高考数学教案必胜秘诀立体几何
- 格式:doc
- 大小:757.01 KB
- 文档页数:9
高考数学必胜秘诀立体几何几何法处理线面平行垂直方法1、直线与平面平行的判定和性质:(1)判定:①判定定理:如果平面内一条直线和这个平面平面平行,那么这条直线和这个平面平行; ②面面平行的性质:若两个平面平行,则其中一个平面内的任何直线与另一个平面平行。
(2)性质:如果一条直线和一个平面平行,那么经过这条直线的平面和这个平面相交的交线和这条直线平行。
在遇到线面平行时,常需作出过已知直线且与已知平面相交的辅助平面,以便运用线面平行的性质。
2、直线和平面垂直的判定和性质:(1)判定:①如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线和这个平面垂直。
②两条平行线中有一条直线和一个平面垂直,那么另一条直线也和这个平面垂直。
(2)性质:①如果一条直线和一个平面垂直,那么这条直线和这个平面内所有直线都垂直。
②如果两条直线都垂直于同一个平面,那么这两条直线平行。
3、直线和平面所成的角:(1)定义:平面的一条斜线和它在平面内的射影所成的锐角,叫这条直线和这个平面所成的角。
(2)范围:[0,90]o o;(3)求法:作出直线在平面上的射影;(4)斜线与平面所成的角的特征:斜线与平面中所有直线所成角中最小的角。
4、两个平面平行的判定和性质:(1)判定:一个如果平面内有两条相交直线和另一个平面平行,则这两个平面平行。
(2)性质:如果两个平行平面同时与第三个平面相交,那么它们的交线平行。
5、二面角:(1)平面角的三要素:①顶点在棱上;②角的两边分别在两个半平面内;③角的两边与棱都垂直。
(2)作平面角的主要方法:①定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性;②垂面法:过一点作棱的垂面,则垂面与两个半平面的交线所成的角即为平面角;(3)二面角的范围:[0,]π;(4)二面角的求法:①转化为求平面角;②面积射影法:利用面积射影公式cos S S θ⋅射原=,其中θ为平面角的大小。
高二数学立体几何大题的13个技巧立体几何大题是大题里想对简洁的题目,这部分的分数我们要当心翼翼地拿下,务必不能失分。
那么,有什么技巧呢?我整理了相关资料,盼望能关心到您。
1、平行、垂直位置关系的论证的策略(1)由已知想性质,由求证想判定,即分析法与综合法相结合查找证题思路。
(2)利用题设条件的性质适当添加帮助线(或面)是解题的常用(方法)之一。
(3)三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。
2、空间角的计算方法与技巧主要步骤:一作、二证、三算;若用向量,那就是一证、二算。
(1)两条异面直线所成的角①平移法:②补形法:③向量法:(2)直线和平面所成的角①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用向量计算。
②用公式计算。
(3)二面角①平面角的作法:(i)定义法;(ii)三垂线定理及其逆定理法;(iii)垂面法。
②平面角的计算法:(i)找到平面角,然后在三角形中计算(解三角形)或用向量计算;(ii)射影面积法;(iii)向量夹角公式。
3、空间距离的计算方法与技巧(1)求点到直线的距离:常常应用三垂线定理作出点到直线的垂线,然后在相关的三角形中求解,也可以借助于面积相等求出点到直线的距离。
(2)求两条异面直线间距离:一般先找出其公垂线,然后求其公垂线段的长。
在不能直接作出公垂线的状况下,可转化为线面距离求解(这种状况高考不做要求)。
(3)求点到平面的距离:一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法”直接求距离;有时直接利用已知点求距离比较困难时,我们可以把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距离”。
求直线与平面的距离及平面与平面的距离一般均转化为点到平面的距离来求解。
4、熟记一些常用的小结论诸如:正四周体的体积公式是;面积射影公式;“立平斜关系式”;最小角定理。
高考立体几何解题技巧
在高考立体几何解题过程中,我们需要掌握一些技巧,帮助我们更好地解决问题。
以下是一些常用的技巧:
1. 空间想象能力:立体几何题目通常涉及三维空间的关系,因此我们需要具备较强的空间想象能力。
可以通过画图、模型等方式辅助思考和理解题目。
2. 几何关系的转换:有时候,立体几何问题可以通过转换为平面几何问题来解决。
我们可以尝试在某个平面上进行投影或者进行截面的分析,将立体问题转化为二维几何问题来解决。
3. 利用相似三角形:在立体几何问题中,相似三角形的性质经常被用到。
通过找出共性和相似关系,我们可以推导出一些有用的结论,从而解决问题。
4. 使用平行四边形法则:在解决立体几何问题时,我们可以运用平行四边形的性质。
例如,如果某个角度为90度,那么某
些边和角度之间可能存在平行四边形关系,可以利用平行四边形法则求解。
5. 应用平面几何定理:立体几何与平面几何密切相关,因此一些平面几何定理也可以在解决立体几何问题时使用。
例如,利用圆锥的旋转对称性可以得到一个圆锥的表面积和体积的关系。
6. 巧妙使用一点一线:有时候,一个线段或一个点的位置可以帮助我们推导出其他线段或点的位置,从而解决问题。
在解题
过程中,我们需要善于发现和运用这些信息。
总之,在解决高考立体几何问题时,需要充分理解题意,巧妙应用几何知识和技巧,灵活运用不同的解题方法。
通过反复联系和练习,提高自己的解题能力和水平。
高考数学中的立体几何解题方法总结在高考数学中,立体几何是一个重要的考点。
对于大部分学生来说,立体几何是比较新颖的知识点,需要掌握一些特定的解题方法。
本文将总结一些高考数学中的立体几何解题方法,以便于广大考生能够更好地应对高考数学考试。
一、立体几何基本概念在解决立体几何问题之前,首先需要理解一些基本概念。
立体几何主要包括三维图形、视图、棱锥、棱柱、圆锥、圆柱、球体等。
学生需要认真理解这些概念,并掌握绘制三维图形的技巧,以便于快速准确地分析问题。
二、立体几何定理掌握一些常见的立体几何定理十分必要。
例如,平行截面定理、截棱锥定理、圆锥与平面的位置关系、球的性质等等。
这些定理可以帮助学生在解决一些复杂的立体几何题目时,能够快速找到规律,从而准确解决问题。
三、快速计算体积的方法体积是立体几何题目中最常见的考点。
理解如何快速计算体积可以帮助学生在有限的时间内快速解决问题。
例如,计算实体的体积可以分别计算各部分的体积再相加;计算投影面积的体积可以利用截线公式或剖面法等方法。
此外,还应当掌握利用相似关系计算体积的方法,以便于解决一些复杂的题目。
四、快速计算表面积的方法表面积的计算同样是立体几何中常见的考点。
学生需要掌握表面积的计算方法,并能够快速灵活地运用这些方法。
例如,计算立体几何的表面积可以分解成各个面的表面积再相加;计算圆锥的表面积可以利用母线和圆周角的关系等等。
五、快速计算正多面体体积的方法对于正多面体的体积计算,学生需要掌握一些类比和相似关系等方法。
例如,正八面体的体积可以利用正四面体体积乘以3的方法;正二十面体的体积可以利用正四面体体积乘以5的方法。
这些方法可以帮助学生在复杂的题目中快速计算正多面体的体积。
以上五点是掌握高考数学中的立体几何解题方法的基础。
学生需要认真理解这些方法,并在解决立体几何题目时不断运用,直到形成自己的解题风格。
通过不断练习和总结,相信大家一定可以在高考数学中取得好成绩!。
解决高中数学中的立体几何问题的技巧与方法高中数学中的立体几何问题是学习者常常遇到的难点之一。
掌握解决这类问题的技巧和方法,有助于提升学习效率和解题能力。
本文将介绍一些解决高中数学中的立体几何问题的技巧与方法,帮助学习者更好地理解和应对这个领域的挑战。
一、画图准确在解决立体几何问题时,准确的图形是解题的基础。
因此,学习者需要养成细心观察和准确描绘图形的习惯。
画图时,应注意每一个线段、角度和形状的相对关系。
可以使用直尺、圆规等工具帮助画出准确的图形,避免出现不必要的错误。
二、理解立体几何基本概念在解决立体几何问题时,理解立体几何的基本概念非常重要。
这些基本概念包括平行、垂直、对称、相似、全等等。
学习者应该熟悉并理解这些概念的几何定义和性质,以便在解题过程中能够准确地运用它们。
三、运用立体几何定理和定律高中数学中有许多立体几何的定理和定律,学习者需要熟悉并灵活运用。
例如,平行线与截线定理可以用来确定平行线与平面的关系;空间中两条垂直平分线的交点在该线段的中点等。
运用这些定理和定律,可以简化解题过程,提高解题效率。
四、利用立体几何等距原理利用立体几何等距原理是解决数学中立体几何问题的重要方法。
该原理指出,如果两个几何体的形状和大小完全相同,则它们的性质和关系也相同。
在解题过程中,如果能够找到两个或多个形状完全相同的几何体,就可以将问题转化为更简单的几何关系,从而更容易解决问题。
五、建立几何模型为了更好地理解和解决立体几何问题,学习者可以尝试建立几何模型。
几何模型能够帮助学习者形象地展示和观察问题,从而更容易找出解题的思路和方法。
通过动手实践建立几何模型,能够增加对立体几何性质和关系的直观认识,提高解题的准确性和效率。
六、多思考、多练习解决立体几何问题需要思维的灵活性和逻辑推理能力。
学习者应该养成多思考、多练习的习惯,通过大量的练习来提高解题的技巧和速度。
在解题过程中,遇到困难或者不理解的地方,可以请教老师或者同学,进行思路的交流和互动,有助于拓宽解题思路和提高解题能力。
城东蜊市阳光实验学校立体几何1、三个公理和三条推论:〔1〕公理1:一条直线的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。
这是判断直线在平面内的常用方法。
〔2〕公理2、假设两个平面有两个公一一共点,它们有无数个公一一共点,而且这无数个公一一共点都在同一条直线上。
这是判断几点一一共线〔证这几点是两个平面的公一一共点〕和三条直线一一共点〔证其中两条直线的交点在第三条直线上〕的方法之一。
〔3〕公理3:经过不在同一直线上的三点有且只有一个平面。
推论1:经过直线和直线外一点有且只有一个平面。
推论2:经过两条相交直线有且只有一个平面。
推论3:经过两条平行直线有且只有一个平面。
公理3和三个推论是确定平面的根据。
如〔1〕在空间四点中,三点一一共线是四点一一共面的_____条件〔答:充分非必要〕;〔2〕给出命题:①假设A∈l,A∈α,B∈l,B∈α,那么l ⊂α;②假设A∈α,A∈β,B∈α,B∈β,那么α∩β=AB ;③假设l ⊄α,A∈l,那么A ∉α④假设A 、B 、C∈α,A 、B 、C∈β,且A 、B 、C 不一一共线,那么α与β重合。
上述命题中,真命题是_____〔答:①②④〕;〔3〕长方体中ABCD-A1B1C1D1中,AB=8,BC=6,在线段BD ,A1C1上各有一点P 、Q ,在PQ 上有一点M ,且PM=MQ ,那么M 点的轨迹图形的面积为_______〔答:24〕2、直观图的画法〔斜二侧画法规那么〕:在画直观图时,要注意:〔1〕使0135x o y '''∠=,x o y '''所确定的平面表示程度平面。
〔2〕图形中平行于x 轴和z 轴的线段,在直观图中保持长度和平行性不变,平行于y 轴的线段平行性不变,但在直观图中其长度为原来的一半。
如〔1〕用斜二测画法画一个程度放置的平面图形为如以下列图的一个正方形,那么原来图形的形状是〔〕〔答:A 〕〔2〕正ABC ∆的边长为a ,那么ABC ∆的平面直观图A B C '''∆的面积为_____2616〕 3、空间直线的位置关系:〔1〕相交直线――有且只有一个公一一共点。
2021高考理科数学必考点解题方式秘籍:立体几何3一.专题综述:立体几何的要紧任务是培育学生的空间想像能力,固然推理中兼顾逻辑思维能力的培育,几何是研究位置关系与数量关系的学科,而位置关系与数量关系能够彼此转化,解决立体几何的大体方式是将空间问题转化为平面的问题,即空间问题平面化,平面化的手法有:平移(包括线、面、体的平移)、投影、展开、旋转等变换。
1.考纲要求(1)把握平面的大体性质。
会用斜二测的画法画水平放置的平面图形的直观图:能够画出空间两条直线、直线和平面的各类位置关系的图形,能够依照图形想像它们的位置关系。
(2)把握直线和平面平行的判定定理和性质定理:明白得直线和平面垂直的概念,把握直线和平面垂直的判定定理:把握三垂线定理及其逆定理。
(3)明白得空间向量的概念,把握空间向量的加法、减法和数乘。
(4)了解空间向量的大体定理;明白得空间向量坐标的概念,把握空间向量的坐标运算。
(5)把握空间向量的数量积的概念及其性质:把握用直角坐标计算空间向量数量积的公式;把握空间两点间距离公式。
(6)明白得直线的方向向量、平面的法向量、向量在平面内的射影等概念。
(7)把握直线和直线、直线和平面、平面和平面所成的角、距离的概念,关于异面直线的距离,只要求会计算已给出公垂线或在座标表示下的距离把握直线和平面垂直的性质定理把握两个平面平行、垂直的判定定理和性质定量。
(8)了解多面、凸多面体的概念,了解正多面体的概念。
(9)了解棱柱的概念,把握棱柱的性质,会画直棱柱的直观图。
(10)了解棱锥的概念,把握正棱锥的性质,会画正棱锥的直观图。
(11)了解球的概念,把握球的性质,把握球的表面积、体积公式。
2.考题设置与分值从近几年各地高考试题分析,立体几何题型一样是1至3个填空或选择题,1个解答题,分值25分左右3.考试重点与难度(1)空间大体的线、面位置关系。
一样以客观题的形式显现,试题很基础,但需要全面、准确把握空间线、面位置关系的判定、性质,还需要有好的空间感。
高二数学立体几何大题的八大解题技巧引言立体几何是高中数学中较为抽象和复杂的一个分支,对于很多学生来说,解决立体几何的大题可能会显得有些困难。
然而,只要我们掌握一些解题技巧,并进行适当的练习,就能够更加游刃有余地解决这类问题。
本文将介绍八大解题技巧,帮助高二学生在数学考试中取得好成绩。
技巧一:构造合理的立体模型对于立体几何问题,构造一个合理的三维模型是非常重要的。
通过绘制图形,我们可以更清晰地理解问题,有助于推导出解题方法。
例如,当我们遇到一个求体积的问题时,可以根据题目中的条件,构造一个与实际物体相似的模型,并确定其几何关系。
这样一来,在计算体积时,我们可以很容易地将问题转化为计算几何体的体积。
技巧二:利用平行关系简化解题在立体几何问题中,平行关系是经常出现的。
我们可以利用平行性质简化解题过程。
例如,当我们遇到一道求两条直线之间的距离的问题时,如果题目中给出的条件中存在两条平行线,我们可以通过利用平行关系,使用相似三角形等方法,直接求出距离,而不需要进一步计算。
技巧三:灵活应用平行截面法平行截面法是解决某些立体几何问题的重要方法。
它利用了不同截面的面积比例以及平行线与截面的关系,帮助我们求解立体几何问题。
当我们遇到一个立体几何问题时,可以尝试引入平行截面,通过计算各截面的面积比例、长度比例等,推导出所需的结果。
技巧四:加长或减短前提条件有时候,我们遇到的立体几何问题可能较为复杂,不容易解决。
这时,我们可以尝试通过增加或减少一些前提条件,简化问题,使其能够更容易解决。
例如,当我们遇到一个立体几何问题需要计算某个长度时,有时我们可以通过修改前提条件,使其成为一个相似三角形问题,从而更容易求解目标长度。
技巧五:利用相似关系求解相似关系在立体几何问题中有着广泛的应用。
通过找到合适的相似三角形或相似立体,我们可以快速求解问题。
当我们遇到一个立体几何问题时,可以尝试寻找相似的几何形状,并利用相似关系设置等式,求解出所需的结果。
高三数学二轮专题复习教案――立体几何一、本章知识结构:二、重点知识回顾1、空间几何体的结构特征(1)棱柱、棱锥、棱台和多面体棱柱是由满足下列三个条件的面围成的几何体:①有两个面互相平行;②其余各面都是四边形;③每相邻两个四边形的公共边都互相平行;棱柱按底面边数可分为:三棱柱、四棱柱、五棱柱等.棱柱性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等多边形.③过棱柱不相邻的两条侧棱的截面都是平行四边形.棱锥是由一个底面是多边形,其余各面是有一个公共顶点的三角形所围成的几何体.棱锥具有以下性质:①底面是多边形;②侧面是以棱锥的顶点为公共点的三角形;③平行于底面的截面和底面是相似多边形,相似比等于从顶点到截面和从顶点到底面距离的比.截面面积和底面面积的比等于上述相似比的平方.棱台是棱锥被平行于底面的一个平面所截后,截面和底面之间的部分.由棱台定义可知,所有侧棱的延长线交于一点,继而将棱台还原成棱锥.多面体是由若干个多边形围成的几何体.多面体有几个面就称为几面体,如三棱锥是四面体.(2)圆柱、圆锥、圆台、球分别以矩形的一边,直角三角形的一直角边,直角梯形垂直于底边的腰所在的直线,半圆以它的直径所在直线为旋转轴,旋转一周而形成的几何体叫做圆柱、圆锥、圆台、球圆柱、圆锥和圆台的性质主要有:①平行于底面的截面都是圆;②过轴的截面(轴截面)分别是全等的矩形、等腰三角形、等腰梯形;③圆台的上底变大到与下底相同时,可以得到圆柱;圆台的上底变小为一点时,可以得到圆锥.2、空间几何体的侧面积、表面积(1)棱柱侧面展开图的面积就是棱柱的侧面积,棱柱的表面积就是它的侧面积与两底面面积的和.因为直棱柱的各个侧面都是等高的矩形,所以它的展开图是以棱柱的底面周长与高分别为长和宽的矩形.如果设直棱柱底面周长为c,高为h,则侧面积S ch=侧.若长方体的长、宽、高分别是a、b、c,则其表面积2() S ab bc ca=++表.(2)圆柱的侧面展开图是一个矩形.矩形的宽是圆柱母线的长,矩形的长为圆柱底面周长.如果设圆柱母线的长为l,底面半径为r,那么圆柱的侧面积2πS rl=侧,此时圆柱底面面积2πS r=底.所以圆柱的表面积222π2π2π()S S S rl r r r l=+=+=+侧底.(3)圆锥的侧面展开图是以其母线为半径的扇形.如果设圆锥底面半径为r,母线长为l,则侧面积πS rl=侧,那么圆锥的表面积是由其侧面积与底面面积的和构成,即为2πππ()S S S rl r r r l=+=+=+侧底.(4)正棱锥的侧面展开图是n个全等的等腰三角形.如果正棱锥的周长为c,斜高为h',则它的侧面积12S ch'=侧.(5)正棱台的侧面积就是它各个侧面积的和.如果设正棱台的上、下底面的周长是c c',,斜高是h',那么它的侧面积是12S ch'=侧.(6)圆台侧面展开图是以截得该圆台的圆锥母线为大圆半径,圆锥与圆台的母线之差为小圆半径的一个扇环.如果设圆台的上、下底面半径分别为r r',,母线长为l,那么它的侧面积是π()S r r l'=+侧.圆台的表面积等于它的侧面积与上、下底面积的和,即2222π()πππ() S S S S r r l r r r r r l rl''''=++=+++=+++侧上底下底.(7)球的表面积24πS R =,即球的表面积等于其大圆面积的四倍.3、空间几何体的体积(1)柱体(棱柱、圆柱)的体积等于它的底面积S 和高h 的积,即V Sh=柱体.其中底面半径是r ,高是h 的圆柱的体积是2πV r h=圆柱.(2)如果一个锥体(棱锥、圆锥)的底面积是S ,高是h ,那么它的体积是13V Sh=锥体.其中底面半径是r ,高是h 的圆锥的体积是21π3V r h=圆锥,就是说,锥体的体积是与其同底等高柱体体积的13.(3)如果台体(棱台、圆台)的上、下底面积分别是S S ',,高是h,那么它的体积是1()3V S S h=+台体.其中上、下底半径分别是r R ,,高是h 的圆台的体积是221π()3V r Rr R h=++圆台.(4)球的体积公式:334R V π=.4、中心投影和平行投影(1)中心投影:投射线均通过投影中心的投影。
如何解决高考数学中的立体几何题在高考数学中,立体几何题是一个常见的考点,也是考生普遍感觉难以解决的问题之一。
立体几何题的解答需要掌握一定的几何知识和解题技巧。
下面将介绍一些解决高考数学中的立体几何题的方法和技巧。
一、掌握基础几何知识解决立体几何题首先需要掌握基础几何知识,包括立体图形的性质、体积和表面积的计算公式等。
熟练掌握这些基础知识可以帮助我们快速理解和解答立体几何题目。
二、分析题目,确定解题思路解决立体几何题的关键是正确地分析题目,确定解题思路。
在解答题目之前,我们应该仔细读题,理解题意,并分析给出的条件和要求。
根据题目中的信息,我们可以确定使用的几何知识和解题方法。
三、画图辅助推理在解答立体几何题时,可以通过画图辅助推理的方法来帮助理解题意,推导解题过程。
画出几何图形可以很直观地展示问题,帮助我们更好地理解并解决问题。
四、运用几何定理和性质在解答立体几何题目时,应该灵活运用几何定理和性质。
比如,当涉及到平行关系时,我们可以应用平行线的性质,通过角度对应相等、内错角和等于180度的性质来解答问题。
此外,还可以利用三角形的性质和圆锥的性质等进行推理和计算。
五、运用代数方法解题解决立体几何题目时,有时也可以运用代数方法进行解答。
通过设立方程、利用等式关系等代数技巧,将几何问题转化为代数问题,从而求解方程并得到正确答案。
六、多练习,熟练掌握解题技巧高考数学中的立体几何题目都是可以通过多练习来掌握解题技巧的。
通过反复练习各类立体几何题目,不断总结和归纳解题技巧,逐渐熟练掌握解题方法,提高解题能力和准确性。
七、注意审题和解题过程的准确性在解答立体几何题目时,我们需要特别注意审题和解题过程的准确性。
要仔细分析题目中的条件和要求,确保理解正确。
在解题过程中,要注意推理和计算的准确性,避免出现错误。
总结起来,解决高考数学中的立体几何题需要掌握基础知识,分析题目确定解题思路,运用几何定理和性质,画图辅助推理,运用代数方法解题,多练习并注意准确性。
高中数学立体几何秒杀技巧一、逐渐提高逻辑论证能力论证时,首先要保持严密性,对任何一个定义、定理及推论的理解要做到准确无误。
符号表示与定理完全一致,定理的所有条件都具备了,才能推出相关结论。
切忌条件不全就下结论。
其次,在论证问题时,思考应多用分析法,即逐步地找到结论成立的充分条件,向已知靠拢,然后用综合法(“推出法”)形式写出。
二、立足课本,打牢基础直线和平面这些内容,是立体几何的基础,学好这部分的一个捷径就是认真学习定理的证明,尤其是一些很关键的定理的证明。
例如:三垂线定理。
定理的内容都很简单,就是线与线,线与面,面与面之间的关系的阐述。
但定理的证明在出学的时候一般都很复杂,甚至很抽象。
掌握好定理有以下三点好处:(1)深刻掌控定理的内容,明晰定理的促进作用就是什么,多用在那些地方,怎么用。
(2)培养空间想象力。
(3)得出结论一些解题方面的救赎。
在学习这些内容的时候,可以用笔、直尺、书之类的东西搭出一个图形的框架,用以帮助提高空间想象力。
对后面的学习也打下了很好的基础。
三、“转变”思想的应用领域我个人觉得,解立体几何的问题,主要是充分运用“转化”这种数学思想,要明确在转化过程中什么变了,什么没变,有什么联系,这是非常关键的。
1.何不给自己的定一些时间管制。
已连续长时间的自学很难并使自己产生厌倦情绪,这时可以把功课分为若干个部分,把每一部分限量时间,比如一小时内顺利完成这份练、八点以前略过那份测试等等,这样不仅有利于提高效率,还不能产生疲劳感。
如果可能将的话,逐步延长所用的时间,没多久你就可以辨认出,以前一小时都回去未成的作业,现在四十分钟就顺利完成了。
2.不要在学习的同时干其他事或想其他事。
一心不能二用的道理谁都明白,可还是有许多同学在边学习边听音乐。
或许你会说听音乐是放松神经的好办法,那么你尽可以专心的学习一小时后全身放松地听一刻钟音乐,这样比带着耳机做功课的效果好多了。
3.不要整个晚上都备考同一门功课。
高考数学技巧掌握立体几何的关键解题思路在高考数学考试中,立体几何是一个重要的考点。
对于很多学生来说,立体几何题目的解答常常是一大难题。
因此,掌握一些解题思路和技巧是非常关键的。
本文将为大家分享一些高考数学中解答立体几何题目的关键思路。
一、认真审题第一步,我们需要仔细阅读题目。
在阅读题目的过程中,我们要特别注意题目中给出的条件和要求。
立体几何题目通常会给出图形的特征、已知条件以及需要求解的问题。
清晰地理解题意能够帮助我们更好地进行解题。
同时,我们需要注意题目中是否给出了明确的几何信息。
例如,是否给出了图形的尺寸、图形的形状等等。
这些信息对于我们后续的解题过程非常重要。
二、建立几何模型在解答立体几何题目时,我们需要建立一个几何模型,以帮助我们更好地理解题意和解题。
几何模型通常是一个几何图形,可以是一个三维立体图形或者是一个平面图形。
建立几何模型的过程可以通过手绘图形或者是使用几何软件来完成。
无论是哪种方式,我们需要将题目中给出的信息和条件准确地反映在模型中。
只有建立了准确的几何模型,我们才能更好地进行后续的解题过程。
三、运用几何定理和公式在解决立体几何题目时,我们需要熟练掌握一些几何定理和公式。
这些定理和公式是我们解题的基础,可以帮助我们快速定位解题的关键点。
例如,在求解体积问题时,我们可以运用立方体的体积公式V = a³,圆柱体的体积公式V = πr²h等等。
在求解表面积问题时,我们也可以运用球体表面积公式S = 4πr²,正方体表面积公式 S = 6a²等等。
掌握这些公式可以让我们在解题过程中更加得心应手。
此外,我们还要熟悉一些几何定理,如平行线之间的性质、相似三角形的性质等等。
掌握这些定理可以帮助我们在解题过程中判断图形之间的关系,进而快速解题。
四、利用空间想象力在解答立体几何题目时,想象力是一个非常重要的因素。
我们需要善于利用我们的空间想象力,去想象和理解立体图形之间的位置关系和形状。
高考数学应试技巧之立体几何在高考中,数学是考生必须要面对的必修科目之一,而立体几何也是其中难度较大的一部分。
在高考中,立体几何通常占据一定比例的分值,因此掌握好立体几何应试技巧对于整个数学成绩的提升有着非常重要的作用。
在本文中,我将介绍一些高考数学立体几何应试技巧,希望能够对广大考生有所帮助。
一、抓住重点难点在立体几何的学习中,我们需要把握住某些重点难点,这些知识点往往决定了整个部分的难度和重要性。
以下是一些高考立体几何的重难点:1. 空间向量和平面向量的相互转化;2. 向量叉乘的定义和性质;3. 直线和平面的方程式和性质,如平面法向量的确定;4. 空间几何中的相交线和平面、轴的求法;5. 三棱锥和四棱锥的性质和特征,以及如何求它们的体积;6. 球体的性质和公式,如球的面积和体积的计算。
以上这些内容都是高考立体几何中难度较大也较为重要的知识点,考生需花费更多的时间和精力去深入学习。
二、解题方法与技巧在考场上,考生需要注意一些解题方法和技巧,以使解题更顺利。
以下是一些常见的解题技巧:1. 画图法:立体图形通常较难想象,可以通过一些手绘图解来帮助解题。
可以在图纸上画出与题目相符合的立体图形,然后通过图形来解答问题。
尤其是在容易出错的计算过程中,可以通过画各个过程图来实现规范化计算。
2. 应用向量计算:在空间向量和平面向量的知识点中,向量计算是一种应用非常广泛的解题方法。
通过把题目所给的向量与需要求解的向量相互运算,可以求解出问题的答案。
例如,求两条直线的夹角、直线上的点到平面的距离等,都可以采用向量方法来解决。
3. 利用坐标系解题:在解决空间几何中的问题时,可以利用三维坐标系来解决。
这种方法可以将三维几何问题转化为平面几何问题,使问题更加明确化和规范化。
比如,若需要求两直线的交点,则可通过方程式,建立坐标系,进而求解问题。
4. 利用相似性质解决问题:在解决三棱锥、四棱锥题目时,我们可以利用它们的相似性质来帮助解决问题。
第十二章立体几何一、基础知识公理1 一条直线。
上假如有两个不一样旳点在平面。
内.则这条直线在这个平面内,记作:a a.公理2 两个平面假如有一种公共点,则有且只有一条通过这个点旳公共直线,即若P∈α∩β,则存在唯一旳直线m,使得α∩β=m,且P∈m。
公理3 过不在同一条直线上旳三个点有且只有一种平面。
即不共线旳三点确定一种平面.推论l 直线与直线外一点确定一种平面.推论2 两条相交直线确定一种平面.推论3 两条平行直线确定一种平面.公理4 在空间内,平行于同一直线旳两条直线平行.定义1 异面直线及成角:不一样在任何一种平面内旳两条直线叫做异面直线.过空间任意一点分别作两条异面直线旳平行线,这两条直线所成旳角中,不超过900旳角叫做两条异面直线成角.与两条异面直线都垂直相交旳直线叫做异面直线旳公垂线,公垂线夹在两条异面直线之间旳线段长度叫做两条异面直线之间旳距离.定义2 直线与平面旳位置关系有两种;直线在平面内和直线在平面外.直线与平面相交和直线与平面平行(直线与平面没有公共点叫做直线与平面平行)统称直线在平面外.定义3 直线与平面垂直:假如直线与平面内旳每一条直线都垂直,则直线与这个平面垂直.定理1 假如一条直线与平面内旳两条相交直线都垂直,则直线与平面垂直.定理2 两条直线垂直于同一种平面,则这两条直线平行.定理3 若两条平行线中旳一条与一种平面垂直,则另一条也和这个平面垂直.定理4 平面外一点到平面旳垂线段旳长度叫做点到平面旳距离,若一条直线与平面平行,则直线上每一点到平面旳距离都相等,这个距离叫做直线与平面旳距离.定义 5 一条直线与平面相交但不垂直旳直线叫做平面旳斜线.由斜线上每一点向平面引垂线,垂足叫这个点在平面上旳射影.所有这样旳射影在一条直线上,这条直线叫做斜线在平面内旳射影.斜线与它旳射影所成旳锐角叫做斜线与平面所成旳角.结论1 斜线与平面成角是斜线与平面内所有直线成角中最小旳角.定理4 (三垂线定理)若d为平面。
高考数学立体几何的解题技巧分享在高考数学中,立体几何是一个让很多同学感到头疼的板块。
但实际上,只要掌握了一定的解题技巧,就能在这个部分取得不错的成绩。
接下来,我将为大家分享一些实用的高考数学立体几何解题技巧。
一、熟悉基本概念和定理首先,要想在立体几何题目中得心应手,必须对基本概念和定理有清晰而深入的理解。
比如线面平行、线面垂直的判定定理和性质定理,面面平行、面面垂直的判定定理和性质定理等。
这些定理不仅要记住,更要理解其内涵和适用条件。
以线面垂直的判定定理为例,一条直线与一个平面内的两条相交直线都垂直,那么这条直线与这个平面垂直。
这里的“两条相交直线”是关键条件,如果忽视了这一点,就很容易出错。
再比如面面平行的判定定理,如果一个平面内有两条相交直线与另一个平面平行,那么这两个平面平行。
同学们要清楚这里为什么是“两条相交直线”,而不是“两条直线”。
只有把这些基本概念和定理真正吃透,才能在解题时准确地运用。
二、学会画图立体几何的题目往往需要通过图形来辅助理解和解题。
因此,学会画图是非常重要的。
在画图时,要尽量画得准确、清晰。
比如,对于正方体、长方体等常见的几何体,要按照标准的比例和形状来画。
对于一些不规则的几何体,可以通过辅助线来突出其结构特征。
同时,要善于利用不同的视角来画图。
有时候,从正面看不容易理解的图形,从侧面或者俯视的角度看可能就会变得清晰明了。
此外,在解题过程中,要根据题目条件不断完善和修改图形,通过图形的变化来帮助我们找到解题的思路。
三、空间向量法空间向量法是解决立体几何问题的有力工具。
当遇到一些用传统方法比较难以处理的问题时,空间向量法往往能发挥出很大的作用。
首先,要建立合适的空间直角坐标系。
一般来说,如果题目中给出了两两垂直的三条直线,就可以以这三条直线为坐标轴建立坐标系。
如果没有现成的垂直关系,也可以通过作辅助线来创造垂直条件。
然后,求出相关点的坐标,进而求出相关向量的坐标。
比如,要求线面角,就可以先求出平面的法向量和直线的方向向量,然后利用向量的夹角公式来求解。
高考数学立体几何备考复习教案一、教学目标1. 知识与技能:使学生掌握立体几何的基本概念、性质和定理,提高空间想象能力。
2. 过程与方法:通过复习,使学生掌握立体几何的解题方法,提高解题能力。
3. 情感态度与价值观:激发学生学习立体几何的兴趣,培养学生的创新意识。
二、教学内容1. 立体几何的基本概念:点、线、面的位置关系,空间向量。
2. 立体几何的性质:平行公理,空间向量的运算律。
3. 立体几何的定理:平行线、异面直线、线面平行、面面平行、线面垂直、面面垂直的判定与性质。
4. 立体几何的计算:体积、表面积、角、距离的计算。
5. 立体几何的综合应用:空间几何体的结构特征,几何体的运动变化。
三、教学重点与难点1. 教学重点:立体几何的基本概念、性质和定理,立体几何的计算方法。
2. 教学难点:立体几何的综合应用,空间想象能力的培养。
四、教学方法1. 采用讲解、示范、练习、讨论、探索相结合的方法,引导学生掌握立体几何的基本概念、性质和定理。
2. 通过案例分析、几何画板演示等手段,培养学生的空间想象能力。
3. 组织学生进行合作学习,提高学生的解题能力。
五、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 练习与作业:检查学生完成的练习和作业,评估学生的掌握程度。
3. 考试成绩:定期进行立体几何的测试,分析学生的成绩,了解学生的学习效果。
教案第一课时:立体几何的基本概念1. 教师讲解立体几何的基本概念,如点、线、面的位置关系,空间向量。
2. 学生通过案例分析,理解并掌握基本概念。
第二课时:立体几何的性质1. 教师讲解立体几何的性质,如平行公理,空间向量的运算律。
2. 学生通过几何画板演示,直观地理解立体几何的性质。
第三课时:立体几何的定理1. 教师讲解立体几何的定理,如平行线、异面直线、线面平行、面面平行、线面垂直、面面垂直的判定与性质。
2. 学生通过案例分析,掌握立体几何的定理。
数学立体几何的技巧和方法
数学立体几何的技巧和方法包括以下几个方面:
1. 图形可视化:通过绘制平面图形和对图形进行旋转、反转等操作,将复杂的立体图形转化为简单的平面图形,从而更好地理解和推导立体图形的性质。
2. 投影方法:将立体图形在一个平面上进行投影,获得平面内的图形,然后通过计算等方法确定立体图形的性质和体积等。
3. 切割法:将立体图形沿着某个面进行切割,使其变为若干个平面图形,然后通过计算这些平面图形的面积和体积等,来推导立体图形的性质。
4. 坐标法:使用坐标系来表示立体图形的各个点和面,依据对应点的坐标以及立体图形的性质来进行计算和推导。
5. 等量代换法:将一个立体图形变换为等量的、更加简单的形式,从而方便计算和推导。
以上是几个常用的立体几何技巧和方法,当然还有其他的方法,需要根据具体情况灵活运用。
立体几何1、三个公理和三条推论:(1)公理1:一条直线的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。
这是判断直线在平面内的常用方法。
(2)公理2、如果两个平面有两个公共点,它们有无数个公共点,而且这无数个公共点都在同一条直线上。
这是判断几点共线(证这几点是两个平面的公共点)和三条直线共点(证其中两条直线的交点在第三条直线上)的方法之一。
(3)公理3:经过不在同一直线上的三点有且只有一个平面。
推论1:经过直线和直线外一点有且只有一个平面。
推论2:经过两条相交直线有且只有一个平面。
推论3:经过两条平行直线有且只有一个平面。
公理3和三个推论是确定平面的依据。
如(1)在空间四点中,三点共线是四点共面的_____条件(答:充分非必要);(2)给出命题:①若A ∈l ,A ∈α,B ∈l ,B ∈α,则 l ⊂α;②若A ∈α,A ∈β,B ∈α,B ∈β,则α∩β=AB ;③若l ⊄α ,A ∈l ,则A ∉α④若A 、B 、C ∈α,A 、B 、C ∈β,且A 、B 、C 不共线,则α与β重合。
上述命题中,真命题是_____(答:①②④);(3)长方体中ABCD-A 1B 1C 1D 1中,AB=8,BC=6,在线段BD ,A 1C 1上各有一点P 、Q ,在PQ 上有一点M ,且PM=MQ ,则M 点的轨迹图形的面积为_______(答:24)2、直观图的画法(斜二侧画法规则):在画直观图时,要注意:(1)使0135x o y '''∠=,x o y '''所确定的平面表示水平平面。
(2)已知图形中平行于x 轴和z 轴的线段,在直观图中保持长度和平行性不变,平行于y 轴的线段平行性不变,但在直观图中其长度为原来的一半。
如(1)用斜二测画法画一个水平放置的平面图形为如下图的一个正方形,则原来图形的形状是( )(答:A ) (2)已知正ABC ∆的边长为a ,那么ABC ∆的平面直观图A B C '''∆的面积为_____(答:26) 3、空间直线的位置关系:(1)相交直线――有且只有一个公共点。
(2)平行直线――在同一平面内,没有公共点。
(3)异面直线――不在同一平面内,也没有公共点。
如(1)空间四边形ABCD 中,E 、F 、G 、H 分别是四边上的中点,则直线EG 和FH 的位置关系_____(答:相交);(2)给出下列四个命题:①异面直线是指空间既不平行又不相交的直线;②两异面直线b a ,,如果a 平行于平面α,那么b 不平行平面α;③两异面直线b a ,,如果⊥a 平面α,那么b 不垂直于平面α;④两异面直线在同一平面内的射影不可能是两条平行直线 。
其中正确的命题是_____(答:①③)4、异面直线的判定:反证法。
如(1)“a、b为异面直线”是指:①a∩b=Φ,但a不平行于b;②a⊂面α,b⊂面β且a ∩b =Φ;③a⊂面α,b⊂面β且α∩β=Φ;④a⊂面α,b ⊄面α ;⑤不存在平面α,能使a⊂面α且b⊂面α成立。
上述结论中,正确的是_____(答:①⑤);(2)在空间四边形ABCD 中,M 、N 分别是AB 、CD 的中点,设BC+AD=2a ,则MN 与a 的大小关系是_____(答:MN<a );(3)若E 、F 、G 、H 顺次为空间四边形ABCD 四条边AB 、BC 、CD 、DA 的中点,且EG=3,FH=4,则AC 2+BD 2= _____(答:50);(4)如果a、b是异面直线,P 是不在a、b上的任意一点,下列四个结论:①过点P 一定可以作直线l 与a、b都相交; ②过点P 一定可以作直线l 与a、b都垂直;③过点P 一定可以作平面α与a、b都平行; ④过点P 一定可以作直线l 与a、b都平行。
其中正确的结论是_____(答:②);(5)如果两条异面直线称作一对,那么正方体的十二条棱中异面直线的对数为_____(答:24);(6)已知平面,//,,,a c c A a b b a 且平面βαβα⊂=⋂⊂=⋂求证:b 、c 是异面直线.F D C B A E D 1C 1B 1A 15、异面直线所成角θ的求法:(1)范围:(0,]2πθ∈;(2)求法:计算异面直线所成角的关键是平移(中点平移,顶点平移以及补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,以便易于发现两条异面直线间的关系)转化为相交两直线的夹角。
如(1)正四棱锥ABCD P -的所有棱长相等,E 是PC 的中点,那么异面直线BE 与PA 所成的角的余弦值等于____(答:33);(2)在正方体AC 1中,M 是侧棱DD 1的中点,O 是底面ABCD 的中心,P 是棱A 1B 1上的一点,则OP 与AM 所成的角的大小为____(答:90°);(3)已知异面直线a 、b 所成的角为50°,P 为空间一点,则过P 且与a 、b 所成的角都是30°的直线有且仅有____条(答:2);(4)若异面直线,a b 所成的角为3π,且直线c a ⊥,则异面直线,b c 所成角的范围是____(答:[,]62ππ); 6、异面直线的距离的概念:和两条异面直线都垂直相交的直线叫异面直线的公垂线。
两条异面直线的公垂线有且只有一条。
而和两条异面直线都垂直的直线有无数条,因为空间中,垂直不一定相交。
如(1)ABCD 是矩形,沿对角线AC 把ΔADC 折起,使AD ⊥BC ,求证:BD 是异面直线AD 与BC 的公垂线;(2)如图,在正方体ABCD —A 1B 1C 1D 1中,EF 是异面直线AC 与A 1D 的公垂线,则由正方体的八个顶点所连接的直线中,与EF平行的直线有____条(答:1); 7、两直线平行的判定:(1)公理4:平行于同一直线的两直线互相平行;(2)线面平行的性质:如果一条直线和一个平面平行,那么经过这条直线的平面和这个平面相交的交线和这条直线平行;(3)面面平行的性质:如果两个平行平面同时与第三个平面相交,那么它们的交线平行;(4)线面垂直的性质:如果两条直线都垂直于同一个平面,那么这两条直线平行。
8、两直线垂直的判定:(1)转化为证线面垂直;(2)三垂线定理及逆定理。
9、直线与平面的位置关系:(1)直线在平面内;(2)直线与平面相交。
其中,如果一条直线和平面内任何一条直线都垂直,那么这条直线和这个平面垂直。
注意:任一条直线并不等同于无数条直线;(3)直线与平面平行。
其中直线与平面相交、直线与平面平行都叫作直线在平面外。
如(1)下列命题中,正确的是 A、若直线a 平行于平面α内的一条直线b , 则 a // α B、若直线a 垂直于平面α的斜线b 在平面α内的射影,则a ⊥b C、若直线a 垂直于平面α,直线b 是平面α的斜线,则a 与b 是异面直线 D、若一个棱锥的所有侧棱与底面所成的角都相等,且所有侧面与底面所成的角也相等,则它一定是正棱锥(答:D );(2)正方体ABCD-A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上运动,并且总保持AP ⊥BD 1,则动点P 的轨迹是___________(答:线段B 1C )。
10、直线与平面平行的判定和性质:(1)判定:①判定定理:如果平面内一条直线和这个平面平面平行,那么这条直线和这个平面平行;②面面平行的性质:若两个平面平行,则其中一个平面内的任何直线与另一个平面平行。
(2)性质:如果一条直线和一个平面平行,那么经过这条直线的平面和这个平面相交的交线和这条直线平行。
在遇到线面平行时,常需作出过已知直线且与已知平面相交的辅助平面,以便运用线面平行的性质。
如(1)α、β表示平面,a 、b 表示直线,则a ∥α的一个充分不必要条件是 A 、α⊥β,a ⊥β B 、α∩β=b ,且a ∥b C 、a ∥b 且b ∥α D 、α∥β且a ⊂β(答:D );(2)正方体ABCD-A 1B 1C 1D 1中,点N 在BD 上,点M 在B 1C 上,且CM=DN ,求证:MN ∥面AA 1B 1B 。
11、直线和平面垂直的判定和性质:(1)判定:①如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线和这个平面垂直。
②两条平行线中有一条直线和一个平面垂直,那么另一条直线也和这个平面垂直。
(2)性质:①如果一条直线和一个平面垂直,那么这条直线和这个平面内所有直线都垂直。
②如果两条直线都垂直于同一个平面,那么这两条直线平行。
如(1)如果命题“若y y x ,⊥∥z ,则z x ⊥”不成立,那么字母x 、y 、z 在空间所表示的几何图形一定是_____(答:x 、y 是直线,z 是平面);(2)已知a ,b ,c 是直线,α、β是平面,下列条件中能得出直线a ⊥平面α的是 A 、a ⊥b ,a⊥c其中b⊂α,c⊂α B 、a ⊥b ,b∥α C 、α⊥β,a∥β D 、a∥b,b⊥α(答:D );(3)AB 为⊙O 的直径,C 为⊙O 上的一点,AD ⊥面ABC ,AE ⊥BD 于E ,AF ⊥CD 于F ,求证:BD ⊥平面AEF 。
12、三垂线定理及逆定理:(1)定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。
(2)逆定理:在平面内的一条直线,如果它和这个平面的一条斜线,那么它也和这条斜线在平面内的射影垂直。
其作用是证两直线异面垂直和作二面角的平面角。
13、直线和平面所成的角:(1)定义:平面的一条斜线和它在平面内的射影所成的锐角,叫这条直线和这个平面所成的角。
(2)范围:[0,90];(3)求法:作出直线在平面上的射影;(4)斜线与平面所成的角的特征:斜线与平面中所有直线所成角中最小的角。
如(1)在正三棱柱ABC-A 1B 1C 1中,已知AB=1,D 在棱BB 1上,BD=1,则AD 与平面AA 1C 1C 所成的角为______(答:arcsin46);(2)正方体ABCD-A 1B 1C 1D 1中,E 、F 分别是AB 、C 1D 1的中点,则棱 A 1B 1 与截面A 1ECF 所成的角的余弦值是______(答:13);(3)PC PB PA ,,是从点P 引出的三条射线,每两条的夹角都是︒60,则直线PC 与平面PAB 所成角的余弦值为______(答:33);(4)若一平面与正方体的十二条棱所在直线都成相等的角θ,则sin θ的值为______(答:33)。
14、平面与平面的位置关系:(1)平行――没有公共点;(2)相交――有一条公共直线。
15、两个平面平行的判定和性质:(1)判定:一个如果平面内有两条相交直线和另一个平面平行,则这两个平面平行。