基于机器视觉的产品检测技术研究

  • 格式:doc
  • 大小:29.50 KB
  • 文档页数:4

下载文档原格式

  / 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于机器视觉的产品检测技术研究

1、机器视觉

1.1机器视觉的概念

机器视觉被定义为用计算机来模拟人的视觉功能,从客观事物的图像中提取信息,进行处理并加以理解,最终用于实际检测、测量和控制。一个典型的工业机器视觉应用系统包括光源、光学系统、图像采集系统、数字图像处理与智能判断决策模块和机械控制执行模块。系统首先通过CCD相机或其它图像拍摄装置将目标转换成图像信号,然后转变成数字化信号传送给专用的图像处理系统,根据像素分布!亮度和颜色等信息,进行各种运算来抽取目标的特征,根据预设的容许度和其他条件输出判断结果。

值得一提的是,广义的机器视觉的概念与计算机视觉没有多大区别,泛指使用计算机和数字图像处理技术达到对客观事物图像的识别、理解。而工业应用中的机器视觉概念与普通计算机视觉、模式识别、数字图像处理有着明显区别,其特点是:

1、机器视觉是一项综合技术,其中包括数字图像处理技术、机械工程技术、控制技术、电光源照明技术,光学成像技术、传感器技术、模拟与数字视频技术、计算机软硬件技术、人机接口技术等。这些技术在机器视觉中是并列关系。相互协调应用才能构成一个成功的工业机器视觉应用系统。

2、机器视觉更强调实用性,要求能够适应工业生产中恶劣的环境,要有合理的性价比,要有通用的工业接口,能够由普通工作者来操作,有较高的容错能力和安全性,不会破坏工业产品,必须有较强的通用性和可移植性。

3、对机器视觉工程师来说,不仅要具有研究数学理论和编制计算机软件的能力,更需要光、机、电一体化的综合能力。

4、机器视觉更强调实时性,要求高速度和高精度,因而计算机视觉和数字图像处理中的许多技术目前还难以应用于机器视觉,它们的发展速度远远超过其在工业生产中的实际应用速度。

1.2机器视觉的研究范畴

从应用的层面看,机器视觉研究包括工件的自动检测与识别、产品质量的自动检测、食品的自动分类、智能车的自主导航与辅助驾驶、签字的自动验证、目标跟踪与制导、交通流的监测、关键地域的保安监视等等。从处理过程看,机器视觉分为低层视觉和高层视觉两阶段。低层视觉包括边缘检测、特征提取、图像分割等,高层视觉包括特征匹配、三维建模、形状分析与识别、景物分析与理解等。从方法层面看,有被动视觉与主动视觉之,又有基于特征的方法与基于模型的方法之分。从总体上来看,也称作计算机视觉。可以说,计算机视觉侧重于学术研究方面,而机器视觉则侧重于应用方面。

机器人视觉是机器视觉研究的一个重要方向,它的任务是为机器人建立视觉系统,使得机器人能更灵活、更自主地适应所处的环境,以满足诸如航天、军事、工业生产中日益增长的需要(例如,在航天及军事领域对于局部自主性的需要,在柔性生产方式中对于自动定位与装配的需要,在微电子工业中对于显微结构的检测及精密加工的需要等)。机器视觉作为一门工程学科,正如其它工程学科一样,是建立在对基本过程的科学理解之上的。机器视觉系统的设计依赖于具体的问题,必须考虑一系列诸如噪声、照明、遮掩、背景等复杂因素,折中地处理信噪比、分辨率、精度、计算量等关键问题。

1.3机器视觉的研究现状

机器视觉研究出现于60年代初期,电视摄像技术的成熟与计算机技术的发展使得机器视觉研究成为可能。它作为早期人工智能研究的一部分,由于技术条件的限制,进展缓慢。80年代初,在D·Marr提出的计算视觉理论指导下,机器视觉研究得到了迅速发展,成为

现代科技研究的一个热点。90年代,随着计算机技术的快速发展,机器视觉在工业中得以应用,如印刷电路扳的检验、高精度导弹的末制导!机器人装配线、汽车流量检测等方面都有机器视觉系统的应用。

经过40来年的研究,机器视觉在深度和广度两方面都取得了很大的进展,积累了丰富的学术研究成果,各种相关文献大量出现,已经成长为一门内容十分丰富的独立学科,在应用研究方面也取得了不小的进展,如图纸的自动录入、光学字符阅读器、机器人视觉系统在工业生产装配线上的应用等都十分引人注目。近年来,随着计算机技术的高速发展,机器视觉系统的成本大幅度地下降。为应用研究奠定了坚实的基础,应用视觉研究正在蓬勃兴起,前景十分光明。

回顾机器视觉的研究历史,可以看到两条相当清晰的道路:理论与方法研究和应用研究。前者从纯学术的角度出发,研究模拟人类视觉的各种理论与算法(如特征抽取!双目立体视觉、运动与光流、由线条图到实体、由阴影到形体、由纹理到形体等等);后者从实际问题出发,研究识别、检测等问题(如工件的识别、印刷用电路板的检验、字符识别等)。总的来说,学术研究与应用研究相差很远,原因可能是纯学术研究做了过多偏离实际情况的假设,低估了实际问题的复杂性,造成其成果难以实用化。当然,机器视觉本身是十分复杂的,研究只能逐步深入。

1.4机器视觉的应用

机器视觉不会有人眼的疲劳,有着比人眼更高的精度和速度,借助红外线、紫外线、X 射线、超声波等高新探测技术,机器视觉在探测不可视物体和高危险场景时,更具有其突出的优点。机器视觉技术现己得到广泛的应用:

1、机器视觉在工业中的应用

许多领域像冶金、化工、建材、安全保卫、工件检测等工业生产过程中,这些工业对象复杂,过程涉及参数众多,并有显著的非线性、骤变性、离散性、分布性和不确定性。尤其是在周围环境极其(例如高温环境和不确定对象,其形状参数难以用普通的测量手段进行测量)的情况下,对这类系统要想建立确定的模型是十分困难的。因此,用常规控制技术难以实现对象的计算机实时控制。对于这类复杂对象的自动控制,所遇到的最大困难是检测问题,而大多数场合,可通过机器视觉来实现。

机器视觉系统可用于工业领域的很多方面,如零件检验与尺寸测量、零件的缺陷检查、零件装配、机器人的引导和零件的识别等。应用图像处理及机器视觉检测技术最多的部门是电子工业,其次是汽车工业、木材工业、纺织工业、食品加工工业、包装工业及航空工业等等,已取得的应用成果有:a)产品形状和表面缺陷检查、b)产品非破坏性检查、c)机器人、d)产品分类等。

2、机器视觉在农业中的应用

随着图像处理技术的专业化、计算机硬件成本的下降以及运行速度的提高。在农产品品质自动检测和分级领域应用机器视觉系统已变得越来越具有吸引力。农产品在其生产过程中由于受到人为和自然等复杂因素的影响,产品品质差异很大,,如形状、大小、色泽等都是变化的,很难做到整齐划一,故在农产品品质检测与分析时,要有足够的应变能力来适应情况的变化。机器视觉技术在农产品品质检测上的应用正是满足了这些应变的要求。农产品的尺寸与面积,形状和颜色是农产品品质的重要特征,利用机器视觉进行检测不仅可以排除主观因素干扰,而且还能对这些指标进行定量描述,具有人工检测所无法比拟的优越性。

3、机器视觉在医学中应用

在医学领域,机器视觉用于辅助医生进行医学影像的分析,主要利用数字图像处理技术、信息融合技术对X射线透视图、核磁共振图像、CT图像或其它医学影像数据进行统

计和分析。不同医学影像设备得到的是不同特性的生物组织的图像。例如,X射线反映的