解析几何公式大全

  • 格式:docx
  • 大小:171.52 KB
  • 文档页数:9

下载文档原格式

  / 9
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析几何中的基本公

1、两点间距离:若)y ,x (B ),y ,x (A 2211,则212212)()(y y x x AB -+-=

2、平行线间距离:若0C By Ax :l ,

0C By Ax :l 2211=++=++

则:2

2

21B

A C C d +-=

注意点:x ,y 对应项系数应相等。

3、点到直线的距离:0C By Ax :l ),y ,x (P =++οο

则P 到l 的距离为:2

2

B

A C

By Ax d +++=

οο

4、直线与圆锥曲线相交的弦长公式:⎩⎨⎧=+=0

)y ,x (F b

kx y

消y :02=++c bx ax ,务必注意.0>∆

若l 与曲线交于A ),(),,(2211y x B y x

则:2122))(1(x x k AB -+=

5、若A ),(),,(2211y x B y x ,P (x ,y )。P 在直线AB 上,且P 分有向线段AB 所成的比为λ,

则⎪⎪⎩

⎪⎪⎨⎧λ+λ+=λ+λ+=112121y y y x x x ,特别地:λ=1时,P 为AB 中点且⎪⎪⎩⎪⎪⎨⎧

+=+=2221

21y y y x x x

变形后:y

y y y x x x x --=λ--=

λ21

21或 6、若直线l 1的斜率为k 1,直线l 2的斜率为k 2,则l 1到l 2的角为),0(,π∈αα

适用范围:k 1,k 2都存在且k 1k 2≠-1 , 2

11

21tan k k k k +-=

α

若l 1与l 2的夹角为θ,则=

θtan 2

1211k k k k +-,]2,0(π

∈θ

注意:(1)l 1到l 2的角,指从l 1按逆时针方向旋转到l 2所成的角,范围),0(π

l 1到l 2的夹角:指 l 1、l 2相交所成的锐角或直角。

(2)l 1⊥l 2时,夹角、到角=

2

π

。 (3)当l 1与l 2中有一条不存在斜率时,画图,求到角或夹角。

7、(1)倾斜角α,),0(π∈α;

(2)]0[,π∈θθ→

→,,夹角b a ;

(3)直线l 与平面]2

0[π

∈ββα,,的夹角;

(4)l 1与l 2的夹角为θ,∈θ]2

0[π

,,其中l 1//l 2时夹角θ=0;

(5)二面角,θ],0(π∈α;

(6)l 1到l 2的角)0(π∈θθ,,

8、直线的倾斜角α与斜率k 的关系

a) 每一条直线都有倾斜角α,但不一定有斜率。

b) 若直线存在斜率k ,而倾斜角为α,则k=tan α。

9、直线l 1与直线l 2的的平行与垂直

(1)若l 1,l 2均存在斜率且不重合:①l 1//l 2⇔ k 1=k 2

②l 1⊥l 2⇔ k 1k 2=-1

(2)若0:,0:22221111=++=++C y B x A l C y B x A l

若A 1、A 2、B 1、B 2都不为零

① l 1//l 2⇔

2

1

2121C C B B A A ≠

=; ② l 1⊥l 2⇔ A 1A 2+B 1B 2=0;

③ l 1与l 2相交⇔

2

121B B A A ≠ ④ l 1与l 2重合⇔

2

1

2121C C B B A A =

=; 注意:若A 2或B 2中含有字母,应注意讨论字母=0与≠0的情况。

10、 直线方程的五种形式

名称 方程 注意点

斜截式: y=kx+b 应分①斜率不存在

②斜率存在

点斜式: )(οοx x k y y -=- (1)斜率不存在:οx x =

(2)斜率存在时为)(οοx x k y y -=-

两点式:

1

21

121x x x x y y y y --=-- 截距式:

1=+b

y

a x 其中l 交x 轴于)0,(a ,

交y 轴于),0(b 当直线l 在坐标轴上,截距相等时应分:

(1)截距=0 设y=kx

(2)截距=0≠a 设

1=+a

y

a x 即x+y=a

一般式: 0=++C By Ax (其中A 、B 不同时为零)

10、确定圆需三个独立的条件

圆的方程 (1)标准方程: 222)()(r b y a x =-+-, 半径圆心,----r b a ),(。

(2)一般方程:022=++++F Ey Dx y x ,()0422>-+F E D

11、直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种

若2

2

B

A C Bb Aa d +++=

,0<∆⇔⇔>相离r d

12、两圆位置关系的判定方法

设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21

外离 外切

相交 内切 内含

13、圆锥曲线定义、标准方程及性质

(一)椭圆

定义Ⅰ:若F 1,F 2是两定点,P 为动点,且21212F F a PF PF >=+ (a 为常数)则P 点的轨迹是椭圆。

定义Ⅱ:若F 1为定点,l 为定直线,动点P 到F 1的距离与到定直线l 的距离之比为常数e (0

标准方程:122

22=+b

y a x )0(>>b a

定义域:}{a x a x ≤≤-值域:

}{b y b x ≤≤-

长轴长=a 2,短轴长=2b

焦距:2c