2018-2019学年重庆一中八年级(上)期末数学试卷
- 格式:doc
- 大小:404.00 KB
- 文档页数:17
重庆市渝中区名校2018-2019学年八上数学期末教学质量检测试题一、选择题1.化简222a a a--的结果是( ) A .﹣1B .1C .﹣aD .a 2.若213x M N x 1x 1x 1-=+-+-,则M 、N 的值分别为( ) A .M=-1,N=-2B .M=-2,N=-1C .M=1,N=2D .M=2,N=1 3.方程211x x x x ---=1的解的情况为( ) A.x =﹣12 B.x =﹣3 C.x =1 D.原分式方程无解4.下列各式中,能用完全平方公式分解的个数为( )①21025x x -+;②2441a a +-;③221x x --;④214m m -+-;⑤42144x x -+. A.1个 B.2个 C.3个 D.4个5.已知a+b =m ,ab =n ,则(a ﹣b)2等于( )A .m 2﹣nB .m 2+nC .m 2+4nD .m 2﹣4n6.已知x =3y+5,且x 2﹣7xy+9y 2=24,则x 2y ﹣3xy 2的值为( )A .0B .1C .5D .127.下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方体包装盒的是( )A .B .C .D .8.在△ABC 中,AB=AC=5,BC=8,AD ⊥BC ,垂足为D ,BE 是边AC 上的中线,AD 与BE 相交于点G ,那么AG 的长为 ( )A .1B .2C .3D .无法确定.9.如图,△ABC 中,BO 平分∠ABC ,CO 平分∠ACB ,MN 经过点O ,与AB ,AC 相交于点M ,N ,且MN ∥BC ,若AB=5,AC=6,则△AMN 的周长为( )A .7B .9C .11D .1610.如图,BD=CF ,FD ⊥BC 于点D ,DE ⊥AB 于点E ,BE=CD ,若∠AFD=135°,则∠EDF 的度数为( )A.55°B.45°C.35°D.65°11.如图,EF 是Rt △ABC 的中位线,∠BAC =90°,AD 是斜边BC 边上的中线,EF 和AD 相交于点O ,则下列结论不正确的是( )A .AO =ODB .EF =ADC .S △AEO =S △AOFD .S △ABC =2S △AEF12.如图,AB =CD ,AE ⊥BC ,DF ⊥BC ,垂足分别为E ,F ,CE =BF ,下列结论错误的是( )A .∠C =∠B B .DF ∥AEC .∠A+∠D =90° D .CF =BE13.如图,在△ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D .下列说法不正确的是( )A.与∠1互余的角只有∠2B.∠A 与∠B 互余C.∠1=∠BD.若∠A =2∠1,则∠B =30° 14.已知一个多边形的内角和是外角和的3倍,则这个多边形是( ) A .五边形B .六边形C .七边形D .八边形 15.以下列各组线段为边,能组成三角形的是( )A .3cm .4cm .8cmB .8cm ,7cm ,15cmC .5cm ,5cm ,11cmD .11cm ,12cm ,13crn二、填空题 16.有下列各式:①·x y y x ;②x b y a ÷;③62x x ÷;④23·a a b b.其中,计算结果为分式的是_____.(填序号)17.如果多项式29mx x ++是完全平方式,那么m =________.【答案】6±.18.已知A(0,0),B(2,0),C(3,3),如果在平面直角坐标系中存在一点D ,使得△ABD 与△ABC 全等,那么点D 的坐标为______.19.一个多边形的每一个内角都等于它相邻外角的2倍,则这个多边形的边数是__________.20.如图,ABC 90∠=,P 为射线BC 上任意一点(点P 和点B 不重合),分别以AB ,AP 为边在ABC ∠内部作等边ABE 和等边APQ ,连结QE 并延长交BP 于点F ,连接EP ,若FQ 11=,AE =EP =______.三、解答题21.(1)化简:22121x x x x x -=-+;(2)先化简,再求值:224224x x x x ⎛⎫-+÷ ⎪+-⎝⎭,选一个你喜欢的数求值.22.因式分解:3221218x x x -+.23.如图,等边三角形中,是线段上一点,是延长线上一点.连接,.点是线段的中点,,与延长线交于点.(1)若,求; (2)若,求证:.24.已知:线段 m 、n 和∠a(1)求作:△ABC ,使得 AB =m ,BC =n ,∠B =∠a ;(2)作∠BAC 的平分线相交 BC 于 D.(以上作图均不写作法,但保留作图痕迹)25.如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC 经过一次平移后得到△A′B′C′,图中标出了点B 的对应点B′.(1)在给定方格纸中画出平移后的△A′B′C′;(2)画出AB 边上的中线CD 和BC 边上的高线AE ;(3) 求四边形ACBB′的面积【参考答案】***一、选择题16.②④17.无18.(3,-3),(-1,3) 或(-1,-3)19.620三、解答题21.(1)11x x +-;(2)选5x =时,3. 22.22(3)x x -23.(1)45°;(2)见解析【解析】【分析】(1)由等边三角形的性质可知∠ABC=∠ACB=60°,由平行线的性质可知∠NBC=60°,进一步求出∠ABN=120°,再由三角形内角和定理即可求出∠N 的度数;(2)先证△NBG ≌△AEG ,得到AG=NG ,AE=BN ,再证△ABN ≌△ACF ,即可推出AF=2AG .【详解】(1)∵△ABC 是等边三角形,∴∠ABC=∠ACB=60°,∵AC ∥BN ,∴∠NBC=∠ACB=60°,∴∠ABN=∠ABC+∠NBC=120°,∴在△ABN 中,∠N=180°-∠ABN-∠BAN=180°-120°-15°=45°;(2)∵AC ∥BN ,∴∠N=∠GAE ,∠NBG=∠AEG ,又∵点G 是线段BE 的中点,∴BG=EG ,∴△NBG≌△AEG(AAS),∴AG=NG,AE=BN,∵AE=CF,∴BN=CF,∵∠ACB=60°,∴∠ACF=180°-∠ACB=120°,∴∠ABN=∠ACF,又∵AB=AC,∴△ABN≌△ACF(SAS),∴AF=AN,∵AG=NG=AN,∴AF=2AG.【点睛】考查了等边三角形的性质,平行线的性质,三角形内角和定理,全等三角形的判定与性质等,解题的关键是能够熟练运用全等三角形的判定与性质.24.(1)见解析;(2)见解析.【解析】【分析】(1)先作出∠MBN=∠a,然后在边BM上截取BA=m得到点A,在以A为圆心AC=n为半径画弧角AN于C,得到点C,连接AC,即可得到符合要求的图形.(2)以点A为圆心,任意长为半径画弧,再以弧与角两边的交点为圆心,大于两弧交点的一半长为半径画弧,两弧的交点为E,连接AE,交BC于D,. AD就是所求∠BAC的角平分线.【详解】解:(1)如图所示的△ABC就是所要求作的图形.(2)如图所示;【点睛】本题主要考查了作一个角等于已知角,作一条线段等于已知线段的作法,作已知角的角平分线,都是基本作图,需要熟练掌握.25.(1)见解析;(2)见解析;(3)27。
2018-2019学年八年级(上)期末数学试卷一.选择题(共12小题)1.(﹣3)0的值等于()A.﹣3 B.3 C.1 D.﹣12.下列网络标识图案中,不是轴对称图形的是()A.B.C.D.3.下列计算正确的是()A.a•a2=a3B.4a•3a=12a C.(3a2)3=9a6D.(ab2)2=ab4 4.下列各式中,与分式的值相等的是()A.B.C.D.5.关于正多边形的概念,下列说法正确的是()A.各边相等的多边形是正多边形B.各角相等的多边形是正多边形C.各边相等或各角相等的多边形是正多边形D.各边相等且各角相等的多边形是正多边形6.下列长度的三条线段,不能组成三角形的是()A.3,8,4 B.4,9,6 C.15,20,8 D.9,15,8 7.下列分解因式正确的是()A.x2﹣5x﹣6=(x+2)(x﹣3)B.x2﹣5x﹣6=(x﹣2)(x+3)C.x2﹣5x﹣6=(x+1)(x﹣6)D.x2﹣5x﹣6=(x﹣1)(x+6)8.计算9992+999的结果是()A.999999 B.999000 C.99999 D.999009.如图,在△ABC中,∠A=108°,AC的垂直平分线MN交BC于点D,且AB+BD=BC,则∠B的度数是()A.24°B.26°C.48°D.52°10.设P=(a+2b)2,Q=8ab,则P与Q的大小关系为()A.P>Q B.P<Q C.P≥Q D.P≤Q11.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m<4 B.m<4,且m≠3 C.m≤4 D.m≤4,且m≠3 12.如图,C为线段AE上一点(不与点A、E重合),在AE同侧分别作等边△ABC和等边△CDE,连接AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ、OC,以下四个结论:①△BOC≌△EDO;②DE=DP;③∠AOC=∠COE;④OC⊥PQ.其中正确的结论有()A.1个B.2个C.3个D.4个二.填空题(共6小题)13.计算:(﹣2a)3=.14.写出一个含有字母的分式,且无论x取任何实数,分式都有意义,这个分式可以是.15.在△ABC中,若∠B=∠C=2∠A,则∠C的度数为.16.一艘客轮在静水中的最大航速为35km/h,它以最大航速沿长江顺流航行135km所用时间与以最大航速逆流航行90km所用的时间相等,则长江的水流速度为.17.观察下面图1、图2、图3各正方形中的四个数之间的变化规律,按照这样的变化规律,图n中的M应为.18.如图,已知∠BAC=65°,D为∠BAC内部一点,过D作DB⊥AB于B,DC⊥AC于C,设点E、点F分别为AB、AC上的动点,当△DEF的周长最小时,∠EDF的度数为.三.解答题(共8小题)19.计算:(1)3x2y2•(﹣2xy3)(2)(x﹣y)(x2+xy﹣y2)20.分解因式:(1)6ab2﹣8a2b3(2)(a﹣b)+c2(b﹣a)21.如图,△ABC三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)画出△ABC关于y轴对称的图形△A′B′C′,并写出点A′、B'、C′的坐标;(2)在图中找一点D,以D、B、C为顶点画三角形,使它与△ABC全等,请画出所有符合条件的△DBC(点D与点A重合除外),并直接写出点D的坐标.(提示:当点D不唯一时,可用D1、D2、D3等加以区别)22.先化简,再求值:÷(1﹣)•,其中x、y满足方程组.23.阅读并解答问题:下面给出了求x2+2x+5的最小值的解答过程.解:x2+2x+5=x2+2x+1﹣1+5=(x+1)2+4∵(x+1)2≥0,∴(x+1)2+4≥4∴x2+2x+5的最小值为4请仿照上面的解答过程,求下列各式的最小值.(1)x2﹣6x﹣3;(2)2x2+8x+11.24.证明:如果两个三角形有两边和其中一边上的高分别对应相等,那么这两个三角形全等.25.甘蔗富含大量铁、钙、锌等人体必需的微量元素,素有“补血果”的美称,是冬季热销的水果之一,为此,某水果商家12月份第一次用600元购进云南甘蔗若干千克,销售完后,他第二次又用600元购进该甘蔗,但这次每千克的进价比第一次的进价提高了20%,所购进甘蔗的数量比第一次少了25千克.(1)求该商家第一次购买云南甘蔗的进价是每千克多少元?(2)假没商家两次购进的云南甘蔗按同一价格销售,要使销售后获利不低于1000元,则每千克的售价至少为多少元?26.如图1,在△ABC中,∠C=90°,延长CA至点D,使AD=AB.设F为线段AB上一点,连接DF,以DF为斜边作等腰Rt△DEF,且使AE⊥AB.(1)求证:AE=AF+BC;(2)当点F为BA延长线上一点,而其余条件保持不变,如图2所示,试探究AE、AF、BC之间的数量关系,并说明理由.参考答案与试题解析一.选择题(共12小题)1.(﹣3)0的值等于()A.﹣3 B.3 C.1 D.﹣1【分析】根据任何非0数的0次幂等于1解答.【解答】解:(﹣3)0=1.故选:C.2.下列网络标识图案中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可.【解答】解:A、是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项符合题意;D、是轴对称图形,故此选项不合题意;故选:C.3.下列计算正确的是()A.a•a2=a3B.4a•3a=12a C.(3a2)3=9a6D.(ab2)2=ab4【分析】直接利用单项式乘以单项式以及积的乘方运算法则分别化简得出答案.【解答】解:A、a•a2=a3,正确;B、4a•3a=12a2,故此选项错误;C、(3a2)3=27a6,故此选项错误;D、(ab2)2=a2b4,故此选项错误;故选:A.4.下列各式中,与分式的值相等的是()A.B.C.D.【分析】观察选项可知选项中不含负号,可把负号加在分子或分母,根据这点可以解出此题.【解答】解:.故选:A.5.关于正多边形的概念,下列说法正确的是()A.各边相等的多边形是正多边形B.各角相等的多边形是正多边形C.各边相等或各角相等的多边形是正多边形D.各边相等且各角相等的多边形是正多边形【分析】根据正多边形的定义判定即可.【解答】解:A.各边相等、各角也相等的多边形是正多边形,故本选项不合题意;B.各边相等、各角也相等的多边形是正多边形,故本选项不合题意;C.各边相等、各角也相等的多边形是正多边形,故本选项不合题意;D.各边相等且各角相等的多边形是正多边形,正确,故本选项符合题意.故选:D.6.下列长度的三条线段,不能组成三角形的是()A.3,8,4 B.4,9,6 C.15,20,8 D.9,15,8【分析】根据三角形三边关系定理:三角形两边之和大于第三边,进行判定即可.【解答】解:A,∵3+4<8∴不能构成三角形;B,∵4+6>9∴能构成三角形;C,∵8+15>20∴能构成三角形;D,∵8+9>15∴能构成三角形.故选:A.7.下列分解因式正确的是()A.x2﹣5x﹣6=(x+2)(x﹣3)B.x2﹣5x﹣6=(x﹣2)(x+3)C.x2﹣5x﹣6=(x+1)(x﹣6)D.x2﹣5x﹣6=(x﹣1)(x+6)【分析】因式分解是指将一个多项式写成几个因式的积的形式,据此逐项分析即可.【解答】解:选项A:右边展开为:x2﹣x﹣6,不等于左边,故A错误;选项B:右边展开为:x2+x﹣6,不等于左边,故B错误;选项C:右边展开等于左边,且符合因式分解的形式,故C正确;选项D:右边展开为x2+5x﹣6,不等于左边,故D错误;故选:C.8.计算9992+999的结果是()A.999999 B.999000 C.99999 D.99900【分析】先提出999,再计算比较简便.【解答】解:原式=999(999+1)=999×1000=999000.故选:B.9.如图,在△ABC中,∠A=108°,AC的垂直平分线MN交BC于点D,且AB+BD=BC,则∠B的度数是()A.24°B.26°C.48°D.52°【分析】根据线段垂直平分线的性质得到DA=DC,得到∠DAC=∠C,根据三角形内角和定理列式计算,得到答案.【解答】解:∵DM是AC的垂直平分线,∴DA=DC,∴∠DAC=∠C,∴∠ADB=2∠C,∵AB+BD=BC,DC+BD=BC,∴AB=DC,∴AB=AD,∴∠B=∠ADB=2∠C,由三角形内角和定理得,∠B+∠C+∠BAC=180°,解得,∠B=48°,故选:C.10.设P=(a+2b)2,Q=8ab,则P与Q的大小关系为()A.P>Q B.P<Q C.P≥Q D.P≤Q【分析】根据配方法把P﹣Q的结果变形,根据偶次方的非负性解答.【解答】解:P﹣Q=(a+2b)2﹣8ab=a2+4ab+4b2﹣8ab=a2﹣4ab+4b2=(a﹣2b)2≥0,∴P≥Q,故选:C.11.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m<4 B.m<4,且m≠3 C.m≤4 D.m≤4,且m≠3 【分析】首先去分母,计算出x=4﹣m,再根据解是非负数可得4﹣m≥0,x﹣1≠0,进而可得4﹣m≠1,再解即可.【解答】解:+=1,﹣=1,3﹣m=x﹣1,x=4﹣m,∵解是非负数,∴x≥0,∴4﹣m≥0,m≤4,∵x﹣1≠0,∴x≠1,∴4﹣m≠1,m≠3,∴m≤4,且m≠3,故选:D.12.如图,C为线段AE上一点(不与点A、E重合),在AE同侧分别作等边△ABC和等边△CDE,连接AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ、OC,以下四个结论:①△BOC≌△EDO;②DE=DP;③∠AOC=∠COE;④OC⊥PQ.其中正确的结论有()A.1个B.2个C.3个D.4个【分析】证明△ACD与△BCE全等,可得∠CAD=∠CBE,得出∠AOE=120°,作CG⊥AD 于G,CH⊥BE于H,证明△ACG≌△BCH(AAS),得出CG=CH,证出OC平分∠AOE,∠AOC =∠COE,③正确;证出∠BOC≠∠EDO,得出△BOC与△EDO不全等,①错误;证明△ACP ≌△BCQ(ASA),得出AP=BQ,PC=QC,可推出DP=EQ,再根据△DEQ的角度关系DE≠DP,可得②错误.证出PQ∥AE,推出OC与AE不垂直,得出OC与PQ不垂直,④错误;即可得出答案.【解答】解:∵△ABC和△CDE是等边三角形,∴AC=BC,CD=CE,∠ACB=∠ECD=60°,∴180°﹣∠ECD=180°﹣∠ACB,即∠ACD=∠BCE,在△ACD与△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,∠CAD=∠CBE,∴∠AOB=∠CAD+∠CEB=∠CBE+∠CEB=∠ACB=60°,∴∠AOE=120°,作CG⊥AD于G,CH⊥BE于H,如图所示:在△ACG和△BCH中,,∴△ACG≌△BCH(AAS),∴CG=CH,∴OC平分∠AOE,∴∠AOC=∠COE,③正确;∵∠BOC=∠AOB+∠AOC=120°,∠DOC=∠DOQ+∠COE=120°,∴∠ODC+∠OCD=60°,∴∠ODC<60°,∴∠EDO=∠CDE+∠ODC<120°,∴∠BOC≠∠EDO,∴△BOC与△EDO不全等,①错误;∵∠ACB=∠ECD=60°,∴∠BCQ=180°﹣60°×2=60°,∴∠ACB=∠BCQ=60°,在△ACP与△BCQ中,,∴△ACP≌△BCQ(ASA),∴AP=BQ,PC=QC,∵AD=BE,∴AD﹣AP=BE﹣BQ,∴DP=QE,∵∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,故②错误.∵PC=QC,∠PCQ=60°,∴△PCQ是等边三角形,∴∠CPQ=60°,∴∠ACB=∠CPQ,∴PQ∥AE,∵∠AOC=60°,当OC⊥AE时,∠OAC=30°,则AP平分∠BAC,而AP不是∠BAC的平分线,∴OC与AE不垂直,∴OC与PQ不垂直,④错误;正确的结论有1个,故选:A.二.填空题(共6小题)13.计算:(﹣2a)3=﹣8a3.【分析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘计算即可.【解答】解:(﹣2a)3=(﹣2)3a3=﹣8a3.14.写出一个含有字母的分式,且无论x取任何实数,分式都有意义,这个分式可以是.【分析】写一个分母不为零的分式即可.【解答】解:由题意得:,故答案为:.15.在△ABC中,若∠B=∠C=2∠A,则∠C的度数为72°.【分析】利用三角形内角和定理构建方程即可解决问题.【解答】解:∵∠B=∠C=2∠A,∴可以假设∠A=x,则∠B=∠C=2x,∵∠A+∠B+∠C=180°,∴5x=180°,∴x=36°,∴∠C=72°,故答案为72°.16.一艘客轮在静水中的最大航速为35km/h,它以最大航速沿长江顺流航行135km所用时间与以最大航速逆流航行90km所用的时间相等,则长江的水流速度为7km/h.【分析】设长江的水流速度为xkm/h,根据题意列出方程即可求出答案.【解答】解:设长江的水流速度为xkm/h,∴=,解得:x=7,经检验,x=7是原分式方程的解,故答案为:7km/h.17.观察下面图1、图2、图3各正方形中的四个数之间的变化规律,按照这样的变化规律,图n中的M应为4n2+2n+2 .【分析】根据图形中的数字,可以发现各个角上数字的变化特点,从而可以写出第n个图形中各个角上的数字,从而可以得到M的值.【解答】解:由图可知,左上角的数字是一些连续的偶数,从0开始,左下角的数字是一些连续的偶数,从2开始,右上角的数字是一些连续的偶数,从4开始,右下角的数字是相应的左下角的数字与右上角的数字的乘积减去左上角的数字的差,则图n中左上角的数字是2n﹣2,左下角的数字是2n,右上角的数字是2n+2,右下角的数字是:2n(2n+2)﹣(2n﹣2)=4n2+2n+2,即M=4n2+2n+2,故答案为:4n2+2n+2.18.如图,已知∠BAC=65°,D为∠BAC内部一点,过D作DB⊥AB于B,DC⊥AC于C,设点E、点F分别为AB、AC上的动点,当△DEF的周长最小时,∠EDF的度数为50°.【分析】先作点D关于AB和AC的对称点M、N,连接MN交AB和AC于点E、F,此时△DEF的周长最小,再根据四边形内角和与等腰三角形的性质即可求解.【解答】解:如图所示:延长DB和DC至M和N,使MB=DB,NC=DC,连接MN交AB、AC于点E、F,连接DE、DF,此时△DEF的周长最小.∵DB⊥AB,DC⊥AC,∴∠ABD=∠ACD=90°,∠BAC=65°,∴∠BDC=360°﹣90°﹣90°﹣65°=115°,∴∠M+∠N=180°﹣115°=65°根据对称性质可知:DE=ME,DF=NF,∴∠EDM=∠M,∠FDN=∠N,∴∠EDM+∠FDN=65°,∴∠EDF=∠BDC﹣(∠EDM+∠FDN)=115°﹣65°=50°.故答案为50°.三.解答题(共8小题)19.计算:(1)3x2y2•(﹣2xy3)(2)(x﹣y)(x2+xy﹣y2)【分析】(1)利用单项式乘以单项式法则,直接求解即可;(2)先利用多项式乘以多项式法则,再合并同类项.【解答】解:(1)原式=﹣6x3y5;(2)原式=x3+x2y﹣xy2﹣x2y﹣xy2+y3=x3﹣2xy2+y320.分解因式:(1)6ab2﹣8a2b3(2)(a﹣b)+c2(b﹣a)【分析】(1)原式提取公因式即可;(2)原式变形后,提取公因式,再利用平方差公式分解即可.【解答】解:(1)原式=2ab2(3﹣4ab);(2)原式=(a﹣b)﹣c2(a﹣b)=(a﹣b)(1﹣c2)=(a﹣b)(1+c)(1﹣c).21.如图,△ABC三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)画出△ABC关于y轴对称的图形△A′B′C′,并写出点A′、B'、C′的坐标;(2)在图中找一点D,以D、B、C为顶点画三角形,使它与△ABC全等,请画出所有符合条件的△DBC(点D与点A重合除外),并直接写出点D的坐标.(提示:当点D不唯一时,可用D1、D2、D3等加以区别)【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可.(2)分三种情形画出图形即可解决问题.【解答】解:(1)△A′B′C′如图所示,A′(2,3),B′(6,0),C′(1,0).(2)满足条件的点D如图所示,D1(﹣5,3),D2(﹣5,﹣3),D3(﹣2,﹣3).22.先化简,再求值:÷(1﹣)•,其中x、y满足方程组.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将方程组中两个方程相加得到x+y的值,继而整体代入计算可得.【解答】解:原式=÷•=﹣••=﹣,∵x、y满足方程组,∴3x+3y=﹣6,则x+y=﹣2,∴原式=﹣=﹣.23.阅读并解答问题:下面给出了求x2+2x+5的最小值的解答过程.解:x2+2x+5=x2+2x+1﹣1+5=(x+1)2+4∵(x+1)2≥0,∴(x+1)2+4≥4∴x2+2x+5的最小值为4请仿照上面的解答过程,求下列各式的最小值.(1)x2﹣6x﹣3;(2)2x2+8x+11.【分析】多项式配方后,根据完全平方式恒大于等于0,即可求出最小值.【解答】解:(1)x2﹣6x﹣3=x2﹣6x+9﹣9﹣3=(x﹣3)2﹣12≥﹣12,∵(x﹣3)2≥0即(x﹣3)2的最小值为0,∴x2﹣6x﹣3的最小值为﹣12;(2)2x2+8x+11=2(x2+4x+4﹣4)+11=2(x+2)2+3,∵2(x+2)2≥0,∴2(x+2)2+3≥3,∴2x2+8x+11的最小值为324.证明:如果两个三角形有两边和其中一边上的高分别对应相等,那么这两个三角形全等.【分析】由HL证明Rt△ABH≌Rt△DEK得∠B=∠E,再用边角边证明△ABC≌△DEF.【解答】已知:如图所示,在△ABC和△DEF中,AB=DE,BC=EF,AH⊥BC,DK⊥EF,且AH=DK.求证:△ABC≌△DEF,证明:∵AH⊥BC,DK⊥EF,∴∠AHB=∠DKE=90°,在Rt△ABH和Rt△DEK中,,∴Rt△ABH≌Rt△DEK(HL),∠B=∠E,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS)25.甘蔗富含大量铁、钙、锌等人体必需的微量元素,素有“补血果”的美称,是冬季热销的水果之一,为此,某水果商家12月份第一次用600元购进云南甘蔗若干千克,销售完后,他第二次又用600元购进该甘蔗,但这次每千克的进价比第一次的进价提高了20%,所购进甘蔗的数量比第一次少了25千克.(1)求该商家第一次购买云南甘蔗的进价是每千克多少元?(2)假没商家两次购进的云南甘蔗按同一价格销售,要使销售后获利不低于1000元,则每千克的售价至少为多少元?【分析】(1)设该商家第一次购买云南甘蔗的进价是每千克x元,根据题意列出方程即可求出答案;(2)设每千克的售价为y元,根据题意列出不等式即可求出答案.【解答】解:(1)设该商家第一次购买云南甘蔗的进价是每千克x元,根据题意可知:=﹣25,x=4,经检验,x=4是原方程的解,答:该商家第一次购买云南甘蔗的进价是每千克4元;(2)设每千克的售价为y元,第一销售了=150千克,第二次销售了125千克,根据题意可知:150(y﹣4)+125(y﹣4.8)≥1000,解得:y≥8,答:每千克的售价至少为8元.26.如图1,在△ABC中,∠C=90°,延长CA至点D,使AD=AB.设F为线段AB上一点,连接DF,以DF为斜边作等腰Rt△DEF,且使AE⊥AB.(1)求证:AE=AF+BC;(2)当点F为BA延长线上一点,而其余条件保持不变,如图2所示,试探究AE、AF、BC之间的数量关系,并说明理由.【分析】(1)过D作DM⊥AE于M,在△DEM中,由余角的定义得到∠DEM+∠EDM=90°,由于∠DEM+∠AEF=90°,推出∠AEF=∠EDM证得△DEM≌△EFA,根据全等三角形的性质得到AF=EM,根据三角形的内角和和余角的定义得到∠EAD=∠B,推出△DAM≌△ABC,根据全等三角形的性质得到BC=AM即可得到结论;(2)如图2,过D作DM⊥AE交AE的延长线于M,根据余角的定义和三角形的内角和得到∠EAD=∠B,证得△ADM≌△BAC,由全等三角形的性质得到BC=AM,由于EF=DE,∠DEF=90°,推出∠AEF=∠MDE,证得△MED≌△AFE,根据全等三角形的性质得到ME=AF,即可得到结论.【解答】(1)证明:如图1,过D作DM⊥AE于M,在△DEM中,∠DEM+∠EDM=90°,∵∠DEM+∠AEF=90°,∴∠AEF=∠EDM,∵DE=FE,在△DEM与△EFA中,,∴△DEM≌△EFA(AAS),∴AF=EM,∵∠BAC+∠B=90°,∵∠EAD+∠EAB+∠BAC=180°,∴∠EAD+∠BAC=90°,∴∠EAD=∠B,在△DAM与△ABC中,,∴△DAM≌△ABC(AAS),∴BC=AM,∴AE=EM+AM=AF+BC;(2)解:AE+AF=BC.理由如下:如图2,过D作DM⊥AE交AE的延长线于M,∵∠C=90°,∴∠BAC+∠B=90°,∵∠EAD+∠MAB+∠BAC=180°,∠MAB=90°,∴∠EAD+∠BAC=90°,∠EAD=∠B,在△ADM与△BAC中,,∴△ADM≌△BAC(AAS),∴BC=AM,∵EF=DE,∠DEF=90°,∵∠MED+∠DEF+∠AEF=180°,∴∠MED+∠AEF=90°,∵∠MED+∠MDE=90°,∴∠AEF=∠MDE,在△MED与△AFE中,,∴△MED≌△AFE(AAS),∴ME=AF,∴AE+AF=AE+ME=AM=BC,即AE+AF=BC.。
人教版2018-2019学年八年级(上册)期末数学试卷有答案2018-201年八年级(上)期末数学试卷一、选择题(共14小题,每小题3分,满分42分)1.要使分式有意义,则x的取值应满足()A。
x≠2 B。
x≠-1 C。
x=2 D。
x=-12.若三角形的三边长分别为3,4,x-1,则x的取值范围是()B。
2<x<8 A。
<x<8 C。
<x<6 D。
2<x<63.分式可变形为()A。
B。
- C。
D。
-4.下列代数运算正确的是()C。
(x+1)2=x2+1 A。
(x3)2=x5 B。
(2x)2=2x2 D。
x3·x2=x55.如图,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E的大小为()C。
90° A。
70° B。
80° D。
100°6.把多项式(m+1)(m-1)+(m-1)提取公因式(m-1)后,余下的部分是()A。
m+1 B。
2m C。
2 D。
m+27.化简结果正确的是()D。
b2-a2 A。
ab B。
-ab C。
a2-b28.如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a>2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为()D。
4a2-a-2 A。
a2+4 B。
2a2+4a C。
3a2-4a-49.如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠XXX;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()B。
2组 A。
1组 C。
3组 D。
4组10.已知a+b=2,则a2-b2+4b的值是()D。
6 A。
2 B。
3 C。
411.如图,在平面直角坐标系中,点P(-1,2)关于直线x=1的对称点的坐标为()C。
(3,2) A。
八年级数学试题(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡...上,不得在试卷上直接作答; 2.作答前认真阅读答题卡...上的注意事项; 3.作图(包括作辅助线),请一律用黑色..签字笔完成; 4.考试结束,由监考人员将试题和答题卡...一并收回. 一、选择题:(每小题4分,共48分)在每个小题的下面,都给出了代号为A ,B ,C ,D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑. 1.下列图标中,是轴对称图形的是A .B .C .D .2. 若x =1时,下列分式的值为0的是 A.11+x B . x x 1- C.1+x x D. 112-x3. 木工师傅准备钉一个三角形木架,已有两根长为2和5的木棒,木工师傅应该选择如下哪根木棒A.2B.3C. 6D. 74. 把分式(00)xx y x y≠≠+,中的分子、分母的x y ,同时扩大倍,那么分式的值 A. 扩大2倍 B. 缩小2倍 C. 改变原来的14D. 不改变5. 下列等式成立的是A .32396a b a b =() B .0.000028 2.810=⨯﹣4C .22434x x x +=D .22()()=a b a b b a +----6. 一个等腰三角形的两边长分别为2和3,则它的周长为A .7B .8C .7或8D .97. 如果2(1)(2)x x x px q -+=++,那么p ,q 的值为A. 1p =,2q =-B. 1p =-,2q =-C. 1p =,2q =D. 1p =-,2q = 8. 如图,将一张含有30°角的三角形纸片的 两个顶点叠放在矩形的两条对边上,若∠2=46°, 则∠1的大小为A .14°B .16°C .90°﹣αD .α﹣44°9. 如图,每个图形都是由同样大小的正方形按照一定的规律组成,其中第①个图形面积为2,第②个图形的面积为6,第③个图形的面积为12,…,那么第⑧个图形面积为A .42B .56C .72D .9010.如图,在△ABC 中,AB =AC ,△ADE 的顶点D ,E 分别在BC ,AC 上,且∠DAE =90°,AD =AE .若∠C +∠BAC =155°,则∠EDC 的度数为A .20°B .20.5°C .21°D .22°第10题图第8题图第9题图11. 在4×4的正方形网格中,网格线的交点成为 格点,如图,A 、B 分别在格点处,若C 也是图 中的格点,且使得 为等腰三角形,则符合 条件的点C 有( )个A. 2个B. 3个C.4个D. 5个12. 如果关于x 的不等式2()42a x x x -+≤⎧⎨>-⎩的解集为2x >-,且关于x 的分式方程2333a xx x-+=--有正整数解,则所有符合条件的整数a 的和是 A .0 B .-9 C .-8 D .-7二、填空题:(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上。
1.在平面直角坐标系中,点P(3,1)所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.下列各数中,即大于 2 又小于 3 的数是()A .2 B.3 C.4 D .53.在图 1 右侧的四个滑雪人中,不能由图 1 滑雪人经过旋转或平移得到的是()4.在趣味运动会“定点投篮”项目中,我校七年级八个班的投篮成绩(单位:个)分别为:24,20,19,20,22,23,20,22.则这组数据中的众数和中位数分别是()A.22个、20 个B.22个、21个C.20个、21个D.20个、22个5.某洗衣机在洗涤衣服时经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水),在这三个过程中洗衣机内水量y (升)与从注水开始所经历的时间x(分)之间的函数关系对应的图象大致为()x 的不等式(a 1)x a 3和2x 4的解集相同,则a 的值为(6.已知一次函数y ax 的图象经过点(0 ,3 ),且函数y 的值随x的增大而减小,则a的值为(A.7.已知2a,B.2c 均为实数,若a b,c 0 .A.22 B.a abbC.4 D列结论不一定正确的是(abC. 2 2ccD.cacb8.关于A.B.0 C.1 .29.已知x 3 和x 2是y 2 y 1 元一次方程ax by 3 0 的两个解,则一次函数y ax (b a 0)的解析式为(A .y 2x 3 B.2 39x+77 C.y 9x+3 D.93x77C.D.的一次函数 y min 2x,x 1 可以表示为( )12.如图,一个质点在第一象限及 x 轴、 y 轴上运动,在第一秒钟,它从原点 (0,0)运动到 (0,1) ,然后接着按图中箭头所示方向运动,即 (0,0) (0,1) (1,1) (1,0) ⋯ ,且每秒移动一个单位,那么第80 秒时质点所在位置的坐标是( ) A .( 0,9)B .( 9,0)C .( 0,8)、填空题:(本大题 6 个小题,每小题 4 分,共 24 分)在每个小题中,请将每小题的正确答案填在下 (12 题图)列方框内. 题号131415161718答案13 . 8 的立方根是_______ 14.在平面直角坐标系中,已知点 A (3, 2), AC ⊥x 轴,垂足为 C ,则C 点坐标为 ________ 15.若 1、2、 x 、5、7五个数的平均数为 4,则 x 的值是 ___________ . 16.当实数 x 的取值范围使得 x 3 有意义时,在函数 y 2x 1 中y 的取值范围是 ______ 17.如图,已知直线 y kx b (k 0)交坐标轴分别于点 A ( 3,0),B(0,4)两点,则关于 x 的一元一次不等式 kx b 0(k 0) 的解集为 _____________18.如图, O 是等边△ ABC 中一点, OA=2,OB=3,∠ AOB=150°,点 B 顺时针旋转 60°至 △CO' B ,下列说法中:10 .如图,把 Rt △ ABC 放在平面直角坐标系内,其中 CAB=90 ,BC=5,点A 、B 的坐标分别为(1, 0),( 4,0),将 △ABC 沿 x 轴向右平移,扫过的面积为()A .8 2B . 12C .16当点 D .1811 .设 min x ,y 表示 x , y 两个数中的最小值,例如 min 1, 2 =1 , min 7,5 =5 ,则关于A . y 2xB . y x+1C .2x(x 1) x 1(x 1)2x(x 1)D .yx 1(x 1)y321⋯0 1 3 xD .( 8,0)4C 落在直线 y=2x 4 上时,线段 C18 题图)S △ABO S △BOC 9 33;③ S △AOC S △AOB 5 3;④以线段 O A 、OB 、OC 为边构成的三角形的各内角大小分别为90°,44355°,35°;⑤ △AOB 旋转到 △CO ' B 的过程中,边 AO 所扫过区域的面积是.说法正确的序号有.2 三、解答题 :(本大题 3个小题,其中 19题 12分、 20题 6分、21题 8分、共 26 分)解答时每小题必须给出必要的演算 过程或推理步骤.19.计算:13( x y 1) y 9(1) 3 ( 3 27 1)016 (1) 1 (2)解方程组x y3223x 2 03)解不等式组: 3x 1 2x 1 ,并把解集在数轴上表示出来.2320.若 x , y 为实数,且满足0 .求 4x 2 4xy y 2 的值 .21.作图(不要求写作法)如图,在平面直角坐标系中,△ ABC的三个顶点的坐标别为A( 2,4),B( 4,2),C (1)将△ ABC先向右平移 3 个单位,再向下平移 4 个单位,则得到△ A1B1C1 ,请直接写点B1的坐标 ______ ;若把△ A1B1C1 看成是由△ ABC经过一次平移得到的(即从A 到A1方向平移),请直接写出这一次平移的距离.2)在正方形网格中作出△ ABC 绕点O 顺时针旋转90°后得到的△A2 B2C2 .四、解答题:(本大题5个小题,其中22题8分、23题10分、24题10分、25题12分、26题12分,共52分)解答时每小题必须给出必要的演算过程或推理步骤.22.为参加重庆一中教师元旦晚会演出,初二年级老师欲租用男、女演出服装若干套以供跳舞用.已知5套男装和8 套女装租用一天共需租金510元,6 套男装和10套女装租用一天共需630 元.(1)租用男装、女装一天的价格分别是多少?(2)该节目原计划由6名男教师和17名女教师完成,后因节目需要,将其中3名女教师由扮演舞者角色转向歌手角色,歌手服装每套租用一天的价格比已选定女装价格贵20%,求在演出当天租用服装实际需支付租金多少?23.如图:在△ ABC 中, BE 、 CF 分别是 AC 、AB 两边上的高,在 BE 上截取 BD=AC ,在 CF 的延长线上截取 CG=AB ,连结 AD 、 AG .求证: (1)AD=AG ;(2)AD ⊥AG .24.古巴国家芭蕾舞团作为世界芭蕾舞团之一,将于 2019 年携亚洲巡演版特别纪念版《天鹅湖》首次到访山城,届时,重庆市民将领略“世界第一黑天鹅”的迷人风采.某票务网站抢得商机拿到了亲子套票和 较高,该票务网站准备用不超过 105000元购进这两种票共 150张票,其中亲子套票每张订购价 550元, VIP 专享票每张订购价 800 元,亲子套票每张票价 600 元,VIP 专享票每张票价 880 元,预计销售额不低于 114640 元.设亲子套票购进 x 张 ,票务网站的总利润为 y (元).( 1)请你设计出该票务网站的订购方案有哪几种?( 2)求出总利润为 y (元)与订购亲子套票 x (张)的函数关系式,并利用函数关系式说明哪种方案的利润最大,最大利润是多少元?VIP 专享票的销售权.但由于票价25.如图,直线y 2x+m(m 0)与x轴交于点A(2,0),直线y x n(n 0)与x轴、y轴分别交于B、C两点,并与直线y 2x+m(m 0)相交于点D ,若AB 4 .(1)求点D 的坐标;(2)求出四边形AOCD 的面积;(3)若E为x轴上一点,且△ACE为等腰三角形,求点E的坐标.26.阅读以下材料:在平面直角坐标系中,x 1表示一条直线;以二元一次方程 2x y 2 0 的所有解为坐标的点组成的图形就是一次函数 y 2x 2 的图象,它也是一条直线.不仅如此,在平面直角坐标系中,不等式 x 1表示一个平面区 域,即直线 x 1以及它左侧的部分,如图①;不等式 y 2x 2 也表示一个平面区域,即直线 y 2x 2 以及它下方的 部分,如图②.而 yx 既不表示一条直线,也不表示一个区域,它表示一条折线,如图 ③.x32)如果 x ,y 满足不等式组 x y 0 ,请在图⑤中用阴影表示出点( x ,y )所在的平面区域,并求出阴影部分的 xy50面积 S 1;图① 根据以上材料,回答下列问题: ( 1)请直.接.写.出.图④表示的是y=2x+2yy=|x|OO xx图②图③y_________________________ 的平面区域;3)在平面直角坐标系中,若函数y=2 x 2 与y x m 的图象围成一个平面区域,请直接区域用含m 的式子表示该平面的面积S2,并写出实数m 的取值范围.yO x O x图④图⑤备用图命题:胡玉霆审题:付黎数学试卷数学试卷。
2018-2019学年八年级上学期期末考试数学试题一、选择题:(本大题共12个小题,每小题4分,共48分)1.下列各数中,是无理数的是()A.B.C.﹣2 D.0.32.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.计算(﹣xy2)2的结果是()A.2x2y4B.﹣x2y4C.x2y2D.x2y44.分式有意义,则x的取值范围是()A.x>3 B.x<3 C.x≠3 D.x≠﹣35.△ABC三边长分别为a、b、c,则下列条件不能判断△ABC是直角三角形的是()A.a=3,b=4,c=5 B.a=4,b=5,c=6C.a=6,b=8,c=10 D.a=5,b=12,c=136.下列命题是假命题的是()A.两直线平行,同位角相等B.全等三角形面积相等C.直角三角形两锐角互余D.若a+b<0,那么a<0,b<07.估计(2+)•的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间8.如果直线y=3x+b与两坐标轴围成的三角形面积等于2,则b的值是()A.±3B.3C.D.29.如图,直线y=﹣x﹣1与y=kx+b(k≠0且k,b为常数)的交点坐标为(﹣2,l),则关于x的不等式﹣x﹣1<kx+b的解集为()A.x>﹣2 B.x<﹣2 C.x>1 D.x<l10.如图,把Rt△ABC放在平面直角坐标系中,点B(1,1)、C(5,1),∠ABC=90°,AC =4.将△ABC沿y轴向下平移,当点A落在直线y=x﹣2上时,线段AC扫过的面积为()A.B.C.D.11.如图,Rt△ABC的两边OA,OB分别在x轴、y轴上,点O与原点重合,点A(﹣3,0),点B(0,3),将Rt△AOB沿x轴向右翻滚,依次得到△1,△2,△3,…,则△2020的直角顶点的坐标为()A.(673,0)B.(6057+2019,0)C.(6057+2019,)D.(673,)12.已知整数k使得关于x、y的二元一次方程组的解为正整数,且关于x的不等式组有且仅有四个整数解,则所有满足条件的k的和为()A.4 B.9 C.10 D.12二、填空题:(本大题6个小题,每小题4分,共24分)13.因式分解:5x2﹣2x=.14.+(π﹣3.14)0﹣(﹣)﹣2=.15.一次函数y=kx+b的图象经过点(0,3),且与直线y=﹣x+1平行,则该一次函数解析式为.16.若m,n为实数,且m=+8,则m+n的算术平方根为.17.甲、乙两人在同一直线道路上同起点、同方向、同时出发,分别以不同的速度匀速跑步1800米,当甲第一次超出乙300米时,甲停下来等候乙.甲、乙会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息.在整个跑步过程中,甲、乙两人之间的距离y(米)与乙出发的时间x(s)之间的关系如图所示则当甲到达终点时,乙跑了米.18.A、B、C、D、E、F六人按顺序围成一圈做游戏,每人抽一个数,已知每人按顺序抽到数字的两倍与其他五个人的平均数之差分别为9、10、13、15、23、30,则C抽到的数字是.三、解答题(本大题2个小题,每小题8分,共16分)19.解下列方程组或者不等式组(1)解方程组:(2)解不等式组:20.作图题:(不要求写作法)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣3,4),B(﹣3,1),C(﹣1,3).(1)作图:将△ABC先向右平移4个单位,再向下平移3个单位,则得到△A1B1C1,求作△A1B1C1;(2)求△BCC1面积.四、解答题:(本大题4个小题,每小题10分,共40分)21.重庆一中田径代表队在2018年重庆市青少年田径锦标赛上勇夺金牌8枚,银牌4枚,铜牌8枚,喜讯再次点燃了同学们热爱运动的热情为了解学生参与运动的情况,学校随机抽查了部分学生每日运动时间的情况,并将调查学生每日运动时间情况条形统计图学生每日运动时间情况扇形统计图.(1)被抽查的学生总数是人,并在图中补全条形统计图;(2)写出每日运动时间的中位数是小时,众数是小时;(3)求这批被调查学生平均每日运动的时间.22.如图,直线AB:y=2x+6与直线AC:y=﹣2x+2相交于点A,直线AB与x轴交于点B,直线AC与x轴交于点D,与y轴交于点C.(1)求交点A的坐标;(2)求△ABC的面积.23.为了满足学生的需求,重庆一中mama超市准备购进甲、乙两种绿色袋装食品.其中甲乙两种绿色袋装食品的进价和售价如表:已知:超市购进200袋甲种袋装食品或者购进300袋乙种袋装食品所用金额相等(1)求n的值;(2)要使购进的甲、乙两种绿色袋装食品共1200袋的总利润(利润=售价﹣进价)不少于6400元,且不超过6420元,问该mama超市有哪几种进货方案?要获得最大利润该如何进货?(请写出具体方案)24.在△ABC中,AB=AC,点D为BC的中点,连接AD.(1)如图1,H为线段CB延长线上的一点,连接AH,若∠ACB=60°,∠AHC=45°,AH =2,求HC;(2)如图2,点E为AD上任意一点,过点E作EF⊥AD交AC于点F,连接BF,取BF中点M,连接MD和ME,求证:ME=MD.五、解答题:(本大题2个小题,25题10分,26题12分,共22分)25.阅读下列材料:对于一个任意四位正整数,若其千位数字与百位数字组成的两位数是它的十位数字与个位数字组成的两位数的两倍,则称这样的四位正整数为“双倍数”,如6231,其千位数字与百位数字组成的两位数为62,其十位数字与个位数字组成的两位数是31,62是31的两倍,则称6231为“双倍数”(1)猜想任意一个“双倍数”能否被67整除,并说明理由;(2)若一个双倍数的各个数位数字分别加上1组成一个新的四位正整数,这个新的四位正整数能被7整除,求所有满足条件的“双倍数”.26.如图,平面直角坐标系中直线l1:y=x与直线l2:y=﹣x+8相交于点A,直线l2与x轴相交于点B,与y轴相交于点C,点D(﹣6,0),点F(0,6),连接DF.(1)如图1,求点A的坐标;(2)如图1,若将△ODF向x轴的正方向平移a个单位,得到△O′D′F′,点D与点B 重合时停止移动,设△O′D′F′与△OAB重叠部分的面积为S,请求出S与a的关系式,并写出a的取值范围;(3)如图2,现将△ODF向x轴的正方向平移12个单位得到△O1D1F1,直线O1F1与直线l2交于点G,再将△O1GB绕点G旋转,旋转角度为α(0°≤α≤360°),记旋转后的三角形为△O1′GB′,直线O1′G与直线l1的交点为M,直线GB′与直线l1的交点为N,是否存在△GMN为等腰三角形?若存在请直接写出MN的值;若不存在,请说明理由.参考答案与试题解析一.选择题(共12小题)1.下列各数中,是无理数的是()A.B.C.﹣2 D.0.3【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A.是无理数;B.是分数,属于有理数;C.﹣2是整数,属于有理数;D.0.3是有限小数,即分数,属于有理数;故选:A.2.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,也不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误.故选:C.3.计算(﹣xy2)2的结果是()A.2x2y4B.﹣x2y4C.x2y2D.x2y4【分析】根据积的乘方和幂的乘方运算法则计算可得.【解答】解:(﹣xy2)2=x2y4,故选:D.4.分式有意义,则x的取值范围是()A.x>3 B.x<3 C.x≠3 D.x≠﹣3【分析】本题主要考查分式有意义的条件:分母≠0,即x﹣3≠0,解得x的取值范围.【解答】解:∵x﹣3≠0,∴x≠3.故选:C.5.△ABC三边长分别为a、b、c,则下列条件不能判断△ABC是直角三角形的是()A.a=3,b=4,c=5 B.a=4,b=5,c=6C.a=6,b=8,c=10 D.a=5,b=12,c=13【分析】如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.【解答】解:A.∵32+42=52,∴△ABC是直角三角形;B.∵52+42≠62,∴△ABC不是直角三角形;C.∵62+82=102,∴△ABC是直角三角形;D.∵122+42=132,∴△ABC是直角三角形;故选:B.6.下列命题是假命题的是()A.两直线平行,同位角相等B.全等三角形面积相等C.直角三角形两锐角互余D.若a+b<0,那么a<0,b<0【分析】根据平行线的性质对A进行判断;根据全等三角形的性质对B进行判断;根据互余的定义对C进行判断;利用反例对D进行判断.【解答】解:A、两直线平行,同位角相等,所以A选项的命题为真命题;B、全等三角形面积相等,所以B选项的命题为真命题;C、直角三角形两锐角互余,所以C选项的命题为真命题;D、当a=﹣3,b=1,所以D选项的命题为假命题.故选:D.7.估计(2+)•的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间【分析】直接利用二次根式乘法运算法则化简,进而估算无理数的大小即可.【解答】解:(2+)•=2+2,∵2<2<3,∴4<2+2<5.故选:B.8.如果直线y=3x+b与两坐标轴围成的三角形面积等于2,则b的值是()A.±3B.3C.D.2【分析】设直线y=3x+b与x轴交于点A,与y轴交于点B,利用一次函数图象上点的坐标特征可得出点A,B的坐标,利用三角形的面积公式结合△AOB的面积为2,可得出关于b的一元二次方程,解之即可得出结论.【解答】解:设直线y=3x+b与x轴交于点A,与y轴交于点B.当x=0时,y=3x+b=b,∴点B的坐标为(0,b);当y=0时,3x+b=0,解得:x=﹣.∵S△AOB=OA•OB=2,∴×|b|×|﹣|=2,∴b=±2.故选:C.9.如图,直线y=﹣x﹣1与y=kx+b(k≠0且k,b为常数)的交点坐标为(﹣2,l),则关于x的不等式﹣x﹣1<kx+b的解集为()A.x>﹣2 B.x<﹣2 C.x>1 D.x<l【分析】根据题意知,直线y=kx+b位于直线y=﹣x﹣1上方的部分符合题意.【解答】解:如图,直线y=﹣x﹣1与y=kx+b(k≠0且k,b为常数)的交点坐标为C (﹣2,l),所以关于x的不等式﹣x﹣1<kx+b的解集为x>﹣2.故选:A.10.如图,把Rt△ABC放在平面直角坐标系中,点B(1,1)、C(5,1),∠ABC=90°,AC =4.将△ABC沿y轴向下平移,当点A落在直线y=x﹣2上时,线段AC扫过的面积为()A.B.C.D.【分析】根据题意,可以求得点A的坐标,然后根据平移的特点,可知线段AC扫过的图形是平行四边形,再根据点A落在直线y=x﹣2上时,从而可以求得线段AC平移的距离,进而求得线段AC扫过的面积.【解答】解:∵点B(1,1)、C(5,1),∠ABC=90°,AC=4,∴BC=4,∴AB==4,∴点A的坐标为(1,5),将x=1代入y=x﹣2得,y=﹣,∴线段AC扫过的面积为:|5﹣(﹣)|×(5﹣1)==,故选:D.11.如图,Rt△ABC的两边OA,OB分别在x轴、y轴上,点O与原点重合,点A(﹣3,0),点B(0,3),将Rt△AOB沿x轴向右翻滚,依次得到△1,△2,△3,…,则△2020的直角顶点的坐标为()A.(673,0)B.(6057+2019,0)C.(6057+2019,)D.(673,)【分析】在翻滚的过程中,每翻滚三次就重复出现原来的形状,可将这样的翻滚称为三循环,那么2020÷3=673.…1,所以△2020的形状如同△4,即直角顶点的纵坐标为0,再求出△ABC的周长的673倍即为横坐标.【解答】解:∵2020÷3=673. (1)∴△2020的形状如同△4∴△2020的直角顶点的纵坐标为0而OB1+B1A2+A2O2=3+6+3=9+3∴△2020的直角顶点的横坐标为(9+3)×673=6057+2019故选:B.12.已知整数k使得关于x、y的二元一次方程组的解为正整数,且关于x的不等式组有且仅有四个整数解,则所有满足条件的k的和为()A.4 B.9 C.10 D.12【分析】解方程组得,得到k=4,6;解不等式组得到k=4,5,6,于是得到所有满足条件的k的和=4+6=10.【解答】解:解方程组得,∵方程组的解为正整数,∴,∴k=4,6;解不等式组得,,∵不等式组有且仅有四个整数解,∴1<≤2,∴3<k≤6,∴k=4,5,6,∴所有满足条件的k的和=4+6=10,故选:C.二.填空题(共6小题)13.因式分解:5x2﹣2x=x(5x﹣2).【分析】提取公因式x即可得.【解答】解:5x2﹣2x=x(5x﹣2),故答案为:x(5x﹣2).14.+(π﹣3.14)0﹣(﹣)﹣2=﹣10 .【分析】直接利用零指数幂的性质以及负指数幂的性质、立方根的性质分别化简得出答案.【解答】解:原式=﹣2+1﹣9=﹣10.故答案为:﹣10.15.一次函数y=kx+b的图象经过点(0,3),且与直线y=﹣x+1平行,则该一次函数解析式为y=﹣x+3 .【分析】设一次函数解析式为y=kx+b,先把(0,3)代入得b=3,再利用两直线平行的问题得到k=﹣,即可得到一次函数解析式;【解答】解:设一次函数解析式为y=kx+b,把(0,3)代入得b=3,∵直线y=kx+b与直线y=﹣x+1平行,∴k=﹣,∴一次函数解析式为y=﹣x+3.故答案为y=﹣x+3.16.若m,n为实数,且m=+8,则m+n的算术平方根为 3 .【分析】根据二次根式的被开方数是非负数求得n=1,继而求得m=8,然后求m+n的算术平方根.【解答】解:依题意得:1﹣n≥0且n﹣1≥0,解得n=1,所以m=8,所以m+n的算术平方根为:==3.故答案是:3.17.甲、乙两人在同一直线道路上同起点、同方向、同时出发,分别以不同的速度匀速跑步1800米,当甲第一次超出乙300米时,甲停下来等候乙.甲、乙会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息.在整个跑步过程中,甲、乙两人之间的距离y(米)与乙出发的时间x(s)之间的关系如图所示则当甲到达终点时,乙跑了1380 米.【分析】先由图象和已知条件求出甲乙的速度,进而求出两人相距300米时甲跑的路程以及离终点的距离和从会和到终点甲所用的时间,从而求出乙跑420秒的路程,最后求出乙跑的总路程.【解答】解:由题意得乙的速度:1800÷1200=1.5(米/秒),甲的速度:1.5+300÷300=2.5 (米/秒),∴两人相距300m时,甲跑的路程是 2.5×300=750(米),此时离终点距离为1800﹣750=1050(米),∴从会合到终点甲的用时是 1050÷2.5=420(秒)乙从会合点跑420秒路程是 420×1.5=630(米),∴当甲到终点时,乙跑的总路程是 750+630=1380(米).故答案为:1380.18.A、B、C、D、E、F六人按顺序围成一圈做游戏,每人抽一个数,已知每人按顺序抽到数字的两倍与其他五个人的平均数之差分别为9、10、13、15、23、30,则C抽到的数字是15 .【分析】设A、B、C、D、E、F六人抽到的数分别为:a,b,c,d,e,f,由题意列出方程组,可求c的值.【解答】解:设A、B、C、D、E、F六人抽到的数分别为:a,b,c,d,e,f,由题意可得解得:c=15故答案为:15三.解答题(共8小题)19.解下列方程组或者不等式组(1)解方程组:(2)解不等式组:【分析】(1)利用加减消元法求解可得;(2)分别求出各不等式的解集,再求出其公共解集即可.【解答】解:(1)整理得①﹣②得7y=﹣1,解得y=﹣,把y=﹣代入②得x+=2,解得x=,所以方程组的解为;(2)解不等式①得,x≤4;解不等式②得x>﹣5,不等式组的解集为﹣5<x≤4.20.作图题:(不要求写作法)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣3,4),B(﹣3,1),C(﹣1,3).(1)作图:将△ABC先向右平移4个单位,再向下平移3个单位,则得到△A1B1C1,求作△A1B1C1;(2)求△BCC1面积.【分析】(1)依据平移动方向和距离,即可得到△A1B1C1;(2)利用割补法进行计算,即可得到△BCC1面积.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)如图,△BCC1面积为:6×3﹣×1×6﹣×2×2﹣×3×4=18﹣3﹣2﹣6=7.21.重庆一中田径代表队在2018年重庆市青少年田径锦标赛上勇夺金牌8枚,银牌4枚,铜牌8枚,喜讯再次点燃了同学们热爱运动的热情为了解学生参与运动的情况,学校随机抽查了部分学生每日运动时间的情况,并将调查学生每日运动时间情况条形统计图学生每日运动时间情况扇形统计图.(1)被抽查的学生总数是100 人,并在图中补全条形统计图;(2)写出每日运动时间的中位数是40 小时,众数是40 小时;(3)求这批被调查学生平均每日运动的时间.【分析】(1)根据题意列式计算,补全条形统计图即可;(2)根据条形统计图中的数据即可得到结论;(3)根据平均数的计算公式即可得到结论.【解答】解:(1)被抽查的学生总数是10÷10%=100人,每日运动时间为1.2小时的学生人数为100×20%=20人,补全条形统计图如图所示;故答案为:100;(2)每日运动时间的中位数是40小时,众数是40小时;故答案为:40,40;(3)这批被调查学生平均每日运动的时间=×(0.2×10+0.5×15+1×40+1.2×20+1.6×10+2×5)=0.995小时.22.如图,直线AB:y=2x+6与直线AC:y=﹣2x+2相交于点A,直线AB与x轴交于点B,直线AC与x轴交于点D,与y轴交于点C.(1)求交点A的坐标;(2)求△ABC的面积.【分析】(1)联立直线AB,AC的解析式成方程组,通过解方程组即可求出点A的坐标;(2)设直线AB与y轴交于点E,利用一次函数图象上点的坐标特征可求出点B,C,E的坐标,利用三角形的面积公式结合S△ABC=S△BOE﹣S△BOC﹣S△ACE,即可求出△ABC的面积.【解答】解:(1)联立直线AB,AC的解析式成方程组,得:,解得:,∴交点A的坐标为(﹣1,4).(2)设直线AB与y轴交于点E,如图所示.当x=0时,y=2x+6=6,y=﹣2x+2=2,∴点E的坐标为(0,6),点C的坐标为(0,2),∴OE=6,OC=2,CE=4.当y=0时,2x+6=0,解得:x=﹣3,∴点B的坐标为(﹣3,0),OB=3.∴S△ABC=S△BOE﹣S△BOC﹣S△ACE,=×3×6﹣×3×2﹣×4×1,=4.23.为了满足学生的需求,重庆一中mama超市准备购进甲、乙两种绿色袋装食品.其中甲乙两种绿色袋装食品的进价和售价如表:已知:超市购进200袋甲种袋装食品或者购进300袋乙种袋装食品所用金额相等(1)求n的值;(2)要使购进的甲、乙两种绿色袋装食品共1200袋的总利润(利润=售价﹣进价)不少于6400元,且不超过6420元,问该mama超市有哪几种进货方案?要获得最大利润该如何进货?(请写出具体方案)【分析】(1)根据“购进200袋甲种袋装食品或者购进300袋乙种袋装食品所用金额相等”列出方程并解答;(2)设购进甲种绿色袋装食品x袋,表示出乙种绿色袋装食品(1200﹣x)袋,然后根据总利润列出一元一次不等式组解答;【解答】解:(1)依题意得:200(n+2)=300(n﹣2),解得:n=10,(2)设购进甲种绿色袋装食品x袋,表示出乙种绿色袋装食品(1200﹣x)袋,根据题意得,,解得:≤x≤270,∵x是正整数,270﹣266.7+1=4,∴共有4种方案;∵甲的利润大于乙的利润,要获得最大利润该应该进货时甲最大才行,即甲进货270袋,乙进货1200﹣270=930袋.24.在△ABC中,AB=AC,点D为BC的中点,连接AD.(1)如图1,H为线段CB延长线上的一点,连接AH,若∠ACB=60°,∠AHC=45°,AH=2,求HC;(2)如图2,点E为AD上任意一点,过点E作EF⊥AD交AC于点F,连接BF,取BF中点M,连接MD和ME,求证:ME=MD.【分析】(1)证明△ABC是等边三角形,得出BC=AB,∠ABC=∠BAC=60°,AD⊥BC,CD =BD=BC,∠BAD=30°,证明△ADH是等腰直角三角形,得出AD=DH=AH=2,由含30°角的直角三角形的性质得出AD=BD=2,求出CD=BD=,即可得出HC=DH+CD =2+;(2)延长FE、DM交于点G,证出∠DEG=90°,EF∥BC,由平行线的性质得出∠G=∠BDM,证明△BDM≌△FGM(AAS),得出DM=GM,再由直角三角形斜边上的中线性质即可得出结论.【解答】(1)解:∵AB=AC,∠ACB=60°,∴△ABC是等边三角形,∴BC=AB,∠ABC=∠BAC=60°,∵点D为BC的中点,∴AD⊥BC,CD=BD=BC,∠BAD=30°,∵∠AHC=45°,AH=2,∴△ADH是等腰直角三角形,∴AD=DH=AH=2,∵∠BAD=30°,∴AD=BD=2,∴CD=BD=,∴HC=DH+CD=2+;(2)证明:延长FE、DM交于点G,如图2所示:∵EF⊥AD,AD⊥BC,∴∠DEG=90°,EF∥BC,∴∠G=∠BDM,∵M为BF的中点,∴BM=FM,在△BDM和△FGM中,,∴△BDM≌△FGM(AAS),∴DM=GM,∴EM=DG=MD.25.阅读下列材料:对于一个任意四位正整数,若其千位数字与百位数字组成的两位数是它的十位数字与个位数字组成的两位数的两倍,则称这样的四位正整数为“双倍数”,如6231,其千位数字与百位数字组成的两位数为62,其十位数字与个位数字组成的两位数是31,62是31的两倍,则称6231为“双倍数”(1)猜想任意一个“双倍数”能否被67整除,并说明理由;(2)若一个双倍数的各个数位数字分别加上1组成一个新的四位正整数,这个新的四位正整数能被7整除,求所有满足条件的“双倍数”.【分析】(1)根据已知条件,将数字表示成67的倍数即可;(2)根据已知条件,表示出已知数字,即可求出已知数的满足条件,写出已知数即可.【解答】解:设正整数m=D4D3D2D1,其中D4、D3、D2、D1表示各个位置上的数字,且为0到9之间的整数(D4≠0),根据“双倍数”的定义,有10D4+D3=2(10D2+D1).(1)假设m=D4D3D2D1是“双倍数”,则有m=1000D4+100D3+10D2+D1=100(10D4+D3)+10D2+D1,根据“双倍数”定义,有m=100×2(10D2+D1)+10D2+D1=2010D2+201D1=201(10D2+D1),则==3(10D2+D1)=30D2+3D1为整数,由此可见,任意一个“双倍数”都能被67整除;(2)由题意,新组成的四位正整数可表示为:1000(D4+1)+100(D3+1)+10(D2+1)+D1+1=201(10D2+D1)+1111因为=N,也就是2010D2+201D1+1111可以整除7,而1111÷7=158……5,所以需要“双倍数”(2010D2+201D1)÷7=n……2才可以整除7故所有满足这样条件的“双倍数”(用排除法)有:2613,502526.如图,平面直角坐标系中直线l1:y=x与直线l2:y=﹣x+8相交于点A,直线l2与x轴相交于点B,与y轴相交于点C,点D(﹣6,0),点F(0,6),连接DF.(1)如图1,求点A的坐标;(2)如图1,若将△ODF向x轴的正方向平移a个单位,得到△O′D′F′,点D与点B重合时停止移动,设△O′D′F′与△OAB重叠部分的面积为S,请求出S与a的关系式,并写出a的取值范围;(3)如图2,现将△ODF向x轴的正方向平移12个单位得到△O1D1F1,直线O1F1与直线l2交于点G,再将△O1GB绕点G旋转,旋转角度为α(0°≤α≤360°),记旋转后的三角形为△O1′GB′,直线O1′G与直线l1的交点为M,直线GB′与直线l1的交点为N,是否存在△GMN为等腰三角形?若存在请直接写出MN的值;若不存在,请说明理由.【分析】(1)由两直线解析式组成方程组,解方程组即可得到交点A的坐标;(2)△DOF向右水平移动时,与△AOB重叠的图形在0<a≤6时为直角三角形,用a表示出两直角边即可求出面积的函数关系式,当6<a<24时,重叠部分为四边形,S四边形SHO′D′=S﹣S△F′SH.△F′O′D′(3)存在,在△GO1B绕点G逆时针旋转过程中,等腰△MNG只有两种情况:①∠MGN=60°,②∠MGN=120°;分类进行计算.【解答】解:(1)由题意得,解得,∴A(6,).(2)在y=﹣x+8中,令y=0,得﹣x+8=0,∴x=24∴B(24,0),令x=0,y=,∴C(0,),在Rt△BOC中,tan∠BCO===,∴∠BCO=60°,在Rt△DOF中,tan∠DFO===,∴∠DFO=30°.分两种情况:①当0≤a≤6时,如图1,F′O′交直线l1于点E,则O′(a,0),∴y=a,∴E(a,a),即EO′=a,OO′=a,∴S=OO′•EO′==,②当6<a≤30时,如图2,OO′=a,∴H(a,)F′H=﹣()=∵F′O′∥OC,∴∠BHO′=∠BCO=60°∵∠D′F′O′=∠DFO=30°,∴∠F′SH=90°,∴SH=F′H=(),F′S=SH=(),∴S=S△F′O′D′﹣S△F′HS=F′O′•D′O′﹣F′S•SH=×6×6﹣×()×()=∴.(3)存在,MN=8或24.∵F1O1∥y轴,∴∠BGO1=∠BCO=60°,∴△GMN为等腰三角形时,∠MGN=60°或120°,分两种情况:①当∠MGN=60°时,△GMN必为等边三角形,如图3,此时旋转角α=30°或90°或270°,∵OO1=12,∴BO1=12,∴BG===8,AB=OB cos∠OBC=24cos30°=12,∴AG=AB﹣BG=12﹣8=4,∴MN=NG===8,②当∠MGN=120°时,△GMN为等腰三角形,∴∠MNG=∠NMG=30°,如图4,此时旋转角α=120°或300°,MN=2AN===24.。
2018-2019学年八年级(上)期末数学试卷一、选择题(本题共有10小题,每小题3分,共30分,每小题有四个选项,其中有几个选项符合题意,选错、不选、多选或涂改不清的均不给分)1.在下列四个轴对称图形中,对称轴的条数最多的是( )A.等腰三角形B.等边三角形C.圆D.正方形【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、有1条对称轴;B、有3条对称轴;C、有无数条对称轴;D、有4条对称轴.故选C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.下面有4个汽车标志图案,其中不是轴对称图形的是( )A. B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、是轴对称图形,故错误;D、不是轴对称图形,故正确.故选D.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.若分式的值为零,则x的值为( )A.±1 B.﹣1 C.1 D.不存在【考点】分式的值为零的条件.【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得,|x|﹣1=0,且x﹣1≠0,解得x=﹣1.故选:B.【点评】本题考查了分式为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.下列运算错误的是( )A.x2•x4=x6B.(﹣b)2•(﹣b)4=﹣b6C.x•x3•x5=x9D.(a+1)2(a+1)3=(a+1)5【考点】同底数幂的乘法.【分析】根据同底数幂的乘法,底数不变指数相加,可得答案.【解答】解:A、底数不变指数相加,故A正确;B、底数不变指数相加,故B错误;C、底数不变指数相加,故C正确;D、底数不变指数相加,故D正确;故选:B.【点评】本题考查了同底数幂的乘法,同底数幂的乘法底数不变指数相加是解题关键.5.下列各因式分解中,结论正确的是( )A.x2﹣5x﹣6=(x﹣2)(x﹣3)B.x2+x﹣6=(x+2)(x﹣3)C.ax+ay+1=a(x+y)+1 D.ma2b+mab2+ab=ab(ma+mb+1)【考点】因式分解-十字相乘法等;因式分解-提公因式法.【专题】计算题.【分析】原式各项分解因式得到结果,即可做出判断.【解答】解:A、原式=(x﹣6)(x+1),错误;B、原式=(x﹣2)(x+3),错误;C、原式不能分解,错误;D、原式=ab(ma+mb+1),正确,故选D【点评】此题考查了因式分解﹣十字相乘法与提公因式法,熟练掌握因式分解的方法是解本题的关键.6.如图,在△ABC中,若AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数是( )A.45°B.40°C.35°D.30°【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】首先利用线段垂直平分线的性质推出∠DAC=∠DCA,根据等腰三角形的性质可求出∠ABC=∠ACB,易求∠BCD的度数.【解答】解:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°.∵DE垂直平分AC,∴AD=CD,∴∠A=∠ACD=30°∴∠BCD=∠ACB﹣∠ACD=45°.故选A.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.7.到三角形三条边的距离都相等的点是这个三角形的( )A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点 D.三条角平分线的交点【考点】角平分线的性质.【专题】几何图形问题.【分析】因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点.【解答】解:∵角的平分线上的点到角的两边的距离相等,∴到三角形的三边的距离相等的点是三条角平分线的交点.故选:D.【点评】该题考查的是角平分线的性质,因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点,易错选项为C.8.若等腰三角形的两条边的长分别为3cm和7cm,则它的周长是( )A.10cm B.13cm C.17cm D.13cm或17cm【考点】等腰三角形的性质;三角形三边关系.【分析】等腰三角形两边的长为3cm和7cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【解答】解:①当腰是3cm,底边是7cm时:不满足三角形的三边关系,因此舍去.②当底边是3cm,腰长是7cm时,能构成三角形,则其周长=3+7+7=17(cm).故选C.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.9.如图,若AB=AC,BE=CF,CF⊥AB,BE⊥AC,则图中全等的三角形共有( )对.A.5对B.4对C.3对D.2对【考点】全等三角形的判定.【分析】利用全等三角形的判定方法,利用HL、ASA进而判断即可.【解答】解:由题意可得出:△ABE≌△ACF(HL),△ADF≌△ADE(HL),△ABD≌△ACD (SAS),△BFD≌△CED(ASA).故选:B.【点评】本题考查三角形全等的判定方法及等腰三角形的性质;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.如图是屋架设计图的一部分,点D是斜梁AB的AB的中点,立柱BC、DE垂直于横梁AF.已知AB=12m,∠ADE=60°,则DE等于( )A.3m B.2m C.1m D.4m【考点】含30度角的直角三角形.【专题】应用题.【分析】由于BC、DE垂直于横梁AC,可得BC∥DE,而D是AB中点,可知AB=BD,利用平行线分线段成比例定理可得AE:CE=AD:BD,从而有AE=CE,即可证DE是△ABC的中位线,可得DE=BC,在Rt△ABC中易求BC,进而可求DE.【解答】解:如右图所示,∵立柱BC、DE垂直于横梁AC,∴BC∥DE,∵D是AB中点,∴AD=BD,∴AE:CE=AD:BD,∴AE=CE,∴DE是△ABC的中位线,∴DE=BC,在Rt△ABC中,∵∠ADE=60°,∴∠A=30°,∴BC=AB=6m,∴DE=3m.故选A.【点评】本题考查了平行线分线段成比例定理、三角形中位线定理、直角三角形30°的角所对的边等于斜边的一半.解题的关键是证明DE是△ABC的中位线.二、填空题(本题共有6小题,每小题3分,共18分)11.要使分式有意义,那么x必须满足x≠2.【考点】分式有意义的条件.【分析】根据分母不等于0列式求解即可.【解答】解:由题意得,x﹣2≠0,解得x≠2.故答案为:x≠2.【点评】从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.12.已知一个n边形的内角和是其外角和的5倍,则n=12.【考点】多边形内角与外角.【分析】利用多边形的内角和公式和外角和公式,根据一个n边形的内角和是其外角和的5倍列出方程求解即可.【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=360°×5,解得n=12.故答案为:12.【点评】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.13.如图,已知△ABC≌△AFE,若∠ACB=65°,则∠EAC等于50度.【考点】全等三角形的性质.【分析】根据全等三角形对应角相等可得∠ACB=∠AEF=65°,然后在△EAC中利用三角形内角和定理即可求出求出∠EAC的度数.【解答】解:∵△ABC≌△AFE,∴∠ACB=∠AEF=65°,∴∠EAC=180°﹣∠ACB﹣∠AEF=50°.故答案为50.【点评】本题考查了全等三角形的性质,三角形内角和定理,熟记性质并准确识图是解题的关键.14.如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A等于80度.【考点】全等三角形的判定与性质.【分析】根据SSS证△BAD≌△CAD,根据全等得出∠BAD=∠CAD,∠B=∠C=20°,根据三角形的外角性质得出∠BDF=∠B+∠BAD,∠CDF=∠C+∠CAD,求出∠BDC=∠B+∠C+∠BAC,代入求出即可.【解答】解:过D作射线AF,在△BAD和△CAD中,,∴△BAD≌△CAD(SSS),∴∠BAD=∠CAD,∠B=∠C=20°,∵∠BDF=∠B+∠BAD,∠CDF=∠C+∠CAD,∴∠BDF+∠CDF=∠B+∠BAD+∠C+∠CAD,∴∠BDC=∠B+∠C+∠BAC,∵∠C=∠B=20°,∠BDC=120°,∴∠BAC=80°.故答案为:80.【点评】本题考查了全等三角形的性质和判定,三角形的外角性质的应用,解此题的关键是求出∠BDC=∠B+∠C+∠BAC和∠C的度数,难度适中.15.如图,已知BD是∠ABC的角平分线,DE⊥AB于E点,AB=6cm,BC=4cm,S△ABC=10cm2,则DE=2cm.【考点】角平分线的性质.【分析】过D作DF⊥BC于F,根据角平分线性质求出DE=DF,根据三角形的面积公式得出关于DE的方程,求出方程的解即可.【解答】解:过D作DF⊥BC于F,∵BD是∠ABC的角平分线,DE⊥AB,∴DF=DE,∵S△ABC=10cm2,AB=6cm,BC=4cm,∴×BC×DF+×AB×DE=10,∴×4×DE+×6×DE=10,∴DE=2,故答案为:2.【点评】本题考查了三角形的面积,角平分线性质的应用,注意:角平分线上的点到角的两边的距离相等.16.如图,已知射线OC上的任意一点到∠AOB的两边的距离都相等,点D、E、F分别为边OC、OA、OB上,如果要想证得OE=OF,只需要添加以下四个条件中的某一个即可,请写出所有可能的条件的序号①②④.①∠ODE=∠ODF;②∠OED=∠OFD;③ED=FD;④EF⊥OC.【考点】角平分线的性质;全等三角形的判定与性质.【分析】由射线OC上的任意一点到∠AOB的两边的距离都相等,根据角平分线的判定定理可知OC平分∠AOB.要得到OE=OF,就要让△ODE≌△ODF,①②④都行,只有③ED=FD不行,因为证明三角形全等没有边边角定理.【解答】解:∵射线OC上的任意一点到∠AOB的两边的距离都相等,∴OC平分∠AOB.①若①∠ODE=∠ODF,根据ASA定理可求出△ODE≌△ODF,由三角形全等的性质可知OE=OF.正确;②若∠OED=∠OFD,根据AAS定理可得△ODE≌△ODF,由三角形全等的性质可知OE=OF.正确;③若ED=FD条件不能得出.错误;④若EF⊥OC,根据ASA定理可求出△OGE≌△OGF,由三角形全等的性质可知OE=OF.正确.故答案为①②④.【点评】本题主要考查了角平分线的判定,三角形全等的判定与性质;由求线段相等转化为添加条件使三角形全等是正确解答本题的关键.三、解答题(本题共有7小题,共72分)17.完成下列运算(1)计算:7a2•(﹣2a)2+a•(﹣3a)3(2)计算:(a+b+1)(a﹣b+1)+b2﹣2a.【考点】整式的混合运算.【分析】(1)先算乘方,再算乘法,最后算加减,合并同类项即可;(2)先用平方差公式计算,再用完全平方公式计算,然后合并同类项即可.【解答】解:(1)原式=7a2•4a2+a•(﹣27a3)=28a4﹣27a4=a4;(2)原式=(a+1)2﹣b2+b2﹣2a=a2+2a+1﹣2a=a2+1.【点评】本题考查了整式的混合运算:先算乘方,再算乘法,最后算加减;注意乘法公式的运用.18.(14分)完成下列运算(1)先化简,再求值:(2x﹣y)(y+2x)﹣(2y+x)(2y﹣x),其中x=1,y=2(2)先化简,再求值:,其中x=1,y=3.【考点】分式的化简求值;整式的混合运算—化简求值.【分析】(1)先根据整式混合运算的法则把原式进行化简,再把x=1,y=2代入进行计算即可;(2)先根据分式混合运算的法则把原式进行化简,再把x=1,y=3代入进行计算即可.【解答】解:(1)原式=4x2﹣y2﹣4y2+x2=5(x2﹣y2),当x=1,y=2时,原式=5×(1﹣4)=﹣15;(2)原式=﹣•=+===,当x=1,y=3,∴原式=3.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.如图,在△ABC中,AC=BC,AD平分∠BAC,∠ADC=60°,求∠C的度数.【考点】等腰三角形的性质.【分析】设∠BAD=x.由AD平分∠BAC,得出∠CAD=∠BAD=x,∠BAC=2∠BAD=2x.由AC=BC,得出∠B=∠BAC=2x.根据三角形外角的性质得出∠ADC=∠B+∠BAD=60°,即2x+x=60°,求得x=20°,那么∠B=∠BAC=40°.然后在△ABC中,根据三角形内角和定理得出∠C=180°﹣∠B﹣∠BAC=100°.【解答】解:设∠BAD=x.∵AD平分∠BAC,∴∠CAD=∠BAD=x,∠BAC=2∠BAD=2x.∵AC=BC,∴∠B=∠BAC=2x.∵∠ADC=∠B+∠BAD=60°,∴2x+x=60°,∴x=20°,∴∠B=∠BAC=40°.在△ABC中,∵∠BAC+∠B+∠C=180°,∴∠C=180°﹣∠B﹣∠BAC=100°.【点评】本题考查了等腰三角形的性质,角平分线定义,三角形内角和定理,三角形外角的性质,难度适中.设∠BAD=x,利用∠ADC=60°列出关于x的方程是解题的关键.20.如图,已知AB=AC,D是BC边的中点,DE和DF分别平分∠ADB和∠ADC,求证:DE=DF.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】利用等腰三角形的性质和全等三角形的判定定理ASA证得△AED≌△AFD,则由该全等三角形的对应边相等得到DE=DF.【解答】证明:∵AB=AC,D是BC边的中点,∴AD⊥BC,∠EAD=∠FAD.又∵DE和DF分别平分∠ADB和∠ADC,∴∠EDA=∠FDA=45°.在△AED与△AFD中,,∴△AED≌△AFD(ASA),∴DE=DF.【点评】本题考查了全等三角形的判定与性质和等腰三角形的性质.此题利用了等腰三角形“三线合一”的性质推知来证明三角形全等的对应角.21.客车和货车同时分别从甲乙两城沿同一公路相向而行,相遇时客车比货车多行驶了180千米,相遇后,客车再经过4小时到达乙城,货车再经过9小时到达甲城,求客车、货车的速度和甲乙两城间的路程.【考点】分式方程的应用.【分析】可设客车的速度是x千米/小时,则货车的速度是千米/小时,以相遇时时间相等作为等量关系,列出方程求解即可.【解答】解:设客车的速度是x千米/小时,则货车的速度是千米/小时,依题意有=,解得x1=90,x2=﹣18(不合题意舍去),经检验,x=90是原方程的解,==60,90×4+60×9=360+540=900(千米).答:客车的速度是90千米/小时,则货车的速度是60千米/小时,甲乙两城间的路程是900千米.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.注意分式方程要验根.22.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,求证:AB=AC+BD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】在AB上取一点F,使A F=AC,连结EF,就可以得出△ACE≌△AFE,就有∠C=∠AFE.由平行线的性质就有∠C+∠D=180°,由∠AFE+∠EFB=180°得出∠EFB=∠D,在证明△BEF≌△BED就可以得出BF=BD,进而就可以得出结论.【解答】证明:在AB上取一点F,使AF=AC,连结EF.∵EA、EB分别平分∠CAB和∠DBA,∴∠CAE=∠FAE,∠EBF=∠EBD.∵AC∥BD,∴∠C+∠D=180°.在△ACE和△AFE中,,∴△ACE≌△AFE(SAS),∴∠C=∠AFE.∵∠AFE+∠EFB=180°,∴∠EFB=∠D.在△BEF和△BED中,,∴△BEF≌△BED(AAS),∴BF=BD.∵AB=AF+BF,∴AB=AC+BD.【点评】本题考查了平行线的性质的运用,角平分线的性质的运用,全等三角形的判定与性质的运用,解答时证明三角形全等是关键.23.在等腰直角三角形AOB中,已知AO⊥OB,点P、D分别在AB、OB上,(1)如图1中,若PO=PD,∠OPD=45°,证明△BOP是等腰三角形.(2)如图2中,若AB=10,点P在AB上移动,且满足PO=PD,DE⊥AB于点E,试问:此时PE的长度是否变化?若变化,说明理由;若不变,请予以证明.【考点】全等三角形的判定与性质;等腰三角形的判定与性质;等腰直角三角形.【专题】证明题;探究型.【分析】(1)由PO=PD,利用等边对等角和三角形内角和定理可求得∠POD=67.5°,∠OPB=67.5°,然后利用等角对等边可得出结论;(2)过点O作OC⊥AB于C,首先利用等腰直角三角形的性质可以得到∠COB=∠B=45°,OC=5,然后证得∠POC=∠DPE,进而利用AAS证明△POC≌△DPE,再根据全等三角形的性质可得OC=PE.【解答】(1)证明:∵PO=PD,∠OPD=45°,∴∠POD=∠PDO==67.5°,∵等腰直角三角形AOB中,AO⊥OB,∴∠B=45°,∴∠OPB=180°﹣∠POB﹣∠B=67.5°,∴∠POD=∠OPB,∴BP=BO,即△BOP是等腰三角形;(2)解:PE的值不变,为PE=5,证明如下:如图,过点O作OC⊥AB于C,∵∠AOB=90°,AO=BO,∴△BOC是等腰直角三角形,∠COB=∠B=45°,点C为AB的中点,∴OC=AB=5,∵PO=PD,∴∠POD=∠PDO,又∵∠POD=∠COD+∠POC=45°+∠POC,∠PDO=∠B+∠DPE=45°+∠DPE,∴∠POC=∠DPE,在△POC和△DPE中,,∴△POC≌△DPE(AAS),∴OC=PE=5,∴PE的值不变,为5.【点评】本题考查了等腰三角形的判定与性质,全等三角形的判定与性质,等腰直角三角形等知识,解答(2)的关键是正确作出辅助线。
重庆市2018-2019学年第一学期期末考试八年级数学试题一、选择题(本大题共10小题,共40.0分)1.下列汽车标志的图形是中心对称图形的是()A. B.C. D.【答案】C【解析】解:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不符合题意.故选:C.根据中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.已知a>b,则下列不等式中,不成立的是()A. a+3>b+3B. 23a>23b C. −3a>−3b D. 5a>5b【答案】C【解析】解:A、由a>b,可得a+3>b+3,成立;B、由a>b,可得23a>23b,成立;C、由a>b,可得−3a<−3b,此选项不成立;D、由a>b,可得5a>5b,成立;故选:C.由不等式的性质进行计算并作出正确的判断.考查了不等式的性质.应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.3. 下列各式从左边到右边的变形,是因式分解的是( )A. ab +ac +d =a(b +c)+dB. a 2−1=(a +1)(a −1)C. (a +b)2=a 2+2ab +b 2D. a 2b =ab ⋅a【答案】B【解析】解:A 、ab +ac +d =a(b +c)+d ,不符合因式分解的定义,故此选项错误;B 、a 2−1=(a +1)(a −1),正确;C 、(a +b)2=a 2+2ab +b 2,是多项式乘法,故此选项错误;D 、a 2b =ab ⋅a ,不符合因式分解的定义,故此选项错误; 故选:B .直接利用因式分解的定义分别分析得出答案.此题主要考查了因式分解的定义,正确把握定义是解题关键.4. 把不等式组{−x >0x+1≤0的解集表示在数轴上,正确的是() A.B.C.D.【答案】A【解析】解:{−x >0 ②x+1≤0 ①,由①解得:x ≤−1, 由②解得:x <0,∴不等式组的解集为x ≤−1, 表示在数轴上,如图所示:.故选:A .求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.此题考查了在数轴表示不等式的解集,以及解一元一次不等式组,求出不等式组的解集是解本题的关键.5. 甲、乙、丙、丁四人进行射击测试,经过测试,平均成绩均为9.2环,方差如下表所示: 选手 甲乙丙丁方差1.752.930.500.40则在这四个选手中,成绩最稳定的是()A. 甲B. 乙C. 丙D. 丁【答案】D【解析】解:∵2.93>1.75>0.50>0.4,∴丁的方差最小,∴成绩最稳定的是丁,故选:D.先比较四个选手的方差的大小,根据方差的性质解答即可.本题考查的是方差的性质,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.6.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A. x<3B. x>32C. x<32D. x>3【答案】C【解析】解:把x=m,y=3代入y=2x,解得:m=1.5,当x<1.5时,2x<ax+4,即不等式2x<ax+4的解集为x<1.5.故选:C.观察图象,写出直线y=2x在直线y=ax+4的下方所对应的自变量的范围即可.本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.7.等腰三角形一底角平分线与另一腰所成锐角为75∘,则等腰三角形的顶角大小为()A. 70∘B. 40∘C. 70∘或50∘D. 40∘或80∘【答案】D【解析】解:如图1,∵AB=AC,∴∠ABC=∠C,∵BD平分∠ABC,∴∠CBD=12∠ABC=12∠C,∵∠BDC=75∘,∴∠BDC+∠C+75∘=32∠C+75∘=180∘,∴∠C=70∘,∴∠A=40∘,如图2,∵AB=AC,∴∠ABC=∠C,∵BD平分∠ABC,∴∠CBD=12∠ABC=12∠C,∵∠BDA=75∘,∴∠BDC=105∘,∴∠BDC+∠C+105∘=32∠C+105∘=180∘,∴∠C=50∘,∴∠A=180∘−50∘−50∘=80∘,∴等腰三角形的顶角大小为40∘或80∘,故选:D.根据等腰三角形的性质得到∠ABC=∠C,根据角平分线的定义得到∠CBD=1 2∠ABC=12∠C,根据三角形的内角和列方程即可得到结论.本题考查了三角形的内角和,等腰三角形的性质,正确的画出图形是解题的关键.8.已知正比例函数y=kx(k≠0)的图象如图所示,则一次函数y=k(1−x)的图象为()A. B.C. D.【答案】D【解析】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∵一次函数y=k(1−x)的一次项系数大于0,常数项小于0,∴一次函数y=k(1−x)的图象经过第一、三象限,且与y轴的负半轴相交.故选:D.根据自正比例函数的性质得到k<0,然后根据一次函数的性质得到一次函数y=k(1−x)的图象经过第一、三象限,且与y轴的负半轴相交.本题考查了一次函数图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).9.如图,在平面直角坐标系中,函数y=2x和y=−x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2017的坐标是()A. (21008,21009)B. (−21008,−21009)C. (21009,21010)D. (−21009,−21010)【答案】A【解析】解:当x=1时,y=2,∴点A1的坐标为(1,2);当y=−x=2时,x=−2,∴点A2的坐标为(−2,2);同理可得:A3(−2,−4),A4(4,−4),A5(4,8),A6(−8,8),A7(−8,−16),A8(16,−16),A9(16,32),…,∴A4n+1(22n,22n+1),A4n+2(−22n+1,22n+1),A4n+3(−22n+1,−22n+2),A4n+4(22n+2,−22n+2)(n为自然数).∵2017=504×4+1,∴点A2017的坐标为(2504×2,2504×2+1),即(21008,21009).故选:A.写根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8等的坐标,根据坐标的变化即可找出变化规律“A4n+1(22n,22n+1),A4n+2(−22n+1,22n+1),A4n+3(−22n+1,−22n+2),A4n+4(22n+2,−22n+2)(n为自然数)”,依此规律结合2017=504×4+1即可找出点A2017的坐标.本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征以及规律型中点的坐标,根据坐标的变化找出变化规律“A 4n+1(22n ,22n+1),A 4n+2(−22n+1,22n+1),A 4n+3(−22n+1,−22n+2),A 4n+4(22n+2,−22n+2)(n 为自然数)”是解题的关键.10. 若关于x 的不等式组{x −2≤03x−k>0有且只有四个整数解,且一次函数y =(k +1)x +k +5的图象不经过第三象限,则符合题意的整数k 的和为()A. −15B. −11C. −9D. −5【答案】C【解析】解:解不等式组{x −2≤0 ②3x−k>0 ①得,k3<x ≤2,∵不等式组有且只有四个整数解, ∴其整数解为:−1,0,1,2, ∴−2≤k3<−1,即−6≤k <−3.∵一次函数y =(k +1)x +k +5的图象不经过第三象限, ∴{k +5>0k+1<0,解得−5<k <−1, ∴−5<k <−1,∴k 的整数解有−4,−3,−2. 符合题意的整数k 的和为−9, 故选:C .根据关于x 不等式组{x −2≤03x−k>0有且只有四个整数解得出k 的取值范围,再由一次函数y =(k +1)x +k +5的图象不经过第三象限得出k 取值范围,再找出其公共解集即可.本题考查的是一次函数与一元一次不等式,熟知“同,大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.二、填空题(本大题共10小题,共40.0分)11. 函数y =√x +1中,自变量x 的取值范围是______. 【答案】x ≥−1【解析】解:由题意得,x +1≥0, 解得x ≥−1. 故答案为:x ≥−1.根据被开方数大于等于0列式计算即可得解. 本题考查了函数自变量的范围,一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数非负.12.如图,在△ABC中,BC边上的中垂线DE交BC于点D,交AC于点E,AB=5cm,AC=8cm,则△ABE的周长为______.【答案】13cm【解析】解:∵ED是BC边上的中垂线∴EC=EB∵△ABE的周长=AB+AE+EC=AB+AC=5+8=13cm,故答案为:13cm.中垂线上的点到线段两端点的距离相等,所以CE=BE,△ABE的周长=AB+AE+ EC=AB+AC解答即可.本题考查三角形的周长以及中垂线定理,关键知道中垂线上的点到两端点的距离相等.13.已知一次函数y=−x+m,点A(1,y1),B(3,y2)在图象上,则y1______y2(填“>”或“<”).【答案】>【解析】解:∵一次函数y=−x+m,∴y随x的增大而减小,∵点A(1,y1),B(3,y2)在图象上,∴y1>y2.故答案为:>.直接利用一次函数的增减性进而分析得出答案.此题主要考查了一次函数的性质,正确掌握一次函数的增减性是解题关键.14.将直线y=kx−2向下平移1个单位后,正好经过点(2,3),则k=______.【答案】3【解析】解:将直线y=kx−2向下平移1个单位后所得直接解析式为y=kx−3,将点(2,3)代入y=kx−3,得:2k−3=3,解得:k=3,故答案为:3.根据平移规律可得,直线y=kx−2向下平移1个单位后得y=kx−3,然后把(2,3)代入即可求出k的值.此题主要考查了坐标与图形的变化−平移,直线平移后的解析式有这样的规律“左加右减,上加下减”.15.如图,在四边形ABCD中,∠A+∠B=90∘,CD//AB,将AD、BC分别平移到EF和EG的位置.若AD=8cm,CD=2cm,CB=6cm,则AB的长是______cm.【答案】12【解析】解:∵AD//EF ,CB//EG ,∠A +∠B =90∘, ∴∠FEG =90∘, ∴△FEG 是直角三角形,∵AD =EF =8cm ,CB =EG =6cm , ∴FG 2=EF 2+EG 2, ∴FG =√64+36=10cm ,∵在四边形ABCD 中,AD 、BC 分别平移到EF 和EG 的位置, ∴CD =AF +BG ,∴AB =FG +AF +BG =10+2=12cm .因为在四边形ABCD 中,AD 、BC 分别平移到EF 和EG 的位置,所以有CD =AF +BG ,求证△FEG 是直角三角形,就可求得FG 的值,则AB =FG +AF +BG 可求. 此题把平移的性质和勾股定理结合求解.考查学生综合运用数学的能力.16. 关于x 、y 的二元一次方程组{x +2y =32x+y=2m+1的解满足不等式x −y >4,则m 的取值范围是______. 【答案】m >3【解析】解:{x +2y =3 ②2x+y=2m+1 ①,①−②得,x −y =2m −2, ∵x −y >4, ∴2m −2>4, 解得m >3. 故答案为m >3.先把两式相减求出x −y 的值,再代入x −y >4中得到关于m 的不等式,求出m 的取值范围即可.本题考查的是解二元一次方程组及解二元一次不等式组,解答此题的关键是把m 当作已知条件表示出x 、y 的值,再得到关于m 的不等式.17. 如图,在Rt △ABC 中,∠ACB =90∘,∠B =60∘,BC =2,△A′B′C 可以由△ABC 绕点C 顺时针旋转得到,其中点A′与点A 是对应点,点B′与点B 是对应点,连接AB′,且A 、B′、A′在同一条直线上,则AA′的长为______.【答案】6【解析】解:∵在Rt△ABC中,∠ACB=90∘,∠B=60∘,BC=2,∴∠CAB=30∘,故AB=4,∵△A′B′C由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,∴AB=A′B′=4,AC=A′C,∴∠CAA′=∠A′=30∘,∴∠ACB′=∠B′AC=30∘,∴AB′=B′C=2,∴AA′=2+4=6,故答案为6.利用直角三角形的性质得出AB=4,再利用旋转的性质以及三角形外角的性质得出AB′=2,进而得出答案.此题主要考查了旋转的性质以及直角三角形的性质等知识,得出AB′=B′C=1是解题关键,此题难度不大.18.如图,将矩形纸片ABCD放入以BC所在直线为x轴,BC边上一点O为坐标原点的直角坐标系中,连结OD,将纸片ABCD沿OD折叠,使得点C落在AB边上点C′处,若AB=5,BC=3,则点C的坐标为______.【答案】(53,0)【解析】解:∵矩形纸片ABCD中,AB=5,BC=3,∴AD=3,,中,,,设BO=x,则,中,,∴x2+12=(3−x)2,解得x=43,∴CO=3−43=53,又∵点C在x轴上,∴点C的坐标为(53,0),,0).故答案为:(53依据折叠的性质以及勾股定理,即可得出的长,进而得到,再根据勾股定理可得,中,,列方程求解即可得到BO=4,进而3得出点C的坐标.本题主要考查了矩形的性质,折叠的性质以及勾股定理的运用;解决问题的关键是运用勾股定理计算有关线段的长.解题时注意方程思想的运用.19.丫头和爸爸从家出发到大剧院观看“巴交有声”巴蜀中学新年演奏会,爸爸先出发,2分钟后丫头沿同一路线出发去追爸爸,当丫头追上爸爸时发现背包落在途中了,爸爸立即返回找背包,丫头继续前往大剧院,当丫头到达大剧院时,爸爸刚好找到背包并立即前往大剧院(爸爸找背包的时间不计),丫头在大剧院等了一会,没有等到爸爸,就沿同一路线返回接爸爸,最终与爸爸会合,丫头和爸爸的速度始终不变,如图是丫头和爸爸两人之间的距离y(米)与丫头出发的时间x(分钟)的函数图象,则丫头在大剧院等了爸爸______分钟.【答案】5.5【解析】解:设丫头和爸爸的行走速度分别为:v1、v2,=50(米/分钟),根据函数图象在x=0时,由题意,爸爸的行走速度v2=1002根据x=10时,丫头追上爸爸可得:10v1=(10+2)v2,丫头行走的速度v1=12×50=60(米/分钟),相10遇时行走的路程S1=12×50=600(米)观察图象在x=16时,丫头和爸爸相距最大,可知是丫头到大剧院所经历的时间,所以家到大剧院的总路程S=16×60=960(米),由(16−10=6分钟)可知爸爸返回找到背包行走路程,S2=6×50=300(米),此时设丫头在大剧院等爸爸的时间为t分钟,由图象知丫头与爸爸会合所用时间为25−16=9分钟可建立方程如下:60×(9−t)+50×9=S−(S1−S2)═960−(600−300)=660,解得t=5.5(分钟),故答案为:5.5.本题从函数图象着手,根据题意,可计算出丫头和爸爸行走的速度,然后图示一下丫头与爸爸第二次会合的情况,设未知数建立方程求解可得.本题主要考查一个相对的距离和时间的一次函数图象中所包含的意义,并从中找到有用数字来解决题意中要求的能力,属路程中常见题型.20. 春节期间,重百超市推出了甲、乙、丙、丁四种礼品套餐组合:甲套餐每袋装有15个A 礼盒,10个B 礼盒,10个C 礼盒;乙套餐每袋装有5个A 礼盒,7个B 礼盒,6个C 礼盒;丙套餐每袋装有7个A 礼盒,8个B 礼盒,9个C 礼盒;丁套餐每袋装有3个A 礼盒,4个B 礼盒,4个C 礼盒,若一个甲套餐售价1800元,利润率为20%,一个乙和一个丙套餐一共成本和为1830元,且一个A 礼盒的利润率为25%,问一个丁套餐的利润率为______.(利润率=利润成本×100%)【答案】18.75%【解析】解:设甲套餐的成本之和m 元,则由题意得1800−m =20%m ,解得m =1500(元).设每个A 礼盒的成本为x 元,每个B 礼盒的成本为y 元,每个C 礼盒的成本为z 元,由题意得{12x +15y +15z =183015x+10y+10z=1500, 同时消去字母y 和z ,可得x =40 所以y +z =90A 礼盒的利润率为25%,可得其利润=40×25%=10元,因此一个A 礼盒的售价=40+10=50元.设一个B 礼盒的售价为a 元,一个C 礼盒的售价为b 元,则可得15×50+10a +10b =1800,整理得a +b =105(元)所以一个丁套餐的售价=3×50+4(a +b)=150+420=570(元) 一个丁套餐的成本=3×40+4(y +z)=120+360=480(元) 因此一个丁套餐的利润率=570−480480×100%=18.75%故答案为18.75%先由甲套餐售价1800元,利润率为20%,可求出甲套餐的成本之和为1500元.设每个A 礼盒的成本为x 元,每个B 礼盒的成本为y 元,每个C 礼盒的成本为z 元,则由题意得{12x +15y +15z =183015x+10y+10z=1500,可同时消去y 和z ,得到x =40,再根据一个A 礼盒的利润率为25%,可求出一个A 礼盒的售价为50元,进而可得出一个B 礼盒与一个C 礼盒的售价之和,再由利润率公式求出一个丁套餐的利润率.本题考查了一元一次不等式组的应用以及有理数的混合运算,根据运算规律,找出关于x 的一元一次不等式组是解题的关键.三、解答题(本大题共7小题,共70.0分)21. 计算:(1)分解因式:m 3n −mn 3(2)解不等式组{x−24+2≥x1−3(x −2)<9−x【答案】解(1)m 3n −mn 3=mn(m 2−n 2)=mn(m +n)(m −n);(2){x−24+2≥x①1−3(x −2)<9−x②,解不等式①得,x ≤2, 解不等式②得,x >−1,∴不等式组的解集为:−1<x ≤2.【解析】(1)先提取公因式mn ,再用平方差公式分解即可得出结论; (2)先求出每个不等式的解集,找出公共部分,即可得出不等式组的解集. 此题主要考查了分解因式的方法,提公因式法,公式法,以及一元一次不等式组的解法,掌握分解因式的方法是解本题的关键.22. 如图,直线l 1:y =−2x +b 过点A(4,0),交y 轴于点B ,直线l 2:y =12x +3与x 轴交于点C ,两直线l 1,l 2相交于点D ,连接BC .(1)求直线l 1的解析式和点D 的坐标; (2)求△BCD 的面积.【答案】解:(1)∵直线l 1:y =−2x +b 过点A(4,0), ∴0=−8+b , ∴b =8,∴直线l 1的解析式为y =−2x +8, 解{y =−2x +8y =12x +3得{y =4x=2, ∴点D 的坐标(2,4);(2)由直线l 1:y =−2x +8可知B 的坐标为(0,8),由直线l 2:y =12x +3可知点C 的坐标为(−6,0), ∵点A(4,0), ∴AC =10,∵△BCD 的面积=△ACB 的面积−△ACD 的面积, ∴△BCD 的面积=12×10×8−12×10×4=20.【解析】(1)用待定系数法确定出直线l1解析式,进而联立方程得出点D坐标;(2)由直线的解析式得出B的坐标为(0,8),点C的坐标为(−6,0),然后根据△BCD的面积=△ACB的面积−△ACD的面积求得即可.本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.23.鲁能巴蜀中学2018年校艺术节“巴蜀好声音”独唱预选赛中,初二年级25名同学的成绩(满分为10分)统计如下:9.1,7.4,8.8,6.5,9.8,7.5,8.1,4.2,8.5,7.2,5.5,8.0,9.5,8.8,7.2,8.7,6.0,5.6,7.6,6.6,7.8,7.2,8.2,6.3,10(1)9.0分及以上为A级,7.5~8.9分为B级(包括7.5分和8.9分),6.0~7.4分为C级(包括6.0分和7.4分),6.0分以下为D级.请把下面表格补充完整;(3)若成绩为A级的同学将参加学校的汇演,请求出初二年级A级同学的平均成绩?【答案】10 3 6.97.2【解析】解:(1)根据给出的数据可得:B等级的人数有10人,D等级的人数有3人;故答案为:10,3;(2)把C级8位同学的成绩按从小到大排列为:6.0,6.3,6.5,6.6,7.2,7.2,7.2,7.4,=6.9;则C级8位同学成绩的中位数是6.6+7.22∵7.2出现了3次,出现的次数最多,∴C级8位同学成绩的众数是7.2;故答案为:6.9,7.2;(3)初二年级A级同学的平均成绩是:(9.1+9.8+9.5+10)÷4=9.6(分).(1)根据给出的数据直接找出B等级和D等级的人数即可;(2)根据中位数和众数的定义分别进行解答即可;(3)根据平均数的计算公式进行计算即可.本题考查的是平均数、众数和中位数的定义,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据种出现次数最多的数;解题的关键是正确理解各概念的含义.24.某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如下表:原进价(元/张)零售价(元/张)餐桌a270餐椅b70若购进4张餐桌19张餐椅需要1360元;若购进6张餐桌26张餐椅需要1940元.(1)求表中a,b的值;(2)今年年初由于原材料价格上涨,每张餐桌的进价上涨了10元,每张餐椅的进价上涨了m%,商场决定购进餐桌30张,餐椅170张进行销售,全部售出后,要求利润不低于7380元,求m的最大值.4a+19b=1360,【答案】解:(1){6a+26b=1940a=150,解得:{b=40∴a的值为150,b的值为40.(2)根据题意,[270−(150+10)]×30+[70−40(1+m%)]×170≥7380,解得:x≤15.∴m的值为15.【解析】(1)根据购进4张餐桌19张餐椅需要1360元;若购进6张餐桌26张餐椅需要1940元,可以列出二元一次方程组,解出a和b;(2)根据30张桌子的利润和170张椅子的利润之和不低于7380,可以列出不等式,即可解除m的取值范围.本题考查了一次函数的应用、解一元一次不等式、二元一次方程,解题的关键是:(1)根据题目,等量关系,列出二元一次方程组;(2)根据数量关系找出关于m的一元一次不等式.25.如图,△ABC为等边三角形,CF⊥AB于点F,AH⊥BC于点,点D在AH的延长线上,连接CD,以CD为边作等边△CDE,连接AE交CF于点G.(1)若AC=4,CE=√5,求△ACD的面积.(2)证明:AG=GE.【答案】(1)解:∵△ABC,△CDE都是等边三角形,∴AC=BC=4,CE=CD=√5,∵AD⊥BC,∴BH=HC=2,AH=√AC2−CH2=2√3,在Rt△CDH中,∵∠DHC=90∘,CH=2,CD=√5,∴DH=√CD2−CH2=1,AD=1+2√3,∴S△ACD=12⋅AD⋅CH=1+2√3.(2)证明:作AN//EC交CF于N.连接BN,BD.∴∠ANC=∠ECN,∵CF⊥AB,∴FA=FB,∠BCF=12∠ACB=30∘,∵∠DCE=60∘,∴∠BCD+∠DCE+∠BCF=90∘+∠BCD=∠AFN+∠BAN=90∘+∠BAN,∴∠BAN=∠BCD,∵NF⊥AB,AF=FB,∴NA=NB,∴∠ABN=∠BAN,同法可证:∠DCB=∠DBC,∵AB=BC,∴△BAN≌△BCD(ASA),∴AN=CD=CE,∵AN//EC,∴∠NAG=∠CEG,∵∠AGN=∠EGC,∴△AGN≌△EGC(AAS),∴AG=GE.【解析】(1)利用勾股定理求出DH,AH即可解决问题.(2)作AN//EC交CF于N.连接BN,BD.先证明△BAN≌△BCD(ASA),再证明△AGN≌△EGC(AAS)即可解决问题.本题考查等边三角形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是熟练掌握基本知识,学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.26.阅读材料,解决下列问题:材料一:对非负实数x“四舍五入”到个位的值记为<x>,即:当n为非负整数时,如果n−12≤x<n+12,则<x>=n;反之,当n为非负整数时,如果<x>=n;则n−12≤x<n+12,例如:<0.51>=<1.49>=1,<2>=2,<3.5>=<4.15>=4,…材料二:平面直角坐标系中任意两点P1(x1,y1),P2(x2,y2),我们把|x1−x2|+ |y1−y2|叫做P1、P2两点间的折线距离,并规定D(P1,P2)=|x1−x2|+|y1−y2|.若P0(x0,y0)是一定点,Q(x,y)是直线y=kx+b上的一动点,我们把D(P0,Q)的最小值叫做P0到直线y=k+b的折线距离,例如:若P1(−1,2),P2(1,3)则D(P1,P2)=|−1−1|+|2−3|=3.(1)如果<2x>=5,则实数x的取值范围为______②已知点E(a,2),点F(3,3),且D(E,F)=2,则a的值为______.(2)若m为满足<m>=32m的最大值,求点M(3m,1)到直线y=x+1的折线距离.【答案】94≤x<1144或2【解析】解:(1)①∵<2x>=5,∴5−12≤2x<5+12,∴实数x的取值范围为:94≤x<114;②∵点E(a,2),点F(3,3),且D(E,F)=2,∴|a−3|+|2−3|=2,∴a的值为4或2;故答案为:94≤x<114;4或2;(2)∵<m>=32m,∴3m2−12≤m<3m2+12,∴−1<m≤1,∴m的最大值为1,∴点M(3,1),设Q(x,y)是直线y=x+1上的一动点,点M(3,1)到Q(x,y)的折线距离为:D(M,Q)=|x−3|+|x+1−1|=|x−3|+|x|,它的最小值为3,∴点M(3m,1)到直线y=x+1的折线距离为3.(1)①由<2x>=5可得5−12≤2x<5+12,解不等式组即可得出x的取值范围;②由点E(a,2),点F(3,3),且D(E,F)=2,可得|a−3|+|2−3|=2,解方程即可得出a的值;(2)先根据<m>=32m,求出m的取值范围,从而得出最大m的值,再根据点M(3m,1)到直线y=x+1的折线距离的定义求解即可.本题考查的是一次函数与不等式的知识,涉及到点到直线的距离、绝对值的几何意义等相关知识,属新定义型题目,正确理解折线距离的概念是解题的关键.27. 如图1,在平面直角坐标系中,直线AB 与y 轴交于点A(0,2√3),与x 轴交于点B ,∠ABO =30∘,直线CD 与y 轴交于点D ,与x 轴交于点C(−1,0),∠DCO =60∘,直线AB 与直线CD 交于点Q ,E 为直线CD 上一动点,过点E 作x 轴的垂线,交直线AB 于点M ,交x 轴于点N ,连接AE 、BE . (1)求直线AB 、CD 的解析式及点Q 的坐标;(2)当E 点运动到Q 点的右侧,且△AEB 的面积为9√3时,在y 轴上有一动点P ,直线AB 上有一动点R ,当△PNR 的周长最小时,求点P 的坐标及△PNR 周长的最小值.(3)在(2)问的条件下,如图2将△MNB 绕着点B 逆时针旋转60∘得到△GHB ,使点M 与点G 重合,点N 与点H 重合,再将△GHB 沿着直线AB 平移,记平移中的△GHB 为,在平移过程中,设直线与x 轴交于点F ,是否存在这样的点F ,使得为等腰三角形?若存在,求出此时点F 的坐标;若不存在,说明理由【答案】解:(1)点C(−1,0),∠DCO =60∘,OD =OCtan60∘=√3,直线CD 表达式的k 值为√3,则直线CD 的表达式为:y =√3x +b ,将点C 坐标代入上式并解得:b =√3, 故:直线CD 的表达式为:y =√3x +√3…①,同理可得直线AB 的表达式为:y =−√33x +2√3…②,∴∠ABO =30∘, 联立①②并解得:x =34,即点Q 坐标为(34,7√34); (2)如下图所示,设点E 的坐标为(x,√3x +√3),则点M(x,−√33x +2√3),S△ABE=12EM×OB=12×(√3x+√3+√33x−2√3)=9√3,解得:x=3,即点N坐标为(3,0),点M(3,√3),作点N关于直线AB和y轴的对称点N″、N′,连接N′N″交AB于点R交y轴于点P,此时,△PNR周长的最小值,最小值为:N′N″的长度,∵BN=OB−ON=6−3=3,N″N关于直线AB对称,∠ABO=30∘,△N″NB为边长为3的等边三角形,三角形高为:32√3,则点N″的坐标为(92,3√32),点N′(−3,0),则直线N′N″的表达式为:y=√35x+3√35,即点P坐标(0,3√35),△PNR周长的最小值,最小值为N′N″=√(92+3)2+(3√32)2=3√7;(3)如图2,将△MNB绕着点B逆时针旋转60∘得到△GHB,此时∠NBG=30∘,即点GM关于x轴对称,则点G(3,−√3),BH=BN=3,图形平移为时,∠B′BF=∠B′FB=30∘,即△B′BF是底角为30∘的等腰三角形,而为等腰三角形,只能B′H′=B′F,∴B′F=B′H′=BH=BN=3,BF=2B′Fcos30∘=2×3×√32=3√3,故点F的坐标为(6+3√3,0).【解析】(1)OD=OCtan60∘=√3,直线CD表达式的k值为√3,即可求解直线CD 的表达式;同理可得直线AB的表达式,联立两个表达式,即可求解点Q的坐标;(2)S△ABE=12EM×OB=9√3,求出点N坐标;作N点的两个对称点N″、N′,连接N′N″交AB于点R交y轴于点P,此时,△PNR周长的最小值,求解即可;(3)△B′BF是底角为30∘的当腰三角形,为等腰三角形,即可求解.本题为一次函数综合题,涉及到图形平移、点的对称性、解直角三角形等知识,其中(3)通过角关系,确定△B′BF是底角为30∘的等腰三角形,是本题的突破点.。
2018-2019学年八年级(上)期末数学试卷一、选择题(本大题共8小题,共16.0分)1.在下列黑体大写英文字母中,不是轴对称图形的是A. TB. IC. ND. H【答案】C【解析】解:A、“T”是轴对称图形,故本选项不合题意;B、“I”是轴对称图形,故本选项不合题意;C、“N”不是轴对称图形,故本选项符合题意;D、“H”是轴对称图形,故本选项不合题意.故选:C.根据轴对称图形的概念对各个大写字母判断即可得解.本题考查了轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列各点中,位于第四象限的点是A. B. C. D.【答案】A【解析】解:A、在第四象限,故本选项正确;B、在第一象限,故本选项错误;C、在第二象限,故本选项错误;D、在第三象限,故本选项错误.故选:A.根据各象限内点的坐标特征对各选项分析判断利用排除法求解.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限.3.小亮的体重为,用四舍五入法将精确到的近似值为A. 48B.C. 47D.【答案】B【解析】解:精确到的近似值为.故选:B.把百分位上的数字5进行四舍五入即可.本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字近似数与精确数的接近程度,可以用精确度表示一般有,精确到哪一位,保留几个有效数字等说法.4.若一个三角形的三边长分别为3、4、5,则这个三角形最长边上的中线为A. B. 2 C. D.【答案】D【解析】解:,该三角形是直角三角形,.故选:D.根据勾股定理逆定理判断出三角形是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半解答即可.本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的逆定理,判断出直角三角形是解题的关键.5.已知一次函数,函数值y随自变量x的增大而减小,且,则函数的图象大致是A. B.C. D.【答案】B【解析】解:一次函数,y随着x的增大而减小,,一次函数的图象经过第二、四象限;,,图象与y轴的交点在x轴下方,一次函数的图象经过第二、三、四象限.故选:B.根据一次函数的性质得到,而,则,所以一次函数的图象经过第二、四象限,与y轴的交点在x轴下方.本题考查了一次函数的图象:一次函数、b为常数,是一条直线,当,图象经过第一、三象限,y随x的增大而增大;当,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为.6.如图,点B、E、C、F在同一条直线上,,,要用SAS证明≌ ,可以添加的条件是A. B. C. D.【答案】C【解析】解:,,可添加条件,理由:在和中,,≌ ;故选:C.根据得出,添加条件,则利用SAS定理证明 ≌ .本题考查三角形全等的判定方法,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.如图,在中,AB、AC的垂直平分线分别交BC于点E、F,若,则为A. B. C. D.【答案】D【解析】解:,,、FH分别为AC、AB的垂直平分线,,,,,,,故选:D.根据三角形内角和定理求出,根据线段垂直平分线的性质得到,,根据等腰三角形的性质得到,,计算即可.此题主要考查线段的垂直平分线的性质等几何知识线段的垂直平分线上的点到线段的两个端点的距离相等.8.小苏和小林在如图1所示的跑道上进行米折返跑在整个过程中,跑步者距起跑线的距离单位:与跑步时间单位:的对应关系如图2所示下列叙述正确的是A. 两人从起跑线同时出发,同时到达终点B. 小苏跑全程的平均速度大于小林跑全程的平均速度C. 小苏前15s跑过的路程大于小林前15s跑过的路程D. 小林在跑最后100m的过程中,与小苏相遇2次【答案】D【解析】解:由函数图象可知:两人从起跑线同时出发,先后到达终点,小林先到达终点,故A错误;根据图象两人从起跑线同时出发,小林先到达终点,小苏后到达终点,小苏用的时间多,,所以小苏跑全程的平均速度小于小林跑全程的平均速度,而路程相同,根据速度路程时间故B错误;根据图象小苏前15s跑过的路程小于小林前15s跑过的路程,故C错误;小林在跑最后100m的过程中,两人相遇时,即实线与虚线相交的地方,由图象可知2次,故D正确;故选:D.通过函数图象可得,两人从起跑线同时出发,小林先到达终点,小苏后到达终点,小苏,根据行程问题的数量关系可以求出甲、乙用的时间多,而路程相同,根据速度路程时间的速度,所以小苏跑全程的平均速度小于小林跑全程的平均速度,根据图象小苏前15s 跑过的路程小于小林前15s跑过的路程,两人相遇时,即实线与虚线相交的地方有两次,即可解答.本题主要考查了函数图象的读图能力,要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.二、填空题(本大题共8小题,共16.0分)9.4的平方根是______.【答案】【解析】解:,的平方根是.故答案为:.根据平方根的定义,求数a的平方根,也就是求一个数x,使得,则x就是a的平方根,由此即可解决问题.本题考查了平方根的定义注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10.已知点,关于y轴对称的点的坐标为______.【答案】【解析】解:首先可知点,再由平面直角坐标系中关于y轴对称的点的坐标特点:横坐标互为相反数,纵坐标不变,可得:点P关于y轴的对称点的坐标是.故答案为:.本题比较容易,考查平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于y轴对称的点,纵坐标相同,横坐标互为相反数.解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.11.在实数,,,,中,无理数有______个【答案】2【解析】解:,,,是有理数,,是无理数,故答案为:2.根据无理数的概念判断即可.本题考查的是无理数的概念,掌握无限不循环小数叫做无理数是解题的关键.12.若点在函数的图象上,则______.【答案】【解析】解:点在函数的图象上,,解得,,故答案为:.根据点在函数的图象上,可以求得m的值,本题得以解决.本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.13.下列关于建立平面直角坐标系的认识,合理的有______.尽量使更多的点在坐标轴上;尽量使图形关于坐标轴对称;建立坐标系沟通了“数”与“形”之间的联系.【答案】【解析】解:下列关于建立平面直角坐标系的认识,合理的有,尽量使更多的点在坐标轴上;尽量使图形关于坐标轴对称;建立坐标系沟通了“数”与“形”之间的联系,故答案为:根据平面直角坐标系的性质判断即可.此题考查了关于x轴、y轴对称的点的坐标,以及轴对称图形,熟练掌握平面直角坐标系的性质是解本题的关键.14.如图,在等边中,D、E分别是边AB、AC上的点,且,则______【答案】180【解析】解:是等边三角形,≌.,,,故答案为:180.根据等边三角形的性质,得出各角相等各边相等,已知,利用SAS判定≌ ,从而得出,所以,进而利用四边形内角和解答即可.此题考查了等边三角形的性质及全等三角形的判定方法,常用的判定方法有SSS,SAS,AAS,HL等.15.如图,在中,,AD平分,,,则点D到直线AB的距离是______.【答案】【解析】解:作于E,,,,,平分,,,.故答案为:.作于E,根据勾股定理求出CD的长,根据角平分线的性质解答即可.本题考查的是勾股定理,角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.16.已知的三条边长分别为3,4,6,在所在平面内画一条直线,将分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画______条【答案】7【解析】解:如图所示:当,,,,,,时,都能得到符合题意的等腰三角形.故答案为:7.根据等腰三角形的性质分别利用AB,AC为底以及为腰得出符合题意的图形即可.此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.三、计算题(本大题共2小题,共18.0分)17.阅读理解:,即,.的整数部分为1.的小数部分为解决问题:已知a是的整数部分,b是的小数部分,求的平方根.【答案】解:,,,,,,,,,则25的平方根是.【解析】估算确定出a与b的值,代入原式计算即可求出平方根.此题考查了估算无理数的大小,以及平方根,熟练掌握估算的方法是解本题的关键.18.如图所示,在A,B两地间有一车站C,一辆汽车从A地出发经C站匀速驶往B地如图是汽车行驶时离C站的路程千米与行驶时间小时之间的函数关系的图象.填空:______km,AB两地的距离为______km;求线段PM、MN所表示的y与x之间的函数表达式;求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?【答案】240 390【解析】解:由题意和图象可得,千米,A,B两地相距:千米,故答案为:240,390由图象可得,A与C之间的距离为150km汽车的速度,PM所表示的函数关系式为:MN所表示的函数关系式为:由得,解得:由得,解得:由图象可知当行驶时间满足:,小汽车离车站C的路程不超过60千米根据图象中的数据即可得到A,B两地的距离;根据函数图象中的数据即可得到两小时后,货车离C站的路程与行驶时间x之间的函数关系式;根据题意可以分相遇前和相遇后两种情况进行解答.本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想和函数的思想解答.四、解答题(本大题共7小题,共50.0分)19.已知:,求x的值.【答案】解:,,.【解析】直接利用平方根的性质计算得出答案.此题主要考查了平方根,正确把握平方根的定义是解题关键.20.计算:.【答案】解:原式.【解析】直接利用零指数幂的性质以及绝对值、立方根的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.21.已知:如图,在中,,BE、CD是中线求证:.【答案】证明:,,、CD是中线,,,,在和中,,≌ ,.【解析】由等腰三角形的性质得出,由已知条件得出,证明≌ ,得出对应边相等,即可得出结论.本题考查了等腰三角形的性质、全等三角形的判定与性质;熟练掌握等腰三角形的性质,证明三角形全等得出对应边相等是解决问题的关键.22.如图,点D是内部的一点,,过点D作,,垂足分别为E、F,且求证:为等腰三角形.【答案】证明:,,.在和中,≌ ,,,,,即,.【解析】欲证明,只要证明即可;本题考查全等三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.23.请你用学习“一次函数”时积累的经验和方法研究函数的图象和性质,并解决问题.完成下列步骤,画出函数的图象;列表、填空;描点:连线观察图象,当x______时,y随x的增大而增大;结合图象,不等式的解集为______.【答案】2 0【解析】解:填表正确画函数图象如图所示:由图象可得:时,y随x的增大而增大;由图象可得:不等式的解集为;故答案为:2;0;;.根据函数值填表即可;根据图象得出函数性质即可;根据图象得出不等式的解集即可.本题考查了一次函与不等式的关系,一次函数的图象等知识点注意:求正比例函数,只要一对x,y的值就可以,因为它只有一个待定系数;而求一次函数,则需要两组x,y的值.24.某产品每件成本10元,试销阶段每件产品的销售价元与产品的日销售量件之间的关系如表:已知日销售量y是销售价x的一次函数.求日销售量件与每件产品的销售价元之间的函数表达式;当每件产品的销售价定为35元时,此时每日的销售利润是多少元?【答案】解:设日销售量件与每件产品的销售价元之间的函数表达式是,,解得,,即日销售量件与每件产品的销售价元之间的函数表达式是;当每件产品的销售价定为35元时,此时每日的销售利润是:元,即当每件产品的销售价定为35元时,此时每日的销售利润是125元.【解析】根据题意可以设出y与x的函数关系式,然后根据表格中的数据,即可求出日销售量件与每件产品的销售价元之间的函数表达式;根据题意可以计算出当每件产品的销售价定为35元时,此时每日的销售利润.本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.25.问题解决:如图1,在平面直角坐标系xOy中,一次函数与x轴交于点A,与y 轴交于点B,以AB为腰在第二象限作等腰直角,,点A、B的坐标分别为A______、B______.求中点C的坐标.小明同学为了解决这个问题,提出了以下想法:过点C向x轴作垂线交x轴于点请你借助小明的思路,求出点C的坐标;类比探究数学老师表扬了小明同学的方法,然后提出了一个新的问题,如图2,在平面直角坐标系xOy中,点A坐标,点B坐标,过点B作x轴垂线l,点P是l 上一动点,点D是在一次函数图象上一动点,若是以点D为直角顶点的等腰直角三角形,请直接写出点D与点P的坐标.【答案】【解析】解:针对于一次函数,令,,,令,,,,故答案为,;如图1,由知,,,,,过点C作轴于E,,,,,,是等腰直角三角形,,在和中,,≌ ,,,,;如图2,过点D作轴于F,延长FD交BP于G,,点D在直线上,设点,,轴,,,同的方法得, ≌ ,,,如图2,,,,或,或,当时,,,,,当时,,,,,即:,或,利用坐标轴上点的特点建立方程求解,即可得出结论;先构造出 ≌ ,求出AE,CE,即可得出结论;同的方法构造出 ≌ ,分两种情况,建立方程求解即可得出结论.此题是一次函数综合题,主要考查了全等三角形的判定和性质,方程的思想,构造全等三角形是解本题的关键.。
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.在平面直角坐标系中,点A 关于x 轴的对称点为A 1(3,-2),则点A 的坐标为( ) A .(-3,-2)B .(3,2)C .(3,-2)D .(-3、2) 【答案】B【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”进行求解即可.【详解】∵关于x 轴对称的点,横坐标相同,纵坐标互为相反数,且A 1(3,-2)∴A 的坐标为(3,2).所以答案为B 选项.【点睛】本题主要考查了点关于x 轴对称相关问题,熟练掌握相关规律是解题关键.2.下列四组线段中,可以构成直角三角形的是( )A .4,5,6B .1.5,2,2.5C .2,3,4D .1, 3 【答案】B【解析】试题分析:由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可: A 、42+52=41≠62,不可以构成直角三角形,故本选项错误;B 、1.52+22=6.25=2.52,可以构成直角三角形,故本选项正确;C 、22+32=13≠42,不可以构成直角三角形,故本选项错误;D 、222133+=≠,不可以构成直角三角形,故本选项错误.故选B .考点:勾股定理的逆定理.3.下列关于一次函数:123y x =-+的说法错误的是( ) A .它的图象与坐标轴围成的三角形面积是6B .点()3,1P 在这个函数的图象上C .它的函数值y 随x 的增大而减小D .它的图象经过第一、二、三象限【答案】D 【分析】求出一次函数123y x =-+的图象与x 轴、y 轴的交点坐标,再利用三角形的面积公式可求出与坐标轴围成的三角形面积,可判断A ;将点P (3,1)代入表达式即可判断B ;根据x 的系数可判断函数值y 随x 的变化情况,可判断C ;再结合常数项可判断D.【详解】解:令x=0,则y=2,令y=0,则x=6,∴123y x=-+图象与坐标轴围成的三角形面积是12662⨯⨯=,故选项A正确;令x=3,代入,则y=1,∴点P(3,1)在函数图象上,故选项B正确;∵13-<0,∴一次函数123y x=-+的函数值y随x的增大而减小,故选项C正确;∵13-<0,2>0,∴它的图象经过第一、二、四象限,故选项D错误.故选D.【点睛】本题考查了一次函数图象上点的坐标特征、一次函数的性质以及三角形的面积,逐一分析四个选项的正误是解题的关键.4.如图,阴影部分是一个正方形,此正方形的面积是()A.16 B.8 C.4 D.2【答案】B【分析】先证明图中的三角形为等腰直角三角形,再利用勾股定理求出正方形边长的平方即可得出结果.【详解】解:如图,∵阴影部分是正方形,所以∠ABC=90°,∴∠C=∠BAC=45°,∴AB=BC,又AC=4,∴AB2+BC2=AC2=16∴AB2=AC2=1,∴正方形的面积=AB2=1.故选:B.【点睛】本题考查勾股定理,等腰三角形的判定,正方形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5.如图, 直线y=kx(k 为常数, k ≠0)经过点A, 若B 是该直线上一点, 则点B 的坐标可能是()A .(-2,-1)B .(-4,-2)C .(-2,-4)D .(6,3)【答案】C 【分析】先根据点A 的坐标求出k 的值,从而可得直线的解析式,再逐项判断即可.【详解】由平面直角坐标系得:点A 的坐标为(2,4)A将(2,4)A 代入直线y kx =得:24k =,解得2k =因此,直线的解析式为2y x =A 、令2x =-,代入直线的解析式得22(2)4y x ==⨯-=-,则点(2,1)--不符题意B 、令4x =-,代入直线的解析式得22(4)8y x ==⨯-=-,则点(4,2)--不符题意C 、令2x =-,代入直线的解析式得22(2)4y x ==⨯-=-,则点(2,4)--符合题意D 、令6x =,代入直线的解析式得22612y x ==⨯=,则点(6,3)不符题意故选:C .【点睛】本题考查了正比例函数的图象与性质,依据图象求出直线的解析式是解题关键.6.如图,以点O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以点A 为圆心,AO 长为半径画弧,两弧交于点B ,画出射线OB ,则∠AOB=( )A .30°B .45°C .60°D .90°【答案】C 【分析】首先连接AB ,由题意易证得△AOB 是等边三角形,根据等边三角形的性质,可求得∠AOB 的度数.【详解】解:连接AB ,根据题意得:OB=OA=AB ,∴△AOB 是等边三角形,∴∠AOB=60°.故选C .【点睛】本题考查了等边三角形的判定与性质,解题的关键是能根据题意得到OB=OA=AB .7.某鞋厂为了了解初中生穿鞋的尺码情况,对某中学八年级(2)班的20名男生进行了调查,统计结果如下表:则这20个数据的中位数和众数分别为( ) 尺码37 38 39 40 41 42 人数3 4 4 7 1 1 A .4和7B .40和7C .39和40D .39.1和39 【答案】C【分析】根据众数与中位数的定义求解分析.40出现的次数最多为众数,第10、11个数的平均数为中位数.【详解】解:观察图表可知:有7人的鞋号为40,人数最多,即众数是40;中位数是第10、11人的平均数,即39;故选:C .【点睛】本题考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数);众数是数据中出现最多的一个数.8.如图,在ABC ∆中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于M ,N 两点;②作直线MN 交AB 于点D ,连接CD ,若CD AC =,25B ∠=,则ACB ∠的度数为( )A .25B .50C .80D .105【答案】D 【分析】根据作图方法可知:MN 是BC 的中垂线,根据中垂线的性质可得:DC=DB ,然后根据等边对等角可得∠DCB=∠B=25°,然后根据三角形外角的性质即可求出∠CDA ,再根据等边对等角即可求出∠A ,然后利用三角形的内角和定理即可求出∠ACB .【详解】解:根据作图方法可知:MN 是BC 的中垂线∴DC=DB∴∠DCB=∠B=25°∴∠CDA=∠DCB +∠B=50°∵CD AC =∴∠A=∠CDA=50°∴∠ACB=180°-∠A -∠B=105°故选D .【点睛】此题考查的是用尺规作图作垂直平分线、垂直平分线的性质、等腰三角形的性质、三角形的内角和定理和三角形外角的性质,掌握线段垂直平分线的做法、垂直平分线的性质、等边对等角、三角形的内角和定理和三角形外角的性质是解决此题的关键.9.下列数据:75,80,85,85,85,则这组数据的众数和中位数是( )A .75,80B .85,85C .80,85D .80,75【答案】B【分析】众数是一组数据中出现次数最多的数; 将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.【详解】解:此组数据中85出现了3次,出现次数最多,所以此组数据的众数是85;将此组数据按从小到大依次排列为:75,80,85,85,85,此组数据个数是奇数个,所以此组数据的中位数是85;故选:B .【点睛】本题为统计题,考查众数与中位数的意义,解题的关键是认真理解题意.10.若将一副三角板按如图所示的方式放置,则下列结论:①13∠=∠;②如果230∠=︒,则有//AC DE ;③如果230∠=︒,则有//BC AD ;④如果230∠=︒,必有4C ∠=∠;其中正确的有( )A .①②③B .①②④C .②③④D .①②③④【答案】B 【分析】根据两种三角板的各角的度数,利用平行线的判定与性质结合已知条件对各个结论逐一验证,即可得出答案.【详解】解:①∵∠CAB=∠EAD=90°,∴∠1=∠CAB-∠2,∠3=∠EAD-∠2,∴∠1=∠3,故本选项正确.②∵∠2=30°,∴∠1=90°-30°=60°,∵∠E=60°,∴∠1=∠E ,∴AC ∥DE ,故本选项正确.③∵∠2=30°,∴∠3=90°-30°=60°,∵∠B=45°,∴BC 不平行于AD ,故本选项错误.④由∠2=30°可得AC ∥DE ,从而可得∠4=∠C ,故本选项正确.故选B.【点睛】此题主要考查了学生对平行线判定与性质、余角和补角的理解和掌握,解答此题时要明确两种三角板各角的度数.二、填空题11.已知关于x 的方程232x m x +=-的解是正数,则m 的取值范围为__________. 【答案】6m >-且4m ≠- 【分析】首先求出关于x 的方程232x m x +=-的解,然后根据解是正数,再解不等式求出m 的取值范围. 【详解】解关于x 的方程232x m x +=-得x =m +6, ∵x−2≠0,解得x ≠2,∵方程的解是正数,∴m +6>0且m +6≠2,解这个不等式得m >−6且m ≠−1.故答案为:m >−6且m ≠−1.【点睛】本题考查了分式方程的解,是一个方程与不等式的综合题目,解关于x 的方程是关键,解关于x 的不等式是本题的一个难点.12.若分式11a a -+的值为0,则a 的值为________. 【答案】1【分析】根据分式值为零的条件,分子为零且分母不为零,求解. 【详解】解:若分式11a a -+的值为0 ∴a-1=0且a+1≠0解得:a=1故答案为:1.【点睛】本题考查分式为零的条件,掌握分式值为零时,分子为零且分母不能为零是解题关键.13.若实数m,n 满足()2220190m n -+-=,则10m n -+=_______. 【答案】32【分析】根据()2220190m n -+-=,可以求得m 、n 的值,从而可以求得10m n -+的值. 【详解】∵()2220190m n -+-=,∴m-2=0,n-2019=0,解得,m=2,n=2019, ∴1011m n m -+=+13122=+=, 故答案为:32. 【点睛】本题考查非负数的性质、负指数幂和零指数幂,解答本题的关键是明确题意,利用非负数的性质求出m 和n 的值.14.如图,在△ABC 与△AEF 中,AB=AE ,BC=EF ,∠B=∠E ,AB 交EF 于点D.给出下列结论:①∠EAB=∠FAC ;②AF=AC ;③∠C=∠EFA ;④AD=AC.其中正确的结论是_____(填序号).【答案】①②③【解析】解:在△AEF和△ABC中,∵AB=AE,∠B=∠E,BC=EF,∴△AEF≌△ABC(SAS),∴∠EAF=∠BAC,AF=AC,∠C=∠EFA,∴∠EAB=∠FAC,故①②③正确,④错误;所以答案为:①②③.点睛:本题主要考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解决问题的关键.15.我们把[a,b]称为一次函数y=ax+b的“特征数”.如果“特征数”是[2,n+1]的一次函数为正比例函数,则n的值为_____.【答案】﹣1【分析】根据正比例函数是截距为0的一次函数可得n+1=0,进而求出n值即可.【详解】∵“特征数”是[2,n+1]的一次函数为正比例函数,∴n+1=0,解得:n=﹣1,故答案为:﹣1.【点睛】本题考查正比例函数的定义,理解新定义并掌握正比例函数的一般形式y=kx(k≠0),是解题关键.16.如图,,A B两地相距20千米,甲、乙两人都从A地去B地,图中1l和2l分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系,下列说法: ①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B地.其中正确的是__________.(填序号)【答案】:①③④【分析】根据函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】解:由图象可得,乙晚出发1小时,故①正确;∵3-1=2小时,∴乙出发2小时后追上甲,故②错误;∵12÷3=4千米/小时,∴甲的速度是4千米/小时,故③正确;∵相遇后甲还需8÷4=2小时到B 地,相遇后乙还需8÷(12÷2) =43小时到B 地,∴乙先到达B 地,故④正确;故答案为:①③④.【点睛】 本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答. 17.在Rt ABC ∆中,90C ∠=°,10AC cm =,5BC cm =,某线段PQ AB =, P ,Q 两点分别在AC 和AC 的垂线AX 上移动,则当AP =__________.时,才能使ABC ∆和APQ ∆全等.【答案】5㎝或10㎝【分析】本题要分情况讨论:①Rt △ABC ≌Rt △QPA ,此时AP=BC=5cm ,可据此求出P 点的位置;②Rt △ABC ≌Rt △PQA ,此时AP=AC ,P 、C 重合.【详解】解:∵PQ=AB ,∴根据三角形全等的判定方法HL 可知,当P 运动到AP=BC 时,在Rt △ABC 和Rt △QPA 中PQ AB AP BC =⎧⎨=⎩, ∴Rt △ABC ≌Rt △QPA (HL ),即AP=BC=5cm ;当P 运动到与C 点重合时,在Rt △ABC 和Rt △QPA 中PQ AB AP AC =⎧⎨=⎩, ∴Rt △ABC ≌Rt △PQA (HL ),即AP=AC=10cm .故答案为5㎝或10㎝.【点睛】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.三、解答题18.一辆汽车开往距离出发地300km 的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.2倍匀速行驶,并比原计划提前半小时到达目的地.求汽车前一小时的行驶速度.【答案】汽车前一小时的速度是75km/时【分析】设汽车前一小时的行驶速度为km/x 时,则一小时后的速度为1.2xkm/时,根据“原计划所需时间=1小时+提速后所用时间+半小时”的等量关系列方程求解.【详解】解:设汽车前一小时的行驶速度为km/x 时 根据题意得,30030011 1.22x x x -=++ 去分母得,360 1.23000.6x x x =+-+解得75x =经检验75x =是原方程的根答:汽车前一小时的速度是75km/时.【点睛】本题考查分式方程的应用,理解题意找准等量关系是解题关键,注意分式方程结果要检验.19.如图,点B ,F ,C ,E 在一条直线上,∠A=∠D ,AC=DF ,且AC ∥DF .求证:△ABC ≌△DEF .【答案】见解析;【解析】首先根据平行线的性质可得∠ACB=∠DFE ,再根据ASA 定理证明△ABC ≌△DEF 即可.【详解】证明:∵ AC ∥DF ,∴ ∠ACB=∠DFE .在△ABC 和△DEF 中,∠A =∠D ,AC =DF ,∠ACB =∠DFE ,∴ △ABC ≌△DEF .(ASA)【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL . 注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.。
2018-2019学年八年级(上)期末数学试卷一、选择题(本大题共8小题,共16.0分)1.在下列黑体大写英文字母中,不是轴对称图形的是()A. TB. IC. ND. H【答案】C【解析】解:A、“T”是轴对称图形,故本选项不合题意;B、“I”是轴对称图形,故本选项不合题意;C、“N”不是轴对称图形,故本选项符合题意;D、“H”是轴对称图形,故本选项不合题意.故选:C.根据轴对称图形的概念对各个大写字母判断即可得解.本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列各点中,位于第四象限的点是()A. (3,−4)B. (3,4)C. (−3,4)D. (−3,−4)【答案】A【解析】解:A、(3,−4)在第四象限,故本选项正确;B、(3,4)在第一象限,故本选项错误;C、(−3,4)在第二象限,故本选项错误;D、(−3,−4)在第三象限,故本选项错误.故选:A.根据各象限内点的坐标特征对各选项分析判断利用排除法求解.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).3.小亮的体重为47.95kg,用四舍五入法将47.95精确到0.1的近似值为()A. 48B. 48.0C. 47D. 47.9【答案】B【解析】解:47.95精确到0.1的近似值为48.0.故选:B.把百分位上的数字5进行四舍五入即可.本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一1般有,精确到哪一位,保留几个有效数字等说法.4.若一个三角形的三边长分别为3、4、5,则这个三角形最长边上的中线为()A. 1.8B. 2C. 2.4D. 2.5【答案】D【解析】解:∵32+42=25=52,∴该三角形是直角三角形,×5=2.5.∴12故选:D.根据勾股定理逆定理判断出三角形是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半解答即可.本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的逆定理,判断出直角三角形是解题的关键.5.已知一次函数y=kx+b,函数值y随自变量x的增大而减小,且kb>0,则函数y=kx+b的图象大致是()A. B.C. D.【答案】B【解析】解:∵一次函数y=kx+b,y随着x的增大而减小,∴k<0,∴一次函数y=kx+b的图象经过第二、四象限;∵kb>0,∴b<0,∴图象与y轴的交点在x轴下方,∴一次函数y=kx+b的图象经过第二、三、四象限.故选:B.根据一次函数的性质得到k<0,而kb>0,则b<0,所以一次函数y=kx+b的图象经过第二、四象限,与y轴的交点在x轴下方.本题考查了一次函数的图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当第!异常的公式结尾页,共15页 23 k >0,图象经过第一、三象限,y 随x 的增大而增大;当k <0,图象经过第二、四象限,y 随x 的增大而减小;图象与y 轴的交点坐标为(0,b).6. 如图,点B 、E 、C 、F 在同一条直线上,AB//DE ,AB =DE ,要用SAS 证明△ABC≌△DEF ,可以添加的条件是( )A. ∠A =∠DB. AC//DFC. BE =CFD. AC =DF【答案】C 【解析】解:∵AB//DE ,∴∠B =∠DEF ,可添加条件BC =EF ,理由:∵在△ABC 和△DEF 中,{AB =DE ∠B =∠DEF BC =EF,∴△ABC≌△DEF(SAS);故选:C .根据AB//DE 得出∠B =∠DEF ,添加条件BC =EF ,则利用SAS 定理证明△ABC≌△DEF . 本题考查三角形全等的判定方法,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7. 如图,在△ABC 中,AB 、AC 的垂直平分线分别交BC 于点E 、F ,若∠BAC =112∘,则∠EAF 为( )A. 38∘B. 40∘C. 42∘D. 44∘【答案】D 【解析】解:∵∠BAC =112∘,∴∠C +∠B =68∘,∵EG 、FH 分别为AC 、AB 的垂直平分线,∴EC =EA ,FB =FA ,∴∠EAC =∠C ,∠FAB =∠B ,∴∠EAC +∠FAB =68∘,∴∠EAF =44∘,故选:D .第!异常的公式结尾页,共15页 4 根据三角形内角和定理求出∠C +∠B =68∘,根据线段垂直平分线的性质得到EC =EA ,FB =FA ,根据等腰三角形的性质得到∠EAC =∠C ,∠FAB =∠B ,计算即可.此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.8. 小苏和小林在如图1所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如图2所示.下列叙述正确的是( )A. 两人从起跑线同时出发,同时到达终点B. 小苏跑全程的平均速度大于小林跑全程的平均速度C. 小苏前15s 跑过的路程大于小林前15s 跑过的路程D. 小林在跑最后100m 的过程中,与小苏相遇2次【答案】D【解析】解:由函数图象可知:两人从起跑线同时出发,先后到达终点,小林先到达终点,故A 错误;根据图象两人从起跑线同时出发,小林先到达终点,小苏后到达终点,小苏用的时间多,而路程相同,根据速度=路程时间,所以小苏跑全程的平均速度小于小林跑全程的平均速度,故B 错误;根据图象小苏前15s 跑过的路程小于小林前15s 跑过的路程,故C 错误;小林在跑最后100m 的过程中,两人相遇时,即实线与虚线相交的地方,由图象可知2次,故D 正确;故选:D .5 通过函数图象可得,两人从起跑线同时出发,小林先到达终点,小苏后到达终点,小苏用的时间多,而路程相同,根据速度=路程时间,根据行程问题的数量关系可以求出甲、乙的速度,所以小苏跑全程的平均速度小于小林跑全程的平均速度,根据图象小苏前15s 跑过的路程小于小林前15s 跑过的路程,两人相遇时,即实线与虚线相交的地方有两次,即可解答.本题主要考查了函数图象的读图能力,要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.二、填空题(本大题共8小题,共16.0分)9. 4的平方根是______.【答案】±2【解析】解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.根据平方根的定义,求数a 的平方根,也就是求一个数x ,使得x 2=a ,则x 就是a 的平方根,由此即可解决问题.本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10. 已知点P(−3,4),关于y 轴对称的点的坐标为______.【答案】(3,4)【解析】解:首先可知点P(−3,4),再由平面直角坐标系中关于y 轴对称的点的坐标特点:横坐标互为相反数,纵坐标不变,可得:点P 关于y 轴的对称点的坐标是(3,4).故答案为:(3,4).本题比较容易,考查平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于y 轴对称的点,纵坐标相同,横坐标互为相反数.解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.11. 在实数√16,0.3,√5,27,−π2中,无理数有______个.【答案】2【解析】解:√16=4,0.3,27,是有理数,√5,−π2是无理数,故答案为:2.根据无理数的概念判断即可.本题考查的是无理数的概念,掌握无限不循环小数叫做无理数是解题的关键.x+2的图象上,则m=______.12.若点(m,m+1)在函数y=−12【答案】23x+2的图象上,【解析】解:∵点(m,m+1)在函数y=−12m+2,∴m+1=−12,解得,m=23.故答案为:23x+2的图象上,可以求得m的值,本题得以解决.根据点(m,m+1)在函数y=−12本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.13.下列关于建立平面直角坐标系的认识,合理的有______.①尽量使更多的点在坐标轴上;②尽量使图形关于坐标轴对称;③建立坐标系沟通了“数”与“形”之间的联系.【答案】①②③【解析】解:下列关于建立平面直角坐标系的认识,合理的有①②③,①尽量使更多的点在坐标轴上;②尽量使图形关于坐标轴对称;③建立坐标系沟通了“数”与“形”之间的联系,故答案为:①②③根据平面直角坐标系的性质判断即可.此题考查了关于x轴、y轴对称的点的坐标,以及轴对称图形,熟练掌握平面直角坐标系的性质是解本题的关键.14.如图,在等边△ABC中,D、E分别是边AB、AC上的点,且AD=CE,则∠ADC+∠BEA=______ ∘.【答案】180第!异常的公式结尾页,共15页 6【解析】解:∵△ABC 是等边三角形∴∠A=∠ACB=60∘,AC=BC∵AD=CE∴△ADC≌△CEB(SAS)∴∠ACD=∠CBE∴∠BCD+∠CBE=∠BCD+∠ACD=∠ACB=60∘.∴∠BOC=120∘,∴∠DOE=120∘,∴∠ADC+∠BEA=360∘−60∘−120∘=180∘,故答案为:180.根据等边三角形的性质,得出各角相等各边相等,已知AD=CE,利用SAS判定△ADC≌△CEB,从而得出∠ACD=∠CBE,所以∠BCD+∠CBE=∠BCD+∠ACD=∠ACB=60∘,进而利用四边形内角和解答即可.此题考查了等边三角形的性质及全等三角形的判定方法,常用的判定方法有SSS,SAS,AAS,HL等.15.如图,在△ABC中,∠C=90∘,AD平分∠CAB,AC=6,AD=7,则点D到直线AB的距离是______.【答案】√13【解析】解:作DE ⊥AB于E,∵∠C=90∘,AC=6,AD=7,∴CD=√AD2−AC2=√13,∵AD平分∠CAB,∠C=90∘,DE⊥AB,∴DE=DC=√13.故答案为:√13.作DE⊥AB于E,根据勾股定理求出CD的长,根据角平分线的性质解答即可.本题考查的是勾股定理,角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.16.已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画______条.【答案】77【解析】解:如图所示:当BC1=AC1,AC=CC2,AB=BC3,AC4=CC4,AB=AC5,AB=AC6,BC7=CC7时,都能得到符合题意的等腰三角形.故答案为:7.根据等腰三角形的性质分别利用AB,AC为底以及为腰得出符合题意的图形即可.此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.三、计算题(本大题共2小题,共18.0分)17.阅读理解:∵√4<√5<√9,即2<√5<3,∴1<√5−1<2.∴√5−1的整数部分为1.∴√5−1的小数部分为(√5−1)−1=√5−2解决问题:已知a是√19−3的整数部分,b是√26−2的小数部分,求(−a)3+(b+5)2的平方根.【答案】解:∵16<19<25,∴4<√19<5,∴1<√19−3<2,∴a=1,∵25<26<36,∴5<√26<6,∴3<√26−2<4,∴b=√26−5,∴(−a)3+(b+5)2=−1+26=25,则25的平方根是±5.【解析】估算确定出a与b的值,代入原式计算即可求出平方根.此题考查了估算无理数的大小,以及平方根,熟练掌握估算的方法是解本题的关键.18.如图(1)所示,在A,B两地间有一车站C,一辆汽车从A地出发经C站匀速驶往B地.如图(2)是汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1)填空:a=______km,AB两地的距离为______km;(2)求线段PM、MN所表示的y与x之间的函数表达式;(3)求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?第!异常的公式结尾页,共15页8【答案】240 390【解析】解:(1)由题意和图象可得,a=1502.5×4=240千米,A,B两地相距:150+240=390千米,故答案为:240,390(2)由图象可得,A与C之间的距离为150km汽车的速度1502.5=60km/h,PM所表示的函数关系式为:y1=150−60xMN所表示的函数关系式为:y2=60x−150(3)由y1=60得150−60x=60,解得:x=1.5由y2=60得60x−150=60,解得:x=3.5由图象可知当行驶时间满足:1.5h≤x≤3.5h,小汽车离车站C的路程不超过60千米(1)根据图象中的数据即可得到A,B两地的距离;(2)根据函数图象中的数据即可得到两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;(3)根据题意可以分相遇前和相遇后两种情况进行解答.本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想和函数的思想解答.四、解答题(本大题共7小题,共50.0分)19.已知:3x2=12,求x的值.【答案】解:∵3x2=12,∴x2=4,∴x=±2.【解析】直接利用平方根的性质计算得出答案.此题主要考查了平方根,正确把握平方根的定义是解题关键.20.计算:√(−3)2+(3−π)0−|1−√2|+√273.【答案】解:原式=3+1−(√2−1)+3=3+1−√2+1+3=8−√2.9【解析】直接利用零指数幂的性质以及绝对值、立方根的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.21.已知:如图,在△ABC中,AB=AC,BE、CD是中线.求证:BE=CD.【答案】证明:∵AB=AC,∴∠ABC=∠ACB,∵BE、CD是中线,∴BD=12AB,CE=12AC,∴BD=CE,在△BCD和△CBE中,{BD=CE amp; ∠ABC=∠ACB amp; BC=CB amp; ,∴△BCD≌△CBE(SAS),∴BE=CD.【解析】由等腰三角形的性质得出∠ABC=∠ACB,由已知条件得出BD=CE,证明△BCD≌△CBE,得出对应边相等,即可得出结论.本题考查了等腰三角形的性质、全等三角形的判定与性质;熟练掌握等腰三角形的性质,证明三角形全等得出对应边相等是解决问题的关键.22.如图,点D是△ABC内部的一点,BD=CD,过点D作DE⊥AB,DF⊥AC,垂足分别为E、F,且BE=CF.求证:△ABC为等腰三角形.【答案】证明:∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90∘.在Rt△BDE和Rt△CDF中,{BD=CDBE=CF第!异常的公式结尾页,共15页10∴Rt△BDE≌Rt△CDF(HL),∴∠EBD=∠FCD,∵BD=CD,∴∠DBC=∠DCB,∴∠DBC+∠EBD=∠DCB+∠FCD,即∠ABC=∠ACB,∴AB=AC.【解析】欲证明AB=AC,只要证明∠ABC=∠ACB即可;本题考查全等三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.23.请你用学习“一次函数”时积累的经验和方法研究函数y=|x|的图象和性质,并解决问题.(1)完成下列步骤,画出函数y=|x|的图象;①列表、填空;x…−3−2−10123…y…3______ 1______ 123…②描点:③连线(2)观察图象,当x______时,y随x的增大而增大;(3)结合图象,不等式|x|<x+2的解集为______.【答案】2 0 >0x>−1【解析】解:(1)①填表正确x…−3−2−10123…y…3210123…②③画函数图象如图所示:(2)由图象可得:x>0时,y随x的增大而增大;(3)由图象可得:不等式|x|<x+2的解集为x>−1;故答案为:2;0;>0;x>−1.(1)根据函数值填表即可;(2)根据图象得出函数性质即可;(3)根据图象得出不等式的解集即可.本题考查了一次函与不等式的关系,一次函数的图象等知识点.注意:求正比例函数,只要一对x,y的值就可以,因为它只有一个待定系数;而求一次函数y=kx+b,则需要两组x,y的值.24.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:x/元…152025…y/件…252015…已知日销售量y是销售价x的一次函数.(1)求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?【答案】解:(1)设日销售量y(件)与每件产品的销售价x(元)之间的函数表达式是y= kx+b,15k+b=25,{20k+b=20k=−1,解得,{b=40即日销售量y(件)与每件产品的销售价x(元)之间的函数表达式是y=−x+40;(2)当每件产品的销售价定为35元时,此时每日的销售利润是:(35−10)(−35+40)= 25×5=125(元),即当每件产品的销售价定为35元时,此时每日的销售利润是125元.【解析】(1)根据题意可以设出y与x的函数关系式,然后根据表格中的数据,即可求出日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;(2)根据题意可以计算出当每件产品的销售价定为35元时,此时每日的销售利润.本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.25.(1)问题解决:x+1与x轴交于点A,与y①如图1,在平面直角坐标系xOy中,一次函数y=14轴交于点B,以AB为腰在第二象限作等腰直角△ABC,∠BAC=90∘,点A、B的坐标分别为A______、B______.②求①中点C的坐标.小明同学为了解决这个问题,提出了以下想法:过点C向x轴作垂线交x轴于点D.请你借助小明的思路,求出点C的坐标;(2)类比探究数学老师表扬了小明同学的方法,然后提出了一个新的问题,如图2,在平面直角坐标系xOy中,点A坐标(0,−6),点B坐标(8,0),过点B作x轴垂线l,点P是l 上一动点,点D是在一次函数y=−2x+2图象上一动点,若△APD是以点D为直角顶点的等腰直角三角形,请直接写出点D与点P的坐标.【答案】(−4,0)(0,1)x+1,【解析】解:(1)针对于一次函数y=14令x=0,∴y=1,∴B(0,1),令y=0,x+1=0,∴14∴x=−4,∴A(−4,0),故答案为(−4,1),(0,1);(2)如图1,由(1)知,A(−4,0),B(0,1),∴OA=4,OB=1,过点C作CE⊥x轴于E,∴∠AEC=∠BOA=90∘,∴∠CAE+∠ACE=90∘,∵∠BAC=90∘,∴∠CAE+∠BAO=90∘,∴∠CAE=∠ABO,∵△ABC是等腰直角三角形,∴AC=AB,在△AEC和△BOA中,{∠AEC=∠BOA=90∘∠CAE=∠ABOAC=BA,∴△AEC≌△BOA(AAS),∴CE=OA=4,AE=OB=1,∴OE=OA+AE=5,∴C(−5,4);(3)如图2,∵过点D作DF⊥y轴于F,延长FD交BP于G,∴DF+DG=OB=8,∵点D在直线y=−2x+2上,∴设点D(m,−2m+2),∴F(0,−2m+2),∵BP⊥x轴,B(8,0),∴G(8,−2m+2),同(2)的方法得,△AFD≌△DGP(AAS),∴AF=DG,DF=PG,如图2,DF=m,∵DF+DG=DF+AF=8,∴m+|2m−8|=8,∴m=163或m=0,∴D(0,2)或(163,−263),当m=0时,G(8,2),DF=0,∴PG=0,∴P(8,2),当m=163时,G(8,−263),DF=163,∴PG=263,∴P(8,−23),即:D(0,2),P(8,2)或D(163,−263),P(8,−23).(1)利用坐标轴上点的特点建立方程求解,即可得出结论;(2)先构造出△AEC≌△BOA,求出AE,CE,即可得出结论;(3)同(2)的方法构造出△AFD≌△DGP(AAS),分两种情况,建立方程求解即可得出结论.此题是一次函数综合题,主要考查了全等三角形的判定和性质,方程的思想,构造全等三角形是解本题的关键.。
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.化简式子1(1)1a a ---的结果为( ) A .1a -B .1a -C .1a --D .1a -- 【答案】D【分析】根据二次根式有意义的条件即可求出a 的取值范围,然后根据二次根式的除法公式和分母有理化化简即可.【详解】解:101a->- 10a ∴-<,即1a >,1(1)(1)(1)(11111)111a a a a a a a a a a a ∴--=-----=-=--=-⋅-- 故选:D .【点睛】 此题考查的是二次根式的化简,掌握二次根式有意义的条件、二次根式的除法公式和分母有理化是解题关键.2.如图,已知正比例函数y 1=ax 与一次函数y 1=12x+b 的图象交于点P .下面有四个结论:①a <0; ②b <0; ③当x >0时,y 1>0;④当x <﹣1时,y 1>y 1.其中正确的是( )A .①②B .②③C .①③D .①④【答案】D 【分析】根据正比例函数和一次函数的性质判断即可.【详解】因为正比例函数y 1=ax 经过二、四象限,所以a<0,①正确;一次函数212y x b =+ \过一、二、三象限,所以b>0,②错误; 由图象可得:当x>0时,y 1<0,③错误;当x<−1时,y 1>y 1,④正确;故选D.【点睛】考查一次函数的图象与系数的关系,一次函数与不等式,熟练掌握和灵活运用相关知识是解题的关键. 3.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆∆≌的是( )A .CB CD =B .BAC DAC ∠=∠ C .BCA DCA ∠=∠D .90B D ∠=∠=︒【答案】C 【分析】由图形可知AC=AC ,结合全等三角形的判定方法逐项判断即可.【详解】解:在△ABC 和△ADC 中∵AB=AD ,AC=AC ,A 、添加CB CD =,根据SSS ,能判定ABC ADC ∆∆≌,故A 选项不符合题意;B 、添加BAC DAC ∠=∠,根据SAS 能判定ABC ADC ∆∆≌,故B 选项不符合题意;C .添加BCA DCA ∠=∠时,不能判定ABC ADC ∆∆≌,故C 选项符合题意;D 、添加90B D ∠=∠=︒,根据HL ,能判定ABC ADC ∆∆≌,故D 选项不符合题意;故选:C .【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法是解题关键,即SSS 、SAS 、ASA 、AAS 和HL . 4.要说明命题“若 a > b ,则 a >b ”是假命题,能举的一个反例是( )A .3,2a b ==B .4,1a b ==-C .1,0a b ==D .1,2a b ==-【答案】D【分析】作为反例,要满足条件但不能得到结论,然后根据这个要求对各选项进行判断即可.【详解】解:A 、a=3,b=2,满足a >b ,且满足|a|>|b|,不能作为反例,故错误;B 、a=4,b=-1,满足a >b ,且满足|a|>|b|,不能作为反例,故错误;C 、a=1,b=0;满足a >b ,且满足|a|>|b|,不能作为反例,故错误;D 、a=-1,b=-2,满足a >b ,但不满足|a|>|b|,∴a=-1,b=-2能作为证明原命题是假命题的反例, 故选D .【点睛】本题考查了命题与定理;熟记:要判断一个命题是假命题,举出一个反例就可以.5.已知等腰三角形的一个外角等于110︒,则它的顶角是( )A .70︒B .40︒C .70︒或55︒D .70︒或40︒【答案】D【分析】根据等腰三角形的性质定理与三角形的内角和定理,分两种情况:①若等腰三角形顶角的外角等于110°,②若等腰三角形底角的外角等于110°,分别求出答案即可.【详解】①若等腰三角形顶角的外角等于110°,则它的顶角是:180°-110°=70°,②若等腰三角形底角的外角等于110°,则它的顶角是:180°-2×(180°-110°)=40°, ∴它的顶角是:70︒或40︒.故选D .【点睛】本题主要考查等腰三角形的性质定理与三角形的内角和定理,掌握等腰三角形的性质定理是解题的关键. 6.如图,在ABC 中,90,ACB ∠=︒过点C 作CD AB ⊥于,30D A ∠=︒,1,BD =则AD 的长是( )A .1B .2C .3D .4【答案】C 【分析】由余角性质可知∠BCD=∠A,根据BD=1可以得到CD 的长度,进一步得到AD 的长度.【详解】由题意,∠BCD 和∠A 都与∠B 互余,∴∠BCD=∠A=30∴BC=2BD=2,CD=3BD=3,AC=2CD=23,AD=3CD=3×3=1.故选C .【点睛】本题考查直角三角形的性质,熟练掌握30角的对边、邻边与斜边的关系是解题关键.7.如图,点B F C E 、、、在一条直线上,,AB DE BF CE ==,那么添加下列一个条件后,仍不能够判定ABC DEF △≌△的是( )A .//AB DE B .AC DF = C .90AD ︒∠=∠= D .//AC FD【答案】D【分析】根据题意可知两组对应边相等,所以若要证明全等只需证明第三边也相等或证明两边的夹角相等或证明一边的对角是90°利用HL 定理证明全等即可.【详解】解:BF CE =,∴BC EF =,又∵AB DE =,当//AB DE ,可得∠B=∠E ,利用SAS 可证明全等,故A 选项不符合题意;当AC DF =,利用SSS 可证明全等,故B 选项不符合题意;当90A D ︒∠=∠=,利用HL 定理证明全等,故C 选项不符合题意;当//AC FD ,可得∠ACB=∠DFC ,SSA 无法证明全等,故D 选项符合题意.故选:D .【点睛】本题主要考查了全等三角形的判定,全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件.8.如图,已知一次函数y kx b =+的图象经过A (0,1)和B (2,0),当x >0时, y 的取值范围是( )A .1y <;B .0y <;C .1y >;D .2y <【答案】A 【分析】观察图象可知,y 随x 的增大而减小,而当x=0时,y=1,根据一次函数的增减性,得出结论.【详解】解:把A (0,1)和B (2,0)两点坐标代入y=kx+b 中,得120b k b =⎧⎨+=⎩,解得121k b ⎧=-⎪⎨⎪=⎩ ∴y=-12x+1, ∵-12<0,y 随x 的增大而减小, ∴当x >0时,y <1.故选A .【点睛】首先能够根据待定系数法正确求出直线的解析式.在直线y=kx+b 中,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.9的值是( )A .16B .2C .2±D . 【答案】B【分析】根据算术平方根的定义求值即可.=1.故选:B .【点睛】本题考查算术平方根,属于基础题型.10.练习中,小亮同学做了如下4道因式分解题,你认为小亮做得正确的有①3(1)(1)x x x x x +=+- ②2222()x xy y x y -+=-③21(1)1a a a a -+=-+ ④2216(4)(4)x y x y x y -=+-A .1个B .2个C .3个D .4个 【答案】B【解析】试题解析:①x 3+x=x (x 2+1),不符合题意;②x 2-2xy+y 2=(x-y )2,符合题意;③a 2-a+1不能分解,不符合题意;④x 2-16y 2=(x+4y )(x-4y ),符合题意,故选B二、填空题11.(填>或<)【答案】>32,即可解答本题. 【详解】解:3>5>2,1∴;故答案为:>.【点睛】本题考查的是实数的大小比较,确定无理数的取值范围是解决此题的关键.12.数据-3、-1、0、4、5的方差是_________.【答案】9.1.【分析】根据公式求出这组数据的平均数与方差.【详解】这组数据的平均数是:(3)(1)04515x -+-+++== 方差是2222221[(31)(11)(01)(41)(51)]9.25s =--+--+-+-+-=. 故答案为:9.1.【点睛】本题考查了求数据的平均数与方差的问题,解题时利用平均数与方差的公式进行计算即可.13.如图,等边OAB 的边长为23,则点B 的坐标为__________.【答案】()3,3 【分析】过B 作BD ⊥OA 于D ,则∠BDO=90°,根据等边三角形性质求出OD ,根据勾股定理求出BD ,即可得出答案.【详解】过B 作BD ⊥OA 于D ,则∠BDO=90°,∵△OAB 是等边三角形,∴OD=AD=12OA=1233, 在Rt △BDO 中,由勾股定理得:22(23)(3)3-=,∴点B 33),故答案为:33).【点睛】本题考查了等边三角形的性质,坐标与图形性质和勾股定理等知识点,能正确作出辅助线是解此题的关键. 14.如图:点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,交OB 于N ,P 1P 2=15,则△PMN 的周长为___________.【答案】15【分析】P 点关于OB 的对称是点P 1,P 点关于OA 的对称点P 2,由轴对称的性质则有PM=P 1M ,PN=P 2N ,继而根据三角形周长公式进行求解即可.【详解】∵P 点关于OA 的对称是点P 1,P 点关于OB 的对称点P 2,∴OB 垂直平分P P 1,OA 垂直平分P P 2,∴PM=P 1M ,PN=P 2N ,∴△PMN 的周长为PM+PN+MN=MN+P 1M+P 2N=P 1P 2=15,故答案为:15.【点睛】本题考查轴对称的性质.对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.152+1的倒数是____. 21. 2+12+1,然后利用分母有理化的知识求解即可求得答案. 2212+1(21)(21)=+-. 2+121. 21.【点睛】此题考查了分母有理化的知识与倒数的定义.此题比较简单,注意二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.16.若一个多边形的内角和等于720°,则从这个多边形的一个顶点引出对角线__________条.【答案】1【解析】根据多边形的内角和公式求出边数,从而求出这个多边形从一个顶点出发引出的对角线的条数.【详解】设多边形的边数是n,则(n﹣2)•180°=720°,解得n=6,∴从这个多边形的一个顶点引出对角线是:6﹣1=1(条),故答案为1.【点睛】本题考查多边形的对角线,多边形内角与外角,关键是要先根据多边形的内角和公式求出边数.17x的取值范围为______.【答案】x≤1.【解析】解:依题意得:1﹣x≥2.解得x≤1.故答案为:x≤1.三、解答题18.某服务厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:(I)买一套西装送一条领带;(II)西装和领带均按定价的90%付款.某超市经理现要到该服务厂购买西装20套,领带若干条(不少于20条).(1)设购买领带为x(条),采用方案I购买时付款数为y1(元),采用方案II购买时付款数为II y(元).分别写出采用两种方案购买时付款数与领带条数x之间的函数关系式;(2)就领带条数x讨论在上述方案中采用哪种方案购买合算.【答案】(1)y I=40x+3200(x≥20);y II=36x+3600(x≥20);(2)买1条领带时,可采用两种方案之一;购买领带超过1条时,采用方案II购买合算;购买领带20条以上不超过1条时,采用方案I购买合算【分析】(1)根据两种方案的购买方法即可列式计算得到答案;(2)先计算y I=y II时的x值,再分析超过1条时和20条以上不超过1条时的购买方案.【详解】解:(1)y I=200×20+(x﹣20)×40=40x+3200(x≥20)y II=200×20×90%+x×40×90%=36x+3600(x≥20).(2)当y I=y II时,40x+3200=36x+3600,解得x=1.即:买1条领带时,可采用两种方案之一.当y I>y II时,40x+3200>36x+3600,解得x>1,即购买领带超过1条时,采用方案II合算.当y I<y II时,40x+3200<36x+3600,解得x<1,即购买领带20条以上不超过1条时,采用方案I购买合算.【点睛】此题考查运用一次函数解决实际问题,正确理解题意列得函数关系式是解题的关键,(2)是方案选择问题,注意分类思想.19.某超市第一次用6000元购进甲、乙两种商品,其中甲商品件数的2倍比乙商品件数的3倍多20件,甲、乙两种商品的进价和售价如下表(利润=售价-进价)(1)该超市第一次购进甲、乙两种商品的件数分别是多少?(2)该超市将第一次购进的甲、乙两种商品全部卖出后一共可获得多少利润?(3)该超市第二次以同样的进价又购进甲、乙两种商品.其中甲商品件数是第一次的2倍,乙商品的件数不变.甲商品按原价销售,乙商品打折销售.第二次甲、乙两种商品销售完以后获得的利润比第一次获得的利润多280元,则第二次乙商品是按原价打几折销售的?【答案】(1)该超市第一次购进甲种商品160件,购进乙种商品100件;(2)该超市将第一次购进的甲、乙两种商品全部卖出后一共可获得2160元;(3)第二次乙商品是按原价打八五折销售.【分析】(1)设第一次购进甲种商品x件,购进乙种商品y件,根据单价×数量=总价,即可得出关于x、y 的二元一次方程组,解之即可得出结论;(2)根据总利润=单件利润×销售数量,列式计算即可求出结论;(3)设第二次乙种商品是按原价打m折销售,根据总利润=单件利润×销售数量,即可得出关于m的一元一次方程,解之即可得出结论.【详解】解:(1)设第一次购进甲种商品x件,购进乙种商品y件,根据题意得:20286000 2320x yx y+=⎧⎨=+⎩,解得160100 xy=⎧⎨=⎩.答:该超市第一次购进甲种商品160件,购进乙种商品100件.(2)(26﹣20)×160+(40﹣28)×100=2160(元).答:该超市将第一次购进的甲、乙两种商品全部卖出后一共可获得2160元.(3)设第二次乙种商品是按原价打m折销售的,根据题意得:(26﹣20)×160×2+(40×m10﹣28)×100=2160+360,解得:m=8.1.答:第二次乙商品是按原价打八五折销售.【点睛】本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据总利润=单件利润×销售数量列式计算;(3)找准等量关系,正确列出一元一次方程.20.如图,已知A(-1,2),B(-3,1),C(-4,3).(1)作△ABC关于x轴的对称图形△A1B1C1,写出点C关于x轴的对称点C1的坐标;(2)作△ABC关于直线l1:y=-2(直线l1上各点的纵坐标都为-2)的对称图形△A2B2C2,写出点C关于直线l1的对称点C2的坐标.(3)作△ABC关于直线l2:x=1(直线l2上各点的横坐标都为1)的对称图形△A3B3C3,写出点C关于直线l2的对称点C3的坐标.(4)点P(m,n)为坐标平面内任意一点,直接写出:点P关于直线x=a(直线上各点的横坐标都为a)的对称点P1的坐标;点P关于直线y=b(直线上各点的纵坐标都为b)的对称点P2的坐标.【答案】(1)图见解析;C1的坐标为(-4,-3);(2)图见解析;C2的坐标为(-4,-7);(3)图见解析;C3的坐标为(6,3);(4)点P1的坐标为(2a-m,n);P2的坐标为(m,2b-n)【分析】(1)根据x轴为对称轴,利用轴对称的性质,即可得到△ABC关于x轴的对称图形△A1B1C1,进而得到点C关于x轴的对称点C1的坐标;(2)根据直线l1:y=-2为对称轴,利用轴对称的性质,即可得到△ABC关于直线l1:y=-2的对称图形△A2B2C2,进而得到点C关于直线l1的对称点C2的坐标.(3)根据直线l2:x=1为对称轴,利用轴对称的性质,即可得到△ABC关于直线l2:x=1的对称图形△A3B3C3,进而得到点C关于直线l2的对称点C3的坐标.(4)根据对称点到对称轴的距离相等,即可得到点P关于直线x=a的对称点P1的坐标;以及点P关于直线y=b的对称点P2的坐标.【详解】(1)如图所示,△A1B1C1即为所求,C1的坐标为(-4,-3);(2)如图所示,△A2B2C2即为所求,C2的坐标为(-4,-7);(3)如图所示,△A3B3C3即为所求,C3的坐标为(6,3);。
2018-2019学年重庆一中八年级(上)期末数学试卷一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C、D的四个答案,其中只有一个是正确的,请将各小题所选答案的代号填入答题卡相应的表格内1.(4分)下列各数中,是无理数的是()A.B.C.﹣2D.0.32.(4分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.(4分)计算(﹣xy2)2的结果是()A.2x2y4B.﹣x2y4C.x2y2D.x2y44.(4分)分式有意义,则x的取值范围是()A.x>3B.x<3C.x≠3D.x≠﹣35.(4分)△ABC三边长分别为a、b、c,则下列条件不能判断△ABC是直角三角形的是()A.a=3,b=4,c=5B.a=4,b=5,c=6C.a=6,b=8,c=10D.a=5,b=12,c=136.(4分)下列命题是假命题的是()A.两直线平行,同位角相等B.全等三角形面积相等C.直角三角形两锐角互余D.若a+b<0,那么a<0,b<07.(4分)估计(2+)•的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间8.(4分)如果直线y=3x+b与两坐标轴围成的三角形面积等于2,则b的值是()A.±3B.3C.D.29.(4分)如图,直线y=﹣x﹣1与y=kx+b(k≠0且k,b为常数)的交点坐标为(﹣2,l),则关于x的不等式﹣x﹣1<kx+b的解集为()A.x>﹣2B.x<﹣2C.x>1D.x<l10.(4分)如图,把Rt△ABC放在平面直角坐标系中,点B(1,1)、C(5,1),∠ABC=90°,AC=4.将△ABC沿y轴向下平移,当点A落在直线y=x﹣2上时,线段AC扫过的面积为()A.B.C.D.11.(4分)如图,Rt△ABC的两边OA,OB分别在x轴、y轴上,点O与原点重合,点A(﹣3,0),点B(0,3),将Rt△AOB沿x轴向右翻滚,依次得到△1,△2,△3,…,则△2020的直角顶点的坐标为()A.(673,0)B.(6057+2019,0)C.(6057+2019,)D.(673,)12.(4分)已知整数k使得关于x、y的二元一次方程组的解为正整数,且关于x的不等式组有且仅有四个整数解,则所有满足条件的k的和为()A.4B.9C.10D.12二、填空题:(本大题6个小题,每小题4分,共24分)请将正确答案填在答题卡相应的13.(4分)因式分解:5x2﹣2x=.14.(4分)+(π﹣3.14)0﹣(﹣)﹣2=.15.(4分)一次函数y=kx+b的图象经过点(0,3),且与直线y=﹣x+1平行,则该一次函数解析式为.16.(4分)若m,n为实数,且m=+8,则m+n的算术平方根为.17.(4分)甲、乙两人在同一直线道路上同起点、同方向、同时出发,分别以不同的速度匀速跑步1800米,当甲第一次超出乙300米时,甲停下来等候乙.甲、乙会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息.在整个跑步过程中,甲、乙两人之间的距离y(米)与乙出发的时间x(s)之间的关系如图所示则当甲到达终点时,乙跑了米.18.(4分)A、B、C、D、E、F六人按顺序围成一圈做游戏,每人抽一个数,已知每人按顺序抽到数字的两倍与其他五个人的平均数之差分别为9、10、13、15、23、30,则C抽到的数字是.三、解答题(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤19.(8分)解下列方程组或者不等式组(1)解方程组:(2)解不等式组:20.(8分)作图题:(不要求写作法)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣3,4),B(﹣3,1),C(﹣1,3).(1)作图:将△ABC先向右平移4个单位,再向下平移3个单位,则得到△A1B1C1,求作△A1B1C1;(2)求△BCC1面积.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤21.(10分)重庆一中田径代表队在2018年重庆市青少年田径锦标赛上勇夺金牌8枚,银牌4枚,铜牌8枚,喜讯再次点燃了同学们热爱运动的热情为了解学生参与运动的情况,学校随机抽查了部分学生每日运动时间的情况,并将调查学生每日运动时间情况条形统计图学生每日运动时间情况扇形统计图.(1)被抽查的学生总数是人,并在图中补全条形统计图;(2)写出每日运动时间的中位数是小时,众数是小时;(3)求这批被调查学生平均每日运动的时间.22.(10分)如图,直线AB:y=2x+6与直线AC:y=﹣2x+2相交于点A,直线AB与x轴交于点B,直线AC与x 轴交于点D,与y轴交于点C.(1)求交点A的坐标;(2)求△ABC的面积.23.(10分)为了满足学生的需求,重庆一中mama超市准备购进甲、乙两种绿色袋装食品.其中甲乙两种绿色袋装食品的进价和售价如表:已知:超市购进200袋甲种袋装食品或者购进300袋乙种袋装食品所用金额相等(1)求n的值;(2)要使购进的甲、乙两种绿色袋装食品共1200袋的总利润(利润=售价﹣进价)不少于6400元,且不超过6420元,问该mama超市有哪几种进货方案?要获得最大利润该如何进货?(请写出具体方案)24.(10分)在△ABC中,AB=AC,点D为BC的中点,连接AD.(1)如图1,H为线段CB延长线上的一点,连接AH,若∠ACB=60°,∠AHC=45°,AH=2,求HC;(2)如图2,点E为AD上任意一点,过点E作EF⊥AD交AC于点F,连接BF,取BF中点M,连接MD和ME,求证:ME=MD.五、解答题:(本大题2个小题,25题10分,26题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤25.(10分)阅读下列材料:对于一个任意四位正整数,若其千位数字与百位数字组成的两位数是它的十位数字与个位数字组成的两位数的两倍,则称这样的四位正整数为“双倍数”,如6231,其千位数字与百位数字组成的两位数为62,其十位数字与个位数字组成的两位数是31,62是31的两倍,则称6231为“双倍数”(1)猜想任意一个“双倍数”能否被67整除,并说明理由;(2)若一个双倍数的各个数位数字分别加上1组成一个新的四位正整数,这个新的四位正整数能被7整除,求所有满足条件的“双倍数”.26.(12分)如图,平面直角坐标系中直线l1:y=x与直线l2:y=﹣x+8相交于点A,直线l2与x轴相交于点B,与y轴相交于点C,点D(﹣6,0),点F(0,6),连接DF.(1)如图1,求点A的坐标;(2)如图1,若将△ODF向x轴的正方向平移a个单位,得到△O′D′F′,点D与点B重合时停止移动,设△O′D′F′与△OAB重叠部分的面积为S,请求出S与a的关系式,并写出a的取值范围;(3)如图2,现将△ODF向x轴的正方向平移12个单位得到△O1D1F1,直线O1F1与直线l2交于点G,再将△O1GB绕点G旋转,旋转角度为α(0°≤α≤360°),记旋转后的三角形为△O1′GB′,直线O1′G与直线l1的交点为M,直线GB′与直线l1的交点为N,是否存在△GMN为等腰三角形?若存在请直接写出MN的值;若不存在,请说明理由.2018-2019学年重庆一中八年级(上)期末数学试卷参考答案与试题解析一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C、D的四个答案,其中只有一个是正确的,请将各小题所选答案的代号填入答题卡相应的表格内1.【解答】解:A.是无理数;B.是分数,属于有理数;C.﹣2是整数,属于有理数;D.0.3是有限小数,即分数,属于有理数;故选:A.2.【解答】解:A、不是轴对称图形,也不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误.故选:C.3.【解答】解:(﹣xy2)2=x2y4,故选:D.4.【解答】解:∵x﹣3≠0,∴x≠3.故选:C.5.【解答】解:A.∵32+42=52,∴△ABC是直角三角形;B.∵52+42≠62,∴△ABC不是直角三角形;C.∵62+82=102,∴△ABC是直角三角形;D.∵122+42=132,∴△ABC是直角三角形;故选:B.6.【解答】解:A、两直线平行,同位角相等,所以A选项的命题为真命题;B、全等三角形面积相等,所以B选项的命题为真命题;C、直角三角形两锐角互余,所以C选项的命题为真命题;D、当a=﹣3,b=1,所以D选项的命题为假命题.故选:D.7.【解答】解:(2+)•=2+2,∵2<2<3,∴4<2+2<5.故选:B.8.【解答】解:设直线y=3x+b与x轴交于点A,与y轴交于点B.当x=0时,y=3x+b=b,∴点B的坐标为(0,b);当y=0时,3x+b=0,解得:x=﹣.∵S△AOB=OA•OB=2,∴×|b|×|﹣|=2,∴b=±2.故选:C.9.【解答】解:如图,直线y=﹣x﹣1与y=kx+b(k≠0且k,b为常数)的交点坐标为C(﹣2,l),所以关于x的不等式﹣x﹣1<kx+b的解集为x>﹣2.故选:A.10.【解答】解:∵点B(1,1)、C(5,1),∠ABC=90°,AC=4,∴BC=4,∴AB==4,∴点A的坐标为(1,5),将x=1代入y=x﹣2得,y=﹣,∴线段AC扫过的面积为:|5﹣(﹣)|×(5﹣1)==,故选:D.11.【解答】解:∵2020÷3=673. (1)∴△2020的形状如同△4∴△2020的直角顶点的纵坐标为0而OB1+B1A2+A2O2=3+6+3=9+3∴△2020的直角顶点的横坐标为(9+3)×673=6057+2019故选:B.12.【解答】解:解方程组得,∵方程组的解为正整数,∴,∴k=4,6;解不等式组得,,∵不等式组有且仅有四个整数解,∴1<≤2,∴3<k≤6,∴k=4,5,6,∴所有满足条件的k的和=4+6=10,故选:C.二、填空题:(本大题6个小题,每小题4分,共24分)请将正确答案填在答题卡相应的13.【解答】解:5x2﹣2x=x(5x﹣2),故答案为:x(5x﹣2).14.【解答】解:原式=﹣2+1﹣9=﹣10.故答案为:﹣10.15.【解答】解:设一次函数解析式为y=kx+b,把(0,3)代入得b=3,∵直线y=kx+b与直线y=﹣x+1平行,∴k=﹣,∴一次函数解析式为y=﹣x+3.故答案为y=﹣x+3.16.【解答】解:依题意得:1﹣n≥0且n﹣1≥0,解得n=1,所以m=8,所以m+n的算术平方根为:==3.故答案是:3.17.【解答】解:由题意得乙的速度:1800÷1200=1.5(米/秒),甲的速度:1.5+300÷300=2.5 (米/秒),∴两人相距300m时,甲跑的路程是2.5×300=750(米),此时离终点距离为1800﹣750=1050(米),∴从会合到终点甲的用时是1050÷2.5=420(秒)乙从会合点跑420秒路程是420×1.5=630(米),∴当甲到终点时,乙跑的总路程是750+630=1380(米).故答案为:1380.18.【解答】解:设A、B、C、D、E、F六人抽到的数分别为:a,b,c,d,e,f,由题意可得解得:c=15故答案为:15三、解答题(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤19.【解答】解:(1)整理得①﹣②得7y=﹣1,解得y=﹣,把y=﹣代入②得x+=2,解得x=,所以方程组的解为;(2)解不等式①得,x≤4;解不等式②得x>﹣5,不等式组的解集为﹣5<x≤4.20.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)如图,△BCC1面积为:6×3﹣×1×6﹣×2×2﹣×3×4=18﹣3﹣2﹣6=7.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤21.【解答】解:(1)被抽查的学生总数是10÷10%=100人,每日运动时间为1.2小时的学生人数为100×20%=20人,补全条形统计图如图所示;故答案为:100;(2)每日运动时间的中位数是40小时,众数是40小时;故答案为:40,40;(3)这批被调查学生平均每日运动的时间=×(0.2×10+0.5×15+1×40+1.2×20+1.6×10+2×5)=0.995小时.22.【解答】解:(1)联立直线AB,AC的解析式成方程组,得:,解得:,∴交点A的坐标为(﹣1,4).(2)设直线AB与y轴交于点E,如图所示.当x=0时,y=2x+6=6,y=﹣2x+2=2,∴点E的坐标为(0,6),点C的坐标为(0,2),∴OE=6,OC=2,CE=4.当y=0时,2x+6=0,解得:x=﹣3,∴点B的坐标为(﹣3,0),OB=3.∴S△ABC=S△BOE﹣S△BOC﹣S△ACE,=×3×6﹣×3×2﹣×4×1,=4.23.【解答】解:(1)依题意得:200(n+2)=300(n﹣2),解得:n=10,(2)设购进甲种绿色袋装食品x袋,表示出乙种绿色袋装食品(1200﹣x)袋,根据题意得,,解得:≤x≤270,∵x是正整数,270﹣266.7+1=4,∴共有4种方案;∵甲的利润大于乙的利润,要获得最大利润该应该进货时甲最大才行,即甲进货270袋,乙进货1200﹣270=930袋.24.【解答】(1)解:∵AB=AC,∠ACB=60°,∴△ABC是等边三角形,∴BC=AB,∠ABC=∠BAC=60°,∵点D为BC的中点,∴AD⊥BC,CD=BD=BC,∠BAD=30°,∵∠AHC=45°,AH=2,∴△ADH是等腰直角三角形,∴AD=DH=AH=2,∵∠BAD=30°,∴AD=BD=2,∴CD=BD=,∴HC=DH+CD=2+;(2)证明:延长FE、DM交于点G,如图2所示:∵EF⊥AD,AD⊥BC,∴∠DEG=90°,EF∥BC,∴∠G=∠BDM,∵M为BF的中点,∴BM=FM,在△BDM和△FGM中,,∴△BDM≌△FGM(AAS),∴DM=GM,∴EM=DG=MD.五、解答题:(本大题2个小题,25题10分,26题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤25.【解答】解:设正整数m=D4D3D2D1,其中D4、D3、D2、D1表示各个位置上的数字,且为0到9之间的整数(D4≠0),根据“双倍数”的定义,有10D4+D3=2(10D2+D1).(1)假设m=D4D3D2D1是“双倍数”,则有m=1000D4+100D3+10D2+D1=100(10D4+D3)+10D2+D1,根据“双倍数”定义,有m=100×2(10D2+D1)+10D2+D1=2010D2+201D1=201(10D2+D1),则==3(10D2+D1)=30D2+3D1为整数,由此可见,任意一个“双倍数”都能被67整除;(2)由题意,新组成的四位正整数可表示为:1000(D4+1)+100(D3+1)+10(D2+1)+D1+1=201(10D2+D1)+1111因为=N,也就是2010D2+201D1+1111可以整除7,而1111÷7=158……5,所以需要“双倍数”(2010D2+201D1)÷7=n……2才可以整除7故所有满足这样条件的“双倍数”(用排除法)有:2613,502526.【解答】解:(1)由题意得,解得,∴A(6,).(2)在y=﹣x+8中,令y=0,得﹣x+8=0,∴x=24∴B(24,0),令x=0,y=,∴C(0,),在Rt△BOC中,tan∠BCO===,∴∠BCO=60°,在Rt△DOF中,tan∠DFO===,∴∠DFO=30°.分两种情况:①当0≤a≤6时,如图1,F′O′交直线l1于点E,则O′(a,0),∴y=a,∴E(a,a),即EO′=a,OO′=a,∴S=OO′•EO′==,②当6<a≤30时,如图2,OO′=a,∴H(a,)F′H=﹣()=∵F′O′∥OC,∴∠BHO′=∠BCO=60°∵∠D′F′O′=∠DFO=30°,∴∠F′SH=90°,∴SH=F′H=(),F′S=SH=(),∴S=S△F′O′D′﹣S△F′HS=F′O′•D′O′﹣F′S•SH=×6×6﹣×()×()=∴.(3)存在,MN=8或24.∵F1O1∥y轴,∴∠BGO1=∠BCO=60°,∴△GMN为等腰三角形时,∠MGN=60°或120°,分两种情况:①当∠MGN=60°时,△GMN必为等边三角形,如图3,此时旋转角α=30°或90°或270°,∵OO1=12,∴BO1=12,∴BG===8,AB=OB cos∠OBC=24cos30°=12,∴AG=AB﹣BG=12﹣8=4,∴MN=NG===8,②当∠MGN=120°时,△GMN为等腰三角形,∴∠MNG=∠NMG=30°,如图4,此时旋转角α=120°或300°,MN=2AN===24.。