01背包问题实验报告
- 格式:doc
- 大小:71.50 KB
- 文档页数:15
实验报告分支限界法01背包实验报告:分支限界法解决01背包问题一、引言背包问题是数学和计算机科学中一个经典的问题。
背包问题通常分为01背包问题和完全背包问题两种情况。
本实验主要探讨的是分支限界法解决01背包问题,该算法常用于解决NP难问题。
分支限界法通过将问题分解为一系列子问题,并借助剪枝技术,逐步缩小问题的空间,从而找到最优解。
本实验将通过具体的案例来展示分支限界法的求解过程和原理,并对算法的时间复杂度和空间复杂度进行分析。
二、算法原理01背包问题的数学模型为:有n个物品,每个物品有一个重量wi和一个价值vi,在限定的背包容量为W的情况下,如何选择物品放入背包,使得背包中物品的总价值最大。
分支限界法的基本思想是:通过不断地分解问题为更小的子问题,并使用估算函数对子问题进行优先级排序,将优先级最高的子问题优先求解。
具体步骤如下:1.根节点:将背包容量W和物品序号0作为初始状态的根节点。
2.扩展节点:对于任意一个节点S,选择装入下一个物品或者不装入两种分支。
计算新节点的上界。
3.优先级队列:将扩展节点按照上界从大到小的顺序插入优先级队列。
4.剪枝条件:当扩展节点的上界小于当前已找到的最优解时,可以剪枝。
5.结束条件:当到叶节点或者队列为空时,结束。
若叶节点的上界高于当前最优解,更新最优解。
三、实验过程1.输入数据:给定一个物品序列,每个物品有重量和价值,以及一个背包的最大容量。
2.算法实现:根据算法原理,使用编程语言实现分支限界法的求解过程。
3.结果分析:比较算法求解得到的最优解和其他算法(如动态规划)得到的最优解之间的差异。
四、实验结果以一个具体的案例来说明分支限界法的求解过程。
假设有4个物品,其重量和价值分别为{2,3,4,5}和{3,4,5,6},背包的最大容量为8、通过分支限界法求解,得到最优解为9,对应的物品选择为{2,3,5}。
通过与动态规划算法的结果比较,可以发现分支限界法的最优解与动态规划算法得到的最优解是一致的。
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==背包问题实验报告篇一:背包问题实验报告课程名称:任课教师:班级:201X姓名:实验报告算法设计与分析实验名称:解0-1背包问题王锦彪专业:计算机应用技术学号:11201X 严焱心完成日期: 201X年11月一、实验目的:掌握动态规划、贪心算法、回溯法、分支限界法的原理,并能够按其原理编程实现解决0-1背包问题,以加深对上述方法的理解。
二、实验内容及要求:1.要求分别用动态规划、贪心算法、回溯法和分支限界法求解0-1背包问题;2.要求显示结果。
三、实验环境和工具:操作系统:Windows7 开发工具:Eclipse3.7.1 jdk6 开发语言:Java四、实验问题描述:0/1背包问题:现有n种物品,对1<=i<=n,第i种物品的重量为正整数Wi,价值为正整数Vi,背包能承受的最大载重量为正整数C,现要求找出这n种物品的一个子集,使得子集中物品的总重量不超过C且总价值尽量大。
动态规划算法描述:根据问题描述,可以将其转化为如下的约束条件和目标函数:nmax?vixi?n??wixi?C?i?1?x?{0,1}(1?i?n)?i寻找一个满足约束条件,并使目标函数式达到最大的解向量nX?(x1,x2,x3,......,xn)wixi,使得?i?1?C,而且?vixii?1n达到最大。
0-1背包问题具有最优子结构性质。
假设(x1,x2,x3,......,xn)是所给的问题的一个最优解,则(x2,x3,......,xn)是下面问题的一个最优解:?n??wixi?C?w1x1max?i?2?x?{0,1}(2?i?n)?i如果不是的话,设(y?vixi。
i?2nn2,y3,......,yn)是这个问题的一个最优解,则?viyi??vixi,且w1x1 i?2i?2n??wiyii?2?C。
算法设计与分析实验报告—0/1背包问题-【问题描述】给定n 种物品和一个背包。
物品i 的重量是iw ,其价值为i v,背包容量为C 。
问应该如何选择装入背包的物品,使得装入背包中物品的总价值最大?【问题分析】0/1背包问题的可形式化描述为:给定C>0, i w >0, i v >0,1i n ≤≤,要求找出n 元0/1向量{}12(,,...,),0,1,1n i x x x x i n ∈≤≤,使得n1i i i w x c =≤∑,而且n1i ii v x=∑达到最大。
因此0/1背包问题是一个特殊的整数规划问题。
0n k w ≤≤1max ni i i v x =∑n1i ii w xc =≤∑{}0,1,1i x i n ∈≤≤【算法设计】设0/1背包问题的最优值为m( i, j ),即背包容量是j ,可选择物品为i,i+1,…,n 时0/1背包问题的最优值。
由0/1背包问题的最优子结构性质,可以建立计算m( i, j )的递归式如下:max{m( i+1, j ), m( i+1, j-i w )+i v } i j w ≥m( i, j )=m(i+1,j)n v n j w >m(n,j)=0 0n k w ≤≤【算法实现】#include <iostream.h> #include<string.h> #include<iomanip.h>int min(int w, int c) {int temp; if (w < c) temp = w;elsetemp = c;return temp;}Int max(int w, int c) {int temp; if (w > c) temp = w;elsetemp = c;return temp;}void knapsack(int v[], int w[], int** m, int c, int n) //求最优值 {int jmax = min(w[n]-1, c);for (int j = 0; j <= jmax; j++)m[n][j] = 0;for (int jj = w[n]; jj <= c; jj++)m[n][jj] = v[n];for(int i = n-1; i > 1; i--)//递归部分{jmax = min(w[i]-1, c);for(int j = 0; j <= jmax; j++)m[i][j] = m[i+1][j];for(int jj = w[i]; jj <= c; jj++)m[i][jj] = max(m[i+1][jj], m[i+1][jj-w[i]]+v[i]);}m[1][c] = m[2][c];if(c >= w[1])m[1][c] = max(m[1][c], m[2][c-w[1]]+v[1]);cout << endl << "最优值:" << m[1][c] << endl;cout<<endl;cout<< "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&" << endl;}int traceback(int x[], int w[], int** m, int c, int n) //回代,求最优解{out << endl << "得到的一组最优解如下: " << endl;for(int i = 1; i < n; i++){if(m[i][c] == m[i+1][c]) x[i] = 0;else{x[i] = 1;c -= w[i];}}x[n] = (m[n][c]) ? 1:0;for(int y = 1; y <= n; y++)cout << x[y] << "\t";cout << endl;return x[n];}void main(){int n, c;int **m;cout << "&&&&&&&&&&&&&&&&&&&&&欢迎使用0-1背包问题程序&&&&&&&&&&&&&&&&&&&" << endl;cout << "请输入物品个数: ";cin >> n ;cout << endl << "请输入背包的承重:";cin >> c;int *v = new int[n+1];cout << endl << "请输入每个物品的价值 (v[i]): " << endl;for(int i = 1; i <= n; i++)cin >> v[i];int *w = new int[n+1];cout << endl << "请输入每个物品的重量 (w[i]): " << endl;for(int j = 1; j <= n; j++)cin >> w[j];int *x = new int[n+1];m = new int* [n+1]; //动态的分配二维数组for(int p = 0; p < n+1; p++)m[p] = new int[c+1];knapsack (v, w, m, c, n);traceback(x, w, m, c, n);}【运行结果】。
算法设计与分析实验报告0_1背包一.问题描述假设有n件物品,每件物品有各自的重量W1,W2,……,Wn和与之对应的价值V1,V2,……,Vn。
设背包的容量为c,在不超过背包容量的前提下,求出获得最大价值总和的方案。
(0-1背包的情况下物品不可分割,只能选择放入,或者不放入背包中)。
二.求解思路1.贪心策略问题开始阶段,将所有物品按价值从高到低排列,每一次往背包里放入不超过背包容量的价值最大的物品,直到没有物品可放入为止。
但事实证明,由于物品的不可分割性,0-1背包并不适合贪心策略。
例:假设背包的容量为50,共有三件物品(重量,价值):(10,60),(20,100),(30,120)。
若使用贪心策略,则会选择一个(30,120)和一个(20,100)。
得到的价值总和是220。
而稍加计算便可知选取两个(20,100)和一个(10,60)可以得到更大的价值总和260。
因此贪心策略不能给出0-1背包的最优解。
后话:即使是普通背包问题(物品可分割),每次选择价值最大的物品也不能得到最优解。
正确的贪心策略应是:每次选择单位重量下价值最大的物品。
由于本次实验主要讨论的是0-1背包问题,这里就不给出该贪心策略的证明。
2.动态规划(1)证明0-1背包问题具有最优子结构性质:假设(x1,x2,……,xn)是容量为c的背包的一组最优解,其中xi的取值为0或1,表示是否放入背包中。
则必有(x2,x3,……,xn)为如下子问题的一组最优解:sum{xi*wi} (2<=i<=n)<=c-x1*w1利用反证法证明,假设(y1,y2,……,yn)是该子问题的一组最优解而(x2,x3,……,xn)不是。
则sum{yi*vi} > sum{xi*vi} (2<=i<=n)那么就可得到:x1*v1+ sum{yi*vi} > x1*v1+ sum{xi*vi} (2<=i<=n)则(x1,y2,……,yn)是原问题的最优解,而(x1,x2,……,xn)不是,与假设矛盾。
算法设计与分析实验报告书实验名称:0/1背包问题学号:姓名:实验时间:2015年 6 月 1 日一实验目的和要求(1)深刻掌握贪心法、动态规划法、回溯法的设计思想并能熟练运用(2)理解这样一个观点:同样的问题可以用不同的方法来解决,一个好的算法是反复努力和重新修正的结果。
二实验内容(1)分别用蛮力法贪心法、动态规划法、回溯法设计0/1背包问题的算法。
(2)分析算法随n和C变化的时间性能,随机产生参数n和C,收集算法执行的时间(3)讨论n和C变化时,动态规划法和回溯法的时间性能。
(4)讨论几种算法在该问题求解上的特点。
三实验环境VC++6.0四设计思想及实验步骤蛮力法的设计思想和步骤将所有排列下的背包的重量和价值都计算出来,选择重量不大于背包的总重量下的最大价值。
贪心法的设计思想和步骤首先计算每种物品单位重量的价值vi/wi;按单位价值对物品进行升序排列。
然后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包,直到背包装满为止。
动态规划法的设计思想和步骤令V(i, j)表示在前i个物品中能够装入容量为j的背包中的物品的最大价值,则可以得到如下动态函数:V(i, j)=0 (i=0或j=0)V( i, j) = V(i-1, j) j<w[i]V( i, j) = max{V(i-1, j), V(I, j-1)+v[i]} j>=w[j]按照下述方法来划分段:第一段只装入前1个物品,确定在各种情况下的背包能够得到的最大价值;第二阶段,只装入2个物品,确定在各种情况下的背包能够得到的最大价值;以此类推,直到第n个阶段。
最后V(n, C)便是容量为C的背包中装入n个物品时获取到的最大价值。
回溯法的设计思想和步骤为了避免生成那些不可能产生最佳解的问题状态,要不断的利用越约束条件来剪掉那些实际上不可能产生所需解的节点,以减少问题额计算量。
对于n种可选物品的0/1背包问题,其解空间长度由长度为n的0-1向量组成,可用子集数表示。
实验四“0-1”背包问题一、实验目的与要求熟悉C/C++语言的集成开发环境;通过本实验加深对贪心算法、动态规划算法的理解。
二、实验内容:掌握贪心算法、动态规划算法的概念和基本思想,分析并掌握“0-1”背包问题的求解方法,并分析其优缺点。
三、实验题1.“0-1”背包问题的贪心算法2.“0-1”背包问题的动态规划算法说明:背包实例采用教材P132习题六的6-1中的描述。
要求每种的算法都给出最大收益和最优解。
设有背包问题实例n=7,M=15,,(w0,w1,。
w6)=(2,3,5,7,1,4,1),物品装入背包的收益为:(p0,p1,。
,p6)=(10,5,15,7,6,18,3)。
求这一实例的最优解和最大收益。
四、实验步骤理解算法思想和问题要求;编程实现题目要求;上机输入和调试自己所编的程序;验证分析实验结果;整理出实验报告。
五、实验程序// 贪心法求解#include<iostream>#include"iomanip"using namespace std;//按照单位物品收益排序,传入参数单位物品收益,物品收益和物品重量的数组,运用冒泡排序void AvgBenefitsSort(float *arry_avgp,float *arry_p,float *arry_w ); //获取最优解方法,传入参数为物品收益数组,物品重量数组,最后装载物品最优解的数组和还可以装载物品的重量float GetBestBenifit(float*arry_p,float*arry_w,float*arry_x,float u);int main(){float w[7]={2,3,5,7,1,4,1}; //物品重量数组float p[7]={10,5,15,7,6,18,3}; //物品收益数组float avgp[7]={0}; //单位毒品的收益数组float x[7]={0}; //最后装载物品的最优解数组const float M=15; //背包所能的载重float ben=0; //最后的收益AvgBenefitsSort(avgp,p,w);ben=GetBestBenifit(p,w,x,M);cout<<endl<<ben<<endl; //输出最后的收益system("pause");return 0;}//按照单位物品收益排序,传入参数单位物品收益,物品收益和物品重量的数组,运用冒泡排序void AvgBenefitsSort(float *arry_avgp,float *arry_p,float *arry_w ) {//求出物品的单位收益for(int i=0;i<7;i++){arry_avgp[i]=arry_p[i]/arry_w[i];}cout<<endl;//把求出的单位收益排序,冒泡排序法int exchange=7;int bound=0;float temp=0;while(exchange){bound=exchange;exchange=0;for(int i=0;i<bound;i++){if(arry_avgp[i]<arry_avgp[i+1]){//交换单位收益数组temp=arry_avgp[i];arry_avgp[i]=arry_avgp[i+1];arry_avgp[i+1]=temp;//交换收益数组temp=arry_p[i];arry_p[i]=arry_p[i+1];arry_p[i+1]=temp;//交换重量数组temp=arry_w[i];arry_w[i]=arry_w[i+1];arry_w[i+1]=temp;exchange=i;}}}}//获取最优解方法,传入参数为物品收益数组,物品重量数组,最后装载物品最优解的数组和还可以装载物品的重量float GetBestBenifit(float*arry_p,float*arry_w,float*arry_x,float u) {int i=0; //循环变量ifloat benifit=0; //最后收益while(i<7){if(u-arry_w[i]>0){arry_x[i]=arry_w[i]; //把当前物品重量缴入最优解数组benifit+=arry_p[i]; //收益增加当前物品收益u-=arry_w[i]; //背包还能载重量减去当前物品重量cout<<arry_x[i]<<" "; //输出最优解}i++;}return benifit; //返回最后收益}//动态规划法求解,不懂-----#include<stdio.h>#include<math.h>#define n 6void DKNAP(int p[],int w[],int M,const int m); void main(){int p[n+1],w[n+1];int M,i,j;int m=1;for(i=1;i<=n;i++){m=m*2;printf("\nin put the weight and the p:");scanf("%d %d",&w[i],&p[i]);}printf("%d",m);printf("\n in put the max weight M:");scanf("%d",&M);DKNAP(p,w,M,m);}void DKNAP(int p[],int w[],int M,const int m) {int p2[m],w2[m],pp,ww,px;int F[n+1],pk,q,k,l,h,u,i,j,next,max,s[n+1];F[0]=1;p2[1]=w2[1]=0;l=h=1;F[1]=next=2;for(i=1;i<n;i++){k=l;max=0;u=l;for(q=l;q<=h;q++)if((w2[q]+w[i]<=M)&&max<=w2[q]+w[i]){u=q;max=w2[q]+w[i];}for(j=l;j<=u;j++){pp=p2[j]+p[i];ww=w2[j]+w[i];while(k<=h&&w2[k]<ww){p2[next]=p2[k];w2[next]=w2[k];next++;k++;}if(k<=h&&w2[k]==ww){if(pp<=p2[k])pp=p2[k];k++;}else if(pp>p2[next-1]){p2[next]=pp;w2[next]=ww;next++;}while(k<=h&&p2[k]<=p2[next-1])k++;}while(k<=h){p2[next]=p2[k];w2[next]=w2[k];next=next+1;k++;}l=h+1;h=next-1;F[i+1]=next;}for(i=1;i<next;i++)printf("%2d%2d ",p2[i],w2[i]);for(i=n;i>0;i--){next=F[i];next--;pp=pk=p2[next];ww=w2[next];while(ww+w[i]>M&&next>F[i-1]){next=next-1;pp=p2[next];ww=w2[next];}if(ww+w[i]<=M&&next>F[i-1])px=pp+p[i];if(px>pk&&ww+w[i]<=M){s[i]=1;M=M-w[i];printf("M=%d ",M);}else s[i]=0;}for(i=1;i<=n;i++)printf("%2d ",s[i]);}六、实验结果1、贪心法截图:七、实验分析。
0-1背包问题实验报告0-1背包问题实验报告小组成员:姓名班级学号贾倩楠 2010211307 10211339骆亮亮 2010211307 10211318高婧 2010211308 10211370一(算法设计名称:0-1背包问题二.实验内容问题描述:给定n种物品和一背包。
物品i的重量是w~其价值为v~背包ii的容量为C。
问应如何选择装入背包的物品~使得装入背包中物品的总价值最大?在选择装入背包的物品时~对每种物品i只有两种选择~即装入背包或不装入背包。
不能将物品装入背包多次~也不能只装入部分的物品。
0-1背包问题是一个特殊的整数规划问题n maxvx,ii,1in ,wx,C,,ii,,1i,x,{0,1},1,i,n i,三.实验目的1.运用动态规划思想~设计解决上述问题的算法~找出最大背包价值的装法。
2.掌握动态规划的应用。
四(算法:问题求解思路1.由0-1背包问题的最优子结构性质~建立计算m[i][j]的递归式如下:j,wmax{m[i,1,j],m[i,1,j,w],v[i]},ii m(i,j),,0,j,wm[i,1,j]i,2.查找装入背包物品的函数:从数组的最右下角开始寻找~如若m[i][weight] !=m[i-1][weight]~则该第i个物品就在背包中~将其从最大价值量中去掉~然后再接着寻找下一个在背包中的物品~直至i=0。
关键数据结构: 一个二维数组~两个一维数组~两个整型变量int m[N+1][M+1]={0};//用于存储当前最好的价值量int number,weight;//number表示物品的种类,weight表示背包重量的最大值int w[N]={0},v[N]={0};//分别表示物品的重量和价值函数摻块:Main函数调用其余两个个函数完成算法:void knapsack(int number,int weight,int * w,int * v,int m[][M+1]);//整理背包函数,找出最大价值void findobject(int number,int weight,int * w,int * v,intm[][M+1]);//找出所有在背包里的物品的函数五(最终算法设计:算法:1. void knapsack(int number,int weight,int * w,int * v,int m[][M+1]) {//数组m[][],其横坐标row表示物品是第几个,纵坐标col表示当前背包中物品的重量从1到weightint row,col;for(row=1;row<=number;row++)for(col=1;col<=weight;col++){if(col >= w[row])//当背包重量大于第row个物品的重量时,再继续进行判断{-w[row]] + v[row] > m[row-1][col]) if(m[row-1][colm[row][col] = m[row-1][col-w[row]] + v[row];else1][col];//判断加入该第row个物品 m[row][col] = m[row-是否会增大价值量,若增大则加入,否则不加}elsem[row][col] = m[row-1][col];//如果背包重量小于w[row],则不加入任何物品,价值量不变}printf("The most value of the knapsackis:%d.\n",m[number][weight]);//输出最大价值量}2. void findobject(int number,int weight,int * w,int * v,intm[][M+1]) {int i;int x[N]={0};for(i=number;i>0;i--)//从数组的最右下角开始找寻,直到找到最开始的m[0][]{if(m[i][weight] != m[i-1][weight]){x[i] = 1;weight = weight - w[i];//将找到的第i个物品从背包的重量中去掉printf("%dth object is chosen. weight:%d,value:%d\n",i,w[i],v[i]);//输出找到的物品的信息}}}六(运行结果:当输入的数据不符合要求时:七(分析时间复杂度:,n为物品总数~c为重量限制背包容量,从m(i~j)的递归式容易看出~算法需要O(nc)计算时间。
一、实验背景背包问题(Knapsack problem)是组合优化领域中的一个经典问题,它来源于日常生活中物品选择与装载的问题。
0-1背包问题是指给定一组物品,每个物品都有一定的重量和价值,选择一部分物品装入背包,使得背包总重量不超过给定限制,且物品总价值最大。
本实验旨在通过实现动态规划算法解决0-1背包问题,并分析其时间复杂度和空间复杂度。
二、实验目的1. 理解动态规划算法的基本思想和解决问题的步骤。
2. 掌握动态规划算法在解决0-1背包问题中的应用。
3. 分析0-1背包问题的数学模型,并建立求解最优值的递归关系式。
4. 对比不同背包问题的求解方法,分析其优缺点。
三、实验原理0-1背包问题的数学模型如下:设背包容量为C,物品集合为I,第i个物品的重量为w(i),价值为v(i),则0-1背包问题的目标函数为:Maximize Σ(v(i) x(i)),其中x(i) ∈ {0, 1}。
约束条件为:Σ(w(i) x(i)) ≤ C。
动态规划算法通过将问题分解为子问题,并存储子问题的解,以避免重复计算。
对于0-1背包问题,其状态可以表示为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w(i)] + v(i)),其中i表示物品编号,j表示剩余容量。
当i=0或j-w(i)<0时,dp[i][j] = 0。
四、实验过程1. 设计数据结构:定义物品类,包含物品编号、重量和价值属性。
2. 生成测试数据:随机生成一定数量的物品,并设置背包容量。
3. 实现动态规划算法:根据上述原理,实现0-1背包问题的动态规划算法。
4. 测试算法:使用测试数据验证算法的正确性。
5. 分析算法性能:分析算法的时间复杂度和空间复杂度。
五、实验结果与分析1. 算法正确性:通过测试数据验证,算法能够正确求解0-1背包问题。
2. 时间复杂度:动态规划算法的时间复杂度为O(nC),其中n为物品数量,C为背包容量。
0-1背包问题实验报告一:0-1背包问题给定n种物品和一个背包。
物品i的重量是Wi,其价值为Vi,背包的容量为c。
问应如何选择装入背包中的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品时,对每种物品i只有两种选择,装入或者不装入背包。
不能将物品i多次装入,也不能装入部分的物品i。
因此,该问题被称为0-1背包问题。
本次针对0-1背包问题的实验,主要使用动态规划的方法、贪心算法、回溯法以及分支限界法。
测试用例为:n=50,c=1000,每个物品重量为{220,208,198,192,180,180,165,162,160,158,155,130,125,122,120,118,115,110,105,1 01,100,100,98,96,95,90,88,82,80,77,75,73,70,69,66,65,63,60,58,56,50,30,20,15,10,8,5 ,3,1,1}每个物品价值为{80,82,85,70,72,70,66,50,55,25,50,55,40,48,50,32,22,60,30,32,40,38,35,32,25,28 ,30,22,50,30,45,30,60,50,20,65,20,25,30,10,20,25,15,10,10,10,4,4,2,1} 下面将分别谈论。
二:动态规划法1:基本思想:动态规划算法的基本思想是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。
其经过分解得到的子问题往往不是相互独立的,可以用一张表来记录所有已解决的子问题的答案,而不论该子问题以后是否会用到。
从而使得子问题避免重复计算。
2:设计步骤:动态规划算法适用于解最优化问题,通常可按以下几步设计:(1)找出最优解的特性,并刻画其结构特征。
(2)递归地定义最优值。
(3)以自底向上的方式计算出最优值。
(4)根据计算最优值时得到的信息,构造最优解。
0-1背包问题实验报告一:0-1背包问题给定n种物品和一个背包。
物品i的重量是Wi,其价值为Vi,背包的容量为c。
问应如何选择装入背包中的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品时,对每种物品i只有两种选择,装入或者不装入背包。
不能将物品i多次装入,也不能装入部分的物品i。
因此,该问题被称为0-1背包问题。
本次针对0-1背包问题的实验,主要使用动态规划的方法、贪心算法、回溯法以及分支限界法。
测试用例为:n=50,c=1000,每个物品重量为{220,208,198,192,180,180,165,162,160,158,155,130,125,122,120,118,115,110,105,1 01,100,100,98,96,95,90,88,82,80,77,75,73,70,69,66,65,63,60,58,56,50,30,20,15,10,8,5 ,3,1,1}每个物品价值为{80,82,85,70,72,70,66,50,55,25,50,55,40,48,50,32,22,60,30,32,40,38,35,32,25,28 ,30,22,50,30,45,30,60,50,20,65,20,25,30,10,20,25,15,10,10,10,4,4,2,1} 下面将分别谈论。
二:动态规划法1:基本思想:动态规划算法的基本思想是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。
其经过分解得到的子问题往往不是相互独立的,可以用一张表来记录所有已解决的子问题的答案,而不论该子问题以后是否会用到。
从而使得子问题避免重复计算。
2:设计步骤:动态规划算法适用于解最优化问题,通常可按以下几步设计:(1)找出最优解的特性,并刻画其结构特征。
(2)递归地定义最优值。
(3)以自底向上的方式计算出最优值。
(4)根据计算最优值时得到的信息,构造最优解。
0-1背包问题(回溯法)实验报告姓名:学号:指导老师:一.算法设计名称:0-1背包问题(回溯法)二.实验内容问题描述:给定n 种物品和一背包。
物品i 的重量是w i ,其价值为v i ,背包的容量为C 。
问应如何选择装入背包的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品时,对每种物品i 只有两种选择,即装入背包或不装入背包。
不能将物品装入背包多次,也不能只装入部分的物品。
三.实验目的1.运用回溯思想,设计解决上述问题的算法,找出最大背包价值的装法。
2.掌握回溯法的应用四.算法设计:问题求解思路1.由0-1背包问题的最优子结构性质,建立计算m[i][j]的递归式如下:i i i w j w j j i m i v w j i m j i m j i m <≤≥⎩⎨⎧-+---=0],1[]}[],1[],,1[max{),(2.查找装入背包物品的回溯函数:从0-1二叉树的根开始搜索:若是叶子节点,则判断此时的价值是否比当前最优的价值大,否则将之替换,并获得最优解向量且返回;若不是叶子节点,则向左右子树搜索,先改变当前的数据状态,递归的调用自己,然后恢复数据状态表示回溯。
3.边界函数bound主要是当还未搜索到叶子节点时,提前判断其子树是否存可能存在更优的解空间,否则进行回溯,即裁剪掉子树的解空间。
关键数据结构及函数模块:(Backtrack.h )#ifndef __BACKTRACK_H__#define __BACKTRACK_H__class BP_01_P{public:∑=ni i i x v 1max ⎪⎩⎪⎨⎧≤≤∈≤∑=n i x C x w i n i i i 1},1,0{1BP_01_P(int w,int n):m_Sum_weitht(0),m_Number(0) {m_Sum_weitht=w;m_Number=n;bestHav=0;bestVal=0;curVal=0;curHav=0;m_hav=new int[n];m_val=new int[n];temop=new int[n];option=new int[n];}~BP_01_P(){delete []m_hav;delete []m_val;delete []temop;delete []option;}void traceBack(int n);int bound(int n);void printBestSoulation();int *m_hav;//每个物品的重量int *m_val;//每个物品的价值int *temop;//01临时解int *option;//01最终解int bestHav;//最优价值时的最大重量int bestVal;//最优的价值int curVal;//当前的价值int curHav;//当前的重量private:int m_Sum_weitht;//背包的总容量int m_Number;//物品的种类};#endif __BACKTRACK_H__五:主要的算法代码实现:(Backtrack.cpp)边界函数:bound( )int BP_01_P::bound(int n){int hav_left=m_Sum_weitht-curHav;int bo=curVal;while(n<m_Number && m_hav[n]<=hav_left){hav_left-=m_hav[n];bo+=m_val[n];n++;}if(n<m_Number){bo+=m_val[n]*hav_left/m_hav[n];//bo+=hav_left;}return bo;}回溯递归函数:traceBack( )void BP_01_P::traceBack(int n){if(n>=m_Number){if(curVal>=bestVal){bestVal=curVal;for(int i=0;i<n;i++){option[i]=temop[i];}return ;}}if(curHav+m_hav[n]<=m_Sum_weitht)//向左子树搜索 {curHav=curHav+m_hav[n];curVal=curVal+m_val[n];temop[n]=1;//标记要选择这个物品traceBack(n+1);curHav=curHav-m_hav[n];curVal=curVal-m_val[n];}if(bound(n+1)>bestVal)//向右子树搜索{temop[n]=0;//标记要丢弃这个物品traceBack(n+1);}}主控函数:(main.cpp)#include <iostream>#include "Backtrack.h"using namespace std;int main(){int number,weigth;cout<<"包的总容量:";cin>>weigth;cout<<"物品的种类:";cin>>number;BP_01_P *ptr=new BP_01_P(weigth,number);cout<<"各种物品的重量:"<<endl;for(int i=0;i<number;i++)cin>>ptr->m_hav[i];cout<<"各种物品的价值:"<<endl;for(i=0;i<number;i++)cin>>ptr->m_val[i];ptr->traceBack(0);ptr->printBestSoulation();cout<<"总重量:"<<ptr->bestHav<<"\t总价值:"<<ptr->bestVal<<endl;return 0;}六:算法分析采用回溯法解决0-1背包问题,明显比动态规划法更优良。
0 1背包实验报告0-1背包实验报告引言:0-1背包问题是在计算机科学中经典的组合优化问题之一。
该问题的目标是在给定一组物品和一个固定容量的背包下,选择一些物品放入背包中,使得放入的物品总价值最大化,同时不能超过背包的容量限制。
本实验旨在通过实际操作和数据分析,深入理解0-1背包问题的求解方法和优化策略。
实验设计:本实验采用Python编程语言进行0-1背包问题的求解。
首先,我们设计了一个物品类(Item),每个物品具有重量(weight)和价值(value)两个属性。
然后,我们生成了一组具有不同重量和价值的物品,这些物品将作为输入数据用于求解0-1背包问题。
接下来,我们实现了两种常见的求解方法:动态规划和贪心算法,并对它们的性能进行了对比分析。
实验过程:1. 生成输入数据:我们使用随机数生成器生成了一组具有不同重量和价值的物品。
为了方便观察和分析,我们限定了物品的数量为10个,重量范围为1到10,价值范围为1到100。
2. 动态规划求解:动态规划是解决0-1背包问题的经典方法之一。
我们设计了一个动态规划函数,通过填充一个二维数组来求解最优解。
具体步骤如下:- 初始化一个二维数组dp,其中dp[i][j]表示在前i个物品中选择总重量不超过j的物品的最大总价值。
- 通过递推公式dp[i][j] = max(dp[i-1][j], dp[i-1][j-weight[i]] + value[i])求解dp数组。
- 根据dp数组的最后一行最后一列的值,反推出背包中放入的物品。
3. 贪心算法求解:贪心算法是另一种常见的求解0-1背包问题的方法。
它的基本思想是每次选择具有最大单位价值的物品放入背包中,直到背包无法再放入任何物品为止。
具体步骤如下:- 计算每个物品的单位价值(value/weight)。
- 按照单位价值从大到小的顺序对物品进行排序。
- 依次选择单位价值最大的物品放入背包中,直到背包无法再放入任何物品。
第1篇一、实验目的1. 理解背包问题的基本概念和分类。
2. 掌握不同背包问题的解决算法,如0-1背包问题、完全背包问题、多重背包问题等。
3. 分析背包问题的复杂度,比较不同算法的效率。
4. 通过实验验证算法的正确性和实用性。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.73. 开发工具:PyCharm4. 实验数据:随机生成的背包物品数据三、实验内容1. 0-1背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。
求将哪些物品装入背包,使得背包内物品的总价值最大。
(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个二维数组dp[n+1][C+1],其中dp[i][j]表示前i个物品在容量为j 的背包中的最大价值。
b. 遍历每个物品,对于每个容量,根据物品的重量和价值计算dp值。
c. 返回dp[n][C],即为最大价值。
2. 完全背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。
求将哪些物品装入背包,使得背包内物品的总价值最大,且每个物品可以重复取。
(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个一维数组dp[C+1],其中dp[j]表示容量为j的背包的最大价值。
b. 遍历每个物品,对于每个容量,根据物品的重量和价值更新dp值。
c. 返回dp[C],即为最大价值。
3. 多重背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。
每个物品有无限个,求将哪些物品装入背包,使得背包内物品的总价值最大。
(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个一维数组dp[C+1],其中dp[j]表示容量为j的背包的最大价值。
b. 遍历每个物品,对于每个容量,根据物品的重量和价值更新dp值。
c. 返回dp[C],即为最大价值。
四、实验结果与分析1. 0-1背包问题实验结果显示,在背包容量为100时,最大价值为298。
实验报告分支限界法01背包实验报告:分支限界法01背包问题一、引言01背包问题是计算机科学中经典的问题之一,也是分枝限界法(Branch and Bound)的重要应用之一、本实验旨在通过使用分支限界法求解01背包问题,加深对该算法的理解,并验证其在计算机科学中的实际应用价值。
二、算法原理01背包问题是指在给定容量的背包和一组物品中,求解如何选择物品,使得在背包容量限制下,装入背包的物品总价值最大。
该问题可以使用动态规划方法求解,但这里我们采用分支限界法进行求解。
分支限界法首先将问题划分为多个较小的子问题,然后通过选择最有希望的子问题进行探索,并进行剪枝操作,以避免无效的,最后得到问题的最优解。
在01背包问题中,每个物品可以选择装入背包或不装入背包,因此可以通过对每个物品的选择进行枚举,并使用上界函数(bound function)对每个子问题的解进行估计,去掉必然不是最优解的子问题,从而减少空间。
具体实现中,可以使用一个优先队列(Priority Queue)来存储这些子问题,按照优先级从高到低的顺序进行扩展探索,直到找到最优解或队列为空时停止。
三、实验过程1.根据给定的背包容量和物品价值、重量数组,创建一个优先队列并初始化其第一个子问题。
2.使用循环进行优先队列的遍历,直到队列为空。
3.取出队列中优先级最高的子问题进行扩展探索。
4.对该子问题进行剪枝操作:若当前子问题的上界函数值小于当前最优解,则该子问题无需继续扩展。
5.对没有剪枝的子问题进行扩展操作:分为两种情况,一种是将当前物品放入背包,一种是不放入背包。
6.若扩展的子问题是可行解,则更新当前最优解。
7.将扩展的子问题加入优先队列。
8.重复步骤3-7,直到找到最优解或队列为空。
四、实验结果本次实验使用分支限界法求解了一个01背包问题。
背包的最大容量为W=10,共有5个物品,其重量分别为w={2,3,4,5,9},价值分别为v={3,4,5,8,10}。
遗传算法求解01背包问题一、问题描述01背包问题属于组合优化问题的一个例子,求解01背包问题的过程可以被视作在很多可行解当中求解一个最优解。
01背包问题的一般描述如下:给定n个物品和一个背包,物品i的重量为W i,其价值为V i,背包的容量为C。
选择合适的物品装入背包,使得背包中装入的物品的总价值最大。
注意的一点是,背包内的物品的重量之和不能大于背包的容量C。
在选择装入背包的物品时,对每种物品i只有两种选择:装入背包或者不装入背包,即只能将物品i装入背包一次。
称此类问题为0/1背包问题。
01背包问题是NP问题,传统的解决方法有动态规划法、分支界限法、回溯法等等。
传统的方法不能有效地解决01背包问题。
遗传算法(Genetic Algorithms)则是一种适合于在大量的可行解中搜索最优(或次优)解的有效算法。
二、遗传算法1、遗传算法的基本思想遗传算法的搜索从一个被称作种群的候选解集开始,新的种群由旧的种群中产生以期得到更好的种群。
从旧种群中按照解的适应度来选择解以产生新的解;适应度越大,解被选择生成后代的机率也越大。
这个从已有种群中选择双亲并产生后代的迭代过程持续到遗传算法的停止条件满足为止。
2、遗传算法的基本元素。
遗传算法由以下几个原素组成:由染色体组成的种群,根据适应度进行选择以及交叉产生后代。
三、用遗传算法求解01背包问题1、01背包问题中染色体的表示。
用向量X来表示染色体,X = {x1,x2,……,x n}。
,x i∈{0,1},x i=1表示物品i装入了背包,x i =0表示物品i未装入背包。
每个染色体对应其当前装入背包的物品的总价值和总重量。
背包中物品的中价值代表了该物品的适应度。
程序中定义了这样的一个结构来表示染色体:typedef struct{int Weight; //染色体代表的物品的总重量int Fitness; //染色体代表的物品的价值(适应度)int Gene[NUMG]; //用元素取值于定义域{0,1}的数组表示染色体。
一、实验目的1. 掌握动态规划的基本思想和应用场景。
2. 理解并实现0-1背包问题的动态规划解法。
3. 比较贪心算法在解决背包问题时的适用性和局限性。
4. 分析不同算法的时间复杂度和空间复杂度。
二、实验原理背包问题是一种典型的组合优化问题,它描述为:给定一组物品,每种物品都有一定的重量和价值,在限定的最大承重(背包容量)下,如何选择物品使得背包内物品的总价值最大。
三、实验内容本实验主要涉及以下内容:1. 0-1背包问题动态规划解法- 使用二维数组实现动态规划算法,记录每个子问题的最优解。
- 使用一维数组优化空间复杂度,通过滚动数组的方式实现。
2. 贪心算法解决背包问题- 分析贪心算法在解决背包问题时的适用性和局限性。
3. 比较两种算法的性能- 通过实际数据和测试案例,比较动态规划算法和贪心算法在解决背包问题时的运行时间和结果。
四、实验过程1. 0-1背包问题动态规划解法- 二维数组实现:- 定义一个二维数组dp,其中dp[i][j]表示前i个物品放入容量为j的背包中的最大价值。
- 遍历所有物品和背包容量,根据物品是否放入背包更新dp数组。
- 最终dp[m][W]即为最大价值。
- 一维数组实现:- 定义一个一维数组dp,其中dp[j]表示容量为j的背包中的最大价值。
- 遍历所有物品,对于每个物品,从背包容量开始倒序遍历,更新dp数组。
- 最终dp[W]即为最大价值。
2. 贪心算法解决背包问题- 根据物品价值与重量的比例,选择价值最大的物品放入背包。
- 重复上述步骤,直到背包容量达到上限。
3. 比较两种算法的性能- 使用一组测试案例,包括不同数量的物品和不同的背包容量。
- 分别使用动态规划算法和贪心算法求解背包问题,记录运行时间和结果。
- 比较两种算法在解决背包问题时的性能。
五、实验结果与分析1. 动态规划算法- 在测试案例中,动态规划算法在所有情况下都能找到最大价值。
- 时间复杂度为O(nW),空间复杂度为O(nW)或O(W),其中n为物品数量,W为背包容量。
算法分析与设计实验报告第五次附加实验cp += p[i];Backtrack(i+1); //回溯//回溯结束回到当前根结点cw -= w[i];cp -= p[i];}//进入右子树,条件是上界值比当前最优值大,否则就将右子树剪掉if(Bound(i+1)>bestp){Backtrack(i+1);}}测试结果当输入的数据有解时:当输入的数据无解时:当输入的数据稍微大点时:附录:完整代码(回溯法)//0-1背包问题 回溯法求解 #include <iostream> using namespace std;template <class Typew,class Typep>class Knap //Knap 类记录解空间树的结点信息 {template <class Typew,class Typep>friend Typep Knapsack(Typep [],Typew [],Typew,int ); private :Typep Bound(int i); //计算上界的函数void Backtrack(int i); //回溯求最优解函数实验分析在实验中并没有生成多组数据,进行比较,也没有利用随机生成函数,因为在这种有实际有关联的问题中,利用随机生成函数生成的数据是十分的不合适的,在此我们只需要验证该程序是否正确即可。
0-1背包问题和之前的最优装载其实质上一样的,都是利用解空间树,通过深度优先搜索子集树,通过利用上界函数和一些剪枝策略,从而得到最优解。
由于数据较小,所以时间上并不能反映出什么东西。
实验心得在这一章的回溯算法中,我们用的比较多的就是;利用子集树来进行问题的探索,就例如上图是典型的一种子集树,在最优装载、0-1背包都是利用了这种满二叉树的子集树进行求解,然后通过深度优先的策略,利用约束函数和上界函数,将一些不符合条件或者不包含最优解的分支减掉,从而提高程序的效率。
一、实验背景动态背包问题(Dynamic Knapsack Problem)是组合优化领域中的一个经典问题。
该问题源于现实生活中的背包问题,即在一个有限容量的背包中,如何选择物品以使背包的总价值最大化。
动态背包问题通常分为0-1背包问题、完全背包问题、多重背包问题等不同类型。
本实验主要针对0-1背包问题进行探讨。
二、实验目的1. 理解动态背包问题的基本原理和解决方法。
2. 掌握动态规划算法在解决背包问题中的应用。
3. 分析0-1背包问题的特点,提高解决实际问题的能力。
三、实验环境1. 操作系统:Windows 102. 编程语言:Python3. 开发工具:PyCharm四、实验内容1. 0-1背包问题介绍0-1背包问题:给定N件物品和一个容量为V的背包,每件物品只能使用一次。
物品的体积和质量分别是c[i]和w[i]。
目标是找出哪些物品可以使背包内物品的总体积不超过V,且总价值最大。
2. 动态规划算法实现(1)状态定义定义dp[i][j]为前i件物品放入容量为j的背包中所能获得的最大价值。
(2)状态转移方程dp[i][j] = max(dp[i-1][j], dp[i-1][j-c[i]] + w[i]),其中1 ≤ i ≤ N,0 ≤ j ≤ V。
(3)初始化dp[0][j] = 0,其中0 ≤ j ≤ V。
(4)结果输出输出dp[N][V]即为所求的最大价值。
3. 代码实现```pythondef knapsack(c, w, V):N = len(c)dp = [[0] (V + 1) for _ in range(N + 1)]for i in range(1, N + 1):for j in range(1, V + 1):if j >= c[i - 1]:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - c[i - 1]] + w[i - 1])else:dp[i][j] = dp[i - 1][j]return dp[N][V]c = [2, 3, 4, 5] # 物品重量数组w = [3, 4, 5, 8] # 物品价值数组V = 8 # 背包容量max_value = knapsack(c, w, V)print("最大价值为:", max_value)```五、实验结果与分析1. 通过实验,我们成功实现了0-1背包问题的动态规划算法,并得到了最大价值为15。
算法设计与分析实验报告书实验名称:0/1背包问题学号:姓名:实验时间:2015年 6 月 1 日一实验目的和要求(1)深刻掌握贪心法、动态规划法、回溯法的设计思想并能熟练运用(2)理解这样一个观点:同样的问题可以用不同的方法来解决,一个好的算法是反复努力和重新修正的结果。
二实验内容(1)分别用蛮力法贪心法、动态规划法、回溯法设计0/1背包问题的算法。
(2)分析算法随n和C变化的时间性能,随机产生参数n和C,收集算法执行的时间(3)讨论n和C变化时,动态规划法和回溯法的时间性能。
(4)讨论几种算法在该问题求解上的特点。
三实验环境VC++6.0四设计思想及实验步骤蛮力法的设计思想和步骤将所有排列下的背包的重量和价值都计算出来,选择重量不大于背包的总重量下的最大价值。
贪心法的设计思想和步骤首先计算每种物品单位重量的价值vi/wi;按单位价值对物品进行升序排列。
然后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包,直到背包装满为止。
动态规划法的设计思想和步骤令V(i, j)表示在前i个物品中能够装入容量为j的背包中的物品的最大价值,则可以得到如下动态函数:V(i, j)=0 (i=0或j=0)V( i, j) = V(i-1, j) j<w[i]V( i, j) = max{V(i-1, j), V(I, j-1)+v[i]} j>=w[j]按照下述方法来划分段:第一段只装入前1个物品,确定在各种情况下的背包能够得到的最大价值;第二阶段,只装入2个物品,确定在各种情况下的背包能够得到的最大价值;以此类推,直到第n个阶段。
最后V(n, C)便是容量为C的背包中装入n个物品时获取到的最大价值。
回溯法的设计思想和步骤为了避免生成那些不可能产生最佳解的问题状态,要不断的利用越约束条件来剪掉那些实际上不可能产生所需解的节点,以减少问题额计算量。
对于n种可选物品的0/1背包问题,其解空间长度由长度为n的0-1向量组成,可用子集数表示。
在搜索解空间树时,只要其左儿子节点是一个可行节点,搜索进入左子树,否则返回上一节点,搜索右子数。
时间测试的设计思想蛮力法由于需要考虑每一种情况所以物品的个数不能太多,所以设计时间测试函数在1到32的范围内随机残生物品的个数n,然后在随机产生n个物品每个物品的重量和价值,将背包容量设为n个物品总重量的一半,求出最优解。
重复执行背包求解过程,然后求出其平均时间消耗。
算法描述如下:蛮力法:输入:物品总数n,每个物品的重量w[i]和价值v[i],背包容量C输出:背包所装物品的最大总价值1.求出2的n次方2.循环i从1到m-1,2.1求出i的二进制2.2根据i的二进制序列,判断重量和是否小于或等于C,如果等于则求出总价值value,2.3如果value>maxValue, 则maxValue=value;,并把该二进制序列T复制到S数组中以记录最优解。
贪心法:输入:物品总数n,每个物品的重量w[i]和价值v[i],背包容量C输出:背包所装物品的最大总价值1.将每个物品的重量和价值存放到保存物品信息的结构体node[]中2.将node数组中的物品暗中单位价值的大小从大到小排序3.Temp=C;4.循环i从1到n如果node[i].w<=temp,将物品放入背包,标记node[i]=1;temp-=node[i].w; i++;如果temp=0背包被装满,结束循环。
动态规划法输入:物品总数n,每个物品的重量w[i]和价值v[i],背包容量C输出:背包所装物品的最大总价值1.初始化过程图2.双重循环,逐步求出将前i个物品放到容量为j的背包获得的最大价值for(i=1;i<=n;i++)for(j=1;j<=C;j++)如果j<w[i], 则V[i][j]=V[i-1][j];否则V[i][j]=Max(V[i-1][j],V[i-1][j-w[i]]+v[i]);3.回溯求得最优解循环for(j=C,i=n;i>0;i--)如果V[i][j]>V[i-1][j],则x[i]=1;j=j-w[i];否则x[i]=0;回溯法(递归)输入:物品总数n,每个物品的重量w[i]和价值v[i],背包容量C输出:背包所装物品的最大总价值1.从第一个物品开始,t=1;2.如果legal(t)=1,则backTrack(t+1)分析下一个物品3.如果t>n,求出背包的总价值value,如果value大于最大价值,则把最大价值更新,同时更新记录物品装入情况的数组P, 以记录最优解。
六核心源代码#include<iostream>#include<algorithm>#include<stdlib.h>#include<stdio.h>#include<time.h>#include<windows.h>using namespace std;int w[505], v[505],n;long C;//回溯法int p[500],P[500];//回溯法中分别记录当前解和最优解的状态数组int Value=0;//回溯法中的最大价值bool legal(int t){int sum=0;for(int i=1;i<=t;i++)sum+=w[i]*p[i];if(sum>C)return false;elsereturn true;}void backTrack(int t){if(t>n){int i;int value=0;for(i=1;i<=n;i++){value+=v[i]*p[i];//cout<<p[i];}if(value>Value){Value=value;for(i=1;i<=n;i++)P[i]=p[i];}}else{for(int i=1;i>=0;i--){p[t]=i;if(legal(t))backTrack(t+1);}}}int Back(){backTrack(1);return Value;}//动态规划法int Max(int a,int b){return a>b?a:b;}int KnapSack(){//动态规划法int V[505][505];int x[1005];int i,j;for(i=0;i<=n;i++)//初始化第0列V[i][0]=0;for(j=0;j<=C;j++)V[0][j]=0;//初始化第0行for(i=1;i<=n;i++)for(j=1;j<=C;j++)if(j<w[i])V[i][j]=V[i-1][j];elseV[i][j]=Max(V[i-1][j],V[i-1][j-w[i]]+v[i]);for(j=C,i=n;i>0;i--){if(V[i][j]>V[i-1][j]){x[i]=1;j=j-w[i];}else x[i]=0;}return V[n][C];}//蛮力法int Force(){//蛮力法int maxValue=0;int m=1<<n;int S[32],T[32];for(int i=1;i<m;i++){int t=1;int temp=i;while(temp){T[t++]=temp%2;temp=temp/2;}int j;/*for(j=1;j<t;j++)cout<<T[j];*/int weight=0,value=0;for(j=1;j<t;j++){if(T[j]==1 && weight+w[j]<=C ){weight=weight+w[j];value=value+v[j];}}if(maxValue<value){maxValue=value;int k=0;for(j=0;j<t;j++){S[k++]=T[j];}}}return maxValue;}//贪心法struct Node{int i;double w,v;}node[500];int cmp(Node a,Node b){return (a.v/a.w)>(b.v/b.w);}int greed(){int i;int maxValue=0;for(i=1;i<=n;i++){node[i].i=0;node[i].w=w[i];node[i].v=v[i];}sort(node+1,node+n+1,cmp);/*for(i=1;i<=n;i++){cout<<node[i].w<<" "<<node[i].v<<endl;}*/int temp=C;i=1;while(temp && (i<=n)){if(node[i].w<=temp){maxValue+=node[i].v;node[i].i=1;temp-=node[i].w;// cout<<node[i].w<<" ";}i++;}return maxValue;}int Random(){return (rand()%(1000)+1);}void text(int (*matter)()){LARGE_INTEGER litmp;LONGLONG start,over;double dfMinus,dfFreq,dfTim;QueryPerformanceFrequency(&litmp);dfFreq=(double)litmp.QuadPart;QueryPerformanceCounter(&litmp);start=litmp.QuadPart;for(int k=0;k<100;k++){C=0;n=Random()%30;for(int i=1;i<=n;i++){w[i]=Random();v[i]=Random();C=C+w[i];}C=C/2;matter();//cout<<matter()<<endl;}QueryPerformanceCounter(&litmp);over=litmp.QuadPart;dfMinus=(double)(over-start);dfTim=dfMinus/dfFreq/100;cout<<"平均时间T(k): ";printf("%e\t",dfTim);cout<<endl;}int main(){cout<<"先测试算法的正确性"<<endl;n=4;C=10;w[1]=7;w[2]=3;w[3]=4;w[4]=5;v[1]=42;v[2]=12;v[3]=40;v[4]=25;cout<<"蛮力法"<<Force()<<endl;cout<<"贪心法"<<greed()<<endl;cout<<"动态规划法"<<KnapSack()<<endl;cout<<"回溯法"<<Back()<<endl;cout<<"测试时间效率:"<<endl;srand((unsigned)time(NULL));cout<<"动态规划法的执行时间:"<<endl;cout<<"蛮力法的执行时间:"<<endl;text(Force);cout<<"贪心法的执行时间"<<endl;text(greed);cout<<"动态规划法的执行时间"<<endl;text(KnapSack);cout<<"回溯法的执行时间"<<endl;text(Back);return 0;}七实验结果及分析下面的结果是每个算法都分别运行50次后的平均运行时间:根据结果可以得出,蛮力算法的效率是最低的,回溯算法的时间效率优势很明显是最高的,而贪心法和动态规划的效率也均高于蛮力法,且二者相差不明显。