偏微分方程在人口问题中的应用
- 格式:doc
- 大小:90.00 KB
- 文档页数:4
偏微分方程的历史及应用数学与信息科学学院 09级数学与应用数学专业学号 09051140129 姓名项猛猛摘要偏微分方程是反映有关的未知变量关于时间的导数和关于空间变量的导数之间制约关系的等式。
许多领域中的数学模型都可以用偏微分方程来描述,很多重要的物理、力学等学科的基本方程本身就是偏微分方程。
偏微分方程已经成为当代数学中的一个重要的组成部分,是纯粹数学的许多分支和自然科学及工程技术等领域之间的一座重要的桥梁。
本文旨在介绍偏微分方程的起源和历史,以及偏微分方程在人口调查、传染病动力学等实际问题中的应用。
了解偏微分方程曲折的发展史并了解其广阔的应用前景,从而激励读者更深入的学习和研究偏微分方程。
关键字偏微分方程偏微分方程历史偏微分方程应用引言偏微分方程已经成为当代数学中的一个重要的组成部分,是纯粹数学的许多分支和自然科学及工程技术等领域之间的一座重要的桥梁.本文阐述了偏微分方程的发展历史及在实际生活中的应用,为以后更深入的研究及更广的应用提供了例证。
正文一、偏微分方程的起源及历史微积分方程这门学科产生于十八世纪,欧拉在他的著作中最早提出了弦振动的二阶偏微分方程,随后不久,法国数学家达朗贝尔也在他的著作《论动力学》中提出了特殊的偏微分方程。
这些著作当时没有引起多大注意。
1746年,达朗贝尔在他的论文《张紧的弦振动时形成的曲线的研究》中,提议证明无穷多种和正弦曲线不同的曲线是振动的模式。
这样就由对弦振动的研究开创了偏微分方程这门学科。
和欧拉同时代的瑞士数学家丹尼尔·贝努利也研究了数学物理方面的问题,提出了解弹性系振动问题的一般方法,对偏微分方程的发展起了比较大的影响。
拉格朗日也讨论了一阶偏微分方程,丰富了这门学科的内容。
对物理学中出现的偏微分方程研究在十八世纪中叶导致了分析学的一个新的分支------数学物理方程的建立。
J.达朗贝尔(D’Alembert)(1717-1783)、L.欧拉(Euler)(1707-1783)、D.伯努利(Bernoulli)(1700-1782)、J.拉格朗日(Lagrange)(1736-1813)、P.拉普拉斯(Laplace)(1749-1827)、S.泊松(Poisson)(1781-1840)、J.傅里叶(Fourier)(1768-1830)等人的工作为这一学科分支奠定了基础。
§4.3 偏微分方程模型如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。
本节以人口增长模型和扩散模型为例说明偏微分方程的建模过程以及相应的数值解法。
4.3.1 人口增长模型统计数据表明,世界人口在1800年达到10亿,1930年达到20亿,1960年达到30亿,1974年达到40亿,1987年达到50亿,1999年达到60亿,2011年10月31日突破70亿。
可以看出,人口每增加10亿的时间由100多年缩短为10余年。
人口的剧增导致资源消费量增加,引起资源蓄积量减少甚至枯竭,出现诸如过度开垦土地、沙漠化日益严重、不合理地砍伐森林、绿色空间缩小、能源紧张等问题。
人口剧增还会带来空气污染,引起全球气候变化异常等环境问题,造成全球性生态平衡失调。
而且,这么多数量的人口空间分布极其不均衡。
全球45个发达国家的生育率都低于人口平均增长率。
在世界出生率最低的25个国家中,有22个在欧洲。
人口数量的减少成为这些国家最大的危机,对经济发展和国家安全带来严峻挑战。
同时,世界上人口增长率最高的都是一些最不发达的国家,如阿富汗、布隆迪、刚果、利比里亚等,而发展速度较快的发展中国家,如中国、印度、埃及等,也身负人口增加给经济和环境带来的巨大压力。
中国是世界上人口最多的国家,根据2010年第六次人口普查登记的全国总人口为13.3972亿(不包括港澳台地区),其中,男性人口6.8685亿,女性5287亿;60岁以上人口为1.7765亿,占总人口的13.26%;城市人口为6.6558亿,农村人口为6.7415亿。
老龄化问题、男女比例失调、城镇化建设加速等问题成为我国人口问题的一些新特点,直接影响着我国人口的发展趋势[1]。
准确地对人口进行预测,有效地控制人口增长并制定合理的人口政策,是全面落实科学发展观、实现适当生育水平、提高人口素质、改善人口结构、引导人口合理分布、保障人口安全、促进人口与经济社会资源环境的协调和可持续发展的重要手段。
应用微分方程求解世界各国人口发展问题近年来,人口问题成为世界关注的热点之一。
不同国家的人口增长率不同,人口老龄化、人口减少等问题也开始受到世界各国的重视。
但是,应用微分方程求解人口问题的方法似乎比较少见。
本文将探讨如何应用微分方程解决世界各国人口发展问题。
一、人口增长率的微分方程模型首先,我们需要知道人口增长率的微分方程模型是什么。
假设一个国家的人口数量为P,其增长率为r(单位为人/人年),则有:dP/dt = rP其中,dP/dt表示P对t的导数,即人口数量随时间变化的速率。
由于r是为常数,我们可以将其写成:dP/P = rdt对上述式子两边同时求积分,得到:ln(P) = rt + C其中,C为积分常数。
解出P,得到:P = e^(rt+C)由于e^C是一个常数,我们可以将其表示为K,即:P = Ke^(rt)这个式子被称为人口数量的微分方程模型。
通过这个模型,我们可以预测一个国家在未来的某个时间点的人口数量。
二、应用微分方程预测人口数量根据上面的式子,我们可以计算未来某个时间点的人口数量。
例如,我们可以应用这个式子预测中国未来10年的人口数量。
首先,我们需要知道中国目前的人口数量和增长率。
根据联合国的统计数据,中国在2019年的人口数量为13.91亿人,增长率为0.44%。
因此,我们可以将r和P代入上面的式子,得到:P = Ke^(0.0044t)假设我们要预测中国10年后的人口数量,即t=10,则有:P = Ke^(0.044)我们可以通过以下方式计算K值:K = P/e^(rt)将t=0、P=13.91亿代入上面的式子,得到:K = 13.91亿/e^0 = 13.91亿因此,代入上面的式子,我们可以计算出中国未来10年的人口数量为:P = 13.91亿*e^(0.044*10) = 15.92亿通过微分方程模型,我们得出了中国未来10年的人口增长情况。
类似地,我们也可以预测其他国家的人口增长情况。
微分方程预测模型实例引言微分方程是数学中的重要概念,用于描述自然界中的各种变化和现象。
它在物理学、工程学、经济学等领域都有广泛应用。
在本文中,我们将介绍微分方程预测模型的概念和实例,以帮助读者更好地理解和应用这一方法。
什么是微分方程预测模型?微分方程预测模型是一种利用已知条件和规律,通过建立微分方程来预测未来变化的方法。
它基于数学原理和统计学方法,通过对已有数据进行拟合和分析,得出一个能够描述系统行为的微分方程,并利用该方程进行未来的预测。
微分方程预测模型的应用微分方程预测模型广泛应用于各个领域,下面我们以经典案例为例介绍其中两个:1. 成长模型成长模型是一类常见的微分方程预测模型。
它通常用于描述人口、生物群体等在时间上的增长情况。
以人口增长为例,我们可以假设人口增长率与当前人口数量成正比,即:dPdt=kP其中,P表示人口数量,k为比例常数。
这是一个一阶线性常微分方程,可以通过求解得到人口数量随时间的变化情况。
通过拟合已有的人口数据,我们可以得到合适的k值,并利用该方程进行未来人口数量的预测。
2. 热传导模型热传导模型是另一个常见的微分方程预测模型。
它通常用于描述物体内部温度随时间和空间的变化情况。
以一维热传导为例,我们可以假设物体内部温度变化率与温度梯度成正比,即:∂T ∂t =α∂2T∂x2其中,T表示温度,α为热扩散系数。
这是一个二阶偏微分方程,可以通过求解得到物体内部温度随时间和空间的变化情况。
通过拟合已有的温度数据和边界条件,我们可以得到合适的α值,并利用该方程进行未来温度分布的预测。
微分方程预测模型实例下面我们以一维热传导模型为例,介绍微分方程预测模型的具体实现步骤。
步骤一:收集数据首先,我们需要收集已有的温度数据。
假设我们有一个金属棒,长度为L,初始时刻t=0时,金属棒上各点的温度分布已知。
步骤二:建立微分方程根据热传导模型的假设,我们可以建立如下的一维热传导方程:∂T ∂t =α∂2T∂x2其中,T(x,t)表示金属棒上某点处的温度,α为热扩散系数。
人口增长问题数学模型人口增长问题是一个复杂的社会现象,它涉及到众多因素,如生育率、死亡率、移民、出生性别比等。
为了更好地理解和预测人口增长趋势,人们常常建立数学模型来描述人口变化的规律。
下面是一个简单的人口增长问题数学模型的示例。
假设人口数量为P(t),时间t为以年为单位。
则人口增长可以用以下微分方程表示:dP(t)/dt = rP(t)其中,r是人口自然增长率,是一个常数。
这个微分方程描述了人口数量随着时间的变化情况,即人口数量呈指数增长。
然而,实际情况要复杂得多。
以下是一个更复杂的人口增长模型,考虑到生育率、死亡率和移民等因素:dP(t)/dt = (b - d)P(t) + I其中,b是每单位时间的出生率,d是每单位时间的死亡率,I是每单位时间的移民人数。
这个模型可以更好地描述人口增长的趋势,特别是当存在外部干扰(如战争、自然灾害等)时。
除了以上两个模型,还有其他更复杂的模型,如Logistic增长模型、Malthusian模型等。
这些模型考虑的因素更加全面,可以更准确地描述人口增长的趋势。
例如,Logistic增长模型考虑了环境承载能力对人口增长的限制,而Malthusian 模型则考虑了人口增长与资源供给之间的关系。
建立数学模型有助于我们更好地理解和预测人口增长趋势。
这些模型可以帮助我们评估不同政策对人口增长的影响,如计划生育政策、移民政策等。
此外,这些模型还可以帮助我们预测未来人口数量和结构的变化情况,从而为社会发展规划提供科学依据。
然而,需要注意的是,数学模型只是对现实世界的近似描述,它可能无法完全准确地预测未来情况。
因此,在使用数学模型进行人口增长预测时,需要结合实际情况和专家意见进行综合分析。
总之,数学模型是研究人口增长问题的重要工具之一。
通过建立数学模型,我们可以更好地理解和预测人口增长的规律和趋势。
这些模型可以帮助我们评估不同政策对人口增长的影响,为社会发展规划提供科学依据。
偏微分方程在县域人口规划中运用摘要:县域人口对促进县域经济发展作用显著,而偏微分方程对县域短中期人口规划的运用,为二者良性互动提供一个较好的分析视角。
关键词:人口规划偏微分方程县域经济“郡县治,天下安”,在“十二五”期间,发展县域经济意义更是重大。
从地位上看,县域经济是国民经济中具有综合性的基本单元,在整个国民经济中具有基础性地位;从功能上看,县域经济是统筹城乡发展、建设新农村的操作平台,也是发展现代农业、增加农民收入的重要载体。
在目前行政框架下,县域连接城乡、承上启下,政策、要素、产业聚集于此,城乡实现统筹发展,必须在县域经济上做好文章。
十七届五中全会再次强调“发展现代农业、增加农民收入,建设农民幸福生活的美好家园”,可见,县域经济已成为各种政策目标的实现载体。
另一方面,县域人口是县域经济发展的重要因素,拥有9亿人口基数的农村分布在在县域,县域人口既可以为县域经济提供劳动力和市场需求,同时人口总量增长也需要与资源承载力、缩小收入差距直接相关,在县域经济发展和人县域口容量达到平衡,必须确定出县域适度人口,县域人口规划就成为县域经济发展的战略。
县域人口规划如何做到既适应县域经济发展需要,又有利于人口适度增长?偏微分方程为我们提供了分析工具。
1 偏微分方程概述及在人口预测中一般性运用偏微分方程是反映有关的未知变量关于时间的导数和关于空间变量的导数之间制约关系的等式,它直接联系着众多自然现象和实际问题,不断地提出和产生出需要解决的新课题和新方法。
在国外,对偏微分方程的应用发展是相当重视的,众多大学和研究单位都有应用偏微分方程的研究集体,并得到国家工业、科学部门及军方、航空航天等方面的大力资助。
在我国,偏微分方程的研究起步较晚,总体水平(研究队伍的组织和水平、研究工作的广度和深度)与世界先进水平相比还有很大的差距。
人口问题(包括人口预测、人口规划、计划生育等)是学界和政府比较感兴趣的话题,对人口的发展进行研究最先所采用的大多是常微分方程模型。
偏微分方程的应用作者:范俊杰来源:《科技视界》 2014年第31期范俊杰(武汉理工大学数学系,湖北武汉 430070)【摘要】本文在简要的介绍偏微分方程的发展历史的基础上,详细的讨论了其在弦振动及人口问题中的应用。
其目的在于了解偏微分方程曲折的发展史及其广阔的应用前景,从而激励读者深入的学习和研究偏微分方程。
【关键词】偏微分方程;弦振动;人口问题在科学技术日新月异的发展过程中,人们研究的许多问题用一个自变量的函数来描述已经不够精确了,所以不少问题必须用多个变量的函数来描述,才能够更精确地得到人们所需要的结果。
这样就产生了研究某些物理现象的理想的含有多个变量的函数及其偏导数的方程,这种方程就是偏微分方程。
实际上,偏微分方程的解一般有无穷多个,而在解决具体物理问题时,我们必须从众多一般解中找到能够满足题目给定的特殊条件的解,这样我们才能够了解具体问题的特殊性。
本文在简要的介绍偏微分方程的发展历史的基础上,详细的讨论了其在弦振动及人口问题中的应用。
1 偏微分方程的发展1746年,达朗贝尔在他的论文《张紧的弦振动时形成的曲线的研究》中,提议证明无穷多种和正弦曲线不同的曲线是振动的模式。
由此开创了偏微分方程这门学科。
和欧拉同时代的瑞士数学家丹尼尔·贝努利也研究了数学物理方面的问题,提出了解弹性系振动问题的一般方法,对偏微分方程的发展起了比较大的影响。
偏微分方程得到迅速发展是在十九世纪,那时候,数学物理问题的研究繁荣起来了,许多数学家都对数学物理问题的解决做出了贡献。
这里应该提一提法国数学家傅立叶,他在从事热流动的研究中,写出了《热的解析理论》,在文章中他提出了三维空间的热方程,也就是一种偏微分方程。
他的研究对偏微分方程的发展的影响是很大的[3]。
2 偏微分方程在某些具体问题中的应用2.1 偏微分方程在弦振动中的应用弦是一个力学系统,是一个质点组,故它的运动符合牛顿第二定律。
设弦在未受扰动时平衡位置是x轴,其上各点均以该点的横坐标表示。
偏微分方程在人口问题中的应用
06数学系杜慧通PB06001022
在老师的带领下,经过一个学期的偏微分方程的学习,我们深刻的认识到偏微分方程不仅是反映有关的未知变量关于时间的导数和关于空间变量的导数之间制约关系的等式,在许多领域中的数学模型都可以用偏微分方程来描述,不难发现,课本中所主要提及的三类方程都是有一定的物理学背景的。
早在微积分理论刚形成后不久,人们就开始用偏微分方程来描述、解释或预见各种自然现象,并将所得到的研究方法和研究成果运用于各门科学和工程技术中,不断地取得了显著的成效,显示了偏微分方程对于人类认识自然界基本规律的重要性。
逐渐地,以物理、力学等各门科学中的实际问题为背景的偏微分方程的研究成为传统应用数学中的一个最主要的内容,它直接联系着众多自然现象和实际问题,不断地提出和产生出需要解决的新课题和新方法,不断地促进着许多相关数学分支(如泛函分析、微分几何、计算数学等)的发展,并从它们之中引进许多有力的解决问题的工具。
偏微分方程已经成为当代数学中的一个重要的组成部分,是纯粹数学的许多分支和自然科学及工程技术等领域之间的一座重要的桥梁。
面对各种复杂的现实问题,我们常常采用的方法是针对所考虑的实际问题建立合理的数学模型,而这些能精确描述问题的模型大都是通过偏微分方程给出的。
对相应的偏微分方程模型进行定性的研究。
根据所进行的定性研究,寻求或选择有效的求解方法。
应用上述方法,我们一起来看一看大家都感兴趣的人口问题。
对人口的发展进行研究最先所采用的大多是常微分方程模型。
例如,马尔萨斯模型[1]:
,:)()(0
0⎪⎩⎪⎨⎧===p p t t t ap dt
t dp 其中)(t p 表示t 时刻的人口总数,0p 为初始时刻0t 时的人口总数,a 表示人口净增长率。
马尔萨斯模型只在群体总数不太大时才合理。
因为当生物群体总数增大时,生物群体的各成员之间由于有限的生存空间、有限的自然资源及食物等原因,就要进行生存竞争。
而马尔萨斯模型仅考虑了群体总数的自然线性增长项)(t ap ,没有考虑生存竞争对群体总数增长的抵消作用。
因此在群体总数大了以后,马尔萨斯模型就不再能预见群体发展趋势,这时就要采用威尔霍斯特模型[2]:
,:)()()(0
02⎪⎩⎪⎨⎧==-=p p t t t p a t ap dt
t dp 其中,a 称为生命系数,而且a 比a 要小很多。
)(2t p a 就是考虑到生存竞争而引入的竞争项。
当群体总数)(t p 不太大时,由于a 比a 小很多,则可以略去上面方程中右端的第二项而回到马尔萨斯模型。
但是当群体总数增大到一定程度时,上面方程中右端的第二项所产生的影响就不能忽略。
不论是马尔萨斯模型还是威尔霍斯特模型,它们都是将生物群体中的每一个个体视为同等地位来对待的,这个原则只适用于低等动
物。
对于人类群体来说,必须考虑不同个体之间的差别,特别是年龄因素的影响。
人口的数量不仅和时间有关,还应该和年龄有关,而且人口的出生、死亡等都和年龄有关。
不考虑年龄因素就不能正确地把握人口的发展动态。
这时,就必须给出用偏微分方程描述的人口模型[2]:
⎪⎪⎩⎪⎪⎨⎧≥==≤≤==≤≤≥-=∂∂+∂∂⎰A a t d t p b t p x A x x p p t A x t x t p x d x x t p t x t p )
3()0(),()()0,(:0)2()0()
(:0)1()0,0()
,()(),(),(0ξξξ 其中,),(x t p 表示任意时刻t 按年龄x 的人口分布密度,)(x d 表示年龄为x 的人口死亡率,)(x b 表示年龄为)(A x a x ≤≤的人的生育率,a 表示可以生育的最低年龄,A 表示人的最大年龄。
对于上述偏微分方程模型成立如下结论:
1.对偏微分方程的初值问题(1)-(3),如果下列条件成立: (I) 在区间],0[A 上,0)(0≥x p 且适当光滑;
(II) 在区间],0[A 上,0)(≥x d 且适当光滑,并且当0-→A x 时,
+∞→)(x d 及+∞→⎰ξξd d x
0)(; (III)⎰=A
a d p
b p ξξξ)()()0(00;
(IV) ⎰+=+A a d p d p b p d p ξξξξξ))()()()(()0()0()0(0'00'
0。
则该初边值问题(1)-(3)存在唯一的整体解),(x t p 并且满足0),(≥x t p 且0),(=A t p 。
该模型在经过适当的简化假设后,例如假设=≡d x d )(常数,=≡b x b )(常数,就可以回到前面的常微分方程模型。
但在偏微分方程模型中
)
d
d=、)
(x
b=均与年龄有关,这与现实情况相符。
因此,偏微分(x
b
方程模型确实更进一步、更能精确地描述人口分布的发展过程。
从上述问题的阐述和分析过程不难看出,偏微分方程能非常精确的帮助数学模型的建立,把自然科学的发展和研究推进到一个新的高度。
参考文献:
〔1〕W. F. 卢卡斯主编,朱煜民、周宇虹译,微分方程模型,国防科技大学出版社,1988.
〔2〕G. F. Webb, Theory of Age-Dependent Population Dynamics, Marcel Dekker, INC., 1985.。