(完整版)数学归纳法经典例题及答案(2)
- 格式:doc
- 大小:74.62 KB
- 文档页数:3
数学归纳法(2016.4.21)
一、用数学归纳法证明与正整数有关命题的步骤是:
(1)证明当n 取第一个值0n (如01n =或2等)时结论正确;
(2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),……
注意:数学归纳法使用要点: 两步骤,一结论。
二、题型归纳:
题型1.证明代数恒等式
例1.用数学归纳法证明:
()()12121217
51531311+=+-++⨯+⨯+⨯n n n n 证明:①n =1时,左边31311=⨯=,右边3
1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即:
()()12121217
51531311+=+-++⨯+⨯+⨯k k k k . 当n =k +1时.
()()()()32121121217
51531311++++-++⨯+⨯+⨯k k k k ()()
3212112++++=k k k k ()()()()()()
321211232121322++++=++++=k k k k k k k k ()1
121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立,
由①、②可知,对一切自然数n 等式成立.
题型2.证明不等式
例2.证明不等式n n 21
31
21
1<++++ (n ∈N).
证明:①当n =1时,左边=1,右边=2.
左边<右边,不等式成立.
②假设n =k 时,不等式成立,即k k 2131211<++++
.
那么当n =k +1时, 11
1
31
21
1++++++k k
1
1
1211
2+++=++ 1211211 1+=++=++++ 这就是说,当n =k +1时,不等式成立. 由①、②可知,原不等式对任意自然数n 都成立. 说明:这里要注意,当n =k +1时,要证的目标是 121113 1 21 1+<++++++k k k ,当代入归纳假设后,就是要证明: 12112+<++k k k . 认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标. 题型3.证明数列问题 例3 (x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *). (1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值. (2)设b n =a 22n -3 ,T n =b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)3 . 解: (1)当n =5时, 原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5 令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243. (2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2 b n =a 22 n -3=2C n 2=n (n -1)(n ≥2) ①当n =2时.左边=T 2=b 2=2, 右边=2(2+1)(2-1)3 =2,左边=右边,等式成立. ②假设当n =k (k ≥2,k ∈N *)时,等式成立, 即T k =k (k +1)(k -1)3 成立 那么,当n =k +1时, 左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3 +k (k +1) =k (k +1)⎝⎛ ⎭⎫k -13+1=k (k +1)(k +2)3 =(k +1)[(k +1)+1][(k +1)-1]3 =右边. 故当n =k +1时,等式成立. 综上①②,当n ≥2时,T n = n (n +1)(n -1)3 .