,F 后,猜想线段EC ,DN ,MB 之间的数量关系为EC =DN +MB .他的猜想正确吗?请说明理由.【答案】正确,理由见解析【解析】【分析】先证明四边形MBFN 是平等四边形,从而得到MB =NF ;根据ASA 证明△ABE ≌△BCF ,从而得到BE =CF ,则有DF =EC ,再根据DF =NF+DN 和MB =NF 可得到EC =DN+MB .【详解】∵四边形ABCD 是正方形,∴MB//NF ,∠C =∠ABC ,AB//DC ,∠BFC+∠CBF =90º,AB =BC ,又∵MN//BF ,∴四边形MBFN 是平行四边形,∠AMP =∠ABF ,∴MB =NF ,∵AB//DC ,∴∠BFC=∠ABF ,又∵∠AMP =∠ABF ,∴∠AMP =∠BFC ,∵MN ⊥AE ,∴∠APM 是直角,则∠AMP+∠MAE =90º,又∵∠BFC+∠CBF =90º,∴∠MAE =CBF ,在△ABE 和△BCF 中AB BC C ABC MAE CBF =⎧⎪∠∠⎨⎪∠⎩==,∴△ABE ≌△BCF (AAS ),∴BE =CF ,∴CE =DF又∵DF =NF+DN (由图可得),MB =NF (已证)∴CE =DF =DN+MB ,即CE =DN+MB .【点睛】考查了正方形的性质、平行四边形的性质和判定,解题关键证明△ABE ≌△BCF 从而得到BE =CF 和MB =NF .20.为了解”停课不停学”过程中学生对网课内容的喜爱程度,某校开展了一次网上问卷调查.随机抽取部分学生,按四个类别统计,其中A 表示”很喜欢”,B 表示”喜欢”,C 表示”一般”,D 表示”不喜欢”,并将调查结果绘制成下面两幅不完整的统计图.请根据图中提供的信息,解决下列问题:(1)这次共抽取 名学生进行统计调查,扇形统计图中D 类所在扇形的圆心角度数为 ;(2) 将条形统计图补充完整;(3) 若该校共有3000名学生,估计该校表示”喜欢”的B 类学生大约有多少人?【答案】(1)50,72°;(2)见解析;(3)1380人【解析】【分析】(1)这次共抽取:12÷24%=50(人),D 类所对应的扇形圆心角的大小360°×1050 =72°; (2)A 类学生:50-23-12-10=5(人),据此补充条形统计图;(3)该校表示”喜欢”的B 类的学生大约有3000×2350=690(人). 【详解】(1)这次共抽取:12÷24%=50(人), D 类所对应的扇形圆心角的大小360°×1050=72°; (2)A 类学生:50-23-12-10=5(人),条形统计图补充如下该校表示”喜欢”的B 类的学生大约有3000×2350=1380(人), 答:该校表示”喜欢”的B 类的学生大约有1380人;【点睛】考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.参照学习函数的过程与方法,探究函数y=2(0)x x x-≠的图象与性质. 因为y=221-=-x x x ,即y=﹣2x +1,所以我们对比函数y=﹣2x 来探究. 列表: x … ﹣4 ﹣3 ﹣2 ﹣1 ﹣12 12 1 2 3 4 …y=﹣2x … 12 23 1 2 4 ﹣4 ﹣1 1 ﹣23 ﹣12…y=2xx-…32532 3 5 ﹣3 ﹣1 01312…描点:在平面直角坐标系中,以自变量x的取值为横坐标,以y=2xx-相应的函数值为纵坐标,描出相应的点,如图所示:(1)请把y轴左边各点和右边各点,分别用一条光滑曲线顺次连接起来;(2)观察图象并分析表格,回答下列问题:①当x<0时,y随x的增大而;(填”增大”或”减小”)②y=2xx-的图象是由y=﹣2x的图象向平移个单位而得到;③图象关于点中心对称.(填点的坐标)(3)设A(x1,y1),B(x2,y2)是函数y=2xx-的图象上的两点,且x1+x2=0,试求y1+y2+3的值.【答案】(1)图象见解析;(2)增大,上,1,(0,1);(3)5.【解析】【分析】(1)用光滑曲线顺次连接即可;(2)观察图象,利用图象法即可解决问题;(3)根据中心对称的性质,可知A(x1,y1),B(x2,y2)关于(0,1)对称,由此即可解决问题. 【详解】(1)函数图象如图所示:(2)①当x<0时,y随x的增大而增大;②y=2xx的图象是由y=﹣2x的图象向上平移1个单位而得到;③图象关于点(0,1)中心对称,故答案为①增大;②上,1;③(0,1);(3)∵x1+x2=0,∴x1=﹣x2,∴A(x1,y1),B(x2,y2)关于(0,1)对称,∴y1+y2=2,∴y1+y2+3=5.【点睛】本题考查反比例函数的性质、中心对称的性质等知识,解题的关键是灵活运用所学知识解决问题.22.已知:在△ABC中,AB=AC,点D为BC边的中点,点F是AB边上一点,点E在线段DF的延长线上,∠BAE=∠BDF,点M在线段DF上,∠ABE=∠DBM.(1)如图1,当∠ABC=45°时,求证:AE2MD;(2)如图2,当∠ABC=60°时,①直接写出....线段AE,MD之间的数量关系;②延长BM到P,使MP=BM,连接CP,若AB=7,AE=27,探求sin∠PCB的值.【答案】(1)见解析;(2)①AE=2DM,理由见解析;②3 2【解析】【分析】(1)由题意知∠BAE=∠BDM,∠ABE=∠DBM故有△ABE∽△DBM,从而得到AE:DM=AB:BD,而∠ABC =45°,再得到AB=2BD,则有AE=2MD;(2)①由于△ABE∽△DBM,相似比为2,故有EB=2BM,进而确定出AE与DM的关系;②由题意知得△BEP为等边三角形,有EM⊥BP,∠BMD=∠AEB=90°,在Rt△AEB中求得AE、AB、tan∠EAB的值,由D为BC中点,M为BP中点,得DM∥PC,求得tan∠PCB的值,在Rt△ABD和Rt△NDC 中,由锐角三角函数的定义求得AD、ND的值,进而求得tan∠PCB的值.【详解】(1)证明:如图1,连接AD.∵AB=AC,BD=CD,∴AD⊥BC.又∵∠ABC=45°,∴BD=AB•cos∠ABC,即AB2BD.∵∠BAE=∠BDM,∠ABE=∠DBM,∴△ABE∽△DBM.∴AEDM=ABDB2,∴AE2MD.(2)①如图2,连接AD,EP,过N作NH⊥AC,垂足为H,连接NH,∵AB=AC,∠ABC=60°,∴△ABC是等边三角形,又∵D为BC的中点,∴AD⊥BC,∠DAC=30°,BD=DC=12 AB,∵∠BAE=∠BDM,∠ABE=∠DBM,∴△ABE∽△DBM,∴AEDM=BEBM=ABDB=2,∠AEB=∠DMB,即AE=2DM;②∵△ABE∽△DBM,∴AEDM=BEBM=ABDB=2,∴EB=2BM,又∵BM=MP,∴EB=BP,∵∠EBM=∠EBA+∠ABM=∠MBD+∠ABM=∠ABC=60°,∴△BEP为等边三角形,∴EM⊥BP,∴∠BMD=90°,∴∠AEB=90°,在Rt△AEB中,AE=7AB=7,∴BE2AB AE21,∴tan∠EAB=BEAE3∵D为BC中点,M为BP中点,∴DM∥PC,∴∠MDB=∠PCB,∴∠EAB=∠PCB,∴tan∠PCB【点睛】考查了相似三角形的判定与性质、等边三角形的判定与性质、直角三角形的性质和锐角三角函数的定义,解题关键是正确作出辅助线,明确线段与线段的关系.23.为了抗击新冠病毒疫情,全国人民众志成城,守望相助.春节后某地一水果购销商安排15辆汽车装运A,B,C三种水果120吨销售,所得利润全部捐赠湖北抗疫.已知按计划15辆汽车都要装满且每辆汽车只能装同一种水果,每种水果所用车辆均不少于3辆,汽车对不同水果的运载量和每吨水果销售获利情况如下表.(1)设装运A种水果的车辆数为x辆,装运B种水果车辆数为y辆,根据上表提供的信息,①求y与x之间的函数关系式;②设计车辆的安排方案,并写出每种安排方案;(2)若原有获利不变的情况下,当地政府按每吨50元的标准实行运费补贴,该经销商打算将获利连同补贴全部捐出.问应采用哪种车辆安排方案,可以使这次捐款数w(元)最大化?捐款w(元)最大是多少?【答案】(1)①y=15-2x;②有四种方案,方案一:装运A、B、C三种不同品质的车辆分别是3辆、9辆、3辆;方案二:装运A、B、C三种不同品质的车辆分别是4辆、7辆、4辆;方案三:装运A、B、C三种不同品质的车辆分别是5辆、5辆、5辆;方案四:装运A、B、C三种不同品质的车辆分别是6辆、3辆、6辆;(2)装运A、B、C三种不同品质的车辆分别是3辆、9辆、3辆,利润W(元)的最大值是134400元【解析】【分析】(1)①根据题意和表格中的数据可以求得y与x之间的函数关系式;②根据题意和(1)中函数关系式可以列出相应的不等式,从而可以解答本题;(2)根据题意和表格中的数据可以求得采用哪种车辆安排方案可以使得W最大,并求得W的最大值.【详解】(1)①由题意可得:10x+8y+6(15-x-y)=120,化简得:y=15-2x ,所以y 与x 之间的函数关系式为y=15-2x ;②由题意可得,()31523151523x x x x ⎧≥⎪-≥⎨⎪---≥⎩, 解得:3≤x≤6,∴有四种方案,方案一:装运A 、B 、C 三种不同品质的车辆分别是3辆、9辆、3辆;方案二:装运A 、B 、C 三种不同品质的车辆分别是4辆、7辆、4辆;方案三:装运A 、B 、C 三种不同品质的车辆分别是5辆、5辆、5辆;方案四:装运A 、B 、C 三种不同品质的车辆分别是6辆、3辆、6辆;(2)设装运A 种椪柑的车辆数为x 辆,W=10x×800+8(15-2x )×1200+6[15-x-(15-2x )]×1000+120×50=-5200x+150000,∵3≤x≤6,∴x=3时,W 取得最大值,此时W=134400,答:采用方案一:装运A 、B 、C 三种不同品质的车辆分别是3辆、9辆、3辆,利润W (元)的最大值是134400元.【点睛】考查一次函数的应用、一元一次不等式的应用,解题的关键是明确题意,找出所求问题需要的条件,利用一次函数和不等式的性质解答.24.在平面直角坐标系xOy 中,已知点P是反比例函数0)y x =>图象上一个动点,以P 为圆心圆始终与y 轴相切,设切点为A .(1)如图1,⊙P 运动到与x 轴相切,设切点为K ,试判断四边形OKP A 的形状,并说明理由.(2)如图2,⊙P 运动到与x 轴相交,设交点为B ,C .当四边形ABCP 是菱形时,①求过点A ,B ,C 三点的抛物线解析式;②在过A ,B ,C 三点的抛物线上是否存在点M ,使△MBP 的面积是菱形ABCP 面积的12?若存在,直接写...出.所有满足条件的M 点的坐标;若不存在,试说明理由.【答案】(1)四边形OKP A 是正方形,理由见解析;(2)①y 3243x 3;;②存在,M 的坐标为(0,3)或(3,0)或(43)或(7,83【解析】【分析】(1)先证明四边形OKP A 是矩形,又P A =PK ,所以四边形OKP A 是正方形;(2)①证明△PBC 为等边三角形;在Rt △PBG 中,∠PBG =60°,设PB =P A =a ,BG =2a ,由勾股定理得:PG 3,所以P (a 3a ),将P 点坐标代入y 23,求出PG 3,P A =BC =2,又四边形OGP A 是矩形,P A =OG =2,BG =CG =1,故OB =OG ﹣BG =1,OC =OG +GC =3,即可求得a 、b 、c 的值;设二次函数的解析式为:y =ax 2+bx +c ,根据题意得:a +b +c =0,9a +3b +c =0,而c 3 ②【详解】(1)四边形OKP A 是正方形,理由:∵⊙P 分别与两坐标轴相切,∴P A ⊥OA ,PK ⊥OK ,∴∠P AO =∠OKP =90°.又∵∠AOK =90°,∴∠P AO =∠OKP =∠AOK =90°.∴四边形OKP A 是矩形.又∵P A =PK ,∴四边形OKP A 是正方形;(2)①连接PB ,过点P 作PG ⊥BC 于G .∵四边形ABCP为菱形,∴BC=P A=PB=PC.∴△PBC为等边三角形.在Rt△PBG中,∠PBG=60°,设PB=P A=a,BG=2a由勾股定理得:PG 3,所以P(a 3a),将P点坐标代入y23,解得:a=2或﹣2(舍去负值),∴PG3P A=BC=2.又四边形OGP A是矩形,P A=OG=2,BG=CG=1,∴OB=OG﹣BG=1,OC=OG+GC=3.∴A(03,B(1,0),C(3,0);设:二次函数的解析式为:y=ax2+bx+c,根据题意得:a+b+c=0,9a+3b+c=0,而c3解得:a 3b43c3,∴二次函数的解析式为:y=33x243x3②设直线BP的解析式为:y=ux+v,据题意得:0 23 u vu v+=⎧⎪⎨+=⎪⎩解之得:u3v3∴直线BP 的解析式为:yx过点A 作直线AM ∥BP ,则可得直线AM的解析式为:y =+解方程组:2y y x ⎧=+⎪⎨=-+⎪⎩得:110x y =⎧⎪⎨=⎪⎩227x y =⎧⎪⎨=⎪⎩ 过点C 作直线CM ∥PB ,则可设直线CM的解析式为:y t =+. ∴0=t .∴t =-∴直线CM的解析式为:y =-.解方程组:2y y x ⎧=-⎪⎨=-+⎪⎩得:1130x y =⎧⎨=⎩;224x y =⎧⎪⎨=⎪⎩ 综上可知,满足条件的M 的坐标有四个,分别为(0,(3,0),(4),(7,.【点睛】考查了二次函数的综合运用.解题关键是灵活运用菱形和圆的性质和数形结合.。
2024年平顶山市中招学科第-次调研试卷九年级数学注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟.2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上.答在试卷上的答案无效.一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1. 的相反数是( )A. B. C. D. 【答案】D【解析】【分析】本题考查相反数的定义,根据相反数定义直接求解即可得到答案,熟记相反数定义是解决问题的关键.【详解】解:的相反数是,故选:D .2. 已知某几何体的俯视图如图所示,该几何体可能是( )A. B. C. D.【答案】A【解析】【分析】本题考查由三视图判断几何体.由于俯视图是从物体的上面看得到的视图,所以先得出四个选项中各几何体的俯视图,再与题目图形进行比较即可.【详解】解:图示是一个圆且这个圆的圆心.A 、圆柱的俯视图是一个圆,没有圆心,故选项符合题意;B 、三棱柱的俯视图是三角形,故选项不符合题意;C 、圆锥的俯视图是一个圆,有圆心,故选项不符合题意;D 、长方体的俯视图是一个长方形,故选项不符合题意;故选:A.20241202412024-20242024-20242024-3. 龙年伊始,平顶山市迎来了新年文旅“满堂红”.今年春节期间,平顶山市共接待游客万人次,实现旅游收入亿元.数据亿用科学记数法表示为( )A. B. C. D. 【答案】D【解析】【分析】本题考查了科学记数法.科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值大于等于时与小数点移动的位数相同.【详解】解:亿,故选:D .4. 如图,直线,等边的顶点B ,C 分别在直线m ,n 上,若,则∠2的度数为( )A. B. C. D. 【答案】B【解析】【分析】本题考查了平行线的性质,等边三角形的性质.由平行线的性质求得的度数,根据等边三角形的性质求得,再利用平角的性质求解即可.【详解】解:∵直线,∴,∵是等边三角形,∴,∴,599.6636.436.483.6410⨯836.410⨯90.36410⨯93.6410⨯10n a ⨯110a ≤<n n a n 1036.48936.410 3.6410=⨯=⨯m n ∥ABC 170=︒∠45︒50︒55︒60︒3∠60ABC ∠=︒m n ∥3170∠=∠=︒ABC 60ABC ∠=︒2180706050∠=︒-︒-︒=︒故选:B .5. 下列计算中,正确的是( )A.B. C. D. 【答案】D【解析】【分析】本题考查了同底数幂相乘、积的乘方、幂的乘方,合并同类项,根据相关运算法则进行逐项分析,即可作答.【详解】解:A 、不是同类项,不能合并,故该选项是错误的;B 、,故该选项是错误的;C 、,故该选项是错误的;D 、,故该选项是正确的故选:D6. 如图所示,是的内接三角形.若则的度数等于( )A. 70°B. 65°C. 60°D. 55°【答案】A【解析】【分析】本题考查了圆周角定义,三角形的内角和性质,同弧所对的圆周角是圆心角的一半,据此即可作答.【详解】解:∵,∴,,∴,故选:A.247a a a +=()328=a a ()55210a a =235a a a = 24a a ,()326a a =()55232a a =235a a a = ABC O 20OAC ∠=︒,ABC ∠20OAC OA OC ∠=︒=,20180220140OAC ACO AOC ∠=∠=︒∠=︒-⨯︒=︒ AC AC = 1702ABC AOC ∠=∠=︒7. -元二次方程根的情况是( )A. 没有实数根B. 有两个相等的实数根C. 有两个不相等的实数根D. 只有一个实数根【答案】C【解析】【分析】本题主要考查根的判别式.先整理成一般式,再计算判别式即可判断一元二次方程的跟的情况.【详解】解:整理得,∴,∴有两个不相等的实数根.故选:C .8. 若反比例函数经过点.则一次函数的图像一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】【分析】本题考查反比例函数图像上点的坐标特征.先确定反比例函数解析式,从而可得一次函数解析式,进而求解.【详解】解:∵反比例函数的图像经过点,∴,解得:,∴一次函数的解析式为,∴该直线经过第二、三、四象限,不经过第一象限,故选:A .9. 如图,电路图上有4个开关A 、B 、C 、D 和1个小灯泡,同时闭合开关A 、B 或同时闭合开关C 、D 都可以使小灯泡发光.下列操作中,“小灯泡发光”这个事件是随机事件的是( )()23x x -=24b ac ∆=-()23x x -=2230x x --=()()2242413412160b ac ∆=-=--⨯⨯-=+=>()0k y k x =≠()1,2-y kx k =+()0k y k x =≠()1,2-21k =-2k =-22y x =--A. 只闭合1个开关B. 只闭合2个开关C. 只闭合3个开关D. 闭合4个开关【答案】B【解析】【分析】本题考查了事件的分类,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.根据必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,对每一项进行分析即可.【详解】解:A 、只闭合1个开关,小灯泡不会发光,属于不可能事件,不符合题意;B 、只闭合2个开关,小灯泡可能发光也可能不发光,是随机事件,符合题意;C 、只闭合3个开关,小灯泡一定会发光,是必然事件,不符合题意;D 、闭合4个开关,小灯泡一定会发光,是必然事件,不符合题意;故选:B .10. 如图1,在中,.动点P 从点A 出发沿折线A →B →C 匀速运动至点C 后停止.设点P 运动路程为x ,线段的长度为y ,图2是y 随x 变化的关系图像,其中M 为曲线的最低点,则的面积为( )A. B. C. D. 【答案】C【解析】【分析】本题考查了动点问题的函数图象,勾股定理,垂线段最短.作,当动点P 运动到点时,线段的长度最短,此时,当动点P 运动到点时,运动结束,此时的ABC 60ABC ∠=︒AP DE ABC AD BC ⊥D AP AB BD +=C AC =根据直角三角形的性质结合勾股定理求解即可.【详解】解:作,垂足为,当动点P 运动到点时,线段的长度最短,此时点P 运动的路程为,即,当动点P 运动到点时,运动结束,线段的长度就是的长度,此时,∵,∴,∴,∴,∴,∴,在中,,∴,∴,∴的面积为故选:C .二、填空题(每小题3分,共15分)11. 已知点P 在数轴上,且到原点的距离大于2,写出一个点P 表示的负数:______.【答案】【解析】【分析】本题考查了数轴上两点之间的距离,在数轴上表示有理数,根据“点P 在数轴上,且到原点的距离大于2,还是负数”这三个条件,写出一个即可作答.答案不唯一AD BC ⊥D D AP AB BD +=C AP AC AC =60ABC ∠=︒30BAD ∠=︒2AB BD =3AB BD BD +==BD =AB =2AD ==Rt △ABD AC =CD ==BC BD CD =+=ABC 11222BC AD ⨯=⨯=3-【详解】解:依题意,当点P 在数轴的负半轴上,即点P 表示为满足“到原点的距离大于2,还是负数”故答案为:12.分式方程的解是______.【答案】【解析】【分析】本题考查解分式方程.方程两边乘以得出,求出方程的解,再进行检验即可【详解】解:方程两边乘以得,解这个方程,得,检验:当时,,所以是原分式方程的解.即原分式方程的解为.故答案为:.13. 某校为了解学生对篮球、足球、乒乓球、羽毛球四类运动的参与情况,随机调查本校部分学生,让他们从中选择参与最多的一类运动,以选择各项目的人数制作了条形统计图.若从该校学生中任意抽取1人,则该学生恰好选择篮球这项运动的概率约为______.【答案】##0.375【解析】【分析】本题考查了概率公式.用恰好选择篮球这项运动的人数除以调查的总人数即可求解.【详解】解:∵调查的总人数为(人),其中选择篮球这项运动的人数为人,∴从该校学生中任意抽取1人,则该学生恰好选择篮球这项运动的概率约为,故答案为:.3-,3-2111x x x-=+2x =x 211x x -=+x 211x x -=+2x =2x =0x ≠2x =2x =2x =383020181280+++=30303808=3814. 如图,直线与y 轴交于点A ,与反比例函数图象交于点C ,过点C 作轴于点B ,,则k 的值为______.【答案】【解析】【分析】本题考查了反比例函数与一次函数图象的交点问题.先求出点A 的坐标,然后求出的长,即知点C 的横坐标,再将点C 的横坐标代入反比例函数解析式,可求得点C 的坐标,最后将点C 的坐标代入一次函数解析式,即得答案.【详解】解:对于函数中,令,则,,,,,即点C 的横坐标为,把代入,得,,把代入,得,解得.故答案为:.15. 在矩形中,,,若是射线上一个动点,连接,点关于直线的对称点为.连接,,当,,三点共线时,的长为______.3y kx =+()40y x x=-<CB x ⊥3AO BO =1-BO 3y kx =+0x =3y =()03A ∴,3OA ∴=3AO BO =Q 1BO ∴=1-=1x -4y x=-4y =()14C ∴-,()14C -,3y kx =+43k =-+1k =-1-ABCD 3AB =5BC =P AD BP A BP M MP MC P M C AP【答案】1或9【解析】【分析】本题考查了矩形的性质,折叠的性质,勾股定理,分情况讨论,当点在线段上时,当点在的延长线时,根据折叠的性质和勾股定理即可得到结论.【详解】解:当点线段上时,如图,与关于直线对称,,,,,,,,设,,,,解得,;当点在的延长线时,如图,与关于直线对称,P AD P AD P AD ABP MBP BP 90BMP A ∴∠=∠=︒3BM AB ==AP PM =90BMC ∴∠=︒222BM CM BC += 22235CM ∴+=4CM ∴=AP PM x ==90D ∠=︒ 222DP CD CP ∴+=222(5)3(4)x x ∴-+=+1x =1AP ∴=P AD ABP MBP BP,,,,,,,,,,,,,综上所述,的长为1或9,故答案为:1或9.三、解答题(本大题共8小题,满分75分)16. (1)计算:;(2)解不等式组:【答案】(1)2;(2).【解析】【分析】此题考查了一元一次不等式组的求解,负整指数幂,乘方,绝对值以及算术平方根的运算,解题的关键是熟练掌握相关运算法则.(1)根据乘方,负整数指数幂,绝对值以及算术平方根的运算求解即可;(2)求得每个不等式的解集,取公共部分即可.【详解】解:(1);(2),90BMP A ∴∠=∠=︒3BM AB ==AP PM =APB MPB ∠=∠AP BC ∥APB CBP ∴∠=∠CPB CBP ∴∠=∠5CP BC ∴==90BMC ∠=︒ 222BM CM BC ∴+=22235CM ∴+=4CM ∴=549AP PM ∴==+=AP 2132-122113x x ->⎧⎪⎨+≥⎪⎩①②3x>21332-÷--19322=÷-⨯31=-2=122113x x ->⎧⎪⎨+≥⎪⎩①②解不等式①可得:,解不等式②可得:,则不等式组的解集为:.17. 为了解A ,B 两款品质相近的智能玩具飞机在一次充满电后运行的最长时间,有关人员分别随机调查了A ,B 两款智能玩具飞机各10架,记录下它们运行的最长时间(单位:min ),并对数据进行整理描述和分析(运行最长时间用x 表示,共分为三组:合格,中等,优等),下面给出了部分信息.a .10架A 款智能玩具飞机一次充满电后运行的最长时间(单位min )分别是:60,64,67,69,71,71,72,72,72,82.b .10架B 款智能玩具飞机一次充满电后运行的最长时间(单位:min )在中等组的数据分别是:70,71,72,72,73.C .两款智能玩具飞机运行最长时间统计表d .B 款智能玩具飞机运行最长时间扇形统计图类别A B 平均数7070中位数71b 众数a 67方差30.431.6根据以上信息,解答下列问题:(1)上述图表中,______,______,______.(2)根据以上数据,你认为哪款智能玩具飞机运行性能更好?请说明理由.(写出一条理由即可)(3)若某玩具仓库有A 款智能玩具飞机200架,B 款智能玩具飞机120架,估计两款智能玩具飞机运行性能在中等及以上的共有多少架?【答案】(1),,;3x >1x ≥3x >6070x ≤<7080x ≤<80x ≥=a b =m =7270.510(2)A 款智能玩具飞机运行性能更好;因为A 款智能玩具飞机运行时间的方差比B 款智能玩具飞机运行时间的方差小,运行时间比较稳定;(3)两款智能玩具飞机运行性能在中等及以上的大约共有架.【解析】【分析】(1)由A 款数据可得A 款的众数,即可求出,由B 款扇形数据可求得合格数及优秀数,从而求得中位数及优秀等次的百分比;(2)根据方差越小越稳定即可判断;(3)用样本数据估计总体,分别求出两款飞机中等及以上的架次相加即可.【小问1详解】解:由题意可知架A 款智能玩具飞机充满电后运行最长时间中,只有出现了三次,且次数最多,则该组数据的众数为,即;由B 款智能玩具飞机运行时间的扇形图可知,合格的百分比为,则B 款智能玩具飞机运行时间合格的架次为:(架)则B 款智能玩具飞机运行时间优等的架次为:(架)则B 款智能玩具飞机的运行时间第五、第六个数据分别为:,故B 款智能玩具飞机运行时间的中位数为:,B 款智能玩具飞机运行时间优等的百分比为:,即,故答案为:,,;【小问2详解】解:A 款智能玩具飞机运行性能更好;因为A 款智能玩具飞机运行时间的方差比B 款智能玩具飞机运行时间的方差小,运行时间比较稳定;【小问3详解】解:架A 款智能玩具飞机运行性能在中等及以上的架次为:(架)架B 款智能玩具飞机运行性能在中等及以上的架次为:(架)则两款智能玩具飞机运行性能在中等及以上的共有:架,192a 10727272a =40%1040%4⨯=10451--=70,71707170.52+=1100%10%10⨯=10m =7270.510200620012010⨯=12061207210⨯=12072192+=答:两款智能玩具飞机运行性能在中等及以上的大约共有架.【点睛】本题考查了扇形统计图,中位数、众数、百分比,用方差做决策,用样本估计总体;解题的关键是熟练掌握相关知识综合求解.18. 如图,已知中,,,.(1)作的垂直平分线,分别交、于点、;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接,求的周长.【答案】(1)见解析(2)13【解析】【分析】(1)利用基本作图,作BC 的垂直平分线分别交、于点、即可;(2)由作图可得CD =BD ,继而可得AD =CD ,再结合三角形周长的求解方法进行求解即可.【小问1详解】如图所示,点D 、H 即为所求【小问2详解】∵DH 垂直平分BC ,∴DC =DB ,∴∠B =∠DCB ,∵∠B +∠A =90°,∠DCB +∠DCA =∠ACB =90°,∴∠A =∠DCA ,∴DC = DA,192Rt ABC 90ACB ∠=︒8AB =5BC =BC AB BC D H CD BCD △AB BC D H∴△BCD 的周长=DC +DB +BC =DA +DB +BC =AB +BC =8+5=13.【点睛】本题考查了作垂直平分线,垂直平分线的性质,等腰三角形的判定与性质等,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.19. 如图,为直径,点是的中点,过点作的切线,与的延长线交于点,连接.(1)求证:(2)连接,当时:①连接,判断四边形的形状,并说明理由.②若,图中阴影部分的面积为(用含有的式子表示).【答案】(1)见解析(2)①菱形,理由见解析;②【解析】【分析】(1)连接,证明,即可得到结论.(2)①根据(1)的结论和已知条件先证明四边形是平行四边形,根据平行线的性质以及点是的中点,可得从而证明邻边相等,即可得出结论;②连接,如图所示,设交于点,证明得,从而可求出,解直角三角形得出,根据,从而可得,求出扇形的面积即可得到阴影部分的面积.小问1详解】证明:如图所示,连接,的【AB O C AD C O CE BD E BC 90CEB ∠=︒CD CD AB ∥OC OBDC 3BE =______π23πOC OC BE ∥OBDC C AD DCB DBC ∠=∠OD ,OD BC F AC DCBC ==60AOC ∠=︒30CBE ∠=︒2OB =CD AB ∥COD BCD S S =△△COD OC∵点是的中点,∴,∴,∵,∴,∴,∴,∵是的切线.∴,∴,即:;【小问2详解】①如图所示,由(1)可得∵∴,四边形是平行四边形,又∵∴∴,∴四边形是菱形,C AD AC DC=ABC EBC ∠=∠OB OC =ABC OCB ∠=∠EBC OCB ∠=∠OC BE ∥CE O OC CE ⊥BE CE ⊥90CEB ∠=︒OC BE∥CD AB∥DCB ABC ∠=∠OBDC ABC EBC∠=∠DCB EBC∠=∠DC DB =OBDC②连接,如图所示,设交于点∵,∴,∵,,∴,∴,∴,∵,,∴∴∵,∴,∴.∴.【点睛】本题考查了圆周角定理,切线的判定,弧弦圆心角的关系,平行线的判定与性质,等腰三角形的性质,等边三角形的判定与性质,解直角三角形,扇形的面积等知识,熟练掌握切线的判断定理以及扇形面积的求法是解题的关键.20. 近年来,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元.(1)甲、乙两种头盔的单价各是多少元?OD ,OD BC FCD BD = CDBD = CD BD = AC DC= AC DCBC ==60AOC COD BOD ∠=∠=∠=︒1302ABC CBE AOC ∠=∠=∠=︒cos BE CBE BC ∠=3BE =3cos30BC ==︒BF =2cos30OF OB ===︒CD AB ∥COD BCD S S =△△COD S S =阴影扇形260223603COD S S ππ⨯===阴影扇形(2)商店决定再次购进甲、乙两种头盔共40只,正好赶上厂家进行促销活动,促销方式如下:甲种头盔按单价的八折出售,乙种头盔每只降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少只甲种头盔,使此次购买头盔的总费用最小?最小费用是多少元?【答案】(1)甲、乙两种头盔的单价各是65元, 54元.(2)购14只甲种头盔,此次购买头盔的总费用最小,最小费用为1976元.【解析】【分析】(1)设购买乙种头盔的单价为x 元,则甲种头盔的单价为元,根据题意,得,求解;(2)设购m 只甲种头盔,此次购买头盔的总费用最小,设总费用为w ,则,解得,故最小整数解为,,根据一次函数增减性,求得最小值=.【小问1详解】解:设购买乙种头盔的单价为x 元,则甲种头盔的单价为元,根据题意,得解得,,,答:甲、乙两种头盔的单价各是65元, 54元.小问2详解】解:设购m 只甲种头盔,此次购买头盔的总费用最小,设总费用为w ,则,解得,故最小整数解为,,∵,则w 随m 的增大而增大,∴时,w 取最小值,最小值.答:购14只甲种头盔,此次购买头盔的总费用最小,最小费用为1976元.【点睛】本题考查一元一次方程的应用,一次函数的性质,一次函数的应用、一元一次不等式的应用;根据题意列出函数解析式,确定自变量取值范围是解题的关键.21. 下图是某篮球架的侧而示意图,四边形为平行四边形.其中为长度固定的支【(11)x +20(11)302920x x ++=1(40)2m m ³-1313m ≥14m =41920w m =+41419201976´+=(11)x +20(11)302920x x ++=54x =1165x +=1(40)2m m ³-1313m ≥14m =0.865(546)(40)41920w m m m =´+--=+40>14m =41419201976=⨯+=ABCD BE CD GF ,,架,支架在A ,D ,G 处与立柱连接(垂直于,垂足为H ),在B ,C 处与篮板连接,旋转点F 处的螺栓可以调节长度,使支架绕点A 旋转,进而调节篮板的高度,已知.(1)如图1,当时,测得点C 离地面的高度为,求的长度;(2)如图2,调节伸缩臂,将由调节为时,请判断点C 离地面的高度是升高了还是降低了?并计算升(或降)的距离.(参考数据,)【答案】(1);(2)点离地面的高度升高了,升高了.【解析】【分析】本题考查是平行四边形性质,矩形的判定与性质,解直角三角形的实际应用,理解题意,作出合适的辅助线是解本题的关键.(1)如图,延长与底面交于点,过作于,则四边形为矩形,可得,根据四边形是平行四边形,可得,当时,则,此时,,即可求得;(2)当时,则,解直角三角形得,从而可得答案.【小问1详解】解:如图,延长与底面交于点,过作于,则,四边形为矩形,∴,的AH AH MN EF BE 209cm DH =60GAE ∠=︒289cm CD EF GAE ∠60︒54︒sin540.8cos540.6︒≈︒≈,tan 54 1.4︒≈160cm CD =C 16cm BC K D D Q C K ^Q DHKQ 208QK DH ==ABCD AB CD ∥60GAE ∠=︒60QCD QBA GAE ∠=∠=∠=︒30CDQ ∠=︒28920980CQ =-=2160CD CQ ==54GAE ∠=︒54QCD QBA GAE ∠=∠=∠=︒cos541600.696CQ CD =︒≈⨯= BC K D DQ C K ^Q 90DHK DQK HKQ ∠=∠=∠=︒DHKQ 209QK DH ==∵四边形是平行四边形,∴,当时,则,此时,,∴;【小问2详解】解:当时,则,∴,而,,∴点离地面的高度升高了,升高了.22. 一次足球训练中,小明从球门正前方的A 处射门,球射向球门的路线呈抛物线,其函数表达式为.当球飞行的水平距离为时,球达到最高点,此时球离地面.已知球门高为,现以O 为原点建立如图所示平面直角坐标系.(1)求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素).(2)经过教练指导,小明改变了射球的力度和角度,在同一地点再次射门,球射向球门的路线呈抛物线,其表达式为.结果足球“画出一-条美妙的曲线”在点O 正上方处精彩落入球网内.求两次射门,足球经过的路线最高点之间的距离.ABCD AB CD ∥60GAE ∠=︒60QCD QBA GAE ∠=∠=∠=︒30CDQ ∠=︒28920980CQ cm =-=()2160cm CD CQ ==54GAE ∠=︒54QCD QBA GAE ∠=∠=∠=︒·cos541600.696CQ CD cm =︒≈⨯=96>80968016cm -=C 16cm 8m ()2y a x h k =-+6m 3m OB 2.44m 2116y x bx c =-++2m(注:题中的x 表示球到球门的水平距离,y 表示球飞行的高度)【答案】(1),球不能射进球门 (2)【解析】【分析】本题考查二次函数的应用,理解题意,求出解析式是解题的关键.(1)先确定抛物线的顶点坐标,利用待定系数法求出解析式即可;(2)求出第二次射门的解析式,求出顶点坐标即可求出答案.【小问1详解】由题意,可知抛物线的顶点坐标为,∴把代入,得,解得,∴抛物线的函数表达式为,当时,,∴球不能射进球门;【小问2详解】把,代入,得,∴,∴,∴顶点坐标为,()212312y x =--+3m 4()23,()223y a x =-+()80A ,()223y a x =-+3630a +=112a =-()212312y x =--+0x =8 2.443y =>()80A ,()0,22116y x bx c =-++210 88162b c c⎧=-⨯++⎪⎨⎪=⎩142b c ⎧=⎪⎨⎪=⎩()221119 2 2164164y x x x =-++=--+92,4⎛⎫ ⎪⎝⎭∵.∴两次射门,足球经过的路线最高点之间的距离为.23. (1)观察发现:已知是直角三角形,.将绕点B 顺时针旋转得到,旋转角为,直线交直线AC 于点F .如图1,当时,判断:四边形的形状为_____,与的数量关系为_____;(2)深入探究:在图1的基础上,将绕点B 逆时针旋转,旋转角为,如图2,当时,直接写出线段的数量关系______;继续旋转,如图3,当时,请写出线段的数量关系,并说明理由;(3)拓展应用:在(2)的基础上当时,若,请直接写出的长.【答案】(1)正方形,;(2);;理由见解析;(3)的长为或.【解析】【分析】(1)先证明四边形为矩形,根据,证明四边形为正方形,推出;(2)当时,连接,证明,据此即可求得;当时,同理求得;(3)当时,根据角的转换求得,推出,得到,进而求得,据此求解即可;当时,同理即可求解.【详解】解:(1)根据题意,由旋转的性质得,∴四边形为矩形,由旋转的性质得,933m 44-=3m 4ABC 90ACB ∠=︒ABC DBE αDE 90α=︒BCFE CF EF DBE β090β︒<<︒AF EF DE ,,90180β︒<<︒AF EF DE ,,CBE BAC ∠=∠912BC AC ==,AF CF EF =AF EF DE +=AF EF DE -=AF 915BCFE BC BE =BCFE CF EF =090β︒<<︒BF ()Rt Rt HL BCF BEF ≌AF EF DE +=90180β︒<<︒AF EF DE -=090β︒<<︒ABD BAC ∠=∠DB AC ∥A D AFD ABD ∠=∠=∠=∠15DF AB ==90180β︒<<︒90C DEB BEF ∠=∠=∠=︒90BCE ∠=︒BCFE BC BE =∴四边形为正方形,∴;故答案为:正方形,;(2)当时,连接,∵,,,∴,∴,∵,∴,即;当时,连接,同理,,∴,∵,∴,即;故答案为:;;(3)当时,BCFE CF EF =CF EF =090β︒<<︒BF BC BE =90B BEF ∠=∠=︒BF BF =()Rt Rt HL BCF BEF ≌EF CF =DE AC =AF CF AC +=AF EF DE +=90180β︒<<︒BF ()Rt Rt HL BCF BEF ≌EF CF =DE AC =AF CF AC -=AF EF DE -=AF EF DE +=AF EF DE -=090β︒<<︒∵,∴,∴,∴,∵,∴,∴,∵,∴,∴,∵,∴,∴,,∴,即,解得,∴;当时,同理,求得.综上,的长为或.【点睛】本题考查了勾股定理,正方形的判定和性质,全等三角形的判定和性质,平行线的判定和性质,正确引出辅助线解决问题是解题的关键.912BC AC ==,15AB ==912BE DE ==,15DB =ABC DBE ∠=∠ABC ABE DBE ABE ∠-∠=∠-∠CBE ABD ∠=∠CBE BAC ∠=∠ABD BAC ∠=∠DB AC ∥A D ∠=∠A D AFD ABD ∠=∠=∠=∠AG FG =DG BG =15DF AB ==1215DE EF EF +=+=3EF CF ==1239AF =-=90180β︒<<︒15AF BD ==AF 915。
山东数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题(共12小题)1.25平方根是( )A. ±5B. 5C. ﹣5D. ±252.如图,几何体的左视图是( )A. B. C. D.3.用科学记数法表示0.00000022是( )A. 0.22×10﹣6B. 2.2×107C. 2.2×10﹣6D. 2.2×10﹣74.下列App图标中,既不是中心对称图形也不是轴对称图形的是()A. B. C. D.5.下列计算正确的是( )A. a2+a2=a4B. a6÷a2=a4C. (a2)3=a5D. (a﹣b)2=a2﹣b26. 如图,已知AB∥CD∥EF,FC平分∠AFE,∠C=25°,则∠A的度数是( )A. 25°B. 35°C. 45°D. 50°7.某射击俱乐部将11名成员在某次射击训练中取得的成绩制成如图所示的条形统计图,由图可知,11名成员射击成绩的众数和中位数分别是( )A. 8,9B. 8,8C. 8,10D. 9,88.若不等式组236x xx m-<-⎧⎨<⎩无解,那么m的取值范围是( )A. m>2B. m<2C. m≥2D. m≤29.在商场里,为方便一部分残疾人出入,商场特意设计了一种特殊通道”无障碍通道”,如图,线段BC表示无障碍通道,线段AD表示普通扶梯,其中”无障碍通道”BC的坡度(或坡比)为i=1:2,BC=125米,CD =6米,∠D=30°,(其中点A、B、C、D均在同一平面内)则垂直升降电梯AB的高度约为( )米.A. 103B. 103﹣12C. 12D. 103+1210.抛物线y=x2﹣9与x轴交于A、B两点,点P在函数y=3x图象上,若△PAB为直角三角形,则满足条件的点P的个数为( )A. 2个B. 3个C. 4个D. 6个11.如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′位置时,若AB=2,AD=4,则阴影部分的面积为( )A. 433π B.2233π- C.8433π- D.8233π-12.平面直角坐标系中,函数y=4x(x>0)的图象G经过点A(4,1),与直线y=14x+b的图象交于点B,与y轴交于点C.其中横、纵坐标都是整数的点叫做整点.记图象G在点A、B之间的部分与线段OA、OC、BC围成的区域(不含边界)为W.若W内恰有4个整点,结合函数图象,b的取值范围是( )A. ﹣54≤b<1或74<b≤114B. ﹣54≤b<1或74<b≤114C. ﹣54≤b<﹣1或﹣74<b≤114D. ﹣54≤b<﹣1或74<b≤114二.填空题(共6小题)13.分解因式:39a a-=_________.14.五边形的内角和是_____°.15.方程2144xx x--=--的解是__________.16.A、B两地相距20km,甲乙两人沿同一条路线从A地到B地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2km/h的速度度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A地的距离y(km)与时间t(h)的关系如图所示,则甲出发_____小时后和乙相遇.17.如图,正方形ABCD的边长为1,AC、BD是对角线,将△DCB绕着点D顺时针旋转45°得到△DGH,HG 交AB于点E,连接DE交AC于点F,连接FG.则下列结论:①四边形AEGF是菱形;②△HED的面积是1﹣22;③∠AFG=135°;④BC+FG=3.其中正确的结论是_____.(填入正确的序号)18.如图,正方形ABCD的边长为8,E为BC的四等分点(靠近点B的位置),F为B边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为_____.三.解答题(共9小题)19.计算:|﹣2|﹣(﹣2)0+(13)﹣1﹣cos60°.20.解不等式组2102323xx x+>⎧⎪-+⎨≥⎪⎩.21.如图,在菱形ABCD中,E、F分别为边AD和CD上的点,且AE=CF.连接AF、CE交于点G.求证:∠DGE=∠DGF.22.济南市地铁1号线于2019年1月1日起正式通车,在修建过程中,技术人员不断改进技术,提高工作效率,如在打通一条长600米的隧道时,计划用若干小时完成,在实际工作过程中,每小时打通隧道长度是原计划的1.2倍,结果提前2小时完成任务.(1)求原计划每小时打通隧道多少米?(2)如果按照这个速度下去,后面的300米需要多少小时打通?23.如图,AB是⊙O的直径,射线BC交⊙O于点D,E是劣弧AD上一点,且AE=DE,过点E作EF⊥BC 于点F,延长FE和BA的延长线交与点G.(1)证明:GF是⊙O的切线;(2)若AG=6,GE=2,求⊙O的半径.24.自深化课程改革以来,某市某校开设了:A .利用影长求物体高度,B .制作视力表,C .设计遮阳棚,D .制作中心对称图形,四类数学实践活动课.规定每名学生必选且只能选修一类实践活动课,学校对学生选修实践活动课的情况进行抽样调查,将调查结果绘制成如下两幅不完整的统计图.根据图中信息解决下列问题:(1)本次共调查 名学生,扇形统计图中B 所对应的扇形的圆心角为 度;(2)补全条形统计图;(3)选修D 类数学实践活动的学生中有2名女生和2名男生表现出色,现从4人中随机抽取2人做校报设计,请用列表或画树状图法求所抽取的两人恰好是1名女生和1名男生的概率.25.如图,在矩形OABC 中,OA 3=,AB 4=,反比例函数k y x=(k 0>)的图像与矩形两边AB 、BC 分别交于点D 、点E ,且BD 2AD =.(1)求点D 的坐标和的值;(2)求证:BE 2CE =;(3)若点是线段OC 上的一个动点,是否存在点,使90APE ∠=︒?若存在,求出此时点的坐标;若不存在,请说明理由.26.在△ABC 中,AB =BC ,∠ABC =90°,D 为AC 中点,点P 是线段AD 上一点,点P 与点A 、点D 不重合),连接BP .将△ABP 绕点P 按顺时针方向旋转α角(0°<α<180°),得到△A 1B 1P ,连接A 1B 1、BB 1(1)如图①,当0°<α<90°,在α角变化过程中,请证明∠P AA 1=∠PBB 1.(2)如图②,直线AA 1与直线PB 、直线BB 1分别交于点E ,F .设∠ABP =β,当90°<α<180°时,在α角变化过程中,是否存在△BEF 与△AEP 全等?若存在,求出α与β之间数量关系;若不存在,请说明理由;(3)如图③,当α=90°时,点E 、F 与点B 重合.直线A 1B 与直线PB 相交于点M ,直线BB ′与AC 相交于点Q .若AB =2,设AP =x ,CQ =y ,求y 关于x 的函数关系式.27.若二次函数2y ax bx c =++的图象与轴分别交于点(3,0)A 、(0,2)B -,且过点(2,2)C -.(1)求二次函数表达式;(2)若点为抛物线上第一象限内的点,且4PAB S ∆=,求点的坐标;(3)在抛物线上(AB 下方)是否存在点M ,使ABO ABM ∠=∠?若存在,求出点M 到轴的距离;若不存在,请说明理由.答案与解析一.选择题(共12小题)1.25的平方根是( )A. ±5B. 5C. ﹣5D. ±25【答案】A【解析】【分析】如果一个数 x的平方是a,则x是a的平方根,根据此定义求解即可.【详解】∵(±5)2=25,∴25的立方根是±5,故选A.【点睛】本题考查了求一个数的平方根,解题的关键是掌握一个正数的平方根有两个,这两个互为相反数.2.如图,几何体的左视图是( )A. B. C. D.【答案】C【解析】【分析】找到从左面看所得到的图形,比较即可.【详解】观察可知,如图所示的几何体的左视图是:,故选C.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.用科学记数法表示0.00000022是( )A. 0.22×10﹣6B. 2.2×107C. 2.2×10﹣6D. 2.2×10﹣7【答案】D【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:用科学记数法表示0.00000022是2.2×10-7.故选:D.【点睛】此题考查科学记数法表示较小的数,解题关键在于掌握一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.下列App图标中,既不是中心对称图形也不是轴对称图形的是()A. B. C. D.【答案】B【解析】【分析】根据中心对称图形与轴对称图形的区别,逐一判断即可.【详解】解:∵A中的图形是轴对称图形,不是中心对称图形,∴选项A不正确;∵B中的图形既不是中心对称图形也不是轴对称图形,∴选项B正确;∵C中的图形是轴对称图形,不是中心对称图形,∴选项C不正确;∵D中的图形不是轴对称图形,是中心对称图形,∴选项D不正确.故选B.【点睛】此题主要考查了中心对称图形与轴对称图形的区别,要熟练掌握,解答此题的关键是要明确:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.5.下列计算正确的是( )A. a2+a2=a4B. a6÷a2=a4C. (a2)3=a5D. (a﹣b)2=a2﹣b2【答案】B【解析】【详解】解:A. a2+a2=2a2,故A选项错误;B. a6÷a2=a4,故B正确;C. (a2)3=a6,故C选项错误;D. (a−b)2=a2+b2−2ab,故D选项错误.6. 如图,已知AB∥CD∥EF,FC平分∠AFE,∠C=25°,则∠A的度数是( )A. 25°B. 35°C. 45°D. 50°【答案】D【解析】试题分析:∵CD∥EF,∠C=∠CFE=25°,∵FC平分∠AFE,∴∠AFE=2∠CFE=50°,又∵AB∥EF,∴∠A=∠AFE=50°,故选D.考点:平行线性质.7.某射击俱乐部将11名成员在某次射击训练中取得的成绩制成如图所示的条形统计图,由图可知,11名成员射击成绩的众数和中位数分别是( )A. 8,9B. 8,8C. 8,10D. 9,8【答案】B【解析】分析:中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的那个数;对于众数可由条形统计图中出现频数最大或条形最高的数据写出.详解:由条形统计图知8环的人数最多,所以众数为8环,由于共有11个数据,所以中位数为第6个数据,即中位数为8环,故选B.点睛:本题主要考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个,则找中间两个数的平均数.8.若不等式组236x xx m-<-⎧⎨<⎩无解,那么m的取值范围是( )A. m>2B. m<2C. m≥2D. m≤2【答案】D【解析】【分析】先求出每个不等式的解集,再根据不等式组解集的求法和不等式组无解的条件,即可得到m的取值范围.【详解】解:236 x xx m-<-⎧⎨<⎩②①由①得,x>2,由②得,x<m,又因为不等式组无解,所以根据”大大小小解不了”原则,m≤2.故选:D.【点睛】此题考查解一元一次不等式组,解题关键在于掌握求不等式组的解集,要根据以下原则:同大取较大,同小较小,小大大小中间找,大大小小解不了.9.在商场里,为方便一部分残疾人出入,商场特意设计了一种特殊通道”无障碍通道”,如图,线段BC表示无障碍通道,线段AD表示普通扶梯,其中”无障碍通道”BC的坡度(或坡比)为i=1:2,BC=125米,CD =6米,∠D=30°,(其中点A、B、C、D均在同一平面内)则垂直升降电梯AB的高度约为( )米.A. 3B. 3﹣12C. 12D. 3【答案】B【解析】【分析】根据勾股定理,可得CE ,BE 的长,根据正切函数,可得AE 的长,再根据线段的和差,可得答案.【详解】解:如图,延长AB 交DC 的延长线于点E ,,由BC 的坡度(或坡比)为i =1:2,得BE :CE =1:2.设BE =x ,CE =2x .在Rt △BCE 中,由勾股定理,得BE 2+CE 2=BC 2,即x 2+(2x )2=(52,解得x =12(米),∴BE =12(米),CE =24(米),DE =DC +CE =6+24=30(米),由tan30°=333=3AE DE , 解得AE =3由线段的和差,得AB =AE ﹣BE =(312)(米),故选:B .【点睛】此题考查解直角三角形的应用,利用勾股定理得出CE ,BE 的长是解题关键,又利用了正切函数,线段的和差.10.抛物线y =x 2﹣9与x 轴交于A 、B 两点,点P 在函数y =3x图象上,若△PAB 为直角三角形,则满足条件的点P 的个数为( )A. 2个B. 3个C. 4个D. 6个 【答案】D【解析】分析:先由二次函数与一元二次方程的关系求出A、B两点的坐标,然后分类讨论:①当∠P AB=90°时,则P点的横坐标为-3,根据反比例函数图象上点的坐标特征易得P点有1个;②当∠APB=90°,设P(x,3x),根据两点间的距离公式和勾股定理可得(x+3)2+(3x)2+(x-3)2+(3x)2=36,此时P点有4个,③当∠PBA=90°时,P点的横坐标为3,此时P点有1个.详解:解290x-=得,x=±3,∴A(-3,0),B(3,0).①当∠P AB=90°时,如图1,P点的横坐标为-3,把x=-3代入y=3x得y=-33,所以此时P点有1个;②当∠APB=90°,如图2,设P(x,3x),P A2=(x+3)2+(3x)2,PB2=(x-3)2+(3x)2,AB2=(3+3)2=36,∵P A2+PB2=AB2,∴(x+3)2+(3x)2+(x-3)2+(3x)2=36,整理得x4-9x2+4=0,所以x2=9692+,或x2=9692-,所以此时P点有4个,③当∠PBA =90°时,如图3,P 点的横坐标为3,把x =3代入y =3x 得y =33,所以此时P 点有1个; 综上所述,满足条件的P 点有6个.故选D .点睛:本题考查了二次函数与坐标轴的交点,反比例函数图象上点的坐标特征:反比例函数y =k x(k 为常数,k ≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy =k .11.如图,将矩形ABCD 绕点C 沿顺时针方向旋转90°到矩形A ′B ′CD ′的位置时,若AB =2,AD =4,则阴影部分的面积为( )A. 433πB. 2233π-C. 8433π-D. 8233π-【答案】D【解析】【详解】∵四边形ABCD 是矩形,∴AD =BC =4,CD =AB =2,90BCD ADC ∠=∠=︒,∴CE =BC =4,∴CE =2CD ,∴30DEC ∠=︒,∴60DCE ∠=︒,由勾股定理得:23DE =,∴阴影部分的面积是S =S 扇形CEB ′−S △CDE 260π41823π2 3.36023⨯=-⨯⨯=-故选D.12.平面直角坐标系中,函数y=4x(x>0)的图象G经过点A(4,1),与直线y=14x+b的图象交于点B,与y轴交于点C.其中横、纵坐标都是整数的点叫做整点.记图象G在点A、B之间的部分与线段OA、OC、BC围成的区域(不含边界)为W.若W内恰有4个整点,结合函数图象,b的取值范围是( )A. ﹣54≤b<1或74<b≤114B. ﹣54≤b<1或74<b≤114C. ﹣54≤b<﹣1或﹣74<b≤114D. ﹣54≤b<﹣1或74<b≤114【答案】D 【解析】【分析】由于直线BC:y=14x+b与OA平行,分两种情况:直线l在OA的下方和上方,画图根据区域W内恰有4个整点,确定b的取值范围.【详解】解:如图1,直线l在OA的下方时,当直线l:y=14x+b过(0,﹣1)时,b=﹣1,且经过(4,0)点,区域W内有三点整点,当直线l:y=14x+b过(1,﹣1)时,b=﹣54,且经过(5,0),区域W内有三点整点,∴区域W内恰有4个整点,b的取值范围是﹣54≤b<﹣1.如图2,直线l在OA的上方时,∵点(2,2)在函数y =k x(x >0)图象G , 当直线l :y =14x +b 过(1,2)时,b =74, 当直线l :y =14x +b 过(1,3)时,b =114, ∴区域W 内恰有4个整点,b 的取值范围是74<b ≤114. 综上所述,区域W 内恰有4个整点,b 的取值范围是﹣54≤b <﹣1或74<b ≤114. 故选:D .【点睛】此题考查反比例函数与一次函数的交点问题,求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,理解整点的定义是解题关键,并利用数形结合的思想.二.填空题(共6小题)13.分解因式:39a a -=_________.【答案】(3)(3)a a a +-【解析】【分析】先提取a ,再用公式法进行因式分解.【详解】39a a -=()29a a -=(3)(3)a a a +-故答案为:(3)(3)a a a +-.【点睛】此题主要考查因式分解,解题的关键是熟知公式法的运用.14.五边形的内角和是_____°.【答案】540【解析】【分析】根据正多边形内角和公式计算即可.【详解】解:五边形的内角和是(5﹣2)×180°=540°,故答案为:540.【点睛】本题主要考查多边形内角和公式,掌握多边形内角和公式是解题的关键.15.方程21044x x x --=--的解是__________. 【答案】x=3.【解析】【详解】解:21044x x x--=-- 21+044x x x -=-- 210x +-=解得:x=3 经检验:x=3是原方程的解故答案为:x=3.16.A 、B 两地相距20km ,甲乙两人沿同一条路线从A 地到B 地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2km/h 的速度度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A 地的距离y(km)与时间t(h)的关系如图所示,则甲出发_____小时后和乙相遇.【答案】165【解析】【分析】由图象得出解析式后联立方程组解答即可.【详解】由图象可得:y 甲=4t(0≤t≤5);y 乙=()()2112916(24)t t t t <⎧-≤≤⎨-≤⎩; 由方程组4916y t y t ⎧⎨-⎩==,解得t=165.故答案为165. 【点睛】此题考查一次函数的应用,关键是由图象得出解析式解答.17.如图,正方形ABCD 的边长为1,AC 、BD 是对角线,将△DCB 绕着点D 顺时针旋转45°得到△DGH ,HG 交AB 于点E ,连接DE 交AC 于点F ,连接FG .则下列结论:①四边形AEGF 是菱形;②△HED 的面积是1﹣22;③∠AFG =135°;④BC +FG =3.其中正确的结论是_____.(填入正确的序号)【答案】①②③【解析】【分析】依据四边形AEGF 为平行四边形,以及AE GE =,即可得到平行四边形AEGF 是菱形;依据21AE =,即可得到HED 的面积)112211211222DH AE =⨯=+=-;依据四边形AEGF 是菱形,可得267.5135AFG GEA ∠=∠=⨯︒=︒;根据四边形AEGF 是菱形,可得21FG AE ==,进而得到1212BC FG +=+=【详解】解:正方形ABCD 的边长为1,90BCD BAD ∴∠=∠=︒,45CBD ∠=︒,2BD =,1AD CD ==.由旋转的性质可知:90HGD BCD ∠==︒,45H CBD ∠=∠=︒,BD HD =,GD CD =, 21HA BG ∴==,45H EBG ∠=∠=︒,90HAE BGE ∠=∠=︒,HAE ∴和BGE 21的等腰直角三角形,AE GE ∴=.在Rt AED 和Rt GED 中,DE DE AD GD=⎧⎨=⎩,Rt AED ∴≌()Rt GED HL , ()118067.52AED GED BEG ∴∠=∠=︒-∠=︒,AE GE =, 1801804567.567.5AFE EAF AEF AEF ∴∠=︒-∠-∠=︒-︒-︒=︒=∠,AE AF ∴=.AE GE =,AF BD ⊥,EG BD ⊥,AF GE ∴=且//AF GE ,四边形AEGF 为平行四边形,AE GE =,平行四边形AEGF 是菱形,故①正确;21HA =-,45H ∠=︒,21AE ∴=-,HED ∴的面积()()112211211222DH AE =⨯=-+-=-,故②正确;四边形AEGF 是菱形, 267.5135AFG GEA ∴∠=∠=⨯︒=︒,故③正确;四边形AEGF 是菱形,21FG AE ∴==-,1212BC FG ∴+=+-=,故④不正确.故答案为:①②③.【点睛】本题考查旋转的性质,正方形的性质,全等三角形的判定和性质,菱形的判定和性质,等腰直角三角形的性质等知识,解题的关键是掌握旋转的性质:对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.18.如图,正方形ABCD 的边长为8,E 为BC 的四等分点(靠近点B 的位置),F 为B 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为_____.【答案】5【解析】【分析】由题意分析可知,点F为主动点,G为从动点,所以以点E为旋转中心构造全等关系,得到点G的运动轨迹,之后通过垂线段最短构造直角三角形获得CG最小值.【详解】由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动将△EFB绕点E旋转60°,使EF与EG重合,得到△EFB≌△EHG从而可知△EBH为等边三角形,点G在垂直于HE的直线HN上作CM⊥HN,则CM即为CG的最小值作EP⊥CM,可知四边形HEPM为矩形,则CM=MP+CP=HE+12EC=2+3=5,故答案为:5.【点睛】此题考查旋转的性质,全等三角形的性质,正方形的性质,分清主动点和从动点,通过旋转构造全等,从而判断出点G的运动轨迹,是解题的关键,之后运用垂线段最短,构造图形计算.三.解答题(共9小题)19.计算:|﹣2|﹣(2)0+(13)﹣1﹣cos60°.【答案】312.【解析】【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可求出值.【详解】解:原式=2﹣1+3﹣1 2=1+3﹣1 2=4﹣1 2=312.【点睛】此题考查了实数的运算,零指数幂、负整数指数幂,熟练掌握运算法则是解题的关键.20.解不等式组2102323xx x+>⎧⎪-+⎨≥⎪⎩.【答案】﹣0.5<x≤0.【解析】【分析】先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【详解】解:2102323xx x+>⎧⎪⎨-+≥⎪⎩①②由①得:x>﹣0.5,由②得:x≤0,则不等式组的解集是﹣0.5<x≤0.【点睛】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21.如图,在菱形ABCD中,E、F分别为边AD和CD上的点,且AE=CF.连接AF、CE交于点G.求证:∠DGE=∠DGF.【答案】证明见解析【解析】【分析】根据菱形的性质和全等三角形的判定和性质定理即可得到结论.【详解】证明:∵四边形ABCD是菱形,∴DA=DC=AB=BC,∵AE=CF,∴DE=DF,∵∠ADG=∠CDG,DG=DG,∴△DEG≌△DFG(SAS),∴∠DGE=∠DGF.【点睛】此题考查菱形的性质,全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题. 22.济南市地铁1号线于2019年1月1日起正式通车,在修建过程中,技术人员不断改进技术,提高工作效率,如在打通一条长600米的隧道时,计划用若干小时完成,在实际工作过程中,每小时打通隧道长度是原计划的1.2倍,结果提前2小时完成任务.(1)求原计划每小时打通隧道多少米?(2)如果按照这个速度下去,后面的300米需要多少小时打通?【答案】(1)原计划每小时打通隧道50米.(2)按照这个速度下去,后面的300米需要5小时打通.【解析】【分析】(1)设原计划每小时打通隧道x米,则实际工作过程中每小时打通隧道1.2x米,根据工作时间=工作总量÷工作效率结合在打通一条长600米的隧道时实际比原计划提前2小时完成任务,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)根据工作时间=工作总量÷工作效率(提高工作效率后的工作效率),即可求出结论.【详解】解:(1)设原计划每小时打通隧道x米,则实际工作过程中每小时打通隧道1.2x米,依题意,得:6006001.2x x=2,解得:x=50,经检验,x=50是原方程的解,且符合题意.答:原计划每小时打通隧道50米.(2)300÷(50×1.2)=5(小时).答:按照这个速度下去,后面的300米需要5小时打通.【点睛】此题考查分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.23.如图,AB是⊙O的直径,射线BC交⊙O于点D,E是劣弧AD上一点,且AE=DE,过点E作EF⊥BC 于点F,延长FE和BA的延长线交与点G.(1)证明:GF是⊙O的切线;(2)若AG=6,GE=62,求⊙O的半径.【答案】(1)见解析;(2)3【解析】【分析】(1)连接OE,由AE DE=知∠1=∠2,由∠2=∠3可证OE∥BF,根据BF⊥GF得OE⊥GF,得证;(2)设OA=OE=r,在Rt△GOE中由勾股定理求得r=3.【详解】解:(1)如图,连接OE,∵AE DE=,∴∠1=∠2,∵∠2=∠3,∴∠1=∠3,∴OE∥BF,∵BF⊥GF,∴OE⊥GF,∴GF是⊙O的切线;(2)设OA=OE=r,在Rt△GOE中,∵AG=6,GE=2,∴由OG2=GE2+OE2可得(6+r)2=(62)2+r2,解得:r=3,故⊙O的半径为3.【点睛】本题考查圆切线的性质,关键在于熟记基本性质,结合图形灵活运用.24.自深化课程改革以来,某市某校开设了:A.利用影长求物体高度,B.制作视力表,C.设计遮阳棚,D.制作中心对称图形,四类数学实践活动课.规定每名学生必选且只能选修一类实践活动课,学校对学生选修实践活动课的情况进行抽样调查,将调查结果绘制成如下两幅不完整的统计图.根据图中信息解决下列问题:(1)本次共调查名学生,扇形统计图中B所对应的扇形的圆心角为度;(2)补全条形统计图;(3)选修D类数学实践活动的学生中有2名女生和2名男生表现出色,现从4人中随机抽取2人做校报设计,请用列表或画树状图法求所抽取的两人恰好是1名女生和1名男生的概率.【答案】(1)60 ,144(2)见解析(3)2 3【解析】【分析】(1)用C类别人数除以其所占百分比可得总人数,用360°乘以C类别人数占总人数的比例即可得;(2)总人数乘以A类别的百分比求得其人数,用总人数减去A,B,C的人数求得D类别的人数,据此补全图形即可;(3)画树状图展示12种等可能的结果数,再找出所抽取的两人恰好是1名女生和1名男生的结果数,然后根据概率公式求解.【详解】(1)本次调查的学生人数为12÷20%=60(名),则扇形统计图中B所对应的扇形的圆心角为360°×2460=144°.故答案为60 , 144(2)A 类别人数为60×15%=9(人),则D 类别人数为60﹣(9+24+12)=15(人),补全条形图如下:(3)画树状图为:共有12种等可能的结果数,其中所抽取的两人恰好是1名女生和1名男生的结果数为8,所以所抽取的两人恰好是1名女生和1名男生的概率为812=23. 【点睛】本题考查列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.也考查了统计图.25.如图,在矩形OABC 中,OA 3=,AB 4=,反比例函数k y x=(k 0>)的图像与矩形两边AB 、BC 分别交于点D 、点E ,且BD 2AD =.(1)求点D 的坐标和的值;(2)求证:BE 2CE =;(3)若点是线段OC 上的一个动点,是否存在点,使90APE ∠=︒?若存在,求出此时点的坐标;若不存在,请说明理由.【答案】(1)4(,3)3D ,4;(2)见解析;(3)存在点,(1,0)P 或(3,0)P .【解析】【分析】(1)由矩形OABC 中,AB =4,BD =2AD ,可得3AD =4,即可求得AD 的长,然后求得点D 的坐标,即可求得k 的值,继而求得点E 的坐标;(2)由E 点在反比例函数k y x=图像上,可求E 点坐标,进而求出EC 的长即可求证. (3)首先假设存在要求的点P 坐标为(m ,0),OP =m ,CP =4-m ,由∠APE =90°,易证得△AOP ∽△PCE ,然后由相似三角形的对应边成比例,求得m 的值,继而求得此时点P 的坐标. 【详解】解:(1)在矩形OABC 中,AB x 轴,且3OA =,∴点的纵坐标为3.∵4AB =,且2BD AD =,1433AD AB ∴==, ∴4,33D ⎛⎫ ⎪⎝⎭. ∴点在反比例函数k y x =图像上, ∴4343k =⨯=. (2)证:∵BC 上,∴横坐标为4,在4y x=中,当4x =时,1y =, ∴()4,1E .∴1CE =,∴312BE BC CE =-=-=,∴2BE CE =.(3)存在点,使090APE ∠=,其过程是:设OP x =,则4PC x =-.090APE ∠=,090APO CPE ∠∠∴+=,090OAP APO ∠∠+=,OAP CPE ∠∠∴=.AOP PCE ∠∠=,AOP PCE ∴∆∆∽. AO OP PC CE ∴=,即341x x =-.解得1x =或3x =. ()1,0P ∴或()3,0P .【点睛】此题属于反比例函数综合题,考查了待定系数求反比例函数解析式、矩形的性质以及相似三角形的判定与性质.注意求得点D 的坐标与证得△AOP ∽△PCE 是解此题的关键.26.在△ABC 中,AB =BC ,∠ABC =90°,D 为AC 中点,点P 是线段AD 上的一点,点P 与点A 、点D 不重合),连接BP .将△ABP 绕点P 按顺时针方向旋转α角(0°<α<180°),得到△A 1B 1P ,连接A 1B 1、BB 1(1)如图①,当0°<α<90°,在α角变化过程中,请证明∠P AA 1=∠PBB 1.(2)如图②,直线AA 1与直线PB 、直线BB 1分别交于点E ,F .设∠ABP =β,当90°<α<180°时,在α角变化过程中,是否存在△BEF 与△AEP 全等?若存在,求出α与β之间的数量关系;若不存在,请说明理由;(3)如图③,当α=90°时,点E 、F 与点B 重合.直线A 1B 与直线PB 相交于点M ,直线BB ′与AC 相交于点Q .若AB =2,设AP =x ,CQ =y ,求y 关于x 函数关系式.【答案】(1)证明见解析;(2)α﹣2β=90°;(3)y =222x x --. 【解析】【分析】 (1)先利用旋转得出两个顶角相等的两个等腰三角形,即可得出结论;(2)假设存在,然后利用确定的出AE=BE ,即可求出∠A 1AP=∠AA 1P ,最后用∠BAC=45°建立方程化简即可;(3)先判断出△ABQ ∽△CPB ,得出比例式即可得出结论.【详解】解:(1)∵将△ABP 绕点P 按顺时针方向旋转α角(0°<α<180°),得到△A 1B 1P ,∴∠AP A 1=∠BPB 1=α,AP =A 1P ,BP =B 1P ,∴∠AA 1P =∠A 1AP =1180APA 2︒-∠=1802α︒-,∠BB 1P =∠B 1BP =1180BPB 2︒-∠=1802α︒-, ∴∠P AA 1=∠PBB 1,(2)假设在α角变化的过程中,存在△BEF 与△AEP 全等,∵△BEF 与△AEP 全等,∴AE =BE ,∴∠ABE =∠BAE =β,∵AP =A 1P ,∴∠A 1AP =∠AA 1P =1802α︒-, ∵AB =BC ,∠ABC =90°,∴∠BAC =45°,∴β+1802α︒-=45°, ∴α﹣2β=90°,(3)当α=90°时,∵AP =A 1P ,BP =B 1P ,∠AP A 1=∠BPB 2=90°,∴∠A =∠PBB 1=45°,∵∠A =∠C ,∠AQB =∠C +∠QBC =45°+∠QBC =∠PBC , ∴△ABQ ∽△CPB , ∴AQ AB BC PC=,∵AB ,2x =-, ∴y =222x x --. 【点睛】此题考查几何变换综合题,旋转的性质,等腰三角形的性质,全等三角形的性质,相似三角形的判定和性质,解(2)的关键是得出∠BAC=45°,解(3)的关键是判断出△ABQ ∽△CPB .27.若二次函数2y ax bx c =++的图象与轴分别交于点(3,0)A 、(0,2)B -,且过点(2,2)C -.(1)求二次函数表达式;(2)若点为抛物线上第一象限内的点,且4PAB S ∆=,求点的坐标;(3)在抛物线上(AB 下方)是否存在点M ,使ABO ABM ∠=∠?若存在,求出点M 到轴的距离;若不存在,请说明理由.【答案】(l )224233y x x =-- ;(2)点的坐标为104,3⎛⎫ ⎪⎝⎭;(3)点M 到轴的距离为118 . 【解析】【分析】 (1)根据待定系数法,计算即可.(2)首先设出P 点的坐标,再利用PAB POA AOB POB S S S S ∆∆∆∆=+-求解未知数,可得P 点的坐标.(3)首先求出直线AB 的解析式,过点M 作ME y ⊥轴,垂足为,作MD x ⊥轴交AB 于点,再利用平行证明MD MB =,列出方程求解参数,即可的点M 到轴的距离.【详解】(l )因为抛物线2y ax bx c =++过点(0,2)-,∴2c =-,又因为抛物线过点(3,0),(2,2)- ∴93204222a b a b +-=⎧⎨+-=-⎩解,得2343a b ⎧=⎪⎪⎨⎪=-⎪⎩所以,抛物线表达式为224233y x x =--(2)连接PO ,设点224,233P m m m ⎛⎫-- ⎪⎝⎭. 则PAB POA AOB POB S S S S ∆∆∆∆=+-2124113232223322m m m ⎛⎫=⨯⋅--+⨯⨯-⨯⋅ ⎪⎝⎭ 23m m =-由题意得234m m -=∴4m =或1m =-(舍)∴224102333m m --= ∴点的坐标为104,3⎛⎫ ⎪⎝⎭.(3)设直线AB 的表达式为y kx n =+,因直线AB 过点(3,0)A 、(0,2)B -,∴302k n n +=⎧⎨=-⎩解,得232k n ⎧=⎪⎨⎪=-⎩所以AB 的表达式为223y x =- 设存在点M 满足题意,点M 的坐标为224,233t t t ⎛⎫-- ⎪⎝⎭,过点M 作ME y ⊥轴,垂足为,作MD x ⊥轴交AB 于点,则的坐标为2,23t t ⎛⎫- ⎪⎝⎭,2223MD t t =-+,22433BE t t =-+.又MD y 轴∴ABO MDB ∠=∠又∵ABO ABM ∠=∠∴MDB ABM ∠=∠∴MD MB = ∴2223MB t t =-+.在Rt BEM ∆中 222222422333t t t t t ⎛⎫⎛⎫-++=-+ ⎪ ⎪⎝⎭⎝⎭解得:118t = 所以点M 到轴的距离为118 【点睛】本题主要考查二次函数与一次函数的综合性问题,难度系数高,但是是中考的必考知识点,应当熟练地掌握.。
中考数学一模试卷一、选择题(共10 小题,每小题 3 分,计 30 分)1.下列各数中,比﹣ 2 小的是()A.﹣ 1 B. 0 C.﹣ 3 D.π2.下列计算正确的是()A. 4x 3?2x2=8x6B. a4+a3=a7C.(﹣ x2)5=﹣ x10D.( a﹣b )2=a2﹣ b23.如图,在△ ABC 中, AB=AC,过 A 点作 AD∥ BC,若∠ BAD=110°,则∠ BAC的大小为()A. 30° B. 40° C. 50° D. 70°4.不等式组的解集是()A.﹣ 1 <x< 2B. 1< x≤2 C.﹣ 1< x≤2D.﹣ 1< x≤35.如图是一个长方体包装盒,则它的平面展开图是()A.B.C.D.6.当 x=1 时, ax+b+1 的值为﹣ 2,则( a+b﹣ 1)( 1﹣ a﹣b)的值为()A.﹣ 16 B.﹣ 8 C. 8D. 167.一次函数y=﹣ x+a﹣3(a 为常数)与反比例函数y=﹣的图象交于A、B 两点,当 A、B 两点关于原点对称时 a 的值是()A. 0B.﹣ 3 C. 3D. 48.如图,在五边形 ABCDE 中, ∠ A+∠ B+∠ E=300°,DP 、 CP 分别平分 ∠ EDC 、∠ BCD ,则 ∠ P 的度数是()A . 60°B . 65°C . 55°D . 50°9.如图,若锐角 △ ABC 内接于 ⊙ O ,点 D 在 ⊙ O 外(与点 C 在 AB 同侧),则下列三个结论: ① sin ∠ C> sin ∠D ; ②cos ∠ C > cos ∠ D ; ③tan ∠ C > tan ∠ D 中,正确的结论为( )A . ①②B . ②③C . ①②③D . ①③10.对于二次函数 y=﹣ x 2+2x .有下列四个结论: ① 它的对称轴是直线x=1;② 设 y 1=﹣ x 1 2+2x 1,y 2=﹣ x 22+2x 2,则当 x 2> x 1 时,有 y 2> y 1; ③ 它的图象与x 轴的两个交点是( 0,0)和( 2,0); ④ 当0< x < 2 时, y > 0.其中正确的结论的个数为( )A . 1B . 2C . 3D . 4二、填空题(共4 小题,每小题 3 分,计 12 分)11.若使二次根式有意义,则 x 的取值范围是.12.请从以下两个小题中个任意选一作答,若对选,则按第一题计分. A .如图,为测量一幢大楼的高度,在地面上距离楼底 O 点 20m 的点 A 处,测得楼顶B 点的仰角∠ OAB=60 ,°则这幢大楼的高度为(用科学计算器计算,结果精确到米).B .是指大气中直径小于或等于的颗粒物,将用科学记数法表示为 .13.已知 k > 0,且关于 x 的方程 3kx 2+12x+k+1=0 有两个相等的实数根, 那么 k 的值等于.14.如图,在平面直角坐标系中,菱形 OBCD 的边 OB 在 x 轴正半轴上,反比例函数 y= ( x >0)的图象经过该菱形对角线的交点 A ,且与边 BC 交于点 F .若点 D 的坐标为( 6, 8),则点 A 的坐标是.三、解答题(共11 小题,计 78 分,解答需写出必要的文字说明,演算步骤或证明过程)15.计算:( 2015﹣ π) 0+(﹣ )﹣1+| ﹣ 1| ﹣ 3tan30 +6° .16.先化简,再求值:( 1﹣ ) ÷ ,其中 a=3.17.如图,在 △ABC 中, AB=4cm , AC=6cm .( 1)作图:作 BC 边的垂直平分线分别交与 AC , BC 于点 D , E (用尺规作图法,保留作图痕迹,不要求写作法);( 2)在( 1)的条件下,连结BD ,求 △ABD 的周长.18. 2010 年 5 月 1 日,第 41 届世博会在上海举办,世博知识在校园迅速传播.小明同学就本班学 生对世博知识的了解程度进行了一次调查统计,下图是他采集数据后绘制的两幅不完整的统计图( A :不了解, B :一般了解, C :了解较多, D :熟悉).请你根据图中提供的信息解答以下问题:(1)求该班共有多少名学生;(2)在条形统计图中,将表示“一般了解”的部分补充完整;(3)在扇形统计图中,计算出“了解较多”部分所对应的圆心角的度数;(4)从该班中任选一人,其对世博知识的了解程度为“熟悉”的概率是多少19.如图, ?ABCD的对角线AC、 BD 相交于点O,AE=CF.(1)求证:△ BOE≌ △ DOF;(2)若 BD=EF,连接 DE、BF,判断四边形 EBFD的形状,无需说明理由.20.如图,某校数学兴趣小组为测得大厦AB 的高度,在大厦前的平地上选择一点C,测得大厦顶端A 的仰角为30°,再向大厦方向前进80 米,到达点 D 处( C、 D、 B 三点在同一直线上),又测得大厦顶端 A 的仰角为45°,请你计算该大厦的高度.(精确到米,参考数据:≈,≈)21.为绿化校园,某校计划购进A、B 两种树苗,共21 课.已知 A 种树苗每棵90 元, B 种树苗每棵70 元.设购买 B 种树苗 x 棵,购买两种树苗所需费用为y 元.( 1) y 与 x 的函数关系式为:;( 2)若购买 B 种树苗的数量少于 A 种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.22.小明参加某网店的 “翻牌抽奖 ”活动,如图, 4 张牌分别对应价值 5, 10, 15,20(单位:元)的4 件奖品.( 1)如果随机翻 1 张牌,那么抽中 20 元奖品的概率为( 2)如果随机翻 2 张牌,且第一次翻过的牌不再参加下次翻牌,则所获奖品总值不低于30 元的概率为多少23.如图, AB 是 ⊙O 的弦, OP ⊥ OA 交 AB 于点 P ,过点 B 的直线交 OP 的延长线于点 C ,且 CP=CB . ( 1)求证: BC 是⊙ O 的切线;( 2)若 ⊙ O 的半径为, OP=1,求 BC 的长.24.如图,在平面直角坐标系xOy 中,直线 y= x+2 与 x 轴交于点 A ,与 y 轴交于点 C .抛物线 y=ax 2+bx+c的对称轴是 x=﹣ 且经过 A 、 C 两点,与x 轴的另一交点为点B .( 1) ① 直接写出点 B 的坐标; ② 求抛物线解析式.( 2)若点 P 为直线 AC 上方的抛物线上的一点,连接 PA ,PC .求 △PAC 的面积的最大值,并求出此时点 P 的坐标.( 3)抛物线上是否存在点M ,过点 M 作 MN 垂直 x 轴于点 N ,使得以点 A 、 M 、N 为顶点的三角形与 △ABC 相似若存在,求出点 M 的坐标;若不存在,请说明理由.25.( 1)问题发现如图 1,△ ACB和△ DCE均为等边三角形,点A, D, E 在同一直线上,连接BE.填空:① ∠AEB 的度数为;②线段AD, BE之间的数量关系为.( 2)拓展探究如图 2,△ ACB和△ DCE均为等腰直角三角形,∠ ACB=∠ DCE=90°,点A,D,E在同一直线上,CM为△DCE中 DE 边上的高,连接BE,请判断∠ AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.( 3)解决问题如图 3,在正方形ABCD中, CD=,若点P满足PD=1,且∠BPD=90°,请直接写出点 A 到 BP 的距离.2016 年陕西省西安市莲湖区中考数学一模试卷参考答案与试题解析一、选择题(共10 小题,每小题 3 分,计 30 分)1.下列各数中,比﹣2 小的是()A .﹣ 1B . 0C .﹣ 3D . π【考点】 实数大小比较.【专题】 应用题.【分析】 根据题意,结合实数大小的比较,从符号和绝对值两个方面分析可得答案.【解答】 解:比﹣ 2 小的数是应该是负数,且绝对值大于2 的数,分析选项可得,只有C 符合.故选 C .【点评】 本题考查实数大小的比较,是基础性的题目,比较简单.2.下列计算正确的是( )A . 4x 3?2x 2=8x 6B . a 4+a 3=a 7C .(﹣ x 2) 5=﹣ x 10D .( a ﹣b ) 2=a 2﹣ b2【考点】 单项式乘单项式;合并同类项;幂的乘方与积的乘方;完全平方公式.【专题】 计算题.【分析】 A 、原式利用单项式乘单项式法则计算得到结果,即可做出判断;B 、原式不能合并,错误;C 、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可做出判断;D 、原式利用完全平方公式化简得到结果,即可做出判断.【解答】 解: A 、原式 =8x 5,错误;B 、原式不能合并,错误;C 、原式 =﹣ x 10,正确;D 、原式 =a 2﹣ 2ab+b 2,错误,故选 C【点评】此题考查了单项式乘单项式,合并同类项,幂的乘方与积的乘方,以及完全平方公式,熟练掌握公式及法则是解本题的关键.3.如图,在△ ABC 中, AB=AC,过 A 点作 AD∥ BC,若∠ BAD=110°,则∠ BAC的大小为()A. 30° B. 40° C. 50° D. 70°【考点】等腰三角形的性质;平行线的性质.【分析】根据平行线的性质求出∠ C,根据等腰三角形的性质得出∠ B=∠ C=70°,根据三角形内角和定理求出即可.【解答】解:∵ AB=AC,∴ ∠B=∠C,∵AD∥ BC,∠1=70 ,°∴∠C=∠1=70 ,°∴ ∠B=70 ,°∴ ∠BAC=180 ﹣°∠ B﹣∠ C=180 ﹣°70 °﹣70 °=40 ,°故选 B.【点评】本题考查了三角形内角和定理,等腰三角形的性质,平行线的性质的应用,解此题的关键是求出∠ C 的度数和得出∠ B=∠ C,注意:三角形内角和等于180°,两直线平行,内错角相等.4.不等式组的解集是()A.﹣ 1 <x< 2B. 1< x≤2 C.﹣ 1< x≤2D.﹣ 1< x≤3【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,∵由① 得, x ≤2;由②得, x>﹣ 1,∴此不等式组的解集为:﹣1< x ≤2.故选 C.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.如图是一个长方体包装盒,则它的平面展开图是()A.B.C.D.【考点】几何体的展开图.【分析】由平面图形的折叠及长方体的展开图解题.【解答】解:由四棱柱四个侧面和上下两个底面的特征可知,A、可以拼成一个长方体;B、 C、 D、不符合长方体的展开图的特征,故不是长方体的展开图.故选 A.【点评】考查了几何体的展开图,解题时勿忘记四棱柱的特征及长方体展开图的各种情形.6.当 x=1 时, ax+b+1 的值为﹣ 2,则( a+b﹣ 1)( 1﹣ a﹣b)的值为()A.﹣ 16 B.﹣ 8 C. 8D. 16【考点】整式的混合运算—化简求值.【分析】由 x=1 时,代数式ax+b+1 的值是﹣ 2,求出 a+b 的值,将所得的值代入所求的代数式中进行计算即可得解.【解答】解:∵当 x=1 时, ax+b+1 的值为﹣ 2,∴a+b+1=﹣ 2,∴a+b=﹣ 3,∴(a+b﹣ 1)( 1﹣ a﹣b)=(﹣ 3﹣1)×( 1+3) =﹣16.故选: A.【点评】此题考查整式的化简求值,运用整体代入法是解决问题的关键.7.一次函数 y=﹣ x+a﹣3(a 为常数)与反比例函数y=﹣的图象交于 A、B 两点,当 A、B 两点关于原点对称时 a 的值是()A. 0B.﹣ 3 C. 3 D. 4【考点】反比例函数与一次函数的交点问题;关于原点对称的点的坐标.【专题】计算题;压轴题.【分析】设 A( t,﹣),根据关于原点对称的点的坐标特征得B(﹣ t,),然后把 A(t ,﹣),B(﹣ t,)分别代入 y=﹣ x+a﹣ 3 得﹣ =﹣ t+a ﹣3,=t+a﹣3 ,两式相加消去t 得 2a﹣ 6=0,再解关于 a 的一次方程即可.【解答】解:设 A( t ,﹣),∵A、B 两点关于原点对称,∴ B(﹣ t ,),把 A( t ,﹣),B(﹣t,)分别代入y=﹣ x+a﹣ 3 得﹣=﹣ t+a﹣ 3,=t+a﹣ 3,两式相加得2a﹣ 6=0,∴a=3.故选 C.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.8.如图,在五边形ABCDE中,∠ A+∠ B+∠ E=300°,DP、 CP分别平分∠ EDC、∠ BCD,则∠ P 的度数是()A. 60° B. 65° C. 55° D. 50°【考点】多边形内角与外角;三角形内角和定理.【分析】根据五边形的内角和等于540°,由∠ A+∠B+∠ E=300°,可求∠BCD+∠ CDE的度数,再根据角平分线的定义可得∠PDC与∠ PCD的角度和,进一步求得∠ P的度数.【解答】解:∵五边形的内角和等于540°,∠ A+∠B+∠ E=300°,∴ ∠BCD+∠ CDE=540 ﹣°300 °=240 ,°∵ ∠BCD、∠ CDE的平分线在五边形内相交于点O,∴ ∠PDC+∠ PCD= (∠ BCD+∠ CDE)=120 ,°∴ ∠P=180 ﹣°120 °=60 .°故选: A.【点评】本题主要考查了多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.9.如图,若锐角△ ABC 内接于⊙ O,点 D 在⊙ O 外(与点 C 在 AB 同侧),则下列三个结论:① sin ∠ C > sin∠D;②cos ∠ C> cos∠ D;③tan ∠ C> tan ∠ D 中,正确的结论为()A.①②B.②③C.①②③D.①③【考点】 锐角三角函数的增减性;圆周角定理.【分析】 连接 BE ,根据圆周角定理,可得∠ C=∠AEB ,因为 ∠ AEB=∠ D+∠ DBE ,所以 ∠ AEB > ∠ D ,所以 ∠ C >∠ D ,根据锐角三角形函数的增减性,即可判断.【解答】 解:如图,连接 BE ,根据圆周角定理,可得∠ C=∠ AEB ,∵ ∠AEB=∠D+∠ DBE ,∴ ∠AEB >∠ D ,∴ ∠C > ∠D ,根据锐角三角形函数的增减性,可得,sin ∠ C > sin ∠ D ,故 ① 正确; cos ∠ C < cos ∠ D ,故 ② 错误; tan ∠ C > tan ∠ D ,故 ③ 正确; 故选: D .【点评】 本题考查了锐角三角形函数的增减性,解决本题的关键是比较出∠ C > ∠ D .10.对于二次函数 y=﹣ x 2+2x .有下列四个结论: ① 它的对称轴是直线x=1;② 设 y 1=﹣ x 1 2+2x 1,y 2=﹣ x 22+2x 2,则当 x 2> x 1 时,有 y 2> y 1; ③ 它的图象与x 轴的两个交点是( 0,0)和( 2,0); ④ 当0< x < 2 时, y > 0.其中正确的结论的个数为( )A . 1B . 2C . 3D . 4【考点】 二次函数的性质.【专题】 压轴题.【分析】 利用配方法求出二次函数对称轴,再求出图象与x 轴交点坐标,进而结合二次函数性质得出答案.【解答】 解: y=﹣ x 2+2x=﹣( x ﹣ 1)2+1,故 ① 它的对称轴是直线 x=1,正确;② ∵直线 x=1 两旁部分增减性不一样,∴设 y 1=﹣ x 12+2x 1,y 2=﹣ x 22+2x 2,则当 x 2 >x 1 时,有 y 2> y 1或 y 2<y 1,错误;③ 当 y=0,则 x (﹣ x+2) =0,解得: x 1=0, x 2=2,故它的图象与 x 轴的两个交点是( 0, 0)和( 2, 0),正确;④ ∵ a=﹣ 1<0,∴ 抛物线开口向下,∵ 它的图象与 x 轴的两个交点是( 0, 0)和( 2, 0),∴ 当 0< x <2 时, y > 0,正确.故选: C .【点评】 此题主要考查了二次函数的性质以及一元二次方程的解法,得出抛物线的对称轴和其交点坐标是解题关键.二、填空题(共4 小题,每小题3 分,计12 分)11.若使二次根式有意义,则x 的取值范围是x ≥2 .【考点】 二次根式有意义的条件.【专题】 计算题.【分析】 先根据二次根式有意义的条件列出关于x 的不等式,求出x 的取值范围即可.【解答】 解: ∵ 二次根式有意义,∴ 2x ﹣ 4 ≥0,解得x ≥2.故答案为:x ≥2.【点评】 本题考查的是二次根式有意义的条件,即被开方数大于等于0 .12.请从以下两个小题中个任意选一作答,若对选,则按第一题计分. A .如图,为测量一幢大楼的高度,在地面上距离楼底O 点 20m的点 A 处,测得楼顶B 点的仰角∠ OAB=60 ,°则这幢大楼的高度为(用科学计算器计算,结果精确到米).B .是指大气中直径小于或等于的颗粒物,将用科学记数法表示为﹣× 106.【考点】 解直角三角形的应用 -仰角俯角问题;科学记数法 —表示较小的数.【分析】 A 、根据正切的概念求出OB 即可;B 、利用科学记数法表示较小的数解答即可.【解答】 解: A 、 tanA=,则 OB=OA?tanA=20×=,故答案为:;、 × ﹣ 6, B = 10故答案为: ×10﹣6.【点评】 本题考查的是解直角三角形的应用﹣仰角俯角问题以及科学计数法表示较小的数,掌握仰角俯角的概念、熟记锐角三角函数的定义、正确用科学计数法表示较小的数是解题的关键.13.已知 k > 0,且关于 x 的方程 3kx 2+12x+k+1=0 有两个相等的实数根,那么k 的值等于 3 .【考点】 根的判别式.【分析】 若一元二次方程有两个相等的实数根,则根的判别式△ =b 2﹣ 4ac=0,据此可列出关于 k 的等量关系式,即可求得k 的值.【解答】 解: ∵ 关于 x 的方程 3kx 2+12x+k+1=0 有两个相等的实数根,∴ △=b 2﹣4ac=144﹣ 4×3k ×( k+1)=0,解得 k=﹣ 4 或 3,∵ k >0 ,∴ k=3.故答案为 3.【点评】 本题考查了根的判别式,一元二次方程ax 2+bx+c=0( a ≠0)的根与 △ =b 2﹣ 4ac 有如下关系:( 1) △ > 0?方程有两个不相等的实数根; ( 2) △ =0?方程有两个相等的实数根;( 3) △ < 0?方程没有实数根.14.如图,在平面直角坐标系中,菱形 OBCD 的边图象经过该菱形对角线的交点 A ,且与边 BC 交于点OB 在 x 轴正半轴上,反比例函数y=F .若点 D 的坐标为( 6,8),则点( x >0)的 A 的坐标是( 8, 4).【考点】 菱形的性质;反比例函数图象上点的坐标特征.【分析】 由点 D 的坐标为( 6, 8),可求得菱形OBCD 的边长,又由点 A 是 BD 的中点,求得点 A的坐标.【解答】 解: ∵ 点 D 的坐标为( 6, 8),∴ OD==10,∵ 四边形 OBCD 是菱形,∴ OB=OD=10,∴ 点 B 的坐标为:( 10, 0),∵ AB=AD ,即 A 是 BD 的中点,∴ 点 A 的坐标为:( 8, 4),故答案是:( 8, 4).【点评】 此题考查了菱形的性质、反比例函数的性质.此题利用了菱形的四条边都相等的性质求得边 OB 的长度是解题的难点.三、解答题(共11 小题,计78 分,解答需写出必要的文字说明,演算步骤或证明过程)15.计算:( 2015﹣π)0+(﹣)﹣1+|﹣1|﹣3tan30 +6°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用零指数幂法则计算,第二项利用负整数指数幂法则计算,第三项利用绝对值的代数意义化简,第四项利用特殊角的三角函数值计算,最后一项利用二次根式性质化简,计算即可得到结果.【解答】解:原式 =1﹣3+﹣1﹣+2=2﹣3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.先化简,再求值:(1﹣)÷,其中a=3.【考点】分式的化简求值.【分析】先计算括号里面的,再把分子、分母因式分解,约分即可,把a=3 代入计算即可.【解答】解:原式 =×=,当 a=3 时,原式 == .【点评】本题考查了分式的化简求值,解答此题的关键是把分式化到最简,然后代值计算.17.如图,在△ABC中, AB=4cm, AC=6cm.(1)作图:作 BC边的垂直平分线分别交与 AC, BC于点 D, E(用尺规作图法,保留作图痕迹,不要求写作法);( 2)在( 1)的条件下,连结BD,求△ABD 的周长.【考点】作图—复杂作图.【分析】( 1)运用作垂直平分线的方法作图,( 2)运用垂直平分线的性质得出BD=DC,利用△ ABD 的周长 =AB+BD+AD=AB+AC即可求解.【解答】解:( 1)如图 1,( 2)如图 2,∵DE 是 BC 边的垂直平分线,∴ BD=DC,∵AB=4cm, AC=6cm.∴ △ABD 的周长 =AB+BD+AD=AB+AC=4+6=10cm.【点评】本题主要考查了作图﹣复杂作图及垂直平分线的性质,解题的关键是熟记作垂直平分线的方法.18. 2010 年 5 月 1 日,第 41 届世博会在上海举办,世博知识在校园迅速传播.小明同学就本班学生对世博知识的了解程度进行了一次调查统计,下图是他采集数据后绘制的两幅不完整的统计图(A:不了解, B:一般了解,C:了解较多,D:熟悉).请你根据图中提供的信息解答以下问题:( 1)求该班共有多少名学生;( 2)在条形统计图中,将表示“一般了解”的部分补充完整;(3)在扇形统计图中,计算出“了解较多”部分所对应的圆心角的度数;(4)从该班中任选一人,其对世博知识的了解程度为“熟悉”的概率是多少【考点】扇形统计图;条形统计图;概率公式.【专题】压轴题;阅读型;图表型.【分析】( 1)根据 A 是 5 人,占总体的10%,即可求得总人数;(2)根据总人数和 B 所占的百分比是 30%求解;(3)首先计算 C 所占的百分比,再进一步求得其所对的圆心角的度数;(4)只需求得 D 所占的百分比即可.【解答】解:( 1) 5÷10%=50(人).(2) 50×30%=15(人).见图:(3) 360°× =144°.( 4).【点评】读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.总体数目 =部分数目÷相应百分比.部分数目 =总体数目乘以相应概率.概率=所求情况数与总情况数之比.19.如图, ?ABCD的对角线AC、 BD 相交于点O,AE=CF.(1)求证:△ BOE≌ △ DOF;(2)若 BD=EF,连接 DE、BF,判断四边形 EBFD的形状,无需说明理由.【考点】平行四边形的性质;全等三角形的判定与性质.【专题】证明题.【分析】( 1)先证出OE=OF,再由 SAS即可证明△ BOE≌△ DOF;EBFD ( 2)由对角线互相平分证出四边形EBFD是平行四边形,再由对角线相等,即可得出四边形是矩形.【解答】( 1)证明:∵四边形 ABCD是平行四边形,∴OA=OC, OB=OD,∵AE=CF,∴ OE=OF,在△BOE 和△ DOF中,,∴ △BOE≌ △ DOF( SAS);( 2)解:四边形EBFD是矩形;理由如下:∵OB=OD,OE=OF,∴四边形 EBFD是平行四边形,∵BD=EF,∴四边形 EBFD是矩形.【点评】本题考查了平行四边形的性质与判定、全等三角形的判定与性质、矩形的判定;熟练掌握平行四边形的性质,并能进行推理论证是解决问题的关键.20.如图,某校数学兴趣小组为测得大厦AB 的高度,在大厦前的平地上选择一点C,测得大厦顶端A 的仰角为30°,再向大厦方向前进80 米,到达点 D 处( C、 D、 B 三点在同一直线上),又测得大厦顶端 A 的仰角为45°,请你计算该大厦的高度.(精确到米,参考数据:≈,≈)【考点】解直角三角形的应用-仰角俯角问题.【分析】先设 AB=x;根据题意分析图形:本题涉及到两个直角三角形Rt△ ACB 和 Rt△ ADB,应利用其公共边BA 构造等量关系,解三角形可求得DB、 CB 的数值,再根据CD=BC﹣ BD=80,进而可求出答案.【解答】解:设 AB=x,在 Rt△ ACB和 Rt△ ADB 中,∵ ∠C=30 ,°∠ADB=45 ,°CD=80∴ DB=x,AC=2x, BC==x,∵ CD=BC﹣ BD=80,x﹣ x=80,∴ x=40(+1)≈米.答:该大厦的高度是米.【点评】本题考查俯角、仰角的定义,要求学生能借助俯角、仰角构造直角三角形并结合图形利用三角函数解直角三角形.21.为绿化校园,某校计划购进A、B 两种树苗,共21 课.已知 A 种树苗每棵90 元, B 种树苗每棵70 元.设购买 B 种树苗 x 棵,购买两种树苗所需费用为y 元.( 1) y 与 x 的函数关系式为:y=﹣ 20x+1890;( 2)若购买 B 种树苗的数量少于 A 种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.【考点】一次函数的应用.【分析】( 1)根据购买两种树苗所需费用=A 种树苗费用 +B 种树苗费用,即可解答;( 2)根据购买 B 种树苗的数量少于 A 种树苗的数量,列出不等式,确定x 的取值范围,再根据(1)得出的 y 与 x 之间的函数关系式,利用一次函数的增减性结合自变量的取值即可得出更合算的方案.【解答】解:( 1) y=90(21 ﹣x) +70x=﹣ 20x+1890,故答案为: y=﹣20x+1890 .( 2)∵购买 B 种树苗的数量少于 A 种树苗的数量,∴x< 21﹣ x,解得: x<,又∵x≥1,∴x 的取值范围为: 1 ≤ x ≤,10且 x 为整数,∵ y=﹣ 20x+1890, k=﹣ 20< 0,∴y 随 x 的增大而减小,∴当 x=10 时, y 有最小值,最小值为:﹣ 20 × 10+1890=1690,∴ 使费用最省的方案是购买 B 种树苗 10 棵, A 种树苗 11 棵,所需费用为1690 元.【点评】题考查的是一元一次不等式及一次函数的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.22.小明参加某网店的“翻牌抽奖”活动,如图,4张牌分别对应价值5, 10, 15,20(单位:元)的4 件奖品.( 1)如果随机翻 1 张牌,那么抽中 20 元奖品的概率为25%( 2)如果随机翻 2 张牌,且第一次翻过的牌不再参加下次翻牌,则所获奖品总值不低于30 元的概率为多少【考点】列表法与树状图法;概率公式.【分析】( 1)随机事件 A 的概率 P( A) =事件 A 可能出现的结果数÷所有可能出现的结果数,据此用 1 除以 4,求出抽中20 元奖品的概率为多少即可.( 2)首先应用树状图法,列举出随机翻 2 张牌,所获奖品的总值一共有多少种情况;然后用所获奖品总值不低于30 元的情况的数量除以所有情况的数量,求出所获奖品总值不低于30 元的概率为多少即可.【解答】解:( 1)∵1÷4==25%,∴抽中 20 元奖品的概率为25%.故答案为: 25%.( 2),∵所获奖品总值不低于30 元有 4 种情况: 30 元、 35 元、 30 元、 35 元,∴所获奖品总值不低于30 元的概率为:4÷ 12=.【点评】(1)此题主要考查了概率公式,要熟练掌握,解答此题的关键是要明确:随机事件 A 的概率 P(A) =事件 A 可能出现的结果数÷所有可能出现的结果数.( 2)此题还考查了列举法与树状图法求概率问题,解答此类问题的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.23.如图,AB 是⊙O 的弦, OP⊥ OA 交AB 于点P,过点 B 的直线交OP 的延长线于点C,且CP=CB.( 1)求证: BC 是⊙ O 的切线;( 2)若⊙ O 的半径为,OP=1,求BC的长.【考点】 切线的判定.【专题】 几何图形问题.【分析】 ( 1)由垂直定义得 ∠ A+∠APO=90°,根据等腰三角形的性质由 CP=CB 得 ∠ CBP=∠ CPB ,根据对顶角相等得 ∠ CPB=∠ APO ,所以 ∠ APO=∠ CBP ,而 ∠ A=∠ OBA ,所以∠ OBC=∠ CBP+∠ OBA=∠ APO+∠ A=90 ,°然后根据切线的判定定理得到 BC 是 ⊙ O 的切线;( 2)设BC=x ,则PC=x ,在Rt △ OBC 中,根据勾股定理得到()2+x 2=( x+1)2,然后解方程即可.【解答】 ( 1)证明:连接 OB ,如图,∵ OP ⊥ OA ,∴ ∠AOP=90 ,°∴ ∠A+∠ APO=90 ,°∵ CP=CB ,∴ ∠CBP=∠ CPB ,而 ∠CPB=∠ APO ,∴ ∠APO=∠ CBP ,∵ OA=OB ,∴ ∠A=∠ OBA ,∴ ∠OBC=∠CBP+∠ OBA=∠ APO+∠ A=90 ,°∴ OB ⊥BC ,∴ BC 是⊙ O 的切线;( 2)解:设 BC=x ,则 PC=x ,在 Rt △ OBC 中, OB=, OC=CP+OP=x+1,∵ OB 2+BC 2=OC 2,∴ () 2+x 2=( x+1) 2,解得 x=2,即 BC 的长为 2.【点评】 本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了勾股定理.24.如图,在平面直角坐标系xOy 中,直线 y= x+2 与 x 轴交于点 A ,与 y 轴交于点 C .抛物线 y=ax 2+bx+c的对称轴是 x=﹣ 且经过 A 、 C 两点,与x 轴的另一交点为点B .( 1) ① 直接写出点 B 的坐标; ② 求抛物线解析式.( 2)若点 P 为直线 AC 上方的抛物线上的一点,连接 PA ,PC .求 △PAC 的面积的最大值,并求出此时点 P 的坐标.( 3)抛物线上是否存在点M ,过点 M 作 MN 垂直 x 轴于点 N ,使得以点 A 、 M 、N 为顶点的三角形与 △ABC 相似若存在,求出点 M 的坐标;若不存在,请说明理由.【考点】 二次函数综合题.【专题】 压轴题.【分析】 ( 1)① 先求的直线y= x+2 与x 轴交点的坐标,然后利用抛物线的对称性可求得点B 的坐标; ② 设抛物线的解析式为y=y=a ( x+4)( x ﹣ 1),然后将点C 的坐标代入即可求得a 的值;( 2)设点 P 、 Q 的横坐标为 m ,分别求得点 P 、Q 的纵坐标,从而可得到线段PQ= m 2﹣ 2m ,然后利用三角形的面积公式可求得S △ PAC = × PQ ×4,然后利用配方法可求得 △ PAC 的面积的最大值以及此时m 的值,从而可求得点P 的坐标;( 3)首先可证明 △ ABC ∽ △ACO ∽ △ CBO ,然后分以下几种情况分类讨论即可:① 当M 点与C 点重合,即 M ( 0,2)时,△ MAN ∽ △ BAC ;② 根据抛物线的对称性,当 M (﹣ 3,2)时,△ MAN ∽ △ ABC ;④ 当点 M 在第四象限时,解题时,需要注意相似三角形的对应关系.【解答】 解:( 1) ①y=当 x=0 时, y=2,当 y=0 时, x=﹣ 4,∴ C ( 0,2), A (﹣ 4, 0),由抛物线的对称性可知:点A 与点B 关于 x=﹣ 对称,∴ 点 B 的坐标为 1, 0).② ∵抛物线 y=ax 2+bx+c 过 A (﹣ 4, 0), B ( 1,0),∴ 可设抛物线解析式为y=a ( x+4)( x ﹣1),又 ∵抛物线过点 C ( 0, 2),∴ 2=﹣ 4a∴ a=∴ y=x 2x+2.( 2)设 P ( m ,m 2m+2).过点 P 作 PQ ⊥ x 轴交 AC 于点 Q ,∴ Q ( m , m+2),∴ PQ=m 2m+2﹣( m+2)=m 2﹣ 2m ,∵ S △PAC = × PQ ×4,=2PQ=﹣ m 2﹣4m=﹣( m+2) 2+4,∴ 当 m=﹣2 时, △ PAC 的面积有最大值是 4, 此时 P (﹣ 2, 3).( 3)在 Rt △ AOC 中, tan ∠ CAO= 在 Rt △ BOC 中, tan ∠ BCO= ,∴ ∠CAO=∠ BCO ,∵ ∠BCO+∠OBC=90 ,°∴ ∠CAO+∠ OBC=90 ,°∴ ∠ACB=90 ,°∴ △ABC ∽ △ ACO ∽ △CBO ,如下图:① 当 M 点与 C 点重合,即② 根据抛物线的对称性,当M ( 0, 2)时, △ MAN ∽ △ BAC ;M (﹣ 3, 2)时, △ MAN ∽ △ ABC ;③ 当点M在第四象限时,设M ( n ,n 2n+2),则N ( n , 0)∴ MN= n 2+ n ﹣ 2, AN=n+4当时, MN= AN ,即 n 2+ n ﹣ 2= ( n+4)整理得: n 2+2n ﹣ 8=0解得: n1=﹣ 4(舍), n2=2 ∴ M( 2,﹣ 3);当时, MN=2AN ,即 n 2+ n ﹣2=2( n+4),整理得: n 2﹣ n﹣ 20=0解得: n1=﹣ 4(舍), n2=5,∴ M( 5,﹣ 18).综上所述:存在 M 1(0, 2), M2(﹣ 3,2), M3( 2,﹣ 3), M 4(5 ,﹣ 18),使得以点A、M 、N 为顶点的三角形与△ ABC相似.【点评】本题主要考查的是二次函数与相似三角形的综合应用,难度较大,解答本题需要同学们熟练掌握二次函数和相似三角形的相关性质.25.( 1)问题发现如图 1,△ ACB和△ DCE均为等边三角形,点A, D, E 在同一直线上,连接BE.填空:① ∠AEB 的度数为60°;②线段 AD, BE之间的数量关系为AD=BE.( 2)拓展探究如图 2,△ ACB和△ DCE均为等腰直角三角形,∠ ACB=∠ DCE=90°,点A,D,E在同一直线上,CM为△DCE中 DE 边上的高,连接BE,请判断∠ AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.( 3)解决问题如图 3,在正方形ABCD中, CD=,若点P满足PD=1,且∠BPD=90°,请直接写出点 A 到 BP 的距离.【考点】圆的综合题;全等三角形的判定与性质;等腰三角形的性质;等边三角形的性质;直角三角形斜边上的中线;正方形的性质;圆周角定理.【专题】综合题;压轴题;探究型.【分析】(1)由条件易证△ ACD≌ △ BCE,从而得到: AD=BE,∠ ADC=∠ BEC.由点 A, D,E 在同一直线上可求出∠ ADC,从而可以求出∠AEB的度数.( 2)仿照( 1)中的解法可求出∠AEB的度数,证出AD=BE;由△DCE为等腰直角三角形及CM 为△ DCE中 DE边上的高可得CM=DM=ME,从而证到AE=2CH+BE.(3)由 PD=1可得:点 P 在以点 D 为圆心, 1 为半径的圆上;由∠ BPD=90°可得:点 P 在以 BD 为直径的圆上.显然,点 P 是这两个圆的交点,由于两圆有两个交点,接下来需对两个位置分别进行讨论.然后,添加适当的辅助线,借助于( 2)中的结论即可解决问题.【解答】解:( 1)①如图 1,∵ △ACB 和△ DCE均为等边三角形,∴ CA=CB, CD=CE,∠ ACB=∠ DCE=60 .°∴ ∠ACD=∠ BCE.在△ACD 和△ BCE中,∴ △ACD≌△ BCE( SAS).∴ ∠ADC=∠ BEC.∵ △DCE为等边三角形,∴ ∠CDE=∠ CED=60 .°∵点 A, D, E 在同一直线上,∴ ∠ADC=120 .°。