(完整版)数学归纳法经典例题及答案(2)

  • 格式:doc
  • 大小:74.62 KB
  • 文档页数:3

下载文档原格式

  / 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学归纳法(2016.4.21)

一、用数学归纳法证明与正整数有关命题的步骤是:

(1)证明当n 取第一个值0n (如01n =或2等)时结论正确;

(2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),……

注意:数学归纳法使用要点: 两步骤,一结论。

二、题型归纳:

题型1.证明代数恒等式

例1.用数学归纳法证明:

()()12121217

51531311+=+-++⨯+⨯+⨯n n n n 证明:①n =1时,左边31311=⨯=,右边3

1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即:

()()12121217

51531311+=+-++⨯+⨯+⨯k k k k . 当n =k +1时.

()()()()32121121217

51531311++++-++⨯+⨯+⨯k k k k ()()

3212112++++=k k k k ()()()()()()

321211232121322++++=++++=k k k k k k k k ()1

121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立,

由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式

例2.证明不等式n n 21

31

21

1<++++ (n ∈N).

证明:①当n =1时,左边=1,右边=2.

左边<右边,不等式成立.

②假设n =k 时,不等式成立,即k k 2131211<++++

那么当n =k +1时, 11

1

31

21

1++++++k k

1

1

1211

2+++=++

1211211

1+=++=++++

这就是说,当n =k +1时,不等式成立.

由①、②可知,原不等式对任意自然数n 都成立.

说明:这里要注意,当n =k +1时,要证的目标是

121113

1

21

1+<++++++k k k ,当代入归纳假设后,就是要证明: 12112+<++k k k .

认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标.

题型3.证明数列问题

例3 (x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *).

(1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值.

(2)设b n =a 22n -3

,T n =b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)3

. 解: (1)当n =5时,

原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5

令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243.

(2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2

b n =a 22

n -3=2C n 2=n (n -1)(n ≥2) ①当n =2时.左边=T 2=b 2=2,

右边=2(2+1)(2-1)3

=2,左边=右边,等式成立. ②假设当n =k (k ≥2,k ∈N *)时,等式成立,

即T k =k (k +1)(k -1)3

成立 那么,当n =k +1时,

左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3

+k (k +1) =k (k +1)⎝⎛

⎭⎫k -13+1=k (k +1)(k +2)3 =(k +1)[(k +1)+1][(k +1)-1]3

=右边. 故当n =k +1时,等式成立.

综上①②,当n ≥2时,T n =

n (n +1)(n -1)3

.