2013年全国高考理科数学试题分类汇编9:圆锥曲线
- 格式:doc
- 大小:1.34 MB
- 文档页数:28
2013年全国高考理科数学试题分类汇编9:圆锥曲线一、选择题错误!未指定书签。
.(2013年高考江西卷(理))过点(2,0)引直线l 与曲线21y x =+相交于A,B 两点,O 为坐标原点,当∆AOB 的面积取最大值时,直线l 的斜率等于 ( ) A .y EB BC CD=++33B .33-C .33±D .3-【答案】B错误!未指定书签。
.(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))双曲线2214x y -=的顶点到其渐近线的距离等于( )A .25B .45C .255D .455【答案】C错误!未指定书签。
.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))已知中心在原点的双曲线C 的右焦点为()3,0F ,离心率等于32,在双曲线C 的方程是 ( )A .22145x y -=B .22145x y -= C .22125x y -=D .22125x y -=【答案】B错误!未指定书签。
.(2013年高考新课标1(理))已知双曲线C :22221x y a b-=(0,0a b >>)的离心率为52,则C 的渐近线方程为 ( )A .14y x =±B .13y x =±C .12y x =±D .y x =±【答案】C错误!未指定书签。
.(2013年高考湖北卷(理))已知04πθ<<,则双曲线22122:1cos sin x y C θθ-=与222222:1sin sin tan y x C θθθ-=的 ( )A .实轴长相等B .虚轴长相等C .焦距相等D .离心率相等【答案】D错误!未指定书签。
.(2013年高考四川卷(理))抛物线24y x =的焦点到双曲线2213y x -=的渐近线的距离是 ( )A .12 B .32C .1D .3【答案】B错误!未指定书签。
全国高考理科数学试题分类汇编9:圆锥曲线一、选择题1 (高考江西卷(理))过点引直线l与曲线y =A,B 两点,O 为坐标原点,当∆AOB 的面积取最大值时,直线l 的斜率等于 ( )A .y EB BC CD=++3 B. C. D. B 2 (福建数学(理)试题)双曲线2214x y -=的顶点到其渐近线的距离等于( )A .25B .45CDC 3 (广东省数学(理)卷)已知中心在原点的双曲线C 的右焦点为()3,0F ,离心率等于32,在双曲线C 的方程是( )A.2214x = B .22145x y -=C .22125x y -=D.2212x =*B4 (高考新课标1(理))已知双曲线C :22221x y a b -=(0,0a b >>)则C 的渐近线方程为 ( )A .14y x =±B .13y x =±C .12y x =±D .y x =±*C5 (高考湖北卷(理))已知04πθ<<,则双曲线22122:1cos sin x y C θθ-=与222222:1sin sin tan y x C θθθ-=的 ( )A .实轴长相等B .虚轴长相等C .焦距相等D .离心率相等*D6 (高考四川卷(理))抛物线24y x =的焦点到双曲线2213yx -=的渐近线的距离是( )A .12B.2C .1 DB7 (浙江数学(理)试题)如图,21,F F 是椭圆14:221=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二、四象限的公共点.若四边形21BF AF 为矩形,则2C 的离心率是( )A .2B .3C .23D .26*D8 (天津数学(理)试题)已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB 则p =( )A .1B .32C .2D .3*C9 (大纲版数学(理))椭圆22:143x y C +=的左、右顶点分别为12,A A ,点P 在C 上且直线2PA 的斜率的取值范围是[]2,1--,那么直线1PA 斜率的取值范围是( )A .1324⎡⎤⎢⎥⎣⎦,B .3384⎡⎤⎢⎥⎣⎦,C .112⎡⎤⎢⎥⎣⎦,D .314⎡⎤⎢⎥⎣⎦,*B10(大纲版数学(理))已知抛物线2:8C yx =与点()2,2M -,过C 的焦点且斜率为k 的直线与C 交于,A B 两点,若0MA MB =,则k =( )A .12B C D .2*D11(高考北京卷(理))若双曲线22221x y a b-=则其渐近线方程为( )。
2013-高考真题-圆锥曲线2013 圆锥曲线一、选择题1 .(2013年高考湖北卷(文))已知π04θ<<,则双曲线1C :22221sin cos x y θθ-=与2C :22221cos sin y x θθ-=的( )A .实轴长相等B .虚轴长相等C .离心率相等D .焦距相等【答案】D【解析】本题考查双曲线的方程以及,,a b c 的计算。
双曲线1C 中,2222sin ,cos a b θθ==,所以21c=,离心率为221sin eθ=。
2C 中,2222cos ,sin a b θθ==,所以21c=。
所以两个双曲线有相同的焦距,选D.2 .(2013年高考四川卷(文9))从椭圆22221(0)x y a b a b +=>>上一点P 向x 轴作垂线,垂足恰为左焦点1F ,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且//AB OP (O 是坐标原点),则该椭圆的离心率是( )A B .12C D【答案】C【解析】由已知得,点),(y c P -在椭圆上,代入椭圆的方程,得),(2ab c P -,因为AB ∥OP ,所以OPABk k=,acb a b 2-=-,c b =,所以21222222=-==c b c a c e ,22=e ,选C.3 .(2013年高考课标Ⅱ卷(文10))设抛物线2:4C yx=的焦点为F ,直线l 过F 且与C 交于A ,B 两点。
若||3||AF BF =,则l 的方程为( )(A )1y x =-或1y x =-+ (B )1)y x =-或(1)3y x =--(C )1)y x =-或1)y x =- (D )(1)2y x =-或1)2y x =--【答案】C【解析】抛物线y 2=4x 的焦点坐标为(1,0),准线方程为x=-1,设A (x 1,y 1),B (x 2,y 2),则因为|AF|=3|BF|,所以x 1+1=3(x 2+1),所以x 1=3x 2+2。
2013高考真题分类汇编:圆锥曲线1.【2013福建】双曲线2244x y -=的顶点到其渐近线的距离等于( ) (A )25 (B )45 (C) (D)2.【2013广东】已知中心在原点的双曲线C 的右焦点为()3,0F ,离心率等于32,在双曲线C 的方程是( )(A)2214x = (B )22145x y -= (C )22125x y -= (D)2212x -= 3.【2013新课标】已知双曲线C :()222210,0x y a b a b -=>>,则C 的渐近线方程为( ) (A )4y x =± (B )3y x =± (C )2y x =± (D )y x =±4.【2013湖北】已知04πθ<<,则双曲线22122:1cos sin x y C θθ-=与222222:1sin sin tan y x C θθθ-=的 ( )(A )实轴长相等 (B )虚轴长相等 (C )焦距相等 (D )离心率相等5.【2013四川】抛物线24y x =的焦点到双曲线2213yx -=的渐近线的距离是( )(A )12 (B(C )1 (D6.【2013浙江9】如图,21,F F 是椭圆14:221=+y xC 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二、四象限的公共点,若四边形21BF AF 为矩形,则2C 的离心率是( ) (A )2 (B )3 (C )32 (D7.【2013天津】已知双曲线()222210,0x y a b a b-=>>的两条渐近线与抛物线()220p y x p =>的准线分别交于B A ,两点,O 为坐标原点。
若双曲线的离心率为2,AOB ∆则p =( ) (A )1 (B )32 (C )2 (D )38.【2013大纲版】椭圆22:143x y C +=的左、右顶点分别为12,A A ,点P 在C 上且直线2PA 的斜率的取值范围是[]2,1--,那么直线1PA 斜率的取值范围是( )(A )[]12,34 (B )[]38,34 (C )[]12,1 (D )[]34,1 9.【2013大纲版】已知抛物线2:8C y x =与点()2,2M -,过C 的焦点且斜率为k 的直线与C 交于,A B 两点,若0MA MB ⋅=,则k =( )(A )12 (B (C (D )210.【2013北京】若双曲线22221x y a b-= )(A )2y x =± (B )y = (C )2y x =± (D )2y x =11.【2013北京】已知抛物线1C :()2102y x p p =>的焦点与双曲线2C :2213x y -=的右焦点的连线交1C 于第一象限的点M 。
1.(2013年上海市春季高考数学试卷(含答案))本题共有2个小题,第1小题满分4分,第2小题满分9分.已知椭圆C 的两个焦点分别为1(10)F -,、2(1 0)F ,,短轴的两个端点分别为12 B B 、 (1)若112F B B ∆为等边三角形,求椭圆C 的方程;(2)若椭圆C 的短轴长为2,过点2F 的直线l 与椭圆C 相交于 P Q 、两点,且11F P F Q ⊥,求直线l 的方程. [解](1) (2)【答案】[解](1)设椭圆C 的方程为22221(0)x y a b a b +=>>.根据题意知2221a b a b =⎧⎨-=⎩, 解得243a =,213b = 故椭圆C 的方程为2214133x y +=.(2)容易求得椭圆C 的方程为2212x y +=. 当直线l 的斜率不存在时,其方程为1x =,不符合题意; 当直线的斜率存在时,设直线l 的方程为(1)y k x =-.由22(1)12y k x x y =-⎧⎪⎨+=⎪⎩ 得2222(21)42(1)0k x k x k +-+-=. 设1122( ) ( )P x y Q x y ,,,,则 2212121111222242(1) (1 ) (1 )2121k k x x x x F P x y FQ x y k k -+===+=+++ ,,,,, 因为11F P F Q ⊥ ,所以110F P FQ ⋅=,即 21212121212(1)(1)()1(1)(1)x x y y x x x x k x x +++=++++-- 2221212(1)(1)()1k x x k x x k =+--+++2271021k k -==+,解得217k =,即7k =±.故直线l 的方程为10x -=或10x --=.2.(2013年高考四川卷(理))已知椭圆C :22221,(0)x y a b a b +=>>的两个焦点分别为12(1,0),(1,0)F F -,且椭圆C 经过点41(,)33P .(Ⅰ)求椭圆C 的离心率;(Ⅱ)设过点(0,2)A 的直线l 与椭圆C 交于M 、N 两点,点Q 是线段MN 上的点,且222211||||||AQ AM AN =+,求点Q 的轨迹方程.【答案】解:122a PF PF =+==所以,a =又由已知,1c =,所以椭圆C 的离心率2c e a === ()II 由()I 知椭圆C 的方程为2212x y +=.设点Q 的坐标为(x,y).(1)当直线l 与x 轴垂直时,直线l 与椭圆C 交于()()0,1,0,1-两点,此时Q 点坐标为0,25⎛- ⎝⎭(2) 当直线l 与x 轴不垂直时,设直线l 的方程为2y kx =+.因为,M N 在直线l 上,可设点,M N 的坐标分别为1122(,2),(,2)x kx x kx ++,则22222212(1),(1)AM k x AN k x =+=+. 又()222222(1).AQ x y k x =+-=+由222211AQAMAN=+,得()()()22222212211111k x k x k x =++++,即 ()212122222212122211x x x x x x x x x +-=+= ① 将2y kx =+代入2212x y +=中,得()2221860kx kx +++= ②由()()22842160,k k ∆=-⨯+⨯>得232k >. 由②可知12122286,,2121k x x x x k k +=-=++ 代入①中并化简,得2218103x k =- ③ 因为点Q 在直线2y k x =+上,所以2y k x-=,代入③中并化简,得()22102318y x --=.由③及232k >,可知2302x <<,即22x ⎛⎫⎛⎫∈- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.又0,2⎛ ⎝⎭满足()22102318y x --=,故x ⎛∈ ⎝⎭. 由题意,(),Q x y 在椭圆C 内部,所以11y -≤≤, 又由()22102183y x -=+有()2992,54y ⎡⎫-∈⎪⎢⎣⎭且11y -≤≤,则1,225y ⎛∈- ⎝⎦. 所以点Q的轨迹方程是()22102318yx --=,其中,22x ⎛∈- ⎝⎭,1,225y ⎛∈- ⎝⎦3.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))椭圆2222:1x y C a b +=(0)a b >>的左、右焦点分别是12,F F ,,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为1. (Ⅰ)求椭圆C 的方程;(Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接12,PF PF ,设12F PF ∠的角平分线PM 交C 的长轴于点(,0)M m ,求m 的取值范围;(Ⅲ)在(Ⅱ)的条件下,过P 点作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点,设直线12,PF PF 的斜率分别为12,k k ,若0k ≠,试证明1211kk kk +为定值,并求出这个定值.【答案】解:(Ⅰ)由于222c a b =-,将x c =-代入椭圆方程22221x y a b +=得2b y a =± 由题意知221b a =,即22a b = 又c e a == 所以2a =,1b = 所以椭圆方程为2214x y +=中204x ≠,将向量坐标代入并化简得:m(23000416)312x x x -=-,因为204x ≠,1200118kk kk +=-=-为定值.4.(2013年高考上海卷(理))(3分+5分+8分)如图,已知曲线221:12x C y -=,曲线2:||||1C y x =+,P 是平面上一点,若存在过点P 的直线与12,C C 都有公共点,则称P 为“C 1—C 2型点”.(1)在正确证明1C 的左焦点是“C 1—C 2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);(2)设直线y kx =与2C 有公共点,求证||1k >,进而证明原点不是“C 1—C 2型点”; (3)求证:圆2212x y +=内的点都不是“C 1—C 2型点”.【答案】:(1)C 1的左焦点为(F ,过F的直线x =C 1交于(2±,与C 2交于(1))±,故C 1的左焦点为“C 1-C 2型点”,且直线可以为x =(2)直线y kx =与C 2有交点,则(||1)||1||||1y kxk x y x =⎧⇒-=⎨=+⎩,若方程组有解,则必须||1k >; 直线y kx =与C 2有交点,则2222(12)222y kx k x x y =⎧⇒-=⎨-=⎩,若方程组有解,则必须212k < 故直线y kx =至多与曲线C 1和C 2中的一条有交点,即原点不是“C 1-C 2型点”. (3)显然过圆2212x y +=内一点的直线l 若与曲线C 1有交点,则斜率必存在; 根据对称性,不妨设直线l 斜率存在且与曲线C 2交于点(,1)(0)t t t +≥,则:(1)()(1)0l y t k x t kx y t kt =+=-⇒-++-=直线l 与圆2212x y +=内部有交点,2< 化简得,221(1)(1)2t tk k +-<+............① 若直线l 与曲线C 1有交点,则2222211()2(1)(1)10212y kx kt t k x k t kt x t kt x y =-++⎧⎪⇒-++-++-+=⎨-=⎪⎩ 22222214(1)4()[(1)1]0(1)2(1)2k t kt k t kt t kt k ∆=+---+-+≥⇒+-≥-化简得,22(1)2(1)t kt k +-≥-.....②由①②得,222212(1)(1)(1)12k t tk k k -≤+-<+⇒< 但此时,因为2210,[1(1)]1,(1)12t t k k ≥+-≥+<,即①式不成立;当212k =时,①式也不成立综上,直线l 若与圆2212x y +=内有交点,则不可能同时与曲线C 1和C 2有交点,即圆2212x y +=内的点都不是“C 1-C 2型点” .5.(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))如图,在正方形OABC中,O 为坐标原点,点A 的坐标为(10,0),点C 的坐标为(0,10).分别将线段OA 和AB 十等分,分点分别记为129,,....A A A 和129,,....B B B ,连结i OB ,过i A 做x 轴的垂线与iOB 交于点*(,19)i P i N i ∈≤≤.(1)求证:点*(,19)i P i N i ∈≤≤都在同一条抛物线上,并求该抛物线E 的方程;(2)过点C 做直线与抛物线E 交于不同的两点,M N ,若OCM ∆与OCN ∆的面积比为4:1,求直线的方程.【答案】解:(Ⅰ)依题意,过*(,19)∈≤≤i A i Ni 且与x 轴垂直的直线方程为=x i (10,) i B i ,∴直线i OB 的方程为10=iy x设i P 坐标为(,)x y ,由10=⎧⎪⎨=⎪⎩x iiy x 得:2110=y x ,即210=x y , ∴*(,19)∈≤≤i P i N i 都在同一条抛物线上,且抛物线E 方程为210=x y(Ⅱ)依题意:直线的斜率存在,设直线的方程为10=+y kx由21010=+⎧⎨=⎩y kx x y得2101000--=x kx 此时2100+4000∆=>k ,直线与抛物线E 恒有两个不同的交点,M N 设:1122(,)(,)M x y N x y ,则121210100+=⎧⎨⋅=-⎩x x kx x4∆∆= OCM OCN S S ∴124=x x又120⋅< x x ,∴124=-x x 分别带入21010=+⎧⎨=⎩y kx x y,解得32=±k 直线的方程为3+102=±y x ,即32200-+=x y 或3+2200-=x y 6.(2013年高考湖南卷(理))过抛物线2:2(0)E x py p =>的焦点F 作斜率分别为12,k k 的两条不同的直线12,l l ,且122k k +=,1l E 与相交于点A,B,2l E 与相交于点C,D.以AB,CD 为直径的圆M,圆N(M,N 为圆心)的公共弦所在的直线记为l .(I)若120,0k k >>,证明;22FM FN P < ;(II)若点M 到直线l的距离的最小值为5,求抛物线E 的方程. 【答案】解: (Ⅰ),设),(),,(),,(),,(),,(),,().2,0(3434121244332211y x N y x M y x D y x C y x B y x A pF 02,221211=++-+=p x pk x E px k y l :方程联立,化简整理得与抛物线方程:直线),(2,20,2211211212112221121p k p k p p k y p k x x x p x x p k x x -=⇒+==+=⇒=-=⋅=+⇒),(2,2,222223422134p k p k FN p p k y p k x x x -=⇒+==+=⇒同理. )1(2121222221221+=+=⋅⇒k k k k p p k k p k k FN FM22121221212121212)11(1)1(,122,,0,0pp k k k k p FN FM k k k k k k k k k k =+⋅⋅<+=⋅∴≤⇒≥+=≠>> 所以,22p FN FM <⋅成立. (证毕) (Ⅱ),)]2(2[21)]2()2[(21,212121121p p k p p k p y p y p r r r N M +=++=+++=⇒的半径分别为、设圆,2同理,221211p p k r p p k r +=+=⇒.,21r r N M 的半径分别为、设圆则21212212)()(r y y x x N M =-+-的方程分别为、, 的方程为:,直线l r y y x x 22234234)()(=-+-0-)(2)(2222123421223421212341234=+-+-+-+-r r y y x x y y y x x x .))(-())(())(()(2)(212123412341234123412212212=++--+--+-+-⇒r r r r y y y y x x x x y k k p x k k p2))((1))(()(2)(2)(2222121222222122212212212212++-+++-+-+-+-⇒k k k k p k k k k p k k p y k k p x k k p 0202)(1)(222212221=+⇒=+++++--+⇒y x k k p k k p p y x55758751)41()41(2|512||52|),(212112121212==+-+-⋅≥++⋅=+=p p k k p y x d l y x M 的距离到直线点y x p 1682=⇒=⇒抛物线的方程为.7.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))如图,点)1,0(-P 是椭圆)0(1:22221>>=+b a by a x C 的一个顶点,1C 的长轴是圆4:222=+y x C 的直径.21,l l 是过点P 且互相垂直的两条直线,其中1l 交圆2C 于两点,2l 交椭圆1C 于另一点D(1)求椭圆1C 的方程; (2)求ABD ∆面积取最大值时直线1l 的方程.【答案】解:(Ⅰ)由已知得到1b =,且242a a =∴=,所以椭圆的方程是2214x y +=;(Ⅱ)因为直线12l l ⊥,且都过点(0,1)P -,所以设直线1:110l y kx kx y =-⇒--=,直线21:10l yx x k y k k=--⇒++=,所以圆心(0,到直线1:110l y k x k x y =-⇒--=的距离为d =,所以直线1l 被圆224x y +=所截的弦AB ==由2222248014x ky k k x x kx x y ++=⎧⎪⇒++=⎨+=⎪⎩,所以228||44D P k x x DP k k +=-∴==++,所以11||||22444313ABDS AB DP k k k ∆====++++23232==≤=++当252k k =⇒=⇒=时等号成立,此时直线(第21题图)1:12l y x =±- 8.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))如题(21)图,椭圆的中心为原点O ,长轴在x 轴上,离心率2e =,过左焦点1F 作x 轴的垂线交椭圆于,A A '两点,4AA '=. (1)求该椭圆的标准方程;(2)取垂直于x 轴的直线与椭圆相交于不同的两点,P P ',过,P P '作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外.若PQ P Q '⊥,求圆Q 的标准方程.【答案】。
2013 圆锥曲线一、选择题1 .〔2013年高考湖北卷〔文〕〕已知π04θ<<,则双曲线1C :22221sin cos x y θθ-=与2C :22221cos sin y x θθ-=的〔 〕 A .实轴长相等 B .虚轴长相等 C .离心率相等 D .焦距相等 【答案】D【解析】此题考查双曲线的方程以及,,a b c 的计算。
双曲线1C 中,2222sin,cos a b θθ==,所以21c =,离心率为221sin e θ=。
2C 中,2222cos ,sin a b θθ==,所以21c =。
所以两个双曲线有相同的焦距,选D.2 .〔2013年高考四川卷〔文9〕〕从椭圆22221(0)x y a b a b+=>>上一点P 向x 轴作垂线,垂足恰为左焦点1F ,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且//AB OP (O 是坐标原点),则该椭圆的离心率是〔 〕A B .12C D 【答案】C【解析】由已知得,点),(y c P -在椭圆上,代入椭圆的方程,得),(2a b c P -,因为AB ∥OP ,所以OP ABk k =,ac b a b 2-=-,c b =,所以21222222=-==c b c a c e ,22=e ,选C.3 .〔2013年高考课标Ⅱ卷〔文10〕〕设抛物线2:4C y x =的焦点为F ,直线l 过F 且与C 交于A ,B 两点。
假设||3||AF BF =,则l 的方程为〔 〕〔A 〕1y x =-或1y x =-+ 〔B 〕1)y x =-或1)y x =-〔C 〕1)y x =-或1)y x =- 〔D 〕1)y x =-或1)y x =- 【答案】C【解析】抛物线y 2=4x 的焦点坐标为〔1,0〕,准线方程为x=-1,设A 〔x 1,y 1〕,B 〔x 2,y 2〕,则因为|AF|=3|BF|,所以x 1+1=3〔x 2+1〕,所以x 1=3x 2+2。
1.(安徽理科第2题、文科第3题)双曲线x y 222-=8的实轴长是 (A ) 2 (B)22 (C) 4 (D) 42答案:C 解:双曲线的方程可化为18422=-y x ,则,2=a 所以42=a 。
2.(安徽理科第21题)设λ>0,点A 的坐标为(1,1),点B 在抛物线y x 2=上运动,点Q满足BQ QA λ=uu u r uu r ,经过Q 点与x 轴垂直的直线交抛物线于点M ,点P 满足QM MP λ=uuu r uuu r ,求点P的轨迹方程。
解:由MP QM λ=知,P M Q ,,三点在垂直x 轴的直线上,可设),(),,(),,(202x x Q x x M y x P ,则)(202x y y x -=-λ,即y x y λλ-+=20)1(设),(211x x B 由QA BQ λ=可得:⎩⎨⎧-+=-+=λλλλ0211)1(1y x x x )(,消去0y 可得:⎩⎨⎧-+-+=-+=λλλλλλy x x x x )1()1(122211)(,两式消去1x 可得 222222)1(2)1(])1[()1()1(λλλλλλλλλλ++-+=-+=-+-+x x x y x整理并消去λ,所求曲线方程为:012=--y x 。
3.(安徽文科第17题)设直线11221212:x+1:y=k x 1k k k k +20l y k l =-=,,其中实数,满足,(I )证明1l 与2l 相交;(II )证明1l 与2l 的交点在椭圆222x +y =1上.解:(1)若21k k =,则0221≠+k k ,所以21k k ≠,此时1l 与2l 相交。
(2)设1l 与2l 相交于),(y x M ,则M 点既在直线1l 上,又在直线2l 上,x k y x k y 211,1=+=-∴ 两式相乘得:221)1)(1(x k k y y =+-,将221-=k k 代入式中有:2221x y -=-,整理即得:222x +y =1,即1l 与2l 的交点在椭圆222x +y =1上.3.(北京理科第14题)曲线C 是平面内与两个定点)0,1(),0,1(21F F -的距离的积等于常数2a )1(>a 的点的轨迹.给出下列三个结论:① 曲线C 过坐标原点; ② 曲线C 关于坐标原点对称;③若点P 在曲线C 上,则△F 1PF 2的面积不大于221a 。
2013年全国高考理科数学试题分类汇编9:圆锥曲线一、选择题1 .(2013年江西(理))过点引直线l与曲线y =A,B 两点,O 为坐标原点,当∆AOB的面积取最大值时,直线l 的斜率等于 ( )A .y EB BC CD=++ B.C.D.【答案】B2 .(2013年福建(理))双曲线2214x y -=的顶点到其渐近线的距离等于( )A .25B .45CD【答案】C3 .(2013年广东省(理))已知中心在原点的双曲线C 的右焦点为()3,0F ,离心率等于32,在双曲线C 的方程是( )A.2214x = B .22145x y -=C .22125x y -=D.2212x =【答案】B4 .(2013年新课标1(理))已知双曲线C :22221x y a b -=(0,0a b >>),则C 的渐近线方程为 ( )A .14y x =±B .13y x =±C .12y x =±D .y x =±【答案】C5 .(2013年四川(理))抛物线24y x =的焦点到双曲线2213yx -=的渐近线的距离是( )A .12BC .1 D【答案】B7 .(2013年浙江(理))如图,21,F F 是椭圆14:221=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二、四象限的公共点.若四边形21BF AF 为矩形,则2C 的离心率是( )A .2B .3C .23 D .26 【答案】D8 .(2013年天津(理))已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB则p = ( ) A .1B .32C .2D .3【答案】C9 .(2013年大纲版数学(理))椭圆22:143x y C +=的左、右顶点分别为12,A A ,点P 在C 上且直线2PA 的斜率的取值范围是[]2,1--,那么直线1PA 斜率的取值范围是 ( )A .1324⎡⎤⎢⎥⎣⎦,B .3384⎡⎤⎢⎥⎣⎦,C .112⎡⎤⎢⎥⎣⎦,D .314⎡⎤⎢⎥⎣⎦,【答案】B10.(2013年大纲版数学(理))已知抛物线2:8C yx =与点()2,2M -,过C 的焦点且斜率为k 的直线与C交于,A B 两点,若0MA MB =,则k =( )A .12BCD .2【答案】D11.(2013年北京卷(理))若双曲线22221x y a b-=则其渐近线方程为( )A .y =±2xB .y= C .12y x =±D.y x = 【答案】B12.(2013年山东(理))已知抛物线1C :212y x p =(0)p >的焦点与双曲线2C :2213x y -=的右焦点的连线交1C 于第一象限的点M .若1C 在点M 处的切线平行于2C 的一条渐近线,则p =( )A.B.C.D.【答案】D13.(2013年新课标1(理))已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交椭圆于,A B 两点.若AB 的中点坐标为(1,1)-,则E 的方程为( )A .2214536x y += B .2213627x y += C .2212718x y += D .221189x y += 【答案】D14.(2013年新课标Ⅱ卷(理))设抛物线2:2(0)C ypx p =>的焦点为F ,点M 在C 上,5MF =,若以MF 为直径的圆过点)2,0(,则C 的方程为( )A .24y x =或28y x =B .22y x =或28y x =C .24y x =或216y x =D .22y x =或216y x =【答案】C15.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))已知圆()()221:231C x y -+-=,圆()()222:349C x y -+-=,,M N 分别是圆12,C C 上的动点,P 为x 轴上的动点,则PM PN +的最小值为 ( )A.4B1C.6-D【答案】A 二、填空题16.(2013年江苏卷)双曲线191622=-y x 的两条渐近线的方程为_____________. 【答案】x y 43±= 17.(2013年江西卷(理))抛物线22(0)x py p =>的焦点为F,其准线与双曲线22133x y -=相交于,A B 两点,若ABF ∆为等边三角形,则P =_____________ 【答案】618.(2013年湖南卷(理))设12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的两个焦点,P 是C 上一点,若216,PF PF a +=且12PF F ∆的最小内角为30 ,则C 的离心率为___.【答案】319.(2013年安徽(理))已知直线y a =交抛物线2y x =于,A B 两点.若该抛物线上存在点C ,使得ABC∠为直角,则a 的取值范围为___ _____.【答案】),1[+∞20.(2013年江苏)在平面直角坐标系xOy 中,椭圆C 的标准方程为)0,0(12222>>=+b a by a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆C 的离心率为_______.【答案】321.(2013年福建(理))椭圆2222:1(0)x y a b a bΓ+=>>的左.右焦点分别为12,F F ,焦距为2c,若直线)y x c =+与椭圆Γ的一个交点M 满足12212MF F MF F ∠=∠,则该椭圆的离心率等于__________122.(2013年陕西卷(理))双曲线22116x y m-=的离心率为54, 则m 等于___9_____.【答案】923.(2013年辽宁(理))已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为,F C 与过原点的直线相交于,A B两点,连接,AF BF ,若410,6,cos ABF 5AB AF ==∠=,则C 的离心率e =______. 【答案】5724.(2013年浙江(理))设F 为抛物线x y C 4:2=的焦点,过点)0,1(-P 的直线l 交抛物线C 于两点B A ,,点Q 为线段AB 的中点,若2||=FQ ,则直线的斜率等于________.【答案】1± 三、解答题25.(2013年上海高考)本题共有2个小题,第1小题满分4分,第2小题满分9分.已知椭圆C 的两个焦点分别为1(1 0)F -,、2(1 0)F ,,短轴的两个端点分别为12 B B 、 (1)若112F B B ∆为等边三角形,求椭圆C 的方程;(2)若椭圆C 的短轴长为2,过点2F 的直线l 与椭圆C 相交于 P Q 、两点,且11F P FQ ⊥,求直线l 的方程.【答案】[解](1)设椭圆C 的方程为22221(0)x y a b a b+=>>.根据题意知2221a ba b =⎧⎨-=⎩, 解得243a =,213b = 故椭圆C 的方程为2214133x y +=. (2)容易求得椭圆C 的方程为2212x y +=. 当直线l 的斜率不存在时,其方程为1x =,不符合题意; 当直线的斜率存在时,设直线l 的方程为(1)y k x =-.由22(1)12y k x x y =-⎧⎪⎨+=⎪⎩ 得2222(21)42(1)0k x k x k +-+-=. 设1122( ) ( )P x y Q x y ,,,,则2212121111222242(1) (1 ) (1 )2121k k x x x x F P x y FQ x y k k -+===+=+++ ,,,,, 因为11F P FQ ⊥ ,所以110F P FQ ⋅=,即 21212121212(1)(1)()1(1)(1)x x y y x x x x k x x +++=++++-- 2221212(1)(1)()1k x x k x x k =+--+++2271021k k -==+,解得217k =,即7k =±. 故直线l的方程为10x -=或10x -=.26.(2013年山东(理))椭圆2222:1x y C a b +=(0)a b >>的左、右焦点分别是12,F F ,,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为1.(Ⅰ)求椭圆C 的方程;(Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接12,PF PF ,设12F PF ∠的角平分线PM 交C 的长轴于点(,0)M m ,求m 的取值范围;(Ⅲ)在(Ⅱ)的条件下,过P 点作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点,设直线12,PF PF 的斜率分别为12,k k ,若0k ≠,试证明1211kk kk +为定值,并求出这个定值. 【答案】解:(Ⅰ)由于222c a b =-,将x c =-代入椭圆方程22221x y a b +=得2b y a =± 由题意知221b a =,即22a b = 又c e a == 所以2a =,1b = 所以椭圆方程为2214x y +=量坐标代入并化简得:m(23000416)312x x x -=-,因为24x ≠,001200114(8x x kk kk x x +=-+=-为定值. 27.(2013年浙江(理))如图,点)1,0(-P 是椭圆)0(1:22221>>=+b a by a x C 的一个顶点,1C 的长轴是圆4:222=+y x C 的直径.21,l l 是过点P 且互相垂直的两条直线,其中1l 交圆2C 于两点,2l 交椭圆1C 于另一点D(1)求椭圆1C 的方程; (2)求ABD ∆面积取最大值时直线1l 的方程.【答案】解:(Ⅰ)由已知得到1b =,且242a a =∴=,所以椭圆的方程是2214x y +=; (Ⅱ)因为直线12l l ⊥,且都过点(0,1)P -,所以设直线1:110l y k x k x y =-⇒--=,直线21:10l y x x k y k k=--⇒++=,所以圆心(0,0)到直线1:110l y kx kx y =-⇒--=的距离为d =所以直线1l 被圆224x y +=所截的弦AB ==;由22222048014x ky k k x x kx x y ++=⎧⎪⇒++=⎨+=⎪⎩,所以28||44D P k x x DP k k +=-∴==++所以11||||22444313ABDS AB DP k k k ∆==⨯==++++23232==≤=++252k k =⇒=⇒=,此时直线1:12l y x =±-28.(2013年重庆(理))如题(21)图,椭圆的中心为原点O ,长轴在x 轴上,离心率2e =,过左焦点1F 作x 轴的垂线交椭圆于,A A '两点,4AA '=. (1)求该椭圆的标准方程;(2)取垂直于x 轴的直线与椭圆相交于不同的两点,P P ',过,P P '作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外.若PQ P Q '⊥,求圆Q 的标准方程.【答案】29.(2013年安徽(理))设椭圆2222:11x y E a a +=-的焦点在x 轴上 (Ⅰ)若椭圆E 的焦距为1,求椭圆E 的方程;(Ⅱ)设12,F F 分别是椭圆的左、右焦点,P 为椭圆E 上的第一象限内的点,直线2F P 交y 轴与点Q ,并且11F P FQ ⊥,证明:当a 变化时,点p 在某定直线上.【答案】解: (Ⅰ)13858851,12,122222222=+=⇒+-==->x x a c a a c a a ,椭圆方程为: . (Ⅱ) ),(),,),,0(),,(),0,(),0,(2221m c QF y c x F m Q y x P c F c F -=-=-(则设. 由)1,0(),1,0()1,0(012∈∈⇒∈⇒>-y x a a .⎩⎨⎧=++=-⊥=+=0)()(,//).,(),,(112211my c x c ycx c m F F QF F m c F y c x F 得:由 解得联立⎪⎪⎪⎩⎪⎪⎪⎨⎧+-==-=-+=-⇒=+-⇒22222222222222111.))((c a a c y x a y a x c y x y c x c xy x y x y x yx y y x x -=∴∈∈±=⇒=+-++-⇒1)1,0(),1,0(.)1(1121222222222 所以动点P 过定直线01=-+y x .30.(2013年新课标1(理))已知圆M :22(1)1x y ++=,圆N :22(1)9x y -+=,动圆P 与M 外切并且与圆N 内切,圆心P 的轨迹为曲线 C.(Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A,B 两点,当圆P 的半径最长时,求|AB|.【答案】由已知得圆M 的圆心为M (-1,0),半径1r =1,圆N 的圆心为N (1,0),半径2r =3.设动圆P 的圆心为P (x ,y ),半径为R.(Ⅰ)∵圆P 与圆M 外切且与圆N 内切,∴|PM|+|PN|=12()()R r r R ++-=12r r +=4,由椭圆的定义可知,曲线C 是以M,N 为左右焦点,场半轴长为2,的椭圆(左顶点除外),其方程为221(2)43x y x +=≠-. (Ⅱ)对于曲线C 上任意一点P (x ,y ),由于|PM|-|PN|=22R -≤2,∴R≤2, 当且仅当圆P 的圆心为(2,0)时,R=2.∴当圆P 的半径最长时,其方程为22(2)4x y -+=, 当l 的倾斜角为090时,则l 与y 轴重合,可得|AB|=当l 的倾斜角不为090时,由1r ≠R 知l 不平行x 轴,设l 与x 轴的交点为Q,则||||QP QM =1Rr ,可求得Q(-4,0),∴设l :(4)y k x =+,由l 于圆M1=,解得k =当k=时,将y x =代入221(2)43x y x +=≠-并整理得27880x x +-=,解得1,2x12|x x -=187.当k时,由图形的对称性可知|AB|=187, 综上,|AB|=187或|AB|= 31.(2013年天津(理))设椭圆22221(0)x y a b a b+=>>的左焦点为F ,过点F 且与x 轴垂直的.(Ⅰ) 求椭圆的方程;(Ⅱ) 设A , B 分别为椭圆的左右顶点, 过点F 且斜率为k 的直线与椭圆交于C , D 两点. 若··8AC DB AD CB += , 求k 的值.【答案】32.(2013年新课标Ⅱ(理))平面直角坐标系xOy 中,过椭圆2222:1(0)x y M a b a b+=>>的右焦点F 作直0x y +=交M 于,A B 两点,P 为AB 的中点,且OP 的斜率为12. (Ⅰ)求M 的方程;(Ⅱ),C D 为M 上的两点,若四边形ABCD 的对角线CD AB ⊥,求四边形ABCD 面积的最大值.【答案】33.(2013年陕西卷(理))已知动圆过定点A(4,0), 且在y轴上截得的弦MN的长为8.(Ⅰ) 求动圆圆心的轨迹C的方程;(Ⅱ) 已知点B(-1,0), 设不垂直于x轴的直线l与轨迹C交于不同的两点P, Q, 若x轴是PBQ的角平分线, 证明直线l过定点.【答案】解:(Ⅰ) A(4,0),设圆心C2222,2),,(EC ME CM CA MNME E MN y x +===,由几何图像知线段的中点为x y x y x 84)422222=⇒+=+-⇒((Ⅱ) 点B (-1,0), 222121212122118,8,00),,(),,(x y x y y y y y y x Q y x P ==<≠+,由题知设.080)()(88811211221212222112211=+⇒=+++⇒+-=+⇒+-=+⇒y y y y y y y y y yy y x y x y 直线PQ 方程为:)8(1)(21121112121y x y y y y x x x x y y y y -+=-⇒---=-1,088)(8)()(122112112==⇒=++⇒-=+-+⇒x y x y y y y x y y y y y y所以,直线PQ 过定点(1,0)34.(2013年辽宁(理))如图,抛物线()2212:4,:20C xy C x py p ==->,点()00,M x y 在抛物线2C 上,过M作1C 的切线,切点为,A B (M 为原点O 时,,A B 重合于O )01x =,切线.MA 的斜率为12-. (I)求p 的值;(II)当M 在2C 上运动时,求线段AB 中点N 的轨迹方程.(),,.A B O O 重合于时中点为【答案】35.(2013年大纲版(理))已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为12F F ,,离心率为3,直线2y =与C (I)求,;a b ;(II)设过2F 的直线l 与C 的左、右两支分别相交于,A B 两点,且11AF BF =,证明:22AF AB BF 、、成等比数列.【答案】。
1.(2013年上海市春季高考数学试卷)已知椭圆C 的两个焦点分别为1(1 0)F -,、2(1 0)F ,,短轴的两个端点分别为12 B B 、 (1)若112F B B ∆为等边三角形,求椭圆C 的方程;(2)若椭圆C 的短轴长为2,过点2F 的直线l 与椭圆C 相交于 P Q 、两点,且11F P FQ ⊥,求直线l 的方程.【答案】[解](1)设椭圆C 的方程为22221(0)x y a b a b+=>>.根据题意知2221a b a b =⎧⎨-=⎩, 解得243a =,213b = 故椭圆C 的方程为2214133x y +=. (2)容易求得椭圆C 的方程为2212x y +=. 当直线l 的斜率不存在时,其方程为1x =,不符合题意; 当直线的斜率存在时,设直线l 的方程为(1)y k x =-.由22(1)12y k x x y =-⎧⎪⎨+=⎪⎩ 得2222(21)42(1)0k x k x k +-+-=. 设1122( ) ( )P x y Q x y ,,,,则2212121111222242(1) (1 ) (1 )2121k k x x x x F P x y FQ x y k k -+===+=+++ ,,,,, 因为11F P FQ ⊥ ,所以110F P FQ ⋅=,即 21212121212(1)(1)()1(1)(1)x x y y x x x x k x x +++=++++-- 2221212(1)(1)()1k x x k x x k =+--+++2271021k k -==+, 解得217k =,即k =故直线l的方程为10x -=或10x -=.2.(2013年高考四川卷(理))已知椭圆C :22221,(0)x y a b a b +=>>的两个焦点分别为12(1,0),(1,0)F F -,且椭圆C 经过点41(,)33P .(Ⅰ)求椭圆C 的离心率;(Ⅱ)设过点(0,2)A 的直线l 与椭圆C 交于M 、N 两点,点Q 是线段MN 上的点,且222211||||||AQ AM AN =+,求点Q 的轨迹方程.【答案】解:122a PF PF =+==所以,a =又由已知,1c =, 所以椭圆C的离心率2c e a ===()II 由()I 知椭圆C 的方程为2212x y +=.设点Q 的坐标为(x,y).(1)当直线l 与x 轴垂直时,直线l 与椭圆C 交于()()0,1,0,1-两点,此时Q点坐标为0,25⎛- ⎝⎭ (2) 当直线l 与x 轴不垂直时,设直线l 的方程为2y kx =+.因为,M N 在直线l 上,可设点,M N 的坐标分别为1122(,2),(,2)x kx x kx ++,则22222212(1),(1)AM k x AN k x =+=+. 又()222222(1).AQ x y k x =+-=+由222211AQAMAN=+,得()()()22222212211111k x k x k x =++++,即 ()212122222212122211x x x x x x x x x +-=+=①将2y kx =+代入2212x y +=中,得 ()2221860kx kx +++= ②由()()22842160,k k ∆=-⨯+⨯>得232k >. 由②可知12122286,,2121k x x x x k k +=-=++ 代入①中并化简,得2218103x k =- ③ 因为点Q 在直线2y k x =+上,所以2y k x-=,代入③中并化简,得()22102318y x --=.由③及232k >,可知2302x <<,即x ⎛⎫⎛∈ ⎪ ⎪ ⎝⎭⎝⎭.又0,25⎛- ⎝⎭满足()22102318y x --=,故22x ⎛∈- ⎝⎭. 由题意,(),Q x y 在椭圆C 内部,所以11y -≤≤,又由()22102183y x -=+有()2992,54y ⎡⎫-∈⎪⎢⎣⎭且11y -≤≤,则1,22y ⎛∈- ⎝⎦. 所以点Q的轨迹方程是()22102318yx --=,其中,x ⎛∈ ⎝⎭,1,22y ⎛∈- ⎝⎦3.(2013年普通高等学校招生统一考试山东数学(理)试题)椭圆2222:1x y C a b+=(0)a b >>的左、右焦点分别是12,F F ,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为1.(Ⅰ)求椭圆C 的方程;(Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接12,PF PF ,设12F PF ∠的角平分线PM 交C 的长轴于点(,0)M m ,求m 的取值范围;(Ⅲ)在(Ⅱ)的条件下,过P 点作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点,设直线12,PF PF 的斜率分别为12,k k ,若0k ≠,试证明1211kk kk +为定值,并求出这个定值.【答案】解:(Ⅰ)由于222c a b =-,将x c =-代入椭圆方程22221x y a b +=得2b y a =± 由题意知221b a =,即22a b = 又c e a == 所以2a =,1b = 所以椭圆方程为2214x y +=中204x ≠,将向量坐标代入并化简得:m(23000416)312x x x -=-,因为24x ≠,1200118kk kk +=-=-为定值. 4.(2013年普通高等学校招生统一考试福建数学(理)试题)如图,在正方形OABC 中,O 为坐标原点,点A 的坐标为(10,0),点C 的坐标为(0,10).分别将线段OA 和AB 十等分,分点分别记为129,,....A A A 和129,,....B B B ,连结i OB ,过i A 做x 轴的垂线与i OB 交于点*(,19)i P i N i ∈≤≤.(1)求证:点*(,19)i P i N i ∈≤≤都在同一条抛物线上,并求该抛物线E 的方程;(2)过点C 做直线与抛物线E 交于不同的两点,M N ,若OCM ∆与OCN ∆的面积比为4:1,求直线的方程.【答案】解:(Ⅰ)依题意,过*(,19)∈≤≤i A i Ni 且与x 轴垂直的直线方程为=x i(10,) i B i ,∴直线i OB 的方程为10=iy x 设i P 坐标为(,)x y ,由10=⎧⎪⎨=⎪⎩x iiy x 得:2110=y x ,即210=x y , ∴*(,19)∈≤≤i P i N i 都在同一条抛物线上,且抛物线E 方程为210=x y(Ⅱ)依题意:直线的斜率存在,设直线的方程为10=+y kx由21010=+⎧⎨=⎩y kx x y得2101000--=x kx 此时2100+4000∆=>k ,直线与抛物线E 恒有两个不同的交点,M N 设:1122(,)(,)M x y N x y ,则121210100+=⎧⎨⋅=-⎩x x kx x4∆∆= OCM OCN S S ∴124=x x又120⋅< x x ,∴124=-x x 分别带入21010=+⎧⎨=⎩y kx x y ,解得32=±k 直线的方程为3+102=±y x ,即32200-+=x y 或3+2200-=x y 5.(2013年普通高等学校招生统一考试浙江数学(理)试题)如图,点)1,0(-P 是椭圆)0(1:22221>>=+b a by a x C 的一个顶点,1C 的长轴是圆4:222=+y x C 的直径.21,l l 是过点P 且互相垂直的两条直线,其中1l 交圆2C 于两点,2l 交椭圆1C 于另一点D (1)求椭圆1C 的方程; (2)求ABD ∆面积取最大值时直线1l 的方程.【答案】解:(Ⅰ)由已知得到1b =,且242a a =∴=,所以椭圆的方程是2214x y +=; (Ⅱ)因为直线12l l ⊥,且都过点(0,1)P -,所以设直线1:110l y kx kx y =-⇒--=,直线21:10l yx x k y k k=--⇒++=,所以圆心(0,到直线1:110l yk x k x y =-⇒--=的距离为d =,所以直线1l 被圆224x y +=所截的弦AB ==;由2222248014x ky k k x x kx x y ++=⎧⎪⇒++=⎨+=⎪⎩,所以28||44D P k x x DP k k +=-∴==++所以222114||||22444313ABDS AB DP k k k ∆⨯==⨯==++++23232==≤=++当2522k k =⇒=⇒=±时等号成立,此时直线1:1l y x =-(第21题图)6.(2013年普通高等学校招生统一考试安徽数学(理)试题)设椭圆2222:11x y E a a +=-的焦点在x 轴上(Ⅰ)若椭圆E 的焦距为1,求椭圆E 的方程;(Ⅱ)设12,F F 分别是椭圆的左、右焦点,P 为椭圆E 上的第一象限内的点,直线2F P 交y 轴与点Q ,并且11F P FQ ⊥,证明:当a 变化时,点p 在某定直线上.【答案】解:(Ⅰ)13858851,12,122222222=+=⇒+-==->x x a c a a c a a ,椭圆方程为: .(Ⅱ) ),(),,),,0(),,(),0,(),0,(2221m c QF y c x F m Q y x P c F c F -=-=-(则设. 由)1,0(),1,0()1,0(012∈∈⇒∈⇒>-y x a a .⎩⎨⎧=++=-⊥=+=0)()(,//).,(),,(112211my c x c ycx c m F F QF F m c F y c x F 由 解得联立⎪⎪⎪⎩⎪⎪⎪⎨⎧+-==-=-+=-⇒=+-⇒22222222222222111.))((c a a c y x a y a x c y x y c x c xy x y x y x yx y y x x -=∴∈∈±=⇒=+-++-⇒1)1,0(),1,0(.)1(1121222222222 所以动点P 过定直线01=-+y x .7.(2013年高考新课标1(理))已知圆M :22(1)1x y ++=,圆N :22(1)9x y -+=,动圆P与M 外切并且与圆N 内切,圆心P 的轨迹为曲线 C.(Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A,B 两点,当圆P 的半径最长时,求|AB|.【答案】由已知得圆M 的圆心为M (-1,0),半径1r =1,圆N 的圆心为N (1,0),半径2r =3.设动圆P 的圆心为P (x ,y ),半径为R.(Ⅰ)∵圆P 与圆M 外切且与圆N 内切,∴|PM|+|PN|=12()()R r r R ++-=12r r +=4, 由椭圆的定义可知,曲线C 是以M,N 为左右焦点,场半轴长为2,(左顶点除外),其方程为221(2)43x y x +=≠-. (Ⅱ)对于曲线C 上任意一点P (x ,y ),由于|PM|-|PN|=22R -≤2,∴R≤2, 当且仅当圆P 的圆心为(2,0)时,R=2.∴当圆P 的半径最长时,其方程为22(2)4x y -+=, 当l 的倾斜角为090时,则l 与y 轴重合,可得|AB|=当l 的倾斜角不为090时,由1r ≠R 知l 不平行x 轴,设l 与x 轴的交点为Q,则||||QP QM =1Rr ,可求得Q(-4,0),∴设l :(4)y k x =+,由l 于圆M1=,解得k =当k=时,将y x =+代入221(2)43x y x +=≠-并整理得27880x x +-=,解得1,2x12||x x -=187.当k时,由图形的对称性可知|AB|=187, 综上,|AB|=187或|AB|=8.(2013年普通高等学校招生统一考试天津数学(理)试题)设椭圆22221(0)x y a b a b+=>>的左焦点为F ,过点F 且与x.(Ⅰ) 求椭圆的方程; (Ⅱ) 设A , B 分别为椭圆的左右顶点, 过点F 且斜率为k 的直线与椭圆交于C , D 两点.若··8AC DB AD CB +=, 求k 的值.9.(2013年高考江西卷(理))如图,椭圆2222+=1(>>0)x y C a b a b:经过点3(1,),2P 离心率1=2e ,直线l 的方程为=4x .(1) 求椭圆C 的方程;(2) AB 是经过右焦点F 的任一弦(不经过点P ),设直线AB 与直线l 相交于点M ,记,,PA PB PM 的斜率分别为123,,.k k k 问:是否存在常数λ,使得123+=.k k k λ?若存在求λ的值;若不存在,说明理由.【答案】解:(1)由3(1,)2P 在椭圆上得,221914a b+= ① 依题设知2a c =,则223b c = ② ②代入①解得2221,4,3c a b ===.故椭圆C 的方程为22143x y +=. (2)方法一:由题意可设AB 的斜率为k ,则直线AB 的方程为(1)y k x =- ③代入椭圆方程223412x y +=并整理,得2222(43)84(3)0k x k x k +-+-=, 设1122(,),(,)A x y B x y ,则有2212122284(3),4343k k x x x x k k -+==++ ④ 在方程③中令4x =得,M 的坐标为(4,3)k .从而121231233331222,,11412y y k k k k k x x ---====----. 注意到,,A F B 共线,则有AF BF k k k ==,即有121211y yk x x ==--. 所以1212121212123331122()1111212y y y y k k x x x x x x --+=+=+-+------ 1212122322()1x x k x x x x +-=-⋅-++ ⑤ ④代入⑤得22122222823432214(3)8214343k k k k k k k k k k -++=-⋅=---+++, 又312k k =-,所以1232k k k +=.故存在常数2λ=符合题意.方法二:设000(,)(1)B x y x ≠,则直线FB 的方程为:00(1)1y y x x =--, 令4x =,求得003(4,)1y M x -, 从而直线PM 的斜率为0030212(1)y x k x -+=-,联立0022(1)1143y y x x x y ⎧=-⎪-⎪⎨⎪+=⎪⎩ ,得0000583(,)2525x y A x x ---,则直线PA 的斜率为:00102252(1)y x k x -+=-,直线PB 的斜率为:020232(1)y k x -=-,所以00000123000225232122(1)2(1)1y x y y x k k k x x x -+--++=+==---,故存在常数2λ=符合题意.10.(2013年普通高等学校招生统一考试广东省数学(理)卷)已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线l :20x y --=设P 为直线l 上的点,过点P 作抛物线C 的两条切线,PA PB ,其中,A B 为切点. (Ⅰ) 求抛物线C 的方程;(Ⅱ) 当点()00,P x y 为直线l 上的定点时,求直线AB 的方程; (Ⅲ) 当点P 在直线l 上移动时,求AF BF ⋅的最小值.【答案】(Ⅰ) 依题意,设抛物线C 的方程为24xcy =,2=结合0c >,解得1c =.所以抛物线C 的方程为24x y =.(Ⅱ) 抛物线C 的方程为24x y =,即214y x =,求导得12y x '= 设()11,A x y ,()22,B x y (其中221212,44x x y y ==),则切线,PA PB 的斜率分别为112x ,212x ,所以切线PA 的方程为()1112x y y x x -=-,即211122x x y x y =-+,即11220x x y y --=同理可得切线PB 的方程为22220x x y y --=因为切线,PA PB 均过点()00,P x y ,所以1001220x x y y --=,2002220x x y y --= 所以()()1122,,,x y x y 为方程00220x x y y --=的两组解. 所以直线AB 的方程为00220x x y y --=.(Ⅲ) 由抛物线定义可知11AF y =+,21BF y =+, 所以()()()121212111AF BF y y y y y y ⋅=++=+++联立方程0022204x x y y x y--=⎧⎨=⎩,消去x 整理得()22200020y y x y y +-+=由一元二次方程根与系数的关系可得212002y y x y +=-,2120y y y = 所以()221212000121AF BF y y y y y x y ⋅=+++=+-+又点()00,P x y 在直线l 上,所以002x y =+,所以22220000001921225222y x y y y y ⎛⎫+-+=++=++ ⎪⎝⎭所以当012y =-时, AF BF ⋅取得最小值,且最小值为92.。
10.5圆锥曲线的综合问题考点一定点与定值问题1.(2013北京,19,14分)直线y=kx+m(m≠0)与椭圆W:+y2=1相交于A,C两点,O是坐标原点.(1)当点B的坐标为(0,1),且四边形OABC为菱形时,求AC的长;(2)当点B在W上且不是W的顶点时,证明:四边形OABC不可能为菱形.解析(1)因为四边形OABC为菱形,所以AC与OB相互垂直平分.所以可设A,代入椭圆方程得+=1,即t=±.所以|AC|=2.(2)假设四边形OABC为菱形.因为点B不是W的顶点,且AC⊥O B,所以k≠0.由消y并整理得(1+4k2)x2+8kmx+4m2-4=0.设A(x1,y1),C(x2,y2),则=-,=k·+m=.所以AC的中点为M.因为M为AC和OB的交点,且m≠0,k≠0,所以直线OB的斜率为-.因为k·≠-1,所以AC与OB不垂直.所以OABC不是菱形,与假设矛盾.所以当点B不是W的顶点时,四边形OABC不可能是菱形.2.(2013安徽,21,13分)已知椭圆C:+=1(a>b>0)的焦距为4,且过点P(,).(1)求椭圆C的方程;(2)设Q(x0,y)(xy≠0)为椭圆C上一点.过点Q作x轴的垂线,垂足为E.取点A(0,2),连结AE.过点A作AE的垂线交x轴于点D.点G是点D关于y轴的对称点,作直线QG.问这样作出的直线QG是否与椭圆C一定有唯一的公共点?并说明理由.解析(1)因为焦距为4,所以a2-b2=4.又因为椭圆C过点P(,),所以+=1,故a2=8,b2=4,从而椭圆C的方程为+=1.(2)由题意,E点坐标为(x0,0),设D(xD,0),则=(x,-2),=(xD,-2),再由AD⊥AE知,·=0,即x0xD+8=0.由于x0y≠0,故xD=-.因为点G是点D关于y轴的对称点,所以点G. 故直线QG的斜率kQG==.又因Q(x0,y)在椭圆C上,所以+2=8.①从而kQG=-.故直线QG的方程为y=-.②将②代入椭圆C的方程,得(+2)x2-16xx+64-16=0.③再将①代入③,化简得x2-2xx+=0.解得x=x0,y=y,即直线QG与椭圆C一定有唯一的公共点.考点二参变量的取值范围与最值问题3.(2013湖北,22,14分)如图,已知椭圆C1与C2的中心在坐标原点O,长轴均为MN且在x轴上,短轴长分别为2m,2n(m>n),过原点且不与x轴重合的直线l与C1,C2的四个交点按纵坐标从大到小依次为A,B,C,D.记λ=,△BDM 和△ABN 的面积分别为S 1和S 2.(1)当直线l 与y 轴重合时,若S 1=λS 2,求λ的值;(2)当λ变化时,是否存在与坐标轴不重合的直线l,使得S 1=λS 2?并说明理由.解析 依题意可设椭圆C1和C 2的方程分别为C 1:+=1,C 2:+=1.其中a >m >n >0,λ=>1.(1)解法一:如图1,若直线l 与y 轴重合,即直线l 的方程为x =0,则S 1=|BD|·|OM|=a|BD|,S 2=|AB|·|ON|=a|AB|,所以=.在C 1和C 2的方程中分别令x =0,可得y A =m,y B =n,y D =-m, 所以===.若=λ,即=λ,化简得λ2-2λ-1=0.由λ>1,解得λ=+1. 故当直线l 与y 轴重合时,若S 1=λS 2,则λ=+1.解法二:如图1,若直线l 与y 轴重合,则|BD|=|OB|+|OD|=m +n,|AB|=|OA|-|OB|=m -n;S 1=|BD|·|OM|=a|BD|, S 2=|AB|·|ON|= a|AB|.所以===.若=λ,即=λ,化简得λ2-2λ-1=0.由λ>1,解得λ=+1. 故当直线l 与y 轴重合时,若S 1=λS 2,则λ=+1.(2)解法一:如图2,若存在与坐标轴不重合的直线l,使得S 1=λS 2.根据对称性,不妨设直线l:y =kx(k >0),点M(-a,0),N(a,0)到直线l 的距离分别为d 1,d 2. 因为d 1==,d 2==, 所以d 1=d 2.又因为S 1=|BD|d 1,S 2=|AB|d 2,所以==λ, 即|BD|=λ|AB|.由对称性可知|AB|=|CD|,所以|BC|=|BD|-|AB|=(λ-1)|AB|,|AD|=|BD|+|AB|=(λ+1)|AB|, 所以=.①将l的方程分别与C1,C2的方程联立,可求得xA=,xB=.根据对称性可知xC =-xB,xD=-xA,所以===.②从而由①②可得=.③令t=,则由m>n,可得t≠1,所以由③解得k2=.因为k≠0,所以k2>0.所以③式关于k有解,当且仅当>0,等价于(t2-1)<0.由λ>1,解得<t<1,即<<1,由λ>1,解得λ>1+,所以当1<λ≤1+时,不存在与坐标轴不重合的直线l,使得S1=λS2;当λ>1+时,存在与坐标轴不重合的直线l,使得S1=λS2.解法二:如图2,若存在与坐标轴不重合的直线l,使得S1=λS2.根据对称性,不妨设直线l:y=kx(k>0),点M(-a,0),N(a,0)到直线l的距离分别为d1,d2,因为d1==,d2==,所以d1=d2.又S1=|BD|d1,S2=|AB|d2,所以==λ.因为===λ,所以=.由点A(xA ,kxA),B(xB,kxB)分别在C1,C2上,可得+=1,+=1,两式相减可得+=0,依题意xA >xB>0,所以>.所以由上式解得k2=.因为k2>0,所以由>0,解得1<<λ.从而1<<λ,解得λ>1+,所以当1<λ≤1+时,不存在与坐标轴不重合的直线l,使得S1=λS2;当λ>1+时,存在与坐标轴不重合的直线l,使得S1=λS2.。
2013年高考真题理科数学解析分类汇编10 圆锥曲线一选择题1.陕西11. 双曲线22116x y m-=的离心率为54, 则m 等于 9 .【答案】9【解析】9161694522=⇒==⇒=m mab a c2.安徽理(13)已知直线y a =交抛物线2y x =于,A B 两点。
若该抛物线上存在点C ,使得ABC ∠为直角,则a 的取值范围为___ ),1[+∞_____。
【答案】 ),1[+∞【解析】 x x C m m B m m A ⊥-则根据题意不妨),,(),,(),,(222)()12(0)(),(),(42224222222222=+++-⇒=-+-=-+⋅--x x m x m m x m x m x m x m x m x ),1[10)1(-222222+∞∈+=⇒=--x m x m x m )(.所以),1[+∞∈a3.新课标I ,4、已知双曲线C :22221x y a b -=(0,0a b >>C 的渐近线方程为A .14y x =±B .13y x =±C .12y x =± D .y x =±【解析】由题知,2c a =,即54=22c a =222a b a +,∴22b a =14,∴b a =12±,∴C 的渐近线方程为12y x =±,故选C . 4.新课标I 10、已知椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆于A 、B 两点。
若AB 的中点坐标为(1,-1),则E 的方程为 ( ) A 、x 245+y 236=1 B 、x 236+y 227=1C 、x 227+y 218=1 D 、x 218+y 29=1 【解析】设1122(,),(,)A x y B x y ,则12x x +=2,12y y +=-2,2211221x y a b += ① 2222221x y a b+= ②① ②得1212121222()()()()0x x x x y y y y a b +-+-+=,∴AB k =1212y y x x --=212212()()b x x a y y +-+=22b a,又AB k =0131+-=12,∴22b a =12,又9=2c =22a b -,解得2b =9,2a =18,∴椭圆方程为221189x y +=,故选D. 5.新课标II 11、设抛物线)0(22≥=p px y 的焦点为F ,点M 在C 上,|MF |=5,若以MF 为直径的圆过点(0,2),则C 的方程为( )(A )x y 42= 或x y 82= (B )x y 22= 或x y 82= (C )x y 42= 或x y 162= (D )x y 22= 或x y 162= 【答案】C6.四川6、抛物线24y x =的焦点到双曲线2213y x -=的渐近线的距离是( ) (A )12 (B(C )1 (D)答案B解析; 、抛物线24y x =的焦点坐标为,双曲线2213y x -=的渐近线为,d ==27.山东11、抛物线211:(0)2=>C y x p p的焦点与双曲线222:13-=x C y 的右焦点的连线交1C 于第一象限的点.M若1C 在点M 处的切线平行于2C 的一条渐近线,则=p(A)16 (B) 8 (C) 3 (D) 38.全国(8)椭圆22122:1,,46x y C A A P C PA +=的左、右顶点分别为点在上且直线斜率的取值范围是[]12,1,PA --那么直线斜率的取值范围是(A )1324⎡⎤⎢⎥⎣⎦, (B )3384⎡⎤⎢⎥⎣⎦, (C )112⎡⎤⎢⎥⎣⎦,(D )314⎡⎤⎢⎥⎣⎦, 答案B9.天津(5) 已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB 则p =(A) 1(B)32(C) 2 (D) 3答案C 解析:10.全国(11)已知抛物线()2:82,2,C C y x M k C =-与点过的焦点,且斜率为的直线与交于,0,A B MA MB k ==两点,若则(A )12 (B )2(C (D )2 【答案】D 【解析】设A 由题意知抛物线C 的焦点坐标为,则直线AB的方程为y=K (x-2),与抛物线联立得=, =−16⋯由得=0解得k=211.福建3.双曲线1422=-y x 的顶点到渐进线的距离等于( )A.52 B.54 C.552 D.55412.北京7.直线l 过抛物线C :x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于A.43 B.2 C.8313.北京6.若双曲线22221x y a b-=A. y =±2xB. y =C.12y x =±D.2y x =±14.广东7.已知中心在原点的双曲线C 的右焦点F(3,0),离心率等于32,则C 的方程是 A. 2214x = B. 22145x y -= C. 22125x y -= D.2212x -=解析:由题意得33,2,2c c e a b a ===∴== 故C 的方程是:B. 22145x y -= 15.16.17.二填空题18.上海9.设AB 是椭圆Γ的长轴,点C 在Γ上,且4CBA π∠=,若AB=4,BC =则Γ的两个焦点之间的距离为________答案解析:如图: AB=4⟹OB=2,又4CBA π∠=,BC 所以三角形OCB 为直角三角形所以C 点坐标为代入椭圆方程得 又a=2所以⟹⟹2c=19.[江苏] 3.双曲线191622=-y x 的两条渐近线的方程为 . 【答案】x y 43±= 【解析】令:091622=-y x ,得x x y 431692±=±=. 20.[江苏] 9.抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界) .若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是 . 【答案】[—2,12 ]【解析】抛物线2x y =在1=x 处的切线易得为y =2x —1,令z =y x 2+,y =—12 x +z 2 . 画出可行域如下,易得过点(0,—1)时,z min =—2,过点(12 ,0)时,z max =12 .21.[江苏]12.在平面直角坐标系xOy 中,椭圆C 的标准方程为)0,0(12222>>=+b a by a x ,x右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆C 的离心率为 . 【答案】33 【解析】如图,l :x =c a 2,2d =c a 2-c =cb 2,由等面积得:1d =a bc。
2013 年全国高考理科数学试题分类汇编9:圆锥曲线一、选择题1 .( 2013 年高考江西卷(理) ) 过点 ( 2,0)引直线 l 与曲线 y 1 x 2 订交于 A,B 两点 ,O为坐标原点 , 当 AOB 的面积取最大值时, 直线 l 的斜率等于( )3B .3 C . 3D .3A . y EB BC CD333【答案】 B2 .( 2013 年一般高等学校招生一致考试福建数学(理)试题(纯 WORD 版))双曲线x 2y 214的极点到其渐近线的距离等于()A .2B .4C .2 5D .4 555 55【答案】 C3 .( 2013 年一般高等学校招生一致考试广东省数学(理)卷(纯WORD 版)) 已知中心在原点3的双曲线 C 的右焦点为F 3,0, 离心率等于 2 ,在双曲线C的方程是()x 2y 2x 2y 2x 2y 2x 2y 2A .41B . 41C . 21D .215555【答案】 B4 .( 2013 年高考新课标 1(理))已知双曲线 C :x 2 y 2 0,b 0 ) 的离心率为5 ,a2b 21 ( a2则 C 的渐近线方程为()A . y1 x B .y1 x C . y1 x D . yx432【答案】 C5 .(2013 年高考湖北卷(理))已知 0则双 曲线x 2 y 2与4 ,C 1 :cos 2sin 21y 2 x 2C 2 :sin 2sin 2tan 21的()A .实轴长相等B .虚轴长相等C .焦距相等D .离心率相等【答案】 D6 .( 2013 年高考四川卷(理) ) 抛物线 y24x 的焦点到双曲线x 2 y 21的渐近线的距离3是1B.3D.3A.C.122【答案】 B7 .( 2013 年一般高等学校招生一致考试浙江数学(理)试题(纯WORD版))如图,F1, F2是椭圆C1:x2y21与双曲线 C 2的公共焦点, A, B 分别是 C1, C2在第二、四象限的公共4点. 若四边形AF1BF2为矩形 , 则C2的离心率是yAO F2x1FB (第 9 题图)A.2B.336 C.D.22【答案】 D8.(2013年一般高等学校招生一致考试天津数学(理)试题(含答案))已知双曲线a2b21(a0,b0)的两条渐近线与抛物线y 2 px( p0)的准线分别交于,x2y22 A B 两点,O 为坐标原点 .若双曲线的离心率为 2, △的面积为3,则p=AOBA. 1B.3C. 2D. 3 2【答案】 C9 .( 2013 年一般高等学校招生一致考试纲领版数学(理)WORD版含答案(已校正))椭圆C : x2y21的左、右极点分别为A1, A2,点P在C上且直线 PA2的斜率的取值范围43是2, 1 ,那么直线PA1斜率的取值范围是1333C.1,D.3,A.,B.,24842141【答案】 B10.( 2013 年一般高等学校招生一致考试纲领版数学(理)WORD版含答案(已校正))已知抛物线 C : y28x 与点M2, 2 ,过 C 的焦点且斜率为k 的直线与 C 交于A, B两点,若()()()()MA MB0 , 则 k()1B .2C .2D . 2A .22【答案】 D11.( 2013 年高考北京卷(理) ) 若双曲线x 2y 2 1 的离心率为3 , 则其渐近线方程为()a 2b 2A . y =±2xB . y =2xC . y1 x D . y2 x22【答案】 B12 .( 2013 年一般高等学校招生一致考试山东数学(理)试题(含答案)) 已知抛物线y1 x2 0)的焦点与双曲线 C 2 : x 2 y 21C 1于第一C 1 :2 p( p3的右焦点的连线交象限的点M . 若C 1在点 M 处的切线平行于C 2的一条渐近线 , 则p()332 3 43A .16B . 8C .3D . 3【答案】 D13.( 2013 年高考新课标1(理)) 已知椭圆 x 2y 21(a b0) 的右焦点为 F (3,0) ,E :2b 2a过点 F 的直线交椭圆于 A, B 两点 . 若 AB 的中点坐标为 (1, 1) ,则E 的方程为()x 2 y 21B .x 2 y 2 C .x 2 y 21 x2 y 2 1A .36 3612718D .9452718【答案】 D14.( 2013 年一般高等学校招生一致考试新课标Ⅱ卷数学(理) (纯 WORD 版含答案)) 设抛物线C : y 22 px( p 0)的焦点为 F ,点M 在C 上,MF5 , 若以 MF 为直径的圆过点(0,2) , 则 C 的方程为( )A . y 2 4 x 或 y 2 8xB . y 22x 或 y 2 8xC . y 24x 或 y 216 xD . y 22 x 或 y 2 16 x【答案】 C15.( 2013 年上海市春天高考数学试卷( 含答案 ) )已知 A 、B 为平面内两定点 , 过该平面内动点2M 作直线 AB 的垂线 ,垂足为 N .若MN AN NB ,此中 为常数 ,则动点 M 的轨迹不行能是()A .圆B .椭圆C .抛物线D .双曲线【答案】 C16.(2013 年一般高等学校招生一致考试重庆数学(理)试题(含答案))已知圆22229, M , N 分别是圆 C 1,C 2 上的C 1 : x 2 y 31, 圆 C 2 : x 3 y 4动点 , P 为 x 轴上的动点 , 则 PM PN 的最小值为()A .52 4B .171C .622D . 17【答案】 A二、填空题17.( 2013 年一般高等学校招生全国一致招生考试江苏卷(数学)(已校正纯WORD 版含附带题) )双曲线x 2 y 2 1的两条渐近线的方程为 _____________.169【答案】 y3 x418 .( 2013 年高考江西卷(理)) 抛物线 x 22 py( p 0) 的焦点为F, 其准线与双曲线x 2 y 2 1订交于 A,B 两点, 若ABF 为等边三角形 , 则 P _____________33【答案】 62219.( 2013 年高考湖南卷 (理))设 F 1 , F 2是双曲线 C : x2y2 1(a 0, b 0) 的两个焦点 ,Pa b是C 上一点,若 PF 1 PF 26a, 且 PF 1 F 2 的最小内角为 30, 则 C 的离心率为 ___.【答案】320.( 2013 年高考上海卷(理))设 AB 是椭圆的长轴,点 C 在上,且 CBA, 若4AB=4, BC2 , 则 的两个焦点之间的距离为 ________【答案】46 .321.( 2013 年一般高等学校招生一致考试安徽数学(理)试题(纯WORD 版))已知直线y a 交抛物线 yx 2 于 A, B 两点 . 若该抛物线上存在点 C , 使得ABC 为直角 , 则 a 的取值范围为 ___ _____.【答案】 [1, )22.( 2013 年一般高等学校招生全国一致招生考试江苏卷(数学)(已校正纯 WORD 版含附带题) )抛物线 yx 2 在 x 1处的切线与两坐标轴围成三角形地区为D ( 包括三角形内部与边界). 若点 P( x, y) 是地区 D 内的随意一点 , 则 x2 y 的取值范围是 __________.【答案】12,223.( 2013 年一般高等学校招生全国一致招生考试江苏卷(数学) (已校正纯 WORD 版含附带题) )在平面直角坐标系xOy 中 , 椭圆 C 的标准方程为x 2 y 2 1( a 0,b0) , 右焦点为a2b2F , 右准线为 l , 短轴的一个端点为 B , 设原点到直线BF 的距离为 d 1 , F 到 l 的距离为d 2 , 若 d 26d 1 , 则椭圆 C 的离心率为 _______.【答案】3324 .( 2013 年一般高等学校招生一致考试福建数学(理)试题(纯 WORD 版))椭圆: x 2 y 2 1(a b 0) 的左 . 右焦点分别为 F 1 , F 2 , 焦距为 2c, 若直线 y3( x c)a 22b与椭圆的一个交点M 知足MF 1 F 22 MF 2 F 1 , 则该椭圆的离心率等于__________【答案】3 125.( 2013 年高考陕西卷(理) ) 双曲线x 2y 21的离心率为 5,则 m 等于 ___9_____.16 m4【答案】 926.(2013 年一般高等学校招生一致考试辽宁数学(理)试题(WORD 版))已知椭圆x 2 y 2F , C 与过原点的直线订交于A,B 两点 , 连结C :2b 2 1(a b 0) 的左焦点为aAF , BF , 若 AB 10, AF 6,cos ABF4 e= ______.,则C 的离心率 【答案】55727 .( 2013 年 上 海 市 春 季 高 考 数 学 试 卷 ( 含 答 案 ) ) 抛 物 线 y 28x 的 准 线 方 程 是_______________【答案】 x228.( 2013 年一般高等学校招生全国一致招生考试江苏卷(数学)(已校正纯 WORD 版含附带题) )在平面直角坐标系 xOy 中,设定点 A(a, a) ,P是函数y1( x 0 ) 图象上一动点 , 若x点 P,A 之间的最短距离为2 2 ,则知足条件的实数 a 的全部值为_______.【答案】1或1029.( 2013 年一般高等学校招生一致考试浙江数学(理)试题(纯WORD版))设F为抛物线C : y24x 的焦点,过点 P(1,0) 的直线l交抛物线C于两点 A, B ,点 Q 为线段 AB 的中点,若【答案】三、解答题| FQ | 2 ,则直线的斜率等于________. 130.( 2013 年上海市春天高考数学试卷( 含答案 ) )此题共有2个小题,第1小题满分4分,第2小题满分9 分 .已知椭圆C 的两个焦点分别为F1( 1 0)F2(1 0),短轴的两个端点分别为B1 B2,、,、(1)若 F1B1B2为等边三角形,求椭圆C的方程;(2) 若椭圆C的短轴长为2,过点F2的直线 l 与椭圆 C 订交于P、Q两点,且 F P FQ ,11求直线 l 的方程.[ 解 ](1)(2)【答案】 [ 解 ](1)设椭圆 C 的方程为x2y21(a b 0) .a2b2a2b, 解得a24,b21依据题意知b21a233故椭圆 C 的方程为x2y21. 4133(2) 简单求得椭圆C的方程为x2y21. 2当直线 l 的斜率不存在时,其方程为 x1, 不切合题意 ;当直线的斜率存在时, 设直线l的方程为y k ( x1) .y k( x 1)由x 2得 (2 k21)x 2 4k 2 x 2(k21) 0.y 2 12设P(x 1,y 1 ),Q( x 2,y 2 ) , 则x 14k 2, 2( k x 22x 1 x 22k2k 121)2, , ,,1 F 1 P ( x 1 1 y 1 ) FQ 1( x 2 1 y 2 )因为 FP FQ ,因此 FPFQ 0 , 即1111(x 1 1)( x 2 1) y 1 y 2 x 1 x 2 (x 1x 2 ) 1 k 2 ( x 1 1)(x 2 1)(k 2 1)x 1 x 2 (k 2 1)(x 1 x 2 ) k 2 17k 2 1 0 ,2k21解得 k 21 , 即 k 7 .7 7故直线 l 的方程为 x7 y1 0 或 x7y 1 0 .31.( 2013 年高考四川卷(理)) 已知椭圆 C x 2 y 2 1,( a b 0) 的两个焦点分别为:b 2a 2F 1 ( 1,0), F 2 (1,0) , 且椭圆 C 经过点 P( 4 , 1) .3 3 ( Ⅰ) 求椭圆 C 的离心率 ;( Ⅱ) 设过点 A(0, 2) 的直线 l 与椭圆 C 交于 M 、 N 两点 , 点 Q 是线段 MN 上的点 , 且211 2, 求点 Q 的轨迹方程 .22|AQ| |AM | |AN |2 2 2 2【答案】 解 :2a PF 1 PF 24 1 1 4 1 1 2 23333因此 , a2 .又由已知 , c1,因此椭圆 C 的离心率 ec1 2a22由知椭圆 C 的方程为x 2y 2 1.2设点 Q 的坐标为 (x,y).(1) 当直线 l 与 x 轴垂直时 , 直线 l 与椭圆 C 交于 0,1 , 0, 1 两点 ,此时 Q 点坐标为0,23 55(2) 当直线 l 与 x 轴不垂直时 , 设直线 l 的方程为 ykx 2 .因为 M , N 在直线 l 上 , 可设点 M , N 的坐标分别为 (x 1, kx 12),( x 2 , kx 2 2), 则22(1 k 2 ) x 2 2 .22(1 k 2 ) x 2.AM(1 k 2 )x 12 , AN 又 AQx 2y 2由211 , 得222AQAMAN211, 即1 k2 x 2 1 k 2 x 121 k2 x 22 2 1 1 x 1 x 2 22x 1x 2①x2x 12x 22x 12 x 22将 y kx2 代入 x 2y 2 1中,得22k 2 1 x 2 8kx 6②由8k 24 2k216 0, 得 k23 .8k6 2由②可知 x 1x 2, x 1x 2,2k 2 1 2k 218 1 代入①中并化简 , 得 x 2 3③10k 2 y2因 为 点 Q 在 直 线 yk x 2 上 ,,代入③中并化简,得所 以 kx10 y 2 3x 2 18 .2由③及 k23 ,可知 0 x 23 , 即 x6,00, 6 .2222又0,23 5知足10 y23x218 , 故 x6 ,6 .252 2由题意 ,Q x, y 在椭圆 C 内部 , 因此 1 y1,又由 10 y 22有18 3x 2y 29,9且1y 1, 则 y1,23 5 .25 425所以点Q的轨 迹方程是1 y0 22x 23其,1 8中 , x6 , 6, y1,23 52 22532.(2013 年一般高等学校招生一致考试山东数学(理)试题(含答案))椭圆x 2 y 2 1 (a b 0 )的左、右焦点分别是F , F , 离心率为3,过F 且垂直于 xC :2 b 2 12 1a2轴的直线被椭圆 C 截得的线段长为 1.(Ⅰ)求椭圆 C 的方程 ;( Ⅱ) 点 P 是椭圆 C 上除长轴端点外的任一点, 连结 PF 1 , PF 2 , 设 F 1PF 2 的角均分线PM 交 C 的长轴于点 M (m,0) , 求 m 的取值范围 ;( Ⅲ) 在( Ⅱ) 的条件下 , 过 P 点作斜率为 k 的直线 l , 使得 l 与椭圆 C 有且只有一个公共 点 , 设直线 PF 1, PF 2 1 1 的斜率分别为 k 1 , k 2 , 若 k 0, 试证明为定值 , 并求出这kk 1kk 2个定值 .x 2 y 21b 2 【答案】 解:( Ⅰ) 因为c 2a 2b 2 , 将xc 代入椭圆方程 a 2 b 2y得a2b 2 1c 3a2b 2e2由题意知, 即a又a因此a2 , b 1x 2 y 2 1因此椭圆方程为4( Ⅱ) 由题意可知 :PF 1PM= PF 2PM , PF 1PM = PF 2 PM, 设 P(x 0 , y 0 ) 其|PF 1||PM || PF 2 ||PM | |PF 1| |PF 2 |中 x 02 4 , 将向量坐标代入并化简得 :m( 4x 0216) 3x 03 12 x 0 , 因为 x 024 ,因此 m3x 0 , 而 x 0 ( 2,2) , 因此 m( 3,3)42 2(3) 由题意可知 , l 为椭圆的在 p 点处的切线 , 由导数法可求得 , 切线方程为 :x 0 x y 0 y 1 , 因此 k x 0, 而 k 1y 0 , k 2 y 0,代入11 中得44 y 0x3x3kk 1 kk 21 1 4(x3x3)8为定值 .kk 1 kk 2x 0x 0233 .( 2013 年高考上海卷(理)) (3 分 +5 分 +8 分 ) 如图 , 已知曲线 C 1 :xy 21 , 曲线2,P 是平面上一点 , 若存在过点P 的直线与C 1 ,C 2 都有公共点 , 则称 P 为C 2 :| y | | x | 1“C— C 型点”.12(1) 在正确证明 C 1 的左焦点是“C 1— C 2 型点”时 , 要使用一条过该焦点的直线 , 试写出一条这样的直线的方程( 不要求考证 );(2) 设直线 y kx 与 C 2 有公共点 , 求证 | k | 1, 从而证明原点不是“C 1—C 2 型点”;(3) 求证 : 圆 x2y21内的点都不是“C 1— C 2型点”.2【答案】:(1)C 1的左焦点为 F (3,0) ,过F 的直线 x3 与1交于( 3,2C) ,2与 C 2 交于 ( 3, ( 3 1)) , 故 C 1 的左焦点为“C 1-C 2 型点” , 且直线能够为 x3 ;2013年全国高考理科数学试题分类汇编9:圆锥曲线Word 版(2) 直线 y kx 与 C 2 有交点 , 则y kx(| k |1)| x | 1, 若方程组有解 , 则一定 | k | 1;| y | | x | 1直线 ykx 与 C 有交点 , 则2y kx(1 2k 2)x 2 2,若方程组有解 , 则一定 k 21x 22 y 222故直线 ykx 至多与曲线 C 1 和 C 2 中的一条有交点 , 即原点不是“C 1-C 2 型点” .(3) 明显过圆 x 2y 2 1 内一点的直线 l 若与曲线 C 1 有交点 , 则斜率必存在 ;2依据对称性 , 不如设直线 l 斜率存在且与曲线 C 2 交于点 (t, t1)(t0) , 则l : y (t 1) k( x t )kx y (1 t kt ) 0直线 l 与圆 x2y 21 内部有交点 , 故 |1t kt | 22k 2 12化简得 ,(1 t tk) 2 1 (k 2 1) ............①若直线 l2与曲线 C 有交点,则1y kx kt t 112222x y2(k ) x 2k (1 t kt) x(1 t kt) 11224k 2 (1 t kt)24(k21)[(1 t kt) 2 1] 0(1 t kt)22(k 2 1)2化简得 , (1 t kt ) 2 2(k 2 1) .....②由①②得 ,2(k 2 1) (1 t tk) 2 1 (k 2 1)k 212但此时 , 因为 t0,[1 t(1 k )] 21,1(k 2 1) 1, 即①式不建立 ; 2当 k 21 时 , ①式也不建立2 y 21综上 , 直线 l 若与圆 x 2内有交点 , 则不行能同时与曲线 C 1和 C 2 有交点 ,y 21 2即圆 x 2内的点都不是“C 1-C 2 型点” .2如图 , 在正方形 OABC34(. 2013 年一般高等学校招生一致考试福建数学(理)试题(纯 WORD 版))中, O 为坐标原点 , 点 A 的坐标为 (10,0) , 点 C 的坐标为 (0,10) . 分别将线段 OA 和 AB2013年全国高考理科数学试题分类汇编9:圆锥曲线Word版十均分 , 分点分别记为A1 , A2 ,....A9和 B1, B2 ,....B9,连结 OB i,过 A i做 x 轴的垂线与 OB i 交于点P i(i N*,1i9).(1)求证 : 点P i(i N*,1i9) 都在同一条抛物线上, 并求该抛物线E的方程 ;(2)过点 C 做直线与抛物线 E 交于不一样的两点 M , N ,若OCM与OCN的面积比为4 :1,求直线的方程.【答案】解:( Ⅰ) 依题意 , 过A i(i N*,1i9) 且与x轴垂直的直线方程为 x iB i (10,i ) ,直线 OB i的方程为 y i x10设 P i坐标为 ( x, y) ,由x iy1x2, 即x210 y , y得 :i x1010P i (i N* ,1i9)都在同一条抛物线上, 且抛物线E方程为x210y ( Ⅱ) 依题意 : 直线的斜率存在 , 设直线的方程为y kx10由y kx 10得 x210kx1000x210y此时100k 2 +4000, 直线与抛物线E 恒有两个不一样的交点M , N设:M ( x1, y1) N (x2 , y2 ) ,则x1x210k x1x2100SOCM 4SOCN x1 4 x2又x1 x2 0 ,x14x2分别带入y kx103 x210 y, 解得k2直线的方程为y 3x+10 ,即3x 2 y200 或3x+2 y200 235.( 2013 年高考湖南卷(理))过抛物线E : x2 2 py( p0) 的焦点F作斜率分别为 k1 , k2的两条不一样的直线l1, l2,且 k1k2 2 , l1与 E 订交于点A,B, l2与E订交于点 C,D. 以 AB,CD2013年全国高考理科数学试题分类汇编9:圆锥曲线Word 版为直径的圆 M,圆 N(M,N 为圆心 ) 的公共弦所在的直线记为 l .(I) 若 k 1 0, k 20,证明; FM FN2P 2 ;(II)若点 M 到直线 l 的距离的最小值为7 5 , 求抛物线 E 的方程 .5【答案】解:( Ⅰ)F (0, p).设 ( , y 1 ), ( x 2 , y 2 ), C ( x 3 , y 3 ), ( x 4 , y 4 ), M ( x 12 , y 12 ), N ( x 34 , y 34 ),2 A x 1 B Dp,与抛物线 E 方程联立,化简整理得 :x 2直线 l 1方程: yk 1 x 2 pk 1xp 22x 1 x 22k 1 p, x 1 x 2p2x12x 1 2 x 2 k 1 p, y 12k 1 2 p p FM (k 1 p, k 1 2 p)x 1x 2p2 同理, x34 k 2 p, y 34 k 22 p FN (k 2 p, k 22 p) .2 2FM FN k k p 22 2 p 2 p 2k k (k k 1)2 k k 2 21 1 12 1k 1 0, k 2 0, k 1 k 2,2 k 1 k 22 k 1k 2 k 1k 2 1, FM FN p 2 k 1k 2 (k 1k 2 1) p 2 1 (1 1) 2 p因此 , FM FN 2 p2建立 . ( 证毕 )( Ⅱ)设圆 M 、 N 的半径分别为 r 1, r 2 r 1 1 [( p y 1 ) ( p y 2 )] 1 [ p 2(k 1 2 p p)] k 12 p p,2 2 2 22r 1 k 12 p p,同理 2r 1k 22 p p,设圆 M 、 N 的半径分别为r 1, r 2 . 则 M 、 N 的方程分别为 (x x 12 )2 ( yy 12) 2 r 12 ,(x x 34 )2 ( y y 34 )2r 2 2,直线 l 的方程为:2( x34x ) x 2( y y ) y x2x 2 y2 y2 - r 2 r2 0 .123412 12 341234122 p(k 2 k 1 )x 2 p(k 2 2 k 1 2 ) y (x 12 x 34 )( x 12 x 34 ) ( y 12y 34 )( y 12 y 34 ) (r 2 - r 1)(r 2 r 1) 02 p(k 2 k ) x 2 p(k2 2 k 2 ) y 2p 2 (k k 2 ) p 2 ( k 2 k 2 )(k 2 k2 1) p 2 (k 2k 2 )( k 2 k2211112122112x 2 y p p(k 1 2 k 2 2 1) p(k 12 k 2 2 2) 0x 2 y 0x 12 2 y 122k 1 2k 1 1 2( 1 )2( 1) 17 p7点 M ( x 12 , y 12 )到直线 l 的距离 d |p ||p4 45|5558 55p8 抛物线的方程为 x2 16 y .36.( 2013 年一般高等学校招生一致考试浙江数学(理)试题(纯 WORD版))如图,点P(0, 1)是椭圆 C1: x2y21( a b0) 的一个顶点,C1的长轴是圆 C 2 : x2y2 4 的直a 2b2径 . l1, l2是过点 P 且相互垂直的两条直线, 此中l1交圆C2于两点 , l2交椭圆C1于另一点D(1) 求椭圆C1的方程 ; (2)求 ABD 面积取最大值时直线 l1的方程.yl1D BO xPAl2(第 21 题图)【答案】解:( Ⅰ) 由已知获得b1,且2a 4 a2, 因此椭圆的方程是x2y2 1 ;4 ( Ⅱ) 因为直线l1l2,且都过点 P(0,1) ,因此设直线 l1 : y kx1kx y 10 ,直线l2 : y 1x1x k y ,0所k以圆心(0,到直线kl1 : y k1x k x1的距y离0为d1, 因此直线l1被圆 x2y241k 2所截的弦 AB24 d 2234k 2;1k 2x ky k02222由x y2k x4x8kx0,因此14x D x P8k|DP |(11)64k 28k21,因此k 24k2(k 24) 2k 24SABD 1|AB||DP |1 2 34k 28k2184k 23 4 84k 23 22 1 k 2k24k 244k 2 3 134k 232133213321613 , 34k23213134k234k 234k23当4k 2313k 25k 10时等建立,此时直线4k2322l1 : y10 x1237.( 2013 年一般高等学校招生一致考试重庆数学(理)试题(含答案))如题 (21)图, 椭圆的中心为原点O ,长轴在 x 轴上,离心率 e 2过左焦点 F1作 x 轴的垂线交椭圆于,2A,A 两点,AA 4 .(1)求该椭圆的标准方程;(2)取垂直于 x 轴的直线与椭圆订交于不一样的两点P,P ,过 P,P 作圆心为 Q的圆,使椭圆上的其他点均在圆Q外.若PQ PQ,求圆 Q的标准方程.【答案】38.( 2013 年一般高等学校招生一致考试安徽数学(理)试题(纯WORD版))设椭圆x2y2的焦点在 x 轴上1E :a21a2( Ⅰ) 若椭圆E的焦距为 1, 求椭圆E的方程 ;( Ⅱ) 设F1, F2分别是椭圆的左、右焦点, P为椭圆E上的第一象限内的点,直线F2P交y 轴与点Q,而且F1P F1Q ,证明:当 a变化时 , 点p在某定直线上 .【答案】解: ( Ⅰ)a21a 2 ,2c1, a 21 a 2 c 2 a 25 ,椭圆方程为:8x28x21853.( Ⅱ)设F1(c,0),F2(,0),( ,),Q(0,), 则F2 P(,),QF2( ,)c P x y m x c y c m .由 1a20a(0,1)x(0,1), y(0,1) .F1P( x c, y), F1Q(c, m).由F2 P // QF2 , F1Pm(c x)ycF1Q得:c)my0c( xx 2y 21a 21 a 2( x c )( x c )y 2x 2y 2 c 2 .联立x2y 2 c 2解得2122a a cx22x 212 y 2y 21x 2( y1)2.x ( 0,1), y(0,1)x 1 y y 2 1 x 2因此动点 P 过定直线x y 1 0.39.( 2013 年高考新课标1(理))已知圆M:( x 1)2y21,圆N: ( x1)2y29,动圆P 与 M 外切而且与圆N内切,圆心P的轨迹为曲线 C.(Ⅰ)求 C的方程 ;( Ⅱ)l是与圆P , 圆M都相切的一条直线, l与曲线 C 交于 A,B 两点 , 当圆 P 的半径最长时 , 求 |AB|.【答案】由已知得圆 M 的圆心为 M (-1,0),半径r1=1, 圆N的圆心为N (1,0),半径r2=3.设动圆 P 的圆心为 P (x,y),半径为 R.( Ⅰ) ∵圆P与圆M外切且与圆N内切 , ∴|PM|+|PN|=(R r1 ) (r2 R) = r1r2=4,由椭圆的定义可知 , 曲线 C 是以 M,N 为左右焦点 , 场半轴长为 2, 短半轴长为3的椭圆( 左极点除外 ), 其方程为x2y21(x 2) . 43( Ⅱ) 对于曲线 C 上随意一点 P ( x , y ), 因为 |PM|-|PN|= 2R 2≤2, ∴R ≤2,当且仅当圆 P 的圆心为 (2,0)时 ,R=2.∴当圆 P 的半径最长时 , 其方程为 ( x 2)2y 24 ,当 l 的倾斜角为 900 时 , 则 l 与 y 轴重合 , 可得 |AB|= 2 3 .当 l 的倾斜角不为900时 , 由 r 1 ≠R 知 l 不平行 x 轴, 设 l 与 x 轴的交点为 Q,则| QP | = R,|QM |r 1 可求得 Q(- 4,0),∴设 l : yk (x 4) , 由 l 于圆 M 相切得| 3k | 2 .1, 解得 k41 k 2当 k =2 时 , 将 y 2 x 2 代入 x 2y 2 1(x2) 并整理得 7x 28x8 0 ,444 3解得 x 1,2 = 4 62, ∴|AB|= 1k 2 | x 1x 2 | = 18 .77当 k =-2 时 , 由图形的对称性可知 |AB|= 18 ,47综上 ,|AB|=18或 |AB|= 2 3 .740.(2013 年一般高等学校招生一致考试天津数学(理)试题(含答案))设椭圆x 2y 21(ab 0) 的左焦点为 F , 离心率为 3, 过点 F 且与 x 轴垂直的直线被椭圆a 2b 23截得的线段长为4 3 .3( Ⅰ) 求椭圆的方程 ;(Ⅱ) 设 , 分别为椭圆的左右极点 , 过点F 且斜率为 k 的直线与椭圆交于 , D 两点 .A BC若 AC ·DB AD ·CB 8 , 求 k 的值 .【答案】41(.x2+y231 2013 年高考江西卷(理))如图,椭圆C:2b2 =1(a>b>0) 经过点 P(1,), 离心率 e=,a22直线 l 的方程为 x=4 .(1)求椭圆 C 的方程;(2)AB 是经过右焦点 F 的任一弦(不经过点 P ),设直线 AB 与直线 l 订交于点 M ,记PA, PB, PM 的斜率分别为k1 ,k2 ,k3. 问:能否存在常数, 使得k1+k2=k3 . ?若存在求的值 ; 若不存在 , 说明原因 .【答案】 解 :(1) 由 P(1,3) 在椭圆上得 ,1 9 1①2a 2 4b 2依题设知 a 2c , 则 b 23c 2②②代入①解得 c 21,a 2 4, b 2 3 .故椭圆 C 的方程为x 2y 2 1.43(2) 方法一 : 由题意可设 AB 的斜率为 k ,则直线 AB 的方程为 y k(x 1)③代入椭圆方程 3x 24y 2 12 并整理 , 得 (4 k 2 3)x 2 8k 2x 4( k 23) 0,设 A(x 1, y 1 ), B(x 2 , y 2 ) , 则有x 18k 24( k 2 3) x 23, x 1 x 2④4k 2 4k 2 3在方程③中令x 4 得 , M 的坐标为 (4,3k) .y 13y 2 3 3k 3 1 .从而 k 12, k 22, k 32 kx 1x 241112注意到 A,F,B 共线,则有 kkAFk BF , 即有 y 1 y 2 k .1x 1 x 2 1y 13 y 23 y 1y 2311因此 k 1k 222)x 1 1x 2(1 x 21 x 1 1 x2 1 2 x 122k3x 1 x 2 2⑤2 x 1 x 2( x 1x 2 ) 18k 234k 22④代入⑤得 k 1k 2 2k32k 1 ,2 4(k 2 3)8k 2114k 2 34k 2 3又 k 3, 因此 k 1k 22k 3 . 故存在常数 2 切合题意 .k2方法二 : 设 B(x 0 , y 0 )( x 0 1) , 则直线 FB 的方程为 :yy 0 ( x 1) ,x 0 1令 x 4 , 求得 M (4,3 y 0) , x 0 1从而直线 PM 的斜率为 k 32 y 0 x 0 1 ,2( x 0 1)yy 0 (x 1)5x 03y 0 联立x 0 1 8) ,y 2 ,得A(,5x 2 12 x 0 5 2x 043则直线 PA 的斜率为 : k 12 y 0 2x 0 5 , 直线 PB 的斜率为 : k 22 y 03 ,2( x 0 1)2( x 01)因此 k 1 k 22 y 0 2x 0 5 2 y 0 32y 0x 0 12( x 0 1) 2( x 0 1)x 0 12k 3 ,故存在常数2切合题意 .WORD 版)) 已知抛物线 C 的42.( 2013 年一般高等学校招生一致考试广东省数学(理)卷(纯极点为原点 , 其焦点 F 0, cc 0 到直线 l : x y 2 0的距离为32.设P 为直线2l 上的点 , 过点 P 作抛物线 C 的两条切线 PA, PB , 此中 A, B 为切点 .( Ⅰ) 求抛物线 C 的方程 ;( Ⅱ)当点 P x 0 , y 0 为直线 l 上的定点时 , 求直线 AB 的方程 ;( Ⅲ) 当点 P 在直线 l 上挪动时 , 求 AFBF 的最小值 .【答案】 ( Ⅰ)依题意 , 设抛物线 C 的方程为 x 24cy , 由 0 c 2 3 2 联合 c 0 ,22解得 c 1 .因此抛物线 C 的方程为 x 24 y .( Ⅱ) 抛物线 C 的方程为 x 24y , 即 y1 x2 , 求导得 y 1 x42设 Ax 1 , y 1 , B x 2 , y 2 ( 其 中 y 1x 12 , y 2 x 2 2 ), 则切线 PA,PB 的斜率分别为441 1 x 1 ,x 2 ,22所 以 切 线 PA 的 方 程 为 y yx 1 x x ,即 yx 1 x x 12y 1 , 即1 2 1 2 2x 1 x 2y 2 y 1同理可得切线PB 的方程为 x 2 x 2 y 2 y 2 0因为切线 PA, PB 均过点 P x , y0, 因此 x 1x 02 y 0 2y 10 , x 2 x 0 2y 02y 2因此x 1 , y 1 , x 2 , y 2 为方程 x 0 x 2 y 0 2 y 0 的两组解 .因此直线 AB 的方程为 x 0 x 2 y 2y 0 0 .( Ⅲ) 由抛物线定义可知 AF y 1 1, BF y 2 1 ,因此AF BFy 1 1 y 2 1 y 1 y 2 y 1 y 21x 0 x2 y 2y 02 y 0 x0 2yy 00 联立方程4y, 消去 x 整理得 y22x 2由一元二次方程根与系数的关系可得y 1y 2x 0 2 2y 0 , y 1 y 2 y 0 2因此 AF BF y yy y 1 y2x2 2 y 11 2120 0又点 P x , y0 在直线 l 上 , 因此 x 0y 0 2 ,2因此 y 02x 022 y 0 1 2y 022 y 05 2 y 01922因此当 y 01 时 , AF BF 获得最小值 , 且最小值为 9 .2243.( 2013 年一般高等学校招生一致考试新课标Ⅱ卷数学(理) (纯 WORD 版含答案)) 平面直角坐标系 xOy 中 , 过椭圆 M:x 2y 21(a b0) 的右焦点 F 作直 x y3 0交M 于a 22bA,B 两点, P 为 AB 的中点 , 且OP 的斜率为1 .2(Ⅰ)求 M 的方程 ;(Ⅱ)C,D 为 M 上的两点 , 若四边形 ABCD 的对角线 CDAB , 求四边形 ABCD 面积的最大值 .【答案】44.( 2013 年高考湖北卷(理))如图,已知椭圆C1与C2的中心在座标原点O ,长轴均为 MN 且在 x 轴上,短轴长分别为2m , 2n m n ,过原点且不与x 轴重合的直线l 与 C1, C2的四个交点按纵坐标从大到小挨次为A ,B ,C ,D .记m BDM 和 ABN 的面,n积分别为 S 1 和 S 2 .(I) 当直线 l 与 y 轴重合时 , 若 S 1S 2,求 的值;(II) 当 变化时 , 能否存在与坐标轴不重合的直线l , 使得 S 1 S 2 ?并说明原因 .yA BMOCDN x第 21题图m11 nm 1S 1S 2 mnm n ,1【答案】 解 :(I)n解得 :2 1( 舍去小于1的根)(II) 设椭圆 C 1 :x2 2, C 2 :x2 22y2 1 am 2y 2 1, 直线 l : kyxa mankyy2xa 2m 2k 2y21y Aamx 2 1 2 222 2a 2m 2a mam k同理可得 , y Bana 2n 2k2又BDM 和 ABN 的的高相等S 1 BD y B y D y B y A S 2AB y Ay By Ay B假如存在非零实数k 使得 S 1S 2,则有1 y A1 y B ,222a 222 121即 :11 , 解得 k 2a 24n 2 3a 22n 2k 2n 2 k 2当1 2 时, k 20 ,存在这样的直线l ;当 11 2 时, k 20 ,不存在这样的直线 l.45.( 2013 年高考北京卷(理))已知A、B、C是椭圆W:x2y21上的三个点,O是坐标原4点.(I)当点 B 是 W的右极点 , 且四边形 OABC为菱形时 , 求此菱形的面积 ;(II)当点 B 不是 W的极点时 , 判断四边形 OABC能否可能为菱形 , 并说明原因 .【答案】:(I)x221的右极点B的坐标为(2,0).因为四边形 OABC为菱形 ,解椭圆 W:y4因此 AC 与 OB 相互垂直均分. 因此可设 A(1, m ),代入椭圆方程得1m2 1 ,即43.112 | m |3.m因此菱形 OABC的面积是| OB | | AC |2222(II)假定四边形 OABC为菱形 . 因为点 B 不是 W的极点 , 且直线 AC可是原点 , 因此可设AC的方程为y kx m( k0, m0) .由x2 4 y24消去 y 并整理得(14k 2 ) x28kmx4m240 .y kx m设 A(x1,y1) ,C ( x2,y2) , 则x1x214km ,y1y2kx1x2m m. 24k 22214k 2因此 AC的中点为 M(4km,m).14k 214k 21因为M为 AC和 OB的交点 , 因此直线OB的斜率为.4k1因为 k() 1 ,因此AC与OB不垂直.因此 OABC不是菱形 , 与假定矛盾 .4k因此当点 B 不是 W的极点时 , 四边形 OABC不行能是菱形 .46.( 2013 年高考陕西卷(理))已知动圆过定点A(4,0),且在 y 轴上截得的弦MN的长为8.( Ⅰ)求动圆圆心的轨迹C的方程;( Ⅱ )已知点 B(-1,0),设不垂直于 x 轴的直线l与轨迹 C交于不一样的两点P,Q,若 x 轴是PBQ 的角均分线,证明直线 l过定点 .【答案】解:( Ⅰ)A(4,0),设圆心C(x, y), MN线段的中点为 E,由几何图像知 ME MN ,CA2CM 2ME 2EC 22(x 4)2y242x2y28x( Ⅱ )点(-1,0),B 设 P(x1 , y1 ), Q ( x2 , y2 ),由题知 y1 y20, y1 y2 0, y128x1 , y228x2.y1y2y1y28( y1y2 ) y1 y2 ( y2y1 ) 0 8 y1 y2 0 x1 1 x2 1y128 y228直线 PQ方程为 : y y1y2y1(x x1 )y y11(8x y1 2 )x2x1y2y1y( y2y1 ) y1 ( y2y1 ) 8x y12y( y2y1 ) 8 8x y 0, x 1因此 , 直线 PQ过定点 (1,0)47 .( 2013 年一般高等学校招生一致考试辽宁数学(理)试题(WORD版))如图,抛物线C1 : x2 4 y,C2 : x22py p 0, 点M x0 , y0在抛物线C2上,过 M 作C1的切线,切点为 A, B (M为原点O时, A, B 重合于O)x01 2 ,切线 MA.的斜率为 - 1. 2(I)求 p 的值;(II)当 M 在C2上运动时,求线段 AB 中点 N 的轨迹方程 . A,B重合于O时,中点为O .【答案】48.( 2013 年一般高等学校招生一致考试纲领版数学(理)WORD 版含答案(已校正) ) 已知双曲x 2y 2 F 1,F 2 , 离心率为 3,直线 y 2 与线 C :2b 2 1 a 0,b 0 的左、右焦点分别为aC 的两个交点间的距离为 6 .(I)求 a, b; ;(II)设过 F2的直线l 与 C 的左、右两支分别订交于A, B 两点,且AF1BF1,证明 : AF2、AB、BF2成等比数列 .【答案】49.( 2013 年上海市春天高考数学试卷 ( 含答案 ) ) 此题共有 2 个小题 , 第 1 小题满分 6 分, 第 2小题满分 6 分.已知抛物线 C :y 24x 的焦点为 F .(1) 点 A 、P 知足 AP 2FA . 当点 A 在抛物线 C 上运动时 , 求动点 P 的轨迹方程 ;(2) 在 x 轴上能否存在点 Q , 使得点 Q 对于直线 y2x 的对称点在抛物线 C 上 ?假如存在 , 求全部知足条件的点Q 的坐标 ; 假如不存在 , 请说明原因 .【答案】(1)设 动 点 P 的 坐 标 为 ( x ,y) , 点 A 的 坐 标 为 (x A ,y A ), 则AP ( x x A ,y y A ) ,因为 F的坐标为 (1,0) , 因此(1, ),FA x Ay A由 AP2FA 得 (x x A ,y y A ) 2( x A 1,y A ) .即x x A 2(x A1)x A2 xy A2 y A解得yy A y代入 y 2 4x , 获得动点 P 的轨迹方程为 y 28 4x .(2) 设点 Q 的坐标为 (t ,0) . 点 Q 对于直线 y2x 的对称点为 Q ( x ,y) ,y 1 x 3 t 则 x t2 解得 5yxty42t5 若 Q 在 C 上 , 将 Q 的坐标代入 y 24x , 得 4t 2 15t 0 , 即 t 0或 t15 .Q , 其坐标为 (0,0) 和 (15,0) .4因此存在知足题意的点4。
圆锥曲线2013年高考题汇总一、选择题1 .(2013年高考课标Ⅱ卷(文))设抛物线C:y2=4x的焦点为F,直线L过F且与C交于A, B两点.若|AF|=3|BF|,则L的方程为()A.y=x-1或y=-x+1 B.y=错误!未找到引用源。
(X-1)或y=错误!未找到引用源。
-错误!未找到引用源。
(x-1)C.y=错误!未找到引用源。
(x-1)或y=-错误!未找到引用源。
(x-1) D.y=错误!未找到引用源。
(x-1)或y=-错误!未找到引用源。
(x-1)2 .(2013年高考课标Ⅰ卷(文))O为坐标原点,F为抛物线2:C y=的焦点,P为C上一点,若||PF=,则POF∆的面积为()A.2B.C.D.43 .(2013年高考课标Ⅰ卷(文))已知双曲线2222:1x yCa b-=(0,0)a b>>的离心率为错误!未找到引用源。
,则C的渐近线方程为()A.14y x=±B.13y x=±C.12y x=±D.y x=±4 .(2013年高考课标Ⅱ卷(文))设椭圆2222:1(0)x yC a ba b+=>>的左、右焦点分别为12,,F F P是C上的点21212,30PF F F PF F⊥∠=︒,则C的离心率为()A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
5)已知()()1221,0,1,0,F F C F x-是椭圆的两个焦点过且垂直于轴的直线交于A B、两点,且3AB=,则C的方程为()A.2212xy+=B.22132x y+=C.22143x y+=D.22154x y+=6.(2013年高考大纲卷(文))已知抛物线2:8C y x=与点()2,2M-,过C的焦点且斜率为k的直线与C交于,A B两点,若0MA MB=,则k=()A.12BCD.27.(2013年高考北京卷(文))双曲线221yxm-=的充分必要条件是()A.12m>B.1m≥C.1m>D.2m>A.1 B.2 C.4 D.128.(2013年高考江西卷(文))已知点A(2,0),抛物线C:x 2=4y 的焦点为F,射线FA 与抛物线C 相交于点M,与其准线相交于点N,则|FM|:|MN|=( )A .2:错误!未找到引用源。
2013年高考解析分类汇编9:圆锥曲线一、选择题1 .(2013年高考湖北卷(文))已知π04θ<<,则双曲线1C :22221sin cos x y θθ-=与2C :22221cos sin y x θθ-=的( )A .实轴长相等B .虚轴长相等C .离心率相等D .焦距相等【答案】D本题考查双曲线的方程以及,,a b c 的计算。
双曲线1C 中,2222s i n ,c o s a b θθ==,所以21c =,离心率为221sin e θ=。
2C 中,2222c o s ,s i n a b θθ==,所以21c =。
所以两个双曲线有相同的焦距,选D.2 .(2013年高考四川卷(文9))从椭圆22221(0)x y a b a b+=>>上一点P 向x 轴作垂线,垂足恰为左焦点1F ,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且//AB OP (O 是坐标原点),则该椭圆的离心率是( )A .4B .12C .2 D .2【答案】C由已知得,点),(y c P -在椭圆上,代入椭圆的方程,得),(2ab c P -,因为AB ∥OP ,所以OP AB k k =,ac b a b 2-=-,c b =,所以21222222=-==c b c a c e ,22=e ,选C.3 .(2013年高考课标Ⅱ卷(文10))设抛物线2:4C y x =的焦点为F ,直线l 过F 且与C 交于A ,B 两点。
若||3||AF BF =,则l 的方程为( )(A )1y x =-或1y x =-+ (B )1)y x =-或1)y x =-(C )1)y x =-或1)y x =- (D )1)2y x =-或1)2y x =-- 【答案】C抛物线y 2=4x 的焦点坐标为(1,0),准线方程为x=-1,设A (x 1,y 1),B(x 2,y 2),则因为|AF|=3|BF|,所以x 1+1=3(x 2+1),所以x 1=3x 2+2。
备战2014年高考之2013届全国统考区(甘肃、贵州、云南)精选理科试题(大部分详解)分类汇编9:圆锥曲线一、选择题1错误!未指定书签。
.(贵州省六校联盟2013届高三第一次联考理科数学试题)我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”.已知1F 、2F 是一对相关曲线的焦点,P 是它们在第一象限的交点,当6021=∠PF F 时,这一对相关曲线中双曲线的离心率是( )A .3B .2C .332 D .2 【答案】A 【解析】设椭圆的半长轴为1a ,椭圆的离心率为1e ,则1111,c ce a a e ==.双曲线的实半轴为a ,双曲线的离心率为e ,,c ce a a e==.12,,(0)PF x PF y x y ==>>,则由余弦定理得2222242cos 60c x y xy x y xy =+-=+-,当点P 看做是椭圆上的点时,有22214()343c x y xy a xy =+-=-,当点P 看做是双曲线上的点时,有2224()4c x y xy a xy =-+=+,两式联立消去xy 得222143c a a =+,即22214()3()c c c e e =+,所以22111()3()4e e +=,又因为11e e =,所以22134e e +=,整理得42430e e -+=,解得23e =,所以e A.2错误!未指定书签。
.(甘肃省河西五市部分普通高中2013届高三第二次联合考试 数学(理)试题)若P 点是以A (-3,0)、B (3,0)为焦点,实轴长为52的双曲线与圆922=+yx 的一个交点,则PB PA += ( ) A .134 B.142 C. 132 D. 143 【答案】C错误!未指定书签。
3.(【解析】云南省玉溪一中2013届高三上学期期中考试理科数学)已知抛物线方程为24y x =,直线l 的方程为40x y -+=,在抛物线上有一动点P 到y 轴的距离为1d ,P 到直线l 的距离为2d ,则22d d +的最小值 ( )A.22+ B.12+ C.22- D.12- 【答案】D 【解析】因为抛物线的方程为24y x =,所以焦点坐标(1,0)F ,准线方程为1x =-。