测量刚体的转动惯量实验报告及数据处理
- 格式:docx
- 大小:110.13 KB
- 文档页数:2
刚体的转动惯量(实验报告数据处理)一、实验目的1.测量不同形状物体的转动惯量;2.了解刚体的转动惯量的概念和意义;3.掌握利用转动惯量公式计算转动惯量的方法。
二、实验原理刚体在绕固定轴线上做匀速转动时,其转动惯量的大小决定了它所受的转动惯量矩的大小,转动惯量定理表明,在恒定力矩作用下,物体的角加速度与物体的转动惯量成反比。
对于一个刚体,既可以沿着它的轴线旋转,也可以沿着一个平行于轴线的过质心的轴线旋转,而它的转动惯量则与这两个轴之间的距离有关。
三、实验内容3.比较计算值与实验值之间的误差并讨论原因。
四、实验过程1.实验器材:转速表,万能电机,测量尺子,各种不同形状的物体(如实验室提供的铁球,铝棒等)。
2.实验步骤:(1)将铝棒的一端用万能电机固定在转动轴上;(2)用测量尺子测定铝棒的长度和直径;(3)打开电源,开启电机,让铝棒匀速旋转起来,并测量转速;(4)利用转速表测量铝棒旋转的周期时间,再根据转速和周期时间计算角速度;(5)停止电机后,用测量尺子逐个测量铝棒各个位置的距离,并记录下来;(6)利用测量结果以及铝棒的密度和尺寸数据,计算其转动惯量。
(7)重复上述步骤,测量其他形状的物体。
五、实验数据处理以一个球状物体为例,测量数据如下:1.球的质量m=0.6kg;3.球的转动周期T=0.536s;4.转速表读数n=114rpm;根据公式I=1/4 * m * d2 ,可以计算出该球的转动惯量为:I=1/4 * m * d2 =1/4 * 0.6kg * (0.1m)2 =0.003kg*m2另外,根据转速和周期时间可以计算出球的角速度ω:ω=2π/T = 2π/0.536s = 11.704rad/sr(m) I(kg*m2)0.05 0.0015上述数据是计算出球的转动惯量的过程中所得到的。
通过以上的数据可以看出,当距离球心较远时,转动惯量较大;当距离球心较近时,转动惯量较小。
同时,也可以验证公式I=1/4 * m * d2 的正确性。
刚体转动惯量的测定实验报告实验目的:1.了解刚体转动惯量的概念和定义;2.学习利用旋转法测量刚体转动惯量;3.掌握利用平衡法测量刚体转动惯量的方法。
实验仪器:1.旋转法实验装置:圆盘、转轴、杠杆、螺旋测微器、质量砝码等;2.平衡法实验装置:平衡木、质量砝码、支撑点等。
实验原理:1.旋转法实验原理:设刚体的转动惯量为I,当刚体在转轴上匀加速转动时,在力矩M作用下,刚体产生角加速度α。
根据牛顿第二运动定律和角动量定理可得到:M=Iα(1)在角加速度恒定的情况下,转动惯量I与力矩M成正比。
2.平衡法实验原理:刚体转动惯量测量的基本原理是利用转轴位置的移动来改变刚体的转动惯量,使得转动惯量I和重力力矩Mg达到平衡,即:Mg=Iα(2)在刚体转动平衡的状态下,转动惯量I与重力力矩Mg成正比。
实验步骤:1.旋转法实验步骤:(1)将圆盘固定在转轴上,并将转轴竖直插入转台中央的孔中。
(2)将杠杆固定在圆盘上,使得杠杆能够自由转动。
(3)在杠杆上加上一定的质量砝码,使得圆盘开始匀加速转动。
(4)测量转轴上的螺旋测微器的读数,记录下圆盘旋转一定角度时的螺旋测微器的读数。
(5)记录下圆盘质量与加速度的数值,计算出实验测得的转动惯量。
2.平衡法实验步骤:(1)将平衡木放置在支撑点上,使得平衡木可以自由转动。
(2)在平衡木上加上一定的质量砝码,使得平衡木保持平衡。
(3)移动转轴的位置,直到平衡木重新平衡。
(4)记录下转轴位置与加在平衡木上的质量的数值,计算出实验测得的转动惯量。
实验数据处理:1.旋转法实验数据处理:(1)根据螺旋测微器的读数,计算出圆盘旋转的角度。
(2)根据实验测得的圆盘质量和加速度的数值,计算出实验测得的转动惯量。
2.平衡法实验数据处理:(1)根据转轴位置的变化,计算出实验测得的转动惯量。
实验结果分析:根据实验测得的数据,通过旋转法和平衡法两种方法测得的刚体转动惯量进行比较和分析。
分析实验数据的偏差和不确定度,讨论实验结果的可靠性。
测量刚体的迁移转变惯量【1 】实验目标:1.用实验办法验证刚体迁移转变定律,并求其迁移转变惯量;2.不雅察刚体的迁移转变惯量与质量散布的关系3.进修作图的曲线改直法,并由作图法处理实验数据.二.实验道理:1.刚体的迁移转变定律具有肯定转轴的刚体,在外力矩的感化下,将获得角加快度β,其值与外力矩成正比,与刚体的迁移转变惯量成反比,即有刚体的迁移转变定律:M = Iβ (1)运用迁移转变定律,经由过程实验的办法,可求得难以用盘算办法得到的迁移转变惯量. 2.运用迁移转变定律求迁移转变惯量如图所示,待测刚体由塔轮,伸杆及杆上的配重物构成.刚体将在砝码的拖动下绕竖直轴迁移转变.设细线不成伸长,砝码受到重力和细线的张力感化,从静止开端以加快度a下落,其活动方程为mg – t=ma,在t时光内下落的高度为h=at2/2.刚体受到张力的力矩为Tr和轴摩擦力力矩Mf.由迁移转变定律可得到刚体的迁移转变活动方程:Tr - Mf = Iβ.绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:m(g - a)r - Mf = 2hI/rt2 (2)Mf与张力矩比拟可以疏忽,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:mgr = 2hI/ rt2 (3)式中r.h.t可直接测量到,m是实验中随意率性选定的.是以可依据(3)用实验的办法求得迁移转变惯量I.3.验证迁移转变定律,求迁移转变惯量从(3)动身,斟酌用以下两种办法:A.作m – 1/t2图法:伸杆上配重物地位不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变成:M = K1/ t2 (4)式中K1 = 2hI/ gr2为常量.上式标明:所用砝码的质量与下落时光t的平方成反比.实验中选用一系列的砝码质量,可测得一组m与1/t2的数据,将其在直角坐标系上作图,应是直线.即若所作的图是直线,便验证了迁移转变定律.从m – 1/t2图中测得斜率K1,并用已知的h.r.g值,由K1 = 2hI/ gr2求得刚体的I.B.作r – 1/t图法:配重物的地位不变,即选定一个刚体,取砝码m和下落高度h为固定值.将式(3)写为:r = K2/ t (5)式中K2 = (2hI/ mg)1/2是常量.上式标明r与1/t成正比关系.实验中换用不合的塔轮半径r,测得统一质量的砝码下落时光t,用所得一组数据作r-1/t图,应是直线.即若所作图是直线,便验证了迁移转变定律.从r-1/t图上测得斜率,并用已知的m.h.g值,由K2 = (2hI/ mg)1/2求出刚体的I.刚体迁移转变仪,滑轮,秒表,砝码.1.调节实验装配:调节转轴垂直于程度面调节滑轮高度,使拉线与塔轮轴垂直,并与滑轮面共面.选定砝码下落起点到地面的高度h,并保持不变.取塔轮半径为,砝码质量为20g,保持高度h不变,将配重物逐次取三种不合的地位,分离测量砝码下落的时光,剖析下落时光与迁移转变惯量的关系.本项实验只作定性解释,不当准据盘算.3.测量质量与下落时光关系:测量的根本内容是:改换不合质量的砝码,测量其下落时光t.用游标卡尺测量塔轮半径,用钢尺测量高度,砝码质量按已给定命为每个;用秒表记载下落时光.将两个配重物放在横杆上固定地位,选用塔轮半径为某一固定值.将拉线平行围绕纠缠在轮上.逐次选用不合质量的砝码,用秒表分离测量砝码从静止状况开端下落到达地面的时光.对每种质量的砝码,测量三次下落时光,取平均值.砝码质量从5g开端,每次增长5g,直到35g止.用所测数据作图,从图中求出直线的斜率,从而盘算迁移转变惯量.测量的根本内容是:对统一质量的砝码,改换不合的塔轮半径,测量不合的下落时光.将两个配重物选在横杆上固定地位,用固定质量砝码施力,逐次选用不合的塔轮半径,测砝码落地所用时光.对每一塔轮半径,测三次砝码落地之间,取其平均值.留意,在改换半径是要响应的调节滑轮高度,并使绕过滑轮的拉线与塔轮平面共面.由测得的数据作图,从图上求出斜率,并盘算迁移转变惯量.五.实验数据及数据处理:r-1/t的关系:⨯103-kg 2m ⋅m-(1/t)2的关系:由此关系得到的迁移转变惯量I=231087.1m kg ⋅⨯-六.实验成果:⨯103-kg 2m ⋅;由m-1/t 2的关系得到迁移转变惯量I=231087.1m kg ⋅⨯-.七.实验留意事项:1.细心调节实验装配,保持转轴铅直.使轴尖与轴槽尽量为点接触,使轴迁移转变自如,且不克不及扭捏,以削减摩擦力矩.2.拉线要围绕纠缠平行而不重叠,切忌乱绕,以防各匝线之间挤压而增大阻力.3.掌控好启动砝码的动作.计时与启动一致,力图防止计时的误差.4.砝码质量不宜太大,以使下落的加快度a不致太大,包管a<<g前提的知足.八.实验思虑题:1.定性剖析实验中的随机误差和可能的体系误差.答:随机误差重要出如今计时与启动的一致性上面还有,拉线的平行情形.体系误差主如果轴的摩擦及空气阻力.。
转动惯量测量实验报告【篇一:大学物理实验报告测量刚体的转动惯量】测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。
二.实验原理:1.刚体的转动定律利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有ag,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量i。
3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。
上式表明:所用砝码的质量与下落时间t的平方成反比。
实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。
即若所作的图是直线,便验证了转动定律。
222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。
b.作r – 1/t图法:配重物的位置不变,即选定一个刚体,取砝码m和下落高度h为固定值。
将式(3)写为:r = k2/ t (5)式中k2 = (2hi/ mg)是常量。
上式表明r与1/t成正比关系。
实验中换用不同的塔轮半径r,测得同一质量的砝码下落时间t,用所得一组数据作r-1/t图,应是直线。
即若所作图是直线,便验证了转动定律。
1/21/2从r-1/t图上测得斜率,并用已知的m、h、g值,由k2 = (2hi/ mg)求出刚体的i.三.实验仪器刚体转动仪,滑轮,秒表,砝码。
恒力矩转动法测刚体转动惯量实验报告及数据相对误差实验报告:恒力矩转动法测刚体转动惯量一、实验目的:1.了解刚体的转动惯量及其计算方法;2.学习使用恒力矩转动法测量刚体的转动惯量;3.掌握数据处理和相对误差的计算方法。
二、实验仪器和材料:1.转动惯量测量装置;2.刚体样品(如圆柱体、薄壳等);3.倾角计;4.动力学测量仪。
三、实验原理:刚体的转动惯量是描述刚体对转动运动的惯性的物理量。
根据牛顿第二定律和刚体转动的基本方程可得,刚体的转动惯量与刚体所受的力矩和角加速度之间存在着关系:I=M/α其中,I为刚体的转动惯量,M为刚体所受的力矩,α为刚体的角加速度。
实验中可以通过施加一个恒定的力矩,使刚体绕固定轴线转动一定角度,并测量转动过程中的时间,再根据实验测得的数据计算得到刚体的转动惯量。
四、实验步骤:1.将刚体样品装在转动惯量测量装置上,使其绕固定轴线转动;2.使用倾角计测量刚体的转动角度,并记录数据;3.同时使用动力学测量仪测量刚体在转动过程中所受的力矩,并记录数据;4.根据实验测得的数据,计算得到刚体的转动惯量。
五、实验数据:1. 刚体样品质量m = 0.5 kg;2.刚体绕轴线转动的角度θ=20°;3.转动过程中施加的恒定力矩M=2N·m;4.转动过程中的时间t=5s。
六、数据处理:根据实验数据,可以计算得到刚体的转动惯量:I = M/α = M/(θ/t) = (2 N·m)/(20°/5 s) = 0.5 kg·m²七、相对误差计算:与理论值进行比较,刚体的转动惯量的理论值为0.1 kg·m²。
相对误差ε的计算公式为:ε = ,(实测值 - 理论值)/理论值,某 100% = ,(0.5 kg·m² -0.1 kg·m²)/0.1 kg·m²,某 100% = 400%八、实验结论:通过恒力矩转动法测量得到的刚体转动惯量为0.5 kg·m²,相对误差为400%。
实验讲义补充:1.刚体概念:刚体是指在运动中和受力作用后,形状和大小不变,而且内部各点的相对位置不变的物体;2.转动惯量概念:转动惯量是刚体转动中惯性大小的量度;它取决于刚体的总质量,质量分布、形状大小和转轴位置3.转动定律:合外力矩=转动惯量×角加速度4.转动惯量叠加:空盘:1阻力矩2阻力矩+砝码外力→J1空盘+被测物体:1阻力矩2阻力矩+砝码外力→J2被测物体:J3=J2-J15.转动惯量理论公式:圆盘&圆环J=0.5mr2,J=0.5m(r12+r12)6.转动惯量实验仪器:水准仪;线水平;线与孔不产生摩擦;塔轮选小的半径;至少3个塔轮半径,3组砝码质量7.计数器:遮光板半圈π;单电门,多脉冲;空盘15圈,20个值;加上被测物体,8个值;8.泡沫垫板9.重力加速度:s^210.质量:1次读数,包括砝码,圆盘,圆环,以及两圆柱体;11.游标卡尺:6次读数,包括圆盘半径,圆环内外半径,塔轮半径,转盘上孔的内外半径求平均值12.实验目的:测量值与理论值对比实验计算补充说明:1.有效数字:质量,故有效数字为3位2.游标卡尺:,读数最后一位肯定为偶数;3.误差&不确定度:(1)理论公式计算的误差:圆盘:J=0.5mR2注意:直接测量的是直径质量m=±;保留4位有效数字um=100%=%半径R=±若测6次,x1,x2,x3,x4,x5,x6,i=6,计算x平均值,取n=6时的,我们处理为0C=,仪器允差,δB=总误差:,ux= m,u rx==%R=±urx=%计算转动惯量的结果表示:J=0.5mR2,总误差:uJ=√[(0.5R2u m)2+(mRu R)2],相对不确定=uJ/J 圆环:J=0.5m(R12+R22),同上.(2)实验测量计算的误差:J=mR(g−Rβ2)β2−β1根据,,对R塔轮半径,m砝码质量,β2和β1求导,J m=R(g−Rβ2)β2−β1J R=mg−2Rβ2β2−β1J β2=−mR2(β2−β1)−mR(g−Rβ2)(β2−β1)^2Jβ1=mR(g−Rβ2)(β2−β1)^2。
篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。
二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。
刚体受到张力的力矩为tr和轴摩擦力力矩mf。
由转动定律可得到刚体的转动运动方程:tr - mf = iβ。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量i。
3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。
上式表明:所用砝码的质量与下落时间t的平方成反比。
实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。
即若所作的图是直线,便验证了转动定律。
222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。
刚体转动惯量的测量实验报告
刚体转动惯量的测量实验
一、实验目的
本次实验旨在通过可视定律,在实验室中量取刚体转动惯量的大小,并实验地说明质点或物体转动惯量的定义。
二、实验原理
可视定律是由德国物理学家莱布尼兹提出的物理基本定律之一,指的是任何一个质点或物体在恒定力的作用下,能在单位时间内转动的动量与惯量之比等于这个恒定的力头的标准值:P/(mv) = pl。
三、实验装置
实验装置主要由小车、拨杆转厂、光栅、车间、气流罩和电源等组成。
四、实验流程
(1)校正光栅
将光栅置于地基上,将灵敏小车拨杆将小车车头对准光栅,调整拨杆以使小车的头部在光栅上方的间距保持均匀;
(2)拉力测量
用把手或匙子将小车尾拉至车头正对光栅,在此时设定一个位置为零点,调整电源频率,使小车以固定频率反复经过光栅;
(3)测量转动惯量
根据拉力及频率测出小车运行时间,推算出转动惯量。
五、实验结果
根据得到的测量数据,计算刚体转动惯量结果为:0.0018183 kg·m^2。
六、实验结论
本次实验结果与已知值吻合,说明实验装置的校正和测量流程均准确无误,实验基本上达到了预期的要求。
刚体转动惯量的测定实验报告引言刚体转动惯量是描述刚体在旋转过程中抵抗转动的性质,它是刚体围绕轴线旋转时所具有的惯性量。
在本实验中,我们通过测定刚体关于不同轴线的转动惯量,了解刚体转动惯量的概念与测定方法。
实验目的1.了解刚体转动惯量的概念与意义;2.学习刚体转动惯量的测定方法;3.实验测量刚体转动惯量,验证测定方法的正确性;4.掌握实验仪器的使用方法。
实验原理刚体转动惯量的定义为:$$I=\\Sigma m r^{2}$$其中,I为刚体的转动惯量,m为刚体质点的质量,r为质点到轴线的距离。
本实验主要使用转动盘进行转动惯量的测定。
转动盘由一个固定轴和一个可以转动的圆盘构成。
通过改变转动盘上的物体的位置,改变物体相对于固定轴的距离,可以测定不同轴线上刚体的转动惯量。
根据转动盘的平衡条件,可以得到刚体转动惯量的表达式:$$I=\\frac{T^{2} m}{4\\pi^{2}}$$其中,I为刚体的转动惯量,T为转动盘的周期,m为物体的质量。
实验步骤1.将转动盘调整到水平,固定好;2.在转动盘上放置圆柱体,使其与转动盘的轴线垂直;3.移动圆柱体,调整圆柱体相对于轴线的距离(例如:5cm、10cm、15cm等等),记录下距离;4.切换到计时功能,转动圆盘,记录下5次振动的周期;5.根据周期与距离的关系,计算刚体的转动惯量;6.将圆柱体移动到不同距离,重复步骤4-5,记录不同距离下的转动惯量;7.根据测得的数据,绘制出转动惯量与距离的曲线图。
数据处理与分析根据实验测得的数据,我们可以计算出不同距离下的刚体转动惯量。
将数据绘制成转动惯量与距离的曲线图,可以直观地观察到二者之间的关系。
根据实验原理推导的公式,我们可以利用线性回归的方法拟合出转动惯量与距离之间的关系,得到拟合直线的斜率即为刚体转动惯量的比例系数。
结论通过本实验,我们成功地测定了刚体转动惯量,并绘制了转动惯量与距离的曲线图。
实验结果与理论预期较为一致,验证了实验方法的正确性。
刚体转动惯量的测定实验报告实验目的,通过实验测定刚体转动惯量,掌握测定刚体转动惯量的方法和技巧。
实验仪器,转动惯量实验仪、测微卡尺、螺旋测微器、电子天平、计时器等。
实验原理,刚体转动惯量是刚体绕固定轴线旋转时所具有的惯性。
对于质量均匀分布的刚体,其转动惯量可以用公式I=Σmiri^2来表示,其中Σmi为刚体上各个质点的质量之和,ri为各质点到转轴的距离。
实验步骤:1. 将实验仪器放置在水平台面上,并调整水平仪使其处于水平状态。
2. 用测微卡尺测量实验仪器上转轴的直径d,并记录下数据。
3. 将刚体放置在转轴上,并用螺旋测微器测量刚体到转轴的距离r,并记录下数据。
4. 用电子天平测量刚体的质量m,并记录下数据。
5. 通过实验仪器上的刻度盘,测量刚体转动的角度θ,并记录下数据。
6. 重复以上步骤,分别在不同的转动角度下进行测量。
实验数据处理:根据实验数据,我们可以计算出刚体的转动惯量。
根据公式I=Σmiri^2,我们可以根据实验数据计算出不同转动角度下的转动惯量,并绘制出转动惯量随角度变化的曲线图。
实验结果分析:通过实验数据处理和曲线图的分析,我们可以得出刚体转动惯量与转动角度之间的关系。
从曲线图可以看出,随着转动角度的增大,刚体的转动惯量也随之增大。
这符合我们对刚体转动惯量的理论预期。
实验结论:通过本次实验,我们成功测定了刚体的转动惯量,并得出了转动惯量随角度变化的规律。
同时,我们也掌握了测定刚体转动惯量的方法和技巧,对刚体转动惯量有了更深入的理解。
实验中还存在一些误差,如实验仪器的精度限制、实验操作技巧等因素都可能对实验结果产生影响。
因此,在今后的实验中,我们需要更加严格地控制实验条件,提高实验操作技巧,以减小误差,提高实验结果的准确性和可靠性。
总之,本次实验对我们深入理解刚体转动惯量的概念和测定方法具有重要意义,为我们今后的学习和科研工作奠定了基础。
实验讲义补充:1.刚体概念:刚体就是指在运动中与受力作用后,形状与大小不变,而且内部各点的相对位置不变的物体。
2.转动惯量概念:转动惯量就是刚体转动中惯性大小的量度。
它取决于刚体的总质量,质量分布、形状大小与转轴位置3.转动定律:合外力矩=转动惯量×角加速度4.转动惯量叠加:空盘:(1)阻力矩(2)阻力矩+砝码外力→J1空盘+被测物体:(1)阻力矩(2)阻力矩+砝码外力→J2被测物体:J3=J2-J15.转动惯量理论公式:圆盘&圆环6.转动惯量实验仪器:水准仪;线水平;线与孔不产生摩擦;塔轮选小的半径;至少3个塔轮半径,3组砝码质量7.计数器:遮光板半圈π;单电门,多脉冲;空盘15圈,20个值;加上被测物体,8个值;8.泡沫垫板9.重力加速度:9、794m/s^210.质量:1次读数,包括砝码,圆盘,圆环,以及两圆柱体;11.游标卡尺:6次读数,包括圆盘半径,圆环内外半径,塔轮半径,转盘上孔的内外半径(求平均值)12.实验目的:测量值与理论值对比实验计算补充说明:1.有效数字:质量16、6g,故有效数字为3位2.游标卡尺:0、02mm,读数最后一位肯定为偶数;3.误差&不确定度:(1)理论公式计算的误差:圆盘:(注意:直接测量的就是直径)质量m=485、9g±0、1000g;(保留4位有效数字)um=0、1000/485、9*100%=0、02058%半径R=11、99mm±0、02000/1、05mm若测6次,x1,x2,x3,x4,x5,x6,i=6,计算x平均值,取n=6时的1、05,我们处理为0C=1、05,仪器允差0、02mm,δB=0、01905mm 总误差:,ux=0、01905m m,u rx=0、01905/11、99=0、1589%R=11、99mm±0、01905mmurx=0、1589%计算转动惯量的结果表示:,总误差:uJ=,相对不确定=uJ/J 圆环:,同上、(2)实验测量计算的误差:根据,,对R(塔轮半径),m(砝码质量),β2与β1求导,。
刚体转动惯量的测定实验报告一、实验目的1、学习用三线摆法测定刚体的转动惯量。
2、加深对转动惯量概念的理解。
3、掌握使用秒表、游标卡尺、米尺等测量工具。
二、实验原理三线摆是通过三条等长的摆线将一匀质圆盘悬挂在一个水平固定的圆盘上。
当摆盘绕中心轴作微小扭转摆动时,其运动可近似看作简谐振动。
根据能量守恒定律和刚体转动定律,可推导出刚体绕中心轴的转动惯量:\J_0 =\frac{m_0gRr^2T_0^2}{4\pi^2H}\其中,\(J_0\)为下盘(刚体)的转动惯量,\(m_0\)为下盘质量,\(g\)为重力加速度,\(R\)和\(r\)分别为上下圆盘悬点到中心的距离,\(T_0\)为下盘的摆动周期,\(H\)为上下圆盘间的垂直距离。
三、实验仪器三线摆实验仪、游标卡尺、米尺、秒表、待测圆环。
四、实验步骤1、调节三线摆底座水平,使上、下圆盘处于水平状态。
2、用米尺测量上下圆盘之间的距离\(H\),测量多次取平均值。
3、用游标卡尺测量上下圆盘悬点到中心的距离\(R\)和\(r\),各测量多次取平均值。
4、测量下盘质量\(m_0\)。
5、轻轻转动下盘,使其作微小扭转摆动,用秒表测量下盘摆动\(50\)次的时间,重复测量多次,计算平均摆动周期\(T_0\)。
6、将待测圆环置于下盘上,使两者中心重合,再次测量摆动周期\(T_1\)。
五、实验数据记录与处理1、实验数据记录|测量物理量|测量值|平均值||||||上圆盘悬点到中心的距离\(R\)(mm)|_____|_____||下圆盘悬点到中心的距离\(r\)(mm)|_____|_____||上下圆盘之间的距离\(H\)(mm)|_____|_____||下盘质量\(m_0\)(g)|_____|_____||下盘摆动\(50\)次的时间\(t_0\)(s)|_____|_____||放上圆环后下盘摆动\(50\)次的时间\(t_1\)(s)|_____|_____|2、数据处理(1)计算下盘的摆动周期:下盘摆动周期\(T_0 =\frac{t_0}{50}\)(2)计算下盘的转动惯量:\J_0 =\frac{m_0gRr^2T_0^2}{4\pi^2H}\(3)计算圆环与下盘共同的转动惯量:\J_1 =\frac{(m_0 + m)gRr^2T_1^2}{4\pi^2H}\其中,\(m\)为圆环的质量。
测量刚体的转动惯量实验报告及数据处理实验目的:本实验旨在通过测量刚体在不同条件下的转动惯量,探究刚体的转动惯量与其质量和形状的关系,并通过数据处理方式验证实验结果的准确性。
实验原理:转动惯量是描述刚体转动惯性的物理量,定义为刚体绕轴旋转时受到的转动力矩与角加速度的比值。
对于一个质量为m、距离旋转轴距离为r的点质量,其转动惯量可表示为I=mr^2实验装置:1.转动惯量测定装置:包括一根水平固定的轴杆以及在轴杆两端可以旋转的转轮和转动测量仪。
2.垂直测量尺:用于测量刚体高度和半径。
3.游标卡尺:用于测量刚体直径和转轮直径。
实验步骤:1.使用游标卡尺分别测量刚体直径和转轮直径,记录数据。
2.使用垂直测量尺测量刚体高度和半径,记录数据。
3.将刚体放置在转轮上,并用转动测量仪测量刚体从静止转动到一定速度时所花的时间,重复5次取平均值并记录数据。
4.将转动测量仪上的转轮锁死,然后用手使转动测量仪以不同角速度旋转,并记录转动测量仪的角加速度、转动惯量和距离旋转轴的平均距离,重复3次并记录数据。
5.将刚体放置在转轮上,使其绕垂直于水平方向的轴旋转,测量角度、时间和转动惯量,重复3次并记录数据。
6.根据实验数据计算刚体的转动惯量。
实验数据处理:1.对于多次重复实验的平均值计算:-计算刚体从静止转动到一定速度所花的平均时间,代入转动惯量公式,计算相应的转动惯量。
-计算手动转动时转动测量仪的平均角加速度,代入转动惯量公式,计算相应的转动惯量。
-计算垂直旋转时转动测量仪的平均角度、时间和转动惯量。
2.计算刚体的转动惯量:-根据转动测量仪的平均角加速度和平均距离,代入转动惯量公式,计算刚体的转动惯量。
-根据垂直旋转时的平均角度、时间和转动惯量,代入转动惯量公式,计算刚体的转动惯量。
-将以上两种情况下计算得到的转动惯量进行平均值计算,得到最终的转动惯量。
实验结果及讨论:1.根据实验数据计算得到的刚体转动惯量与其质量、形状的关系进行对比分析,验证是否符合理论预期。
一、实验目的1. 验证刚体转动定律,通过实验方法测量刚体的转动惯量。
2. 观察刚体的转动惯量与质量分布的关系。
3. 学习使用实验仪器和方法,进行物理量的测量和数据处理。
二、实验原理刚体转动惯量(J)是描述刚体绕某一固定轴转动时,其惯性大小的物理量。
根据转动定律,刚体绕固定轴转动时,其角加速度(α)与作用在刚体上的合外力矩(M)成正比,与刚体的转动惯量成反比,即:\[ M = I \cdot \alpha \]其中,I 为刚体的转动惯量。
对于规则形状的均质刚体,其转动惯量可以通过几何公式直接计算得出。
但对于不规则形状或非均质刚体,其转动惯量一般需要通过实验方法测定。
三、实验仪器1. 刚体转动惯量测量装置(包括:旋转轴、测量台、测速仪、计时器、砝码等)2. 刚体(如圆环、均质杆等)3. 质量测量仪4. 游标卡尺四、实验步骤1. 将刚体放置在测量台上,调整旋转轴使其垂直于刚体的旋转平面。
2. 使用质量测量仪测量刚体的质量(m)。
3. 使用游标卡尺测量刚体的几何尺寸(如半径、长度等)。
4. 将砝码挂在旋转轴上,调整砝码的质量和位置,使其对刚体产生合外力矩。
5. 使用测速仪测量刚体的角速度(ω)。
6. 使用计时器测量砝码下降的时间(t)。
7. 根据实验数据,计算刚体的转动惯量。
五、数据处理1. 计算刚体的角加速度(α):\[ \alpha = \frac{2\pi \cdot \omega}{t} \]2. 计算刚体的转动惯量(I):\[ I = \frac{m \cdot r^2}{2} \]其中,r 为刚体的几何尺寸。
六、实验结果与分析1. 通过实验测量,得到刚体的转动惯量(I)为:_______ kg·m²。
2. 分析实验结果,比较不同刚体的转动惯量,观察质量分布对转动惯量的影响。
3. 分析实验误差,探讨可能的原因。
七、实验总结1. 通过本次实验,成功验证了刚体转动定律,并测量了刚体的转动惯量。
测量刚体的转动惯量实验报告篇一:刚体转动惯量的测定实验报告刚体转动惯量的测定物本1001班张胜东(201009110024)李春雷(201009110059)郑云婌(201009110019)刚体转动惯量的测定实验报告实验目的1.熟悉扭摆的构造、使用方法和转动惯量测试仪的使用。
2.用扭摆测定弹簧的扭转常数K和几种不同形状的物体的转动惯量,并与理论值进行比较。
3.验证转动定理和平行轴定理。
实验仪器(1)扭摆(转动惯量测定仪)。
(2)实心塑料圆柱体、空心金属圆桶、细金属杆和两个金属块及支架。
(3)天平。
(4)游标卡尺。
(5)HLD-TH-II转动惯量测试仪(计时精度)。
实验原理1. 扭摆扭摆的构造如图所示,在垂直轴 1 上装有一根薄片状的螺旋弹簧2,用以产生恢复力矩。
在轴的上方可以装上各种待测物体。
垂直轴与支座间装有轴承,以降低磨擦力矩。
3 为水平仪,用来调整系统平衡。
将物体在水平面内转过一角度θ 后,在弹簧的恢复力矩作用下物体就开始绕垂直轴作往返扭转运将物体在水平面内转过一角度θ后,在弹簧的恢复力矩作用下物体就开始绕垂直轴作往返扭转运动。
根据虎克定律,弹簧受扭转而产生的恢复力矩M与所转过的角度θ成正比,即b M=-Kθ (1)式中,K为弹簧的扭转常数,根据转动定律M=Iβ 式中,I为物体绕转轴的转动惯量,β为角加速度,由上式得? 令?2?M (2)?K,忽略轴承的磨擦阻力矩,由(1)、(2)得d2?K2(3)??2Idt上述方程表示扭摆运动具有角简谐振动的特性,角加速度与角位移成正比,且方向相反。
此方程的解为:θ=Acos (4)式中,A为谐振动的角振幅,φ为初相位角,ω为角速度,此谐振动的周期为T?2???2?I(5)K由(5)可知,只要实验测得物体扭摆的摆动周期,并在I和K中任何一个量已知时即可计算出另一个量。
本实验用一个几何形状规则的物体,它的转动惯量可以根据它的质量和几何尺寸用理论公式直接计算得到,再算出本仪器弹簧的K值。
转动惯量测量实验报告(共7篇)篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。
二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg –t=ma,在t时间内下落的高度为h=at/2。
刚体受到张力的力矩为tr和轴摩擦力力矩mf。
由转动定律可得到刚体的转动运动方程:tr - mf = iβ。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量i。
3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m –1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。
上式表明:所用砝码的质量与下落时间t 的平方成反比。
实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。
即若所作的图是直线,便验证了转动定律。
实验讲义补充:
1.刚体概念:刚体是指在运动中和受力作用后,形状和大小不变,而且内部各点的相对位置不
变的物体。
2.转动惯量概念:转动惯量是刚体转动中惯性大小的量度。
它取决于刚体的总质量,质量分布、
形状大小和转轴位置
3.转动定律:合外力矩=转动惯量×角加速度
4.转动惯量叠加:
空盘:(1)阻力矩(2)阻力矩+砝码外力→J1
空盘+被测物体:(1)阻力矩(2)阻力矩+砝码外力→J2
被测物体:J3=J2-J1
5.转动惯量理论公式:圆盘&圆环J=0.5mr2,J=0.5m(r12+r12)
6.转动惯量实验仪器:水准仪;线水平;线与孔不产生摩擦;塔轮选小的半径;至少3个塔轮
半径,3组砝码质量
7.计数器:遮光板半圈π;单电门,多脉冲;空盘15圈,20个值;加上被测物体,8个值;
8.泡沫垫板
9.重力加速度:s^2
10.质量:1次读数,包括砝码,圆盘,圆环,以及两圆柱体;
11.游标卡尺:6次读数,包括圆盘半径,圆环内外半径,塔轮半径,转盘上孔的内外半径(求
平均值)
12.实验目的:测量值与理论值对比
实验计算补充说明:
1.有效数字:质量,故有效数字为3位
2.游标卡尺:,读数最后一位肯定为偶数;
3.误差&不确定度:
(1)理论公式计算的误差:
圆盘:J=0.5mR2(注意:直接测量的是直径)
质量m=±;(保留4位有效数字)
um=*100%=%
半径R=±
若测6次,x1,x2,x3,x4,x5,x6,i=6,计算x平均值
,
取n=6时的
,我们处理为0
C=,仪器允差,δB=
总误差:,ux= m
,u rx==%
R=±
urx=%
计算转动惯量的结果表示:
J=0.5mR2,总误差:uJ=√[(0.5R2u m)2+(mRu R)2],相对不确定=uJ/J 圆环:J=0.5m(R12+R22),同上.
(2)实验测量计算的误差:
J=mR(g−Rβ2)β2−β1
根据,,对R(塔轮半径),m(砝码质量),β2和β1求导,
?J ?m=R(g−Rβ2)β2−β1
?J ?R=mg−2Rβ2β2−β1
?J ?β2=−mR2(β2−β1)−mR(g−Rβ2)
(β2−β1)^2
?J
?β1=
mR(g−Rβ2)
(β2−β1)^2。