函数模型及其应用教案

  • 格式:doc
  • 大小:854.50 KB
  • 文档页数:4

下载文档原格式

  / 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Modeling and Problem Solving

——函数模型及其应用教案

中澳课程部王晓叶

学情分析:澳方MathB每次的Paper Test都分为两部分,其中Knowledge and Procedures(知识与过程)这个和普通高中数学相似,学生A/B率比较高,但是另外一部分Modeling and Problem Solving(建模与实际问题的解决)学生的A/B率不高。这一部分内容题目普遍很长、生词量较多,并且都是将数学知识应用于实际生活中,所以大多数学生遇到此类题目都是放弃不做。MathB这门课又特别注重实际生活问题的解决,而我们的学生这方面意识比较薄弱,抽象概括能力较弱。所以,我们的教学任务是提高学生的考试成绩等级,提高OP成绩。但是另一方面,12年级的学生大多数能灵活的使用图形计算器,具有一定的英语语言基础。

教学目标:1.了解函数模型在现实生活中的运用。

2.能够建立恰当的函数模型,并对函数模型进行简单的分析。

3.利用所得函数模型解释有关现象,对某些发展趋势进行预测。

教学重难点:1.建立合适的函数模型

2.利用得到的函数模型解决实际问题

教学过程

一、引入案例、探索新知(如何确定最合适的函数模型)(18分钟)

案例:根据《Daily Mail》报道,上个月一名中国留学生将自己车速飙到180公里/小时的录像传到了Instagram个人网页上,并以配以中文:“从Albany开回Perth,一路180公里/小时,将4.5小时的车程缩短到3.5小时。”

目前,他正在接受警方调查。

警察表示,视频显示这名男子在限速110公里/小时的高速公路开到了180公里/小时,他将面临巨额罚款、吊销驾照以及拘留。

Example1:The table below shows the relationship between the velocity of a car and the

Velocity 10 20 30 40 50 60 70 80 90 Distance 2 10 15 20 27 38 47 60 75

a. Use the calculator to find the relationship between the velocity of a car and the distance after it braking.

b. What’s the minimum safe following distance for a car travelling at 110 km/h on the motor way?

项目罚款扣分超速少于10km/h 163澳元扣2分超速10km/h-20km/h 357澳元扣3分

超速20km/h-30km/h 726澳元扣5分

超速30km/h-40km/h 866澳元扣7分未系安全带341澳元扣3分闯红灯437澳元扣3分开车使用手机315澳元扣3分

(设计意图:从生活案例引入新知,激发学生的学习兴趣。从简单题目入手,目的是让学生掌握图形计算器的使用,能够利用图形计算器建立合适的函数模型,为解决函数模型的应用做铺垫。同时在课堂中渗透德育内容,让学生知法懂法守法。)

小结:如何建立合适的函数模型?

Solve the practical problem

Exercise.Some Chemistry students measured the concentration of chlorine remaining in a swimming pool over a period of 8 hours on a hot summer day. Chlorine had been placed in the

Morning Afternoon

Time 9 10 11 12 1 2 3 4 Chlorine concentration(ppm) 5.0 3.8 2.9 2.2 1.6 1.2 0.9 0.7

a. Develop a model for the data。

b. What’s the concentration of chlorine at 8 am?

(设计意图:通过练习,巩固加强掌握图形计算器的使用,为下一个例题的讲解做好铺垫。)

二、例题精讲(函数模型的应用)(12分钟)

A/B Standard-Modeling and Problem Solving

Example2.Some Chemistry students measured the concentration of chlorine remaining in a swimming pool over a period of 8 hours on a hot summer day. Chlorine had been placed in the

Morning Afternoon

Time 9 10 11 12 1 2 3 4 Chlorine concentration(ppm) 5.0 3.8 2.9 2.2 1.6 1.2 0.9 0.7

e the calculator to find the relationship between the chlorine concentration and the time

elapsed since the chlorine was placed in the pool.

e the results to find the concentration that would be needed at 8 am on a similar day to

ensure that the chlorine concentration did not fall below 1.5ppm(parts per million) before 3 pm.

3.If two chlorine doses were used , one at 8 am and another at 12 noon, what concentrations

would be needed at these times to ensure that the concentration did not fall below 1.5 ppm before 3 pm.