南京理工大学工程流体力学基础 第9章__膨胀ê图げ南京理工大学工程流体力学基础 第9aspan class=
- 格式:ppt
- 大小:1.77 MB
- 文档页数:70
[陈书9-11] 具有s Pa 1003.43⋅⨯=-μ,3m kg 740=ρ的油液流过直径为2.54cm 的圆管,平均流速为0.3m/s 。
试计算30m 长度管子上的压强降,并计算管内距内壁0.6cm 处的流速。
[解]管内流动的雷诺数:μρdu =Re 将s Pa 1003.43⋅⨯=-μ、3m kg 740=ρ、s m 3.0=u 和d=2.54cm 代入,得: 因为20002.1399Re <=,所以流动为层流,沿程阻力损失系数:沿程阻力损失:gu d l h 22λλ=表示成压强降的形式:2Re 64222u d l u d l gh p ρρλρλ===∆代入数据,得:()Pa 1799974054.2152.139964209.07401054.2302.1399642=⨯⨯⨯=⨯⨯⨯⨯=∆-p因为是层流运动,流速满足抛物面分布,且其分布为: 将()cm 67.06.0254.2=-=r 、s Pa 1003.43⋅⨯=-μ、d=2.54cm 和l=30m 代入,得: [陈书9-12]某种具有3m kg 780=ρ,s Pa 105.75⋅⨯=-μ的油,流过长为12.2m ,直径为1.26cm 的水平管子。
试计算保持管内为层流的最大平均流速,并计算维持这一流动所需要的压强降。
若油从这一管子流入直径为0.63cm ,长也为12.2m 的管子,问流过后一根管子时的压强降为多少?[解]管内流动的雷诺数:μρdu =Re 管内保持层流时,雷诺数低于下临界雷诺数,即:2320Re ==cre R所以:dR u cre ρμ=将s Pa 105.75⋅⨯=-μ、3m kg 780=ρ、2320=cr e R 和d=1.26cm 代入,得:压强降:()Pa 264.3177.0786.121222323220177.07801026.12.122320642Re 64222222=⨯⨯⨯=⨯⨯⨯⨯===∆-u d l u d l p ρρλ流入后一根管子时,流量不变,直径减小,用上标“~”表示后一种情况,则有: 所以:4640232063.026.1Re ~e R ~=⨯==d d 此时流动进入湍流光滑区,且5104640e R ~<=,可用布拉修斯公式求解沿程阻力损失系数,即:压强降:23164.02225.02u d l R u d l p e ρρλ==∆ 此时,平均流速:()m 63.026.10177.02⎪⎭⎫⎝⎛⨯=u所以:()Pa 13.1456312677.178636146403164.063.026.10177.027801063.02.1246403164.04225.042225.0=⎪⎭⎫ ⎝⎛⨯⨯⨯⨯=⎪⎭⎫ ⎝⎛⨯⨯⨯⨯⨯=∆-p[陈书9-13] C 30o的水流经过直径d=7.62cm 的钢管(mm 08.0=∆),每分钟流量为3m 340.0。