东营市中考数学试卷及答案
- 格式:doc
- 大小:572.50 KB
- 文档页数:14
5.东营市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收1.5元(不足1千米按1千米计).某人从甲地到乙地经过的路程是x 千米,出租车费为15.5元,那么x 的最大值是( )A .11B .8C .7D .5 6.若34y x =,则x y x +的值为( ) A .1 B .47 C .54 D .747.如图,有一个质地均匀的正四面体,其四个面上分别画着圆、等边三角形、菱形、正五边形.投掷该正四面体一次,向下的一面的图形既是轴对称图形又是中心对称图形的概率是( )A .1B .14 C .34 D .128.下列命题中是真命题的是( )A .确定性事件发生的概率为1B .平分弦的直径垂直于弦C .正多边形都是轴对称图形D .两边及其一边的对角对应相等的两个三角形全等9.如图,在△ABC 中,AB >AC ,点D 、E 分别是边AB 、AC 的中点,点F 在BC 边上,连接DE ,DF ,EF .则添加下列哪一个条件后,仍无法判定△FCE 与△EDF 全等( ).A .∠A =∠DFEB .BF =CFC .DF ∥A CD .∠C =∠EDF10.如图,在Rt △ABC 中,∠ABC =90°,AB =BC .点D 是线段AB 上的一点,连结CD ,过点B 作BG ⊥CD ,分别交CD 、CA 于点E 、F ,与过点A 且垂直于AB 的直线相交于点G ,连结DF .给出以下四个结论:①AG AF ABFC=;②若点D 是AB 的中点,则AF =23AB ;③当B 、C 、F 、D 四点在同一个圆上时,DF =DB ;EFGCABD(第10题图)(第9题图)FEDBAC(第17题图)。
2023年山东东营中考数学试题及答案(总分120分考试时间120分钟)注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,90分;本试题共6页。
2.数学答题卡共8页。
答题前,考生务必将自己的姓名、准考证号、座号等填写在试题和答题卡上,考试结束,试题和答题卡一并收回。
3.第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号【ABCD 】涂黑。
如需改动,先用橡皮擦干净,再改涂其它答案。
第Ⅱ卷按要求用0.5mm 碳素笔答在答题卡的相应位置上。
第Ⅰ卷(选择题 共30分)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来。
每小题选对得3分,选错、不选或选出的答案超过一个均记零分。
1.-2的相反数是( ) A .-2B .2C .D .12-122.下列运算结果正确的是( ) A . B .339x x x ⋅=336235x x x +=C .D .()32626x x =()()2232349x x x +-=-3.如图,,点E 在线段BC 上(不与点B ,C 重合),连接DE 。
若,AB CD ∥40D ∠=︒,则∠B =( )60BED ∠=︒A .10°B .20°C .40°D .60°4.剪纸是中国最古老的民间艺术之一,先后入选中国国家级非物质文化遗产名录和人类非物质文化遗产代表作名录。
小文购买了以“剪纸图案”为主题的5张书签,他想送给好朋友小乐一张。
小文将书签背面朝上(背面完全相同),让小乐从中随机抽取一张,则小乐抽到的书签图案既是轴对称图形又是中心对称图形的概率是( )A .B .C .D .453525155.为扎实推进“五育”并举工作,加强劳动教育,东营市某中学针对七年级学生开设了“跟我学面点”烹饪课程。
课程开设后学校花费6000元购进第一批面粉,用完后学校又花费9600元购进了第二批面粉,第二批面粉的采购量是第一批采购量的1.5倍,但每千克面粉价格提高了0.4元。
2023年山东省东营市中考数学试卷试卷考试总分:107 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 9 小题 ,每题 3 分 ,共计27分 )1. 下列运算正确的是A.B.C.D.2. 将一副三角尺按如图摆放,点在上,点在的延长线上,,,,,则的度数是 A.B.C.D. 3. 在四张完全相同的卡片上,分別画有等腰三角形、平行四边形、矩形、圆,现从中随机抽取一张,卡片上的图形既是轴对称图形又是中心对称图形的概率是( ) A. B.C.D.4. 东胜到呼市相距千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的倍.从东胜到呼市的时间缩短了小时.设列车提速后所需时间为小时,根据题意,可列方程 A.B.C.D.( )+a 2a 3=a 52⋅3a 3a 3=6a 3(3ab 2)2=6a 2b 4(a +b)(a −b)=−a 2b 2E AC D BC EF //BC ∠B =∠EDF =90∘∠A =45∘∠F =60∘∠CED ()15∘20∘25∘30∘1234 2.21.2x ()−=1.2234x 2342.2x =×2.2234x+1.2234x −=1.22342.2x 234x ×2.2=234x+1.2234x5. 已知圆锥的母线长为,将其侧面沿着一条母线展开后所得扇形的圆心角为,则该扇形的面积是( )A.B.C.D.6. 如图,,相交于点,.若,则与的面积之比为()A.B.C.D.7. 如图,点是正六边形内部一个动点,,则点到这个正六边形六条边的距离之和为.A.B.C.D.8. 如图,二次函数的图象与轴交于,两点,与轴正半轴交于点,它的对称轴为直线.则下列选项中正确的是( )A.B.C.64π8π12π16πAD BC O AB//CD AB =1,CD =2△ABO △DCO 1:21:42:14:1P ABCDEF AB =1cm P ( )cm 6333–√63–√y =a +bx+c(a >0)x 2x A B y C x =−1abc <04ac −>0b 2c −a >09. 如图,在▱中,点在边上,,连接交于点,则的面积与的面积之比为( )A.B.C.D.二、 填空题 (本题共计 8 小题 ,每题 3 分 ,共计24分 )10. 年月日,我国发射的“嫦娥号”月球探测器首次实现了地外天体采样返回,成就举世瞩目.地球到月球的平均距离约是千米,数据用四舍五入法精确到千位、并用科学记数法表示为________.11. 因式分解:=________.12. 若,则点落在________上.13. 有一组数据:,,,,,这组数据的方差是________.14. 某同学想知道学校旗杆的高度,他发现旗杆顶端的绳子垂到地还多米,当他把绳子的下端拉开米后,发现下端刚好接触地面,旗杆的高度是________.15. 在半径为 的圆内有两条平行弦,一条弦长为,另一条弦长为,则两条平行弦之间的距离为________.16. 如图,在中,,.按以下步骤作图:①以点为圆心,小于的长为半径画弧,分别交,于点,;②分别以点,为圆心,大于的长为半径画弧,两弧相交于点;③作射线交边于点.则的度数为________.17. 方程组的解是________;直线与直线的交点是________.三、 解答题 (本题共计 7 小题 ,每题 8 分 ,共计56分 ) 18. 解下列小题计算:;先化简再求值,其中. ABCD E DC DE :EC =3:1AE BD F △DEF △BAF 3:49:19:163:1202012175384400384400a −2ax+a x 2mn =0P(m,n)55668155cm 6cm 8cm △ABC ∠C =90∘∠CAB =50∘A AC AB AC E F E F EF 12G AG BC D ∠ADC {y =3x−1,y =x+3y =3x−1y =x+3(1)|−2|+−+6cos 3–√(3−π)012−−√30∘(2)÷1−3m m 22−9m 2m=−5本次调查的学生共有________人,并补全条形统计图;估计该校名学生中“不了解”的人数是________人;“非常了解”的人中有两名男生和两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.20. 如图,在中,,是边上一点,以为圆心,为半径作,交边于点,过作的切线交边于点.求证:.21. 如图,一次函数的图象与反比例函数的图象交于,两点,且点坐标为,一次函数交轴于点.试确定上述反比例函数和一次函数的表达式;求的面积;直接写出使反比例函数大于一次函数的的取值范围.22. 国际油价随着供需关系持续波动,特别是主要产油国的日产量会影响油价的走势,某段时间,某石油输出大国每天石油的日产量约为万桶时,石油的国际油价是每桶美元,每桶成本约为美元,据统计,当日产量减少万桶时,每桶国际油价将会提高美元,但每桶价格高于美元时,石油需求量又会大幅减少,从而影响该国的国家经济.(1)若某段时间国际石油的价格是美元/桶,则该国当日的石油日产量是多少万桶?(2)该国为了实现一天的利润为亿美元,则日产量是多少万桶?23. 如图,菱形是边长为,,对角线、交于点.(1)操作发现:小芳同学将绕点旋转得,当落在上时(如图),连接,请直接写出与的位置关系和数量关系;(2)问题解决:小芳同学继续旋转(,不重合),如图,连接、,她认为(1)中的结论仍然成立.你同意吗?说明理由.(3)深入思考:若直线与直线的交点为,请直接写出的最大值.(1)(2)2400(3)4△ABC AB =AC O AB O OB ⊙O BC E E ⊙O AC F EF ⊥AC y =−x+b y =m x A B A (−2,1)x C (1)(2)△AOB (3)x 12005640507100773.31ABCD 2∠BAD =60∘AC BD O △CBD O △CEF CF AD 2ED ED AC △CEF A C 3ED AC ED AC H BH如图,求抛物线的解析式;如图,点在轴下方的抛物线上,交轴于点,连接、,若,求点的坐标;如图,在()的条件下,过点作交于点,点在第一象限的抛物线上,连接、,若,求点的坐标.(1)1(2)2D x CD x E BC BD =10S △BCD D (3)32B BF ⊥BD CD F P PF OD ∠PFC =∠ODB P参考答案与试题解析2023年山东省东营市中考数学试卷试卷一、 选择题 (本题共计 9 小题 ,每题 3 分 ,共计27分 )1.【答案】D【考点】平方差公式合并同类项幂的乘方与积的乘方同底数幂的乘法【解析】根据合并同类项法则,单项式乘以单项式,幂的乘方和积的乘方,平方差公式逐个判断即可.【解答】解:,和不能合并,故本选项不符合题意;,,故本选项不符合题意;, ,故本选项不符合题意;, ,故本选项符合题意.故选.2.【答案】A【考点】平行线的性质三角形的外角性质【解析】由==,=,=,利用三角形内角和定理可得出=,由,利用“两直线平行,内错角相等”可得出的度数,结合三角形外角的性质可得结论.【解答】解:∵,,∴.∵,,∴.∵,∴,∴.故选.A a 2a 3B 2⋅3=6a 3a 3a 6C =9(3a )b 22a 2b 4D (a +b)(a −b)=−a 2b 2D ∠B ∠EDF 90∘∠A 45∘∠F 60∘∠ACB 45∘EF //BC∠EDC ∠B =90∘∠A =45∘∠ACB =45∘∠EDF =90∘∠F =60∘∠DEF =30∘EF //BC ∠EDC =∠DEF =30∘∠CED =∠ACB−∠EDC =−=45∘30∘15∘A中心对称图形概率公式轴对称图形【解析】由等腰三角形、平行四边形、矩形、圆中是轴对称图形和中心对称图形的有矩形、圆,直接利用概率公式求解即可求得答案.【解答】解:等腰三角形、平行四边形、矩形、圆中是中心对称图形的有平行四边形、矩形、圆,是轴对称图形的有等腰三角形、矩形、圆,…既是轴对称又是中心对称图形的有矩形、圆,.现从中随机抽取一张,卡片上画的图形恰好是中心对称图形的概率是故选:.4.【答案】D【考点】由实际问题抽象出分式方程【解析】此题暂无解析【解答】解:根据题意得,提速之前的时间为:,故可列方程组为:.故选.5.【答案】C【考点】圆锥的计算【解析】利用圆锥的侧面展开图为一扇形,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【解答】解:该扇形的面积.故选.12B x+1.2×2.2=234x+1.2234xD ==12π×π×120∘62360∘C相似三角形的判定与性质【解析】此题暂无解析【解答】解:由可知,,由可知,与的面积之比为.故选.7.【答案】C【考点】等边三角形的性质与判定锐角三角函数的定义正多边形和圆含30度角的直角三角形【解析】【解答】解:可采用特殊点的方法,即当点为正六边形的中心时,过作于,如图所示.根据正六边形的性质可知,,即,,,正六边形各边的距离之和.故选.8.【答案】AB//CD △ABO ∼△DCO =AB CD 12△ABO △DCO 1:4B P P PH ⊥BC H ∠BPC =60∘∠BPH =∠BPC =×=121260∘30∘BH =BC =×1=(cm)121212∴PH ===BH tan30∘123√33–√2∴=6PH =6×=3(cm)3–√23–√C二次函数图象与系数的关系抛物线与x 轴的交点二次函数图象上点的坐标特征【解析】由图象开口向上,可知,与轴的交点在轴的上方,可知,根据对称轴方程得到,于是得到,故错误;根据一次函数=的图象与轴的交点,得到,求得,故错误;根据对称轴方程得到=,当=时,=,于是得到,故错误;当=(为实数)时,代入解析式得到===,于是得到=,故正确.【解答】解:,由抛物线与轴交于正半轴,可知,∵对称轴为直线,,∴,∴,∴,故错误;,二次函数的图象与轴交于,两点,∴,∴,故错误;,∵,∴,∵当时,,∴,∴,故错误;,当(为实数)时,,,,,∴,故正确.故选.9.【答案】C【考点】平行四边形的性质相似三角形的性质与判定【解析】可证明,根据相似三角形的面积之比等于相似比的平方即可得出答案.【解答】解:∵四边形为平行四边形,∴,∴.∵,∴,∴,∴.a >0y x c >0b >0abc >0A y a +bx+c(a >0)x 2x −4ac >0b 24ac −<0b 2B b 2a x −1y a −b +c <0c −a <0C x −−2n 2n y a +bx+c x 2a(−−2+b(−−2)n 2)2n 2a (+2)+c n 2n 2y a (+2)+c ≥c n 2n 2D A y c >0x =−1a >0−=−1<0b 2a b >0abc >0A B y =a +bx+c(a >0)x 2x A B Δ=−4ac >0b 24ac −<0b 2B C −=−1b 2a b =2a x =−1y =a −b +c <0a −2a +c <0c −a <0C D x =−−2n 2n y =a +bx+cx 2=a +b(−−2)+c(−−2)n 22n 2=a +2a(−−2)+c(−−2)n 22n 2=a (+2)+c n 2n 2∵a >0≥0n 2+2>0n 2y =a (+2)+c ≥c n 2n 2D D △DFE ∽△BFA ABCD DC//AB △DFE ∼△BFA DE :EC =3:1DE :DC =3:4DE :AB =3:4:=9:16S △DFE S △BFA10.【答案】【考点】科学记数法与有效数字【解析】此题暂无解析【解答】此题暂无解答11.【答案】【考点】提公因式法与公式法的综合运用【解析】此题暂无解析【解答】此题暂无解答12.【答案】坐标轴【考点】点的坐标【解析】根据坐标轴上点的坐标特点解答.【解答】解:∵点,满足,∴或;∴点位于轴或者轴上,即点在坐标轴上.故答案为:坐标轴.13.【答案】【考点】3.84×105a(x−1)2P(m,n)mn =0m=0n =0P x y P 1.2【解析】先求出这组数据的平均数,然后再根据方差的公式求出方差即可.【解答】解:由题意,得这组数据的平均数,则这组数据的方差.故答案为:.14.【答案】米【考点】勾股定理的应用【解析】设旗杆的高度为,由题意可知绳子的长为,根据题意画出草图,在直角三角形中运用勾股定理求解即可.【解答】解:如图所示,设旗杆的高度,则绳子长,由题意,得,在中,由勾股定理,得,即,解得.故答案为:米.15.【答案】或【考点】勾股定理的应用垂径定理的应用【解析】【解答】解:令=,=,过点作⊥于,交于.=×(5+5+6+6+8)=6x¯¯15=×[(5−6+(5−6+(6−6+(6−6+(8−6]=1.2s 215)2)2)2)2)21.212x x+1AC =x AB =x+1BC =5Rt △ABC A =B +A B 2C 2C 2(x+1=+)2x 252x =12121cm 7 cmAB 6 cm CD 8 cm O OE AB E CD F当、在圆心同旁时,∵,∴.∵过圆心,⊥,∴==.∵=,∴由勾股定理可知 =.同理 =,∴=-=.当、在圆心两旁时,同理可知=+=,故答案为:或.16.【答案】【考点】作图—基本作图角平分线的性质【解析】此题暂无解析【解答】解:根据作图方法可得,是的角平分线,∵,∴,∵,∴.故答案为:.17.【答案】,【考点】一次函数与二元一次方程(组)一次函数图象上点的坐标特征一次函数的图象【解析】此题暂无解析【解答】解:对原方程组使用加减消元法,两式相减得,解得,带入原方程得.所以方程组的解为所以直线与直线的交点为.故答案为:.AB CD AB//CD OF ⊥CD OE OE AB EB 12AB 3cm OB 5cm EO 4cm OF 4cm EF OE OF 1 cm AB CD EF OE OF 7cm 1 cm 7 cm 65∘AG ∠CAB ∠CAB =50∘∠CAD =∠CAB =1225∘∠C =90∘∠ADC =−=90∘25∘65∘65∘{x =2,y =5(2,5)2x−4=0x =2y =5{x =2,y =5,y =3x−1y =x+3(2,5){x =2,y =5;(2,5)三、 解答题 (本题共计 7 小题 ,每题 8 分 ,共计56分 )18.【答案】解:原式=原式,,当时,原式.【考点】零指数幂、负整数指数幂整式的混合运算——化简求值特殊角的三角函数值实数的运算【解析】此题暂无解析【解答】解:原式=原式,,当时,原式.19.【答案】解:本次调查的学生总人数为(人).故答案为:.“了解”的学生人数为(人),“了解较少”的学生人数为(人),“不了解”的学生人数为(人),补全条形统计图如下:设两名女生为,,两名男生为,,画树状图如下,共有种等可能的结果,其中恰好抽到一男一女的结果有种,(1)2−+1−2+6×3–√3–√3–√2=3(2)=÷1m(m−3)2(m+3)(m−3)=×=1m(m−3)(m+3)(m−3)2m+32m m=−5==−5+32×(−5)15(1)2−+1−2+6×3–√3–√3–√2=3(2)=÷1m(m−3)2(m+3)(m−3)=×=1m(m−3)(m+3)(m−3)2m+32m m=−5==−5+32×(−5)15(1)4÷8%=505050×22%=1150×40%=2050−4−11−20=15720(3)A 1A 2B 1B 2128=82∴(恰好抽到一男一女).【考点】条形统计图扇形统计图用样本估计总体列表法与树状图法【解析】用“非常了解”人数除以它所占的百分比即可得到调查的总人数;根据总人数和百分比求出“了解”“了解较少”的人数,用总人数减去“非常了解”“了解”“了解较少”的人数可得“不了解”人数,补全条形图.总人数乘以样本中“不了解”学生所占比例.先画树状图展示所有个等可能的结果数,再找出恰好是一位男同学和一位女同学的结果数,然后根据概率公式求解.【解答】解:本次调查的学生总人数为(人).故答案为:.“了解”的学生人数为(人),“了解较少”的学生人数为(人),“不了解”的学生人数为(人),补全条形统计图如下:“不了解”的学生所占比例为,(人),故该校名学生中“不了解”的人数是人.故答案为:.设两名女生为,,两名男生为,,画树状图如下,共有种等可能的结果,其中恰好抽到一男一女的结果有种,∴(恰好抽到一男一女).20.【答案】证明:连接,如图,∵,∴,∵,∴,∴,∴,∵为切线,∴,∴.P ==81223(1)(2)(3)12(1)4÷8%=505050×22%=1150×40%=2050−4−11−20=15(2)1−40%−22%−8%=30%2400×30%=7202400720720(3)A 1A 2B 1B 2128P ==81223OE OB =OE ∠B =∠OEB AB =AC ∠B =∠C ∠OEB =∠C OE//AC EF OE ⊥EF EF ⊥AC等腰三角形的判定与性质切线的性质切线的判定与性质【解析】连接,如图,先证明,再利用切线的性质得,从而得到;【解答】证明:连接,如图,∵,∴,∵,∴,∴,∴,∵为切线,∴,∴.21.【答案】解:把代入得,解得,∴一次函数解析式为;把代入得,∴反比例函数解析式为.当时,,则直线与轴的交点坐标为,∴的面积.根据函数图像可知反比例函数大于一次函数的的取值范围为或.【考点】反比例函数与一次函数的综合【解析】(1)把代入=中求出得到一次函数解析式;然后把代入中求出得到反比例函数解析式;(2)先求出直线=与轴的交点坐标,然后利用三角形面积公式计算的面积;(3)结合图象写出反比例函数图象在一次函数图象上方对应的自变量的范围即可.【解答】解:把代入得,解得,∴一次函数解析式为;把代入得,∴反比例函数解析式为.当时,,则直线与轴的交点坐标为,∴的面积.根据函数图像可知反比例函数大于一次函数的的取值范围为或.22.OE OE//AC OE ⊥EF EF ⊥AC OE OB =OE ∠B =∠OEB AB =AC ∠B =∠C ∠OEB =∠C OE//AC EF OE ⊥EF EF ⊥AC (1)A(−2,1)y =−x+b 2+b =1b =−1y =−x−1A(−2,1)y =m xm=−2×1=−2y =−2x (2)x =0y =−x−1=−1y =−x−1y (0,−1)△AOB =×1×(2+1)=1232(3)x −2<x <0x >1A(−2,1)y −x+b b A(−2,1)y =m x m y −x−1y △AOB (1)A(−2,1)y =−x+b 2+b =1b =−1y =−x−1A(−2,1)y =m x m=−2×1=−2y =−2x (2)x =0y =−x−1=−1y =−x−1y (0,−1)△AOB =×1×(2+1)=1232(3)x −2<x <0x >1该国当日的石油日产量是万桶该国为了实现一天的利润为亿美元,日产量为万桶【考点】一元二次方程的应用【解析】(1)设该国当日的石油日产量是万桶,根据“当日产量减少万桶时,每桶国际油价将会提高美元”列出每桶国际油价提高的油价为美元,再根据“原每桶油价+提高的油价=现油价”列出一元一次方程进行解答便可;(2)根据“(现油价-成本)现日产量=总的日利润”列出一元二次方程进行解答便可.【解答】设该国当日的石油日产量是万桶,根据题意列出方程,解得,=,答:该国当日的石油日产量是万桶.设该国为了实现一天的利润为亿美元,日产量为万桶,根据题意得,=,解得,=,,当=时,,应舍去,答:该国为了实现一天的利润为亿美元,日产量为万桶.23.【答案】(1)如图中,当落在上时,,,,∴,即.(2)如图中,结论仍然成立.理由:连接、.∵,都是等边三角形,,,,∴,,,∴,∴,∵,∴,10503.31100x 507×71200−x 50×x 56+×7=771200−x 50x 105010503.3y y(56+×7−40)1200−y 5033000y 11100≈214.3y 2y 214.356+×7>1001200−214.350 3.311001CF AD DE ⊥AC DE =DF 3–√AC =3DF DE =AC 3–√3AC =DE 3–√2OA OC △ABD △EFC BD =EF OB =OD OE =OF AO ⊥BD CO ⊥EF OA =OC ∠AOD =∠COE =90∘∠AOC =∠DOE ==OA OD OC OE 3–√△AOC ∽△DOE =AC AO∴,,延长交于,交于.∵,,∴,∴,∴.(3)如图中,如图中,取的中点,连接、.∵是等边三角形,,∴,由(2)可知,,∴,∵,∴的最大值为.【考点】四边形综合题【解析】(1)结论:,;(2)结论成立.连接、.只要证明,再利用“字型”证明垂直即可;(2)利用三边关系确定最值问题;【解答】(1)如图中,当落在上时,,,,∴,即.(2)如图中,结论仍然成立.理由:连接、.∵,都是等边三角形,,,,∴,,,∴,==AC DE AO OD 3–√∠OED =∠ACO ED AC H EH OC K ∠OEK +∠OKE =90∘∠OKE =∠CKH ∠CKH+∠KCH =90∘∠KHC =90∘EH ⊥AC 33AD K BK KH △ABD AK =DK BK =×2=3–√23–√∠AHD =90∘KH =AD =112BK +KH ≥BH BH +13–√DE ⊥AC AC =DE 3–√OA OC △AOC ∽△DOE 81CF AD DE ⊥AC DE =DF 3–√AC =3DF DE =AC 3–√3AC =DE 3–√2OA OC △ABD △EFC BD =EF OB =OD OE =OF AO ⊥BD CO ⊥EF OA =OC ∠AOD =∠COE =90∘∴,∵,∴,∴,,延长交于,交于.∵,,∴,∴,∴.(3)如图中,如图中,取的中点,连接、.∵是等边三角形,,∴,由(2)可知,,∴,∵,∴的最大值为.24.【答案】解:()∵抛物线的解析式为,∴抛物线的对称轴为.∵,∴,∴,∴.∵抛物线经过点和点,∴解得∴抛物线的解析式为,如图,过点作轴于点,设,设直线的解析式为,∵直线经过,∴ 解得∴直线的解析式为,∴,∠AOC =∠DOE ==OA OD OC OE 3–√△AOC ∽△DOE ==AC DE AO OD 3–√∠OED =∠ACO ED AC H EH OC K ∠OEK +∠OKE =90∘∠OKE =∠CKH ∠CKH+∠KCH =90∘∠KHC =90∘EH ⊥AC 33AD K BK KH △ABD AK =DK BK =×2=3–√23–√∠AHD =90∘KH =AD =112BK +KH ≥BH BH +13–√1y =a −6ax+cx 2x =−=3−6a 2a A(1,0)B(5,0)OC =OB =5C(0,5)y =a −6ax+c x 2A(1,0)C(0,5){a −6a +c =0,c =5,{a =1,c =5,y =−6x+5x 2(2)1D DT ⊥x T D(t,−6t+5)t 2CD y =kx+b y =kx+b C(0,5),D(t,−6t+5)t 2{5=b,−6t+5=kt+b,t 2{k =t−6,b =5,CD y =(t−6)x+5E(−,0)5t−6E =−5∴ ∴.∵,∴,即,解得(舍去)或,∴.如图,过点作轴于点,过点作交的延长线于点,过点作轴于点,由()知,,直线解析式为,∴.∴.∵,∴.∵轴,∴ ,∴,∴,∴,∴.∴,设,∴,∴,解得,∴,∴.∵,∴,∴,∴.∵,∴,∴,∴ ,∴ .∵∴,∴,设,∴.∴,∴,∴,解得(舍去)或,∴.【考点】二次函数综合题【解析】此题暂无解析OE =−5t−6BE =5+5t−6=10S △BCD +=BE ⋅OC +BE ⋅DT =10S △BCE S △BDE 1212(5+)(5−+6t−5)=10125t−6t 2t =1t =4D(4,−3)(3)2F FH ⊥x H P PG ⊥FH HF C D DT ⊥x T 2D(4,−3)CD y =−2x+5BT =OB−OT =1,DT =3tan ∠OBD ==3DT BT BF ⊥BD ∠FBH+∠OBD =90∘FH ⊥x ∠FHB =90∘∠FBH+∠HFB =90∘∠OBD =∠HFB tan ∠OBD =tan ∠HFB =3FH BH BH =3FH F (m,−2m+5)FH =−2m+5,BH =5−m 5−m=3(−2m+5)m=2F (2,1)FH =BT ∠FHB =∠BTD =,∠HFB =∠TBD 90∘△FHB ≅△BTD BF =BD ∠BDF =∠BFD =45∘OT =4,TD =3OD =5OD =OC ∠OCD =∠ODC ∠ODB =+∠ODC =+∠OCD 45∘45∘∠PFC =∠PFG+∠GFC =∠PFG+∠OCD,∠ODB =∠PFC,∠PFG =45∘GP =GF P (n,−6n+5)n 2GP =n−2GF =n−2GH =n−2+1=n−1−6n+5=n−1n 2n =1n =6P (6,5)【解答】解:()∵抛物线的解析式为,∴抛物线的对称轴为.∵,∴,∴,∴.∵抛物线经过点和点,∴ 解得∴抛物线的解析式为,如图,过点作轴于点,设,设直线的解析式为,∵直线经过,∴ 解得∴直线的解析式为,∴,∴ ∴.∵,∴,即,解得(舍去)或,∴.如图,过点作轴于点,过点作交的延长线于点,过点作轴于点,由()知,,直线解析式为,∴.∴.∵,∴.∵轴,1y =a −6ax+c x 2x =−=3−6a 2a A(1,0)B(5,0)OC =OB =5C(0,5)y =a −6ax+c x 2A(1,0)C(0,5){a −6a +c =0,c =5,{a =1,c =5,y =−6x+5x 2(2)1D DT ⊥x T D(t,−6t+5)t 2CD y =kx+b y =kx+b C(0,5),D(t,−6t+5)t 2{5=b,−6t+5=kt+b,t 2{k =t−6,b =5,CD y =(t−6)x+5E(−,0)5t−6OE =−5t−6BE =5+5t−6=10S △BCD +=BE ⋅OC +BE ⋅DT =10S △BCE S △BDE 1212(5+)(5−+6t−5)=10125t−6t 2t =1t =4D(4,−3)(3)2F FH ⊥x H P PG ⊥FH HF C D DT ⊥x T 2D(4,−3)CD y =−2x+5BT =OB−OT =1,DT =3tan ∠OBD ==3DT BT BF ⊥BD ∠FBH+∠OBD =90∘FH ⊥x∴ ,∴,∴,∴,∴.∴,设,∴,∴,解得,∴,∴.∵,∴,∴,∴.∵,∴,∴,∴ ,∴ .∵∴,∴,设,∴.∴,∴,∴,解得(舍去)或,∴.∠FHB =90∘∠FBH+∠HFB =90∘∠OBD =∠HFB tan ∠OBD =tan ∠HFB =3FH BH BH =3FH F (m,−2m+5)FH =−2m+5,BH =5−m 5−m=3(−2m+5)m=2F (2,1)FH =BT ∠FHB =∠BTD =,∠HFB =∠TBD 90∘△FHB ≅△BTD BF =BD ∠BDF =∠BFD =45∘OT =4,TD =3OD =5OD =OC ∠OCD =∠ODC ∠ODB =+∠ODC =+∠OCD 45∘45∘∠PFC =∠PFG+∠GFC =∠PFG+∠OCD,∠ODB =∠PFC,∠PFG =45∘GP =GF P (n,−6n+5)n 2GP =n−2GF =n−2GH =n−2+1=n−1−6n+5=n−1n 2n =1n =6P (6,5)。
东营中考数学试题及答案东营中考数学试题及答案一、选择题1. 设函数 f(x) = 3x - 2,若 f(x) = 7,那么 x 的值是多少?A) -1B) 1C) 3D) 52. 简化下列代数式:(4a^2b^3)(-2ab^4)的N次方A) -4a^2b^3Nab^4B) -8a^2b^7NC) 8a^2b^7ND) 8a^2b^7N^23. 某公司收入的年增长率是25%,则该公司的收入在4年之后的倍数是多少?A) 1.25B) 1.64C) 2.48D) 2.894. 若 sin A = 0.6,那么 cos A 的值是多少?A) 0.3B) 0.4C) 0.6D) 0.85. 一个正方体的表面积是54平方厘米,那么它的体积是多少立方厘米?A) 8B) 27C) 64D) 216二、解答题1. 某数等于它的1/6与它自身的和减去36,求这个数。
解:设这个数为 x,根据题意可得方程 x = x/6 + x - 36。
整理得 6x = x + 6x - 216,化简得 5x = 216,解得 x = 43.2。
所以,这个数为 43.2。
2. 若三角形 ABC 中,∠B = 90°,AC = 5 cm,BC = 12 cm,求∠A 的正弦值和余弦值。
解:根据勾股定理,我们可以求得 AB 的长度为√(12^2 - 5^2) =√(144 - 25) = √119 cm。
因此,根据三角函数的定义,正弦值为sin A = AB/AC = √119/5,余弦值为cos A = AC/AB = 5/√119。
3. 两个角的和为 120°,它们互补,则两个角的度数各是多少?解:设两个角分别为 x 和 90° - x,根据题意可得方程 x + (90° - x) = 120°。
化简得 90° = 120°,显然不成立。
因此,这个题目没有实际解。
二0一一年东营市初中学生学业考试数 学 试 题第Ⅰ卷(选择题 共36分)一、选择题:本大题共l2小题.在每小题给出的四个选项中.只有一项是正确的.请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1. 12的倒效是( ) A .2 B ,2- C .12- D .122.下列运算正确的是( )A .336x x x +=B .624x x x ÷=C .m n mn x x x ⋅=D .5420()x x -= 3,一个几何体的三视图如图所示.那么这个几何体是( )4. 方程组31x y x y +=⎧⎨-=-⎩的解是( )A .12x y =⎧⎨=⎩B .12x y =⎧⎨=-⎩C .21x y =⎧⎨=⎩D .01x y =⎧⎨=-⎩ 5.一副三角板,如图所示叠放在一起.则图中∠α的度敦是( )A .75°B .60°C .65°D .55°6.分式方程312422x x x -=--的解为( ) A .52x =B .53x =C .5x =D .无解7.一个圆锥的侧面展开图是半径为l 的半圆,则该圆锥的底面半径是( 1A . 1B .34 C .12 D .138. 河堤横断面如图所示.堤高BC=5米,迎水坡AB 的坡比是1:3 (坡比是坡面的铅直高度BC 与水乎宽度AC 之比).则AC 的长是( )A ,53米 8.10米 C. 15米 D .103米9.某中学为迎接建党九十周年.举行了“童心向党.从我做起”为主题的演讲比赛。
经预赛.七、八年级各有一名同学进入决赛.九年级有两名同学进入决赛.那么九年级同学获得前两名的概率是( )A .12 B .13 C .14 D .1610.如图,直线l 和双曲线(0)k y k x=>交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合).过点A 、B 、P 分捌向x 轴作垂线,垂足分别为C 、D 、E ,连接OA 、OB 、OP .设△AOC 妁面积为1S .△BOD 的面积为2S 。
2024年山东省东营市中考数学真题试卷第Ⅰ卷(选择题 共30分)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1. 3-的绝对值是( ) A. 3B. 3-C. 3±D.2. 下列计算正确的是( ) A. 236x x x ⋅= B. ()2211x x -=-C. ()2224xyx y =D. 2142-⎛⎫-=- ⎪⎝⎭3. 已知,直线a b ∥,把一块含有30︒角的直角三角板如图放置,130∠=︒,三角板的斜边所在直线交b 于点A ,则2∠=( )A. 50︒B. 60︒C. 70︒D. 80︒4. 某几何体的俯视图如图所示,下列几何体(箭头所示为正面)的俯视图与其相同的是( )A. B. C. D.5. 用配方法解一元二次方程2220230x x --=时,将它转化为2()x a b +=的形式,则b a 的值为( ) A. 2024-B. 2024C. 1-D. 16. 如图,四边形ABCD 是矩形,直线EF 分别交AD ,BC ,BD 于点E,F,O,下列条件中,不能证明BOF DOE △△≌的是( )A. O 为矩形ABCD 两条对角线的交点B. EO FO =C. AE CF =D. EF ⊥BD7. 如图,四边形ABCD 是平行四边形,从①AC BD =,①AC BD ⊥,①AB BC =,这三个条件中任意选取两个,能使ABCD 是正方形的概率为( )A.23B.12C.13D.568. 习近平总书记强调,中华优秀传统文化是中华民族的根和魂.东营市某学校组织开展中华优秀传统文化成果展示活动,小慧同学制作了一把扇形纸扇.如图,20cm OA =,5cm OB =,纸扇完全打开后,外侧两竹条(竹条宽度忽略不计)的夹角120AOC ∠=︒.现需在扇面一侧绘制山水画,则山水画所在纸面的面积为( )2cm .A.25π3B. 75πC. 125πD. 150π9. 已知抛物线2(0)y ax bx c a =++≠的图像如图所示,则下列结论正确的是( )A. 0abc <B. 0a b -=C. 30a c -=D. 2am bm a b +≤-(m 为任意实数)10. 如图,在正方形ABCD 中,AC 与BD 交于点O,H 为AB 延长线上的一点,且BH BD =,连接DH ,分别交AC ,BC 于点E,F,连接BE ,则下列结论:①CF BF =;①tan 1H ∠;①BE 平分CBD ∠;①22AB DE DH =⋅.其中正确结论的个数是( ) A. 1个B. 2个C. 3个D. 4个第Ⅰ卷(非选择题 共90分)二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果.11. 从2024年一季度GDP 增速看,东营市增速位居山东16市“第一方阵”,一季度全市生产总值达到957.2亿元,同比增长7.1%,957.2亿用科学记数法表示为_______.12. 因式分解:2a 3−8a =______.13. 4月23日是世界读书日,东营市组织开展“书香东营,全民阅读”活动,某学校为了解学生的阅读时间,随机调查了七年级50名学生每天的平均阅读时间,统计结果如下表所示.在本次调查中,学生每天的平均阅读时间的众数是_______小时.14. 在弹性限度内,弹簧的长度(cm)y 是所挂物体质量(kg)x 的一次函数.一根弹簧不挂物体时长12.5cm,当所挂物体的质量为2kg 时,弹簧长13.5cm .当所挂物体的质量为5kg 时,弹簧的长度为_______cm15. 如图,将DEF 沿FE 方向平移3cm 得到ABC ,若DEF 的周长为24cm ,则四边形ABFD 的周长为_______cm .16. 水是人类赖以生存的宝贵资源,为节约用水,创建文明城市,某市经论证从今年1月1日起调整居民用水价格,每立方米水费上涨原价的14.小丽家去年5月份的水费是28元,而今年5月份的水费则是24.5元.已知小丽家今年5月份的用水量比去年5月份的用水量少33m .设该市去年居民用水价格为3/m x 元,则可列分式方程为_______.17. 我国魏晋时期数学家刘徽在《九章算术注》中提到著名的“割圆术”,即利用圆的内接正多边形逼近圆的方法来近似估算,指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.“割圆术”孕育了微积分思想,他用这种思想得到了圆周率π的近似值为3.1416,如图,O 的半径为1,运用“割圆术”,以圆内接正六边形面积近似估计O 的面积,可得π的估计值为2若用圆内接正八边形近似估计O 的面积,可得π的估计值为_________.18. 如图,在平面直角坐标系中,已知直线l 的表达式为y x =,点1A 的坐标为,以O 为圆心,1OA 为半径画弧,交直线l 于点1B ,过点1B 作直线l 的垂线交x轴于点2A ;以O 为圆心,2OA 为半径画弧,交直线l 于点2B ,过点2B 作直线l 的垂线交x 轴于点3A ;以O 为圆心,3OA 为半径画弧,交直线l 于点3B ,过点3B 作直线l 的垂线交x 轴于点4A ;……按照这样的规律进行下去,点2024A 的横坐标是_______.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19. (1)计算0(π 3.14)|22sin60-︒+-;(2)计算:2443111a a a a a -+⎛⎫÷+- ⎪--⎝⎭.20. 某学校举办“我参与,我劳动,我快乐,我光荣”活动.为了解学生周末在家劳动情况,学校随机调查了八年级部分学生在家劳动时间(单位:小时),并进行整理和分析(劳动时间x 分成五档:A 档:01x ≤<;B 档:12x ≤<;C 档:23x ≤<;D 档:34x ≤<;E 档:4x ≤).调查的八年级男生、女生劳动时间的不完整统计图如下:根据以上信息,回答下列问题:(1)本次调查中,共调查了_______名学生,补全条形统计图;(2)调查的男生劳动时间在C 档的数据是:2,2.2,2.4,2.5,2.7,2.8,2.9.则调查的全部男生劳动时间的中位数为_______小时.(3)学校为了提高学生的劳动意识,现从E 档中选两名学生作劳动经验交流,请用列表法或画树状图的方法求所选两名学生恰好都是女生的概率.21. 如图,ABC 内接于O ,AB 是O 的直径,点E 在O 上,点C 是BE 的中点,AE CD ⊥,垂足为点D,DC 的延长线交AB 的延长线于点F .(1)求证:CD 是O 的切线;(2)若CD =60ABC ∠=︒,求线段AF 的长.22. 如图,一次函数y mx n =+(0m ≠)的图象与反比例函数ky x=(0k ≠)的图象交于点(3,)A a -,()1,3B ,且一次函数与x 轴,y 轴分别交于点C,D .(1)求反比例函数和一次函数的表达式; (2)根据图象直接写出不等式kmx n x+>的解集; (3)在第三象限的反比例函数图象上有一点P,使得4=△△OCP OBD S S ,求点P 的坐标.23. 随着新能源汽车的发展,东营市某公交公司计划用新能源公交车淘汰“冒黑烟”较严重的燃油公交车.新能源公交车有A 型和B 型两种车型,若购买A 型公交车3辆,B 型公交车1辆,共需260万元;若购买A 型公交车2辆,B 型公交车3辆,共需360万元.(1)求购买A 型和B 型新能源公交车每辆各需多少万元?(2)经调研,某条线路上的A 型和B 型新能源公交车每辆年均载客量分别为70万人次和100万人次.公司准备购买10辆A 型,B 型两种新能源公交车,总费用不超过650万元.为保障该线路的年均载客总量最大,请设计购买方案,并求出年均载客总量的最大值.24. 在Rt ABC △中,90ACB ∠=︒,1AC =,3BC =.(1)问题发现如图1,将CAB △绕点C 按逆时针方向旋转90︒得到CDE ,连接AD ,BE ,线段AD 与BE 的数量关系是______,AD 与BE 的位置关系是______; (2)类比探究将CAB △绕点C 按逆时针方向旋转任意角度得到CDE ,连接AD ,BE ,线段AD 与BE 的数量关系、位置关系与(1)中结论是否一致?若AD 交CE 于点N,请结合图2说明理由; (3)迁移应用如图3,将CAB △绕点C 旋转一定角度得到CDE ,当点D 落到AB 边上时,连接BE ,求线段BE 的长.25. 如图,在平面直角坐标系中,已知抛物线2y x bx c =++与x 轴交于(1,0)A -,(2,0)B 两点,与y 轴交于点C ,点D 是抛物线上的一个动点.(1)求抛物线的表达式;(2)当点D 在直线BC 下方的抛物线上时,过点D 作y 轴的平行线交BC 于点E ,设点D 的横坐标为t,DE 的长为l ,请写出l 关于t 的函数表达式,并写出自变量t 的取值范围;(3)连接AD ,交BC 于点F ,求DEFAEFS S △△的最大值.2024年山东省东营市中考数学真题试卷答案一、选择题.二、填空题. 11.【答案】109.57210⨯ 12.【答案】2a (a +2)(a −2) 13.【答案】1 14.【答案】15 15.【答案】3016.【答案】2824.5354x x -=17.【答案】18.【答案】10122 三、解答题.19.【答案】(1)1;(2)22a a -+. 20.【答案】(1)50 (2)2.5 (3)1621.【答案】(1)略 (2)6 22.【答案】(1)3y x=,y =x +2 (2)30x -<<或1x >(3)点P 坐标为3,44⎛⎫-- ⎪⎝⎭23.【答案】(1)购买A 型新能源公交车每辆需60万元,购买B 型新能源公交车每辆需80万元;(2)方案为购买A 型公交车8辆,B 型公交车2辆时.线路的年均载客总量最大,最大在客量为760万人.24.【答案】(1)3BE AD =;AD BE ⊥ (2)一致;理由略 (3)BE = 25.【答案】(1)2y x x 2=--(2)()2202l t t t =-+<< (3)1()3DEFAEF S S =最大。
2022年山东省东营市中考数学试卷参考答案与试题解析一、选择题〔本大题共10小题,每题3分,共30分〕1.以下四个数中,最大的数是〔〕A.3 B.C.0 D.π【分析】根据在数轴上表示的两个实数,右边的总比左边的大可得答案.【解答】解:0<<3<π,应选:D.【点评】此题主要考查了实数的比较大小,关键是掌握利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.2.以下运算正确的选项是〔〕A.〔x﹣y〕2=x2﹣y2B.|﹣2|=2﹣C.﹣=D.﹣〔﹣a+1〕=a+1【分析】根据完全平方公式,二次根式的化简以及去括号的法那么进行解答.【解答】解:A、原式=x2﹣2xy+y2,故本选项错误;B、原式=2﹣,故本选项正确;C、原式=2﹣,故本选项错误;D、原式=a﹣1,故本选项错误;应选:B.【点评】此题综合考查了二次根式的加减法,实数的性质,完全平方公式以及去括号,属于根底题,难度不大.3.假设|x2﹣4x+4|与互为相反数,那么x+y的值为〔〕A.3 B.4 C.6 D.9【分析】根据相反数的定义得到|x2﹣4x+4|+=0,再根据非负数的性质得x2﹣4x+4=0,2x﹣y﹣3=0,然后利用配方法求出x,再求出y,最后计算它们的和即可.【解答】解:根据题意得|x2﹣4x+4|+=0,所以|x2﹣4x+4|=0,=0,即〔x﹣2〕2=0,2x﹣y﹣3=0,所以x=2,y=1,所以x+y=3.应选A.【点评】此题考查了解一元二次方程﹣配方法:将一元二次方程配成〔x+m〕2=n 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了非负数的性质.4.小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s〔m〕与时间t〔min〕的大致图象是〔〕A.B.C.D.【分析】根据题意判断出S随t的变化趋势,然后再结合选项可得答案.【解答】解:小明从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,应选:C.【点评】此题主要考查了函数图象,关键是正确理解题意,根据题意判断出两个变量的变化情况.5.a∥b,一块含30°角的直角三角板如下列图放置,∠2=45°,那么∠1等于〔〕【分析】先过P作PQ∥a,那么PQ∥b,根据平行线的性质即可得到∠3的度数,再根据对顶角相等即可得出结论.【解答】解:如图,过P作PQ∥a,∵a∥b,∴PQ∥b,∴∠BPQ=∠2=45°,∵∠APB=60°,∴∠APQ=15°,∴∠3=180°﹣∠APQ=165°,∴∠1=165°,应选:D.【点评】此题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等,同旁内角互补.6.如图,共有12个大小相同的小正方形,其中阴影局部的5个小正方形是一个正方体的外表展开图的一局部,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的外表展开图的概率是〔〕A.B.C.D.【分析】根据正方形外表展开图的结构即可求出判断出构成这个正方体的外表展开图的概率.【解答】解:设没有涂上阴影的分别为:A、B、C、D、E、F、G,如下列图,从其余的小正方形中任取一个涂上阴影共有7种情况,而能够构成正方体的外表展开图的有以下情况,D、E、F、G,∴能构成这个正方体的外表展开图的概率是,应选〔A〕【点评】此题考查概率,解题的关键是熟识正方体外表展开图的结构,此题属于中等题型.7.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.假设BF=8,AB=5,那么AE的长为〔〕A.5 B.6 C.8 D.12【分析】由根本作图得到AB=AF,AG平分∠BAD,故可得出四边形ABEF是菱形,由菱形的性质可知AE⊥BF,故可得出OB的长,再由勾股定理即可得出OA的长,进而得出结论.【解答】解:连结EF,AE与BF交于点O,∵四边形ABCD是平行四边形,AB=AF,∴四边形ABEF是菱形,∴AE⊥BF,OB=BF=4,OA=AE.∵AB=5,在Rt△AOB中,AO==3,∴AE=2AO=6.应选B.【点评】此题考查的是作图﹣根本作图,熟知平行四边形的性质、勾股定理、平行线的性质是解决问题的关键.8.假设圆锥的侧面积等于其底面积的3倍,那么该圆锥侧面展开图所对应扇形圆心角的度数为〔〕A.60°B.90°C.120°D.180°【分析】根据圆锥侧面积恰好等于底面积的3倍可得圆锥的母线长=3×底面半径,根据圆锥的侧面展开图的弧长等于圆锥的底面周长,可得圆锥侧面展开图所对应的扇形圆心角度数.【解答】解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=lr=πrR,∵侧面积是底面积的3倍,∴3πr2=πrR,∴R=3r,设圆心角为n,有=πR,∴n=120°.应选C.【点评】此题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:〔1〕圆锥的母线长等于侧面展开图的扇形半径;〔2〕圆锥的底面周长等于侧面展开图的扇形弧长,以及利用扇形面积公式求出是解题的关键.9.如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠局部的面积是△ABC面积的一半,假设BC=,那么△ABC移动的距离是〔〕A. B.C.D.﹣【分析】移动的距离可以视为BE或CF的长度,根据题意可知△ABC与阴影局部为相似三角形,且面积比为2:1,所以EC:BC=1:,推出EC的长,利用线段的差求BE的长.【解答】解:∵△ABC沿BC边平移到△DEF的位置,∴AB∥DE,∴△ABC∽△HEC,∴=〔〕2=,∴EC:BC=1:,∵BC=,∴EC=,∴BE=BC﹣EC=﹣.应选:D.【点评】此题主要考查相似三角形的判定和性质、平移的性质,关键在于证△ABC与阴影局部为相似三角形.10.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出以下结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PHPC其中正确的选项是〔〕A.①②③④B.②③C.①②④D.①③④【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论.【解答】解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正确;∵∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD≠∠PDB,∴△PFD与△PDB不会相似;故③错误;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴,∴DP2=PHPC,故④正确;应选C.【点评】此题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.二、填空题〔本大题共8小题,共28分〕11.“一带一路〞贸易合作大数据报告〔2022〕以“一带一路〞贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易根底数据…,1.2亿用科学记数法表示为 1.2×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:1.2亿用科学记数法表示为1.2×108.故答案为:1.2×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.分解因式:﹣2x2y+16xy﹣32y=﹣2y〔x﹣4〕2.【分析】根据提取公因式以及完全平方公式即可求出答案.【解答】解:原式=﹣2y〔x2﹣8x+16〕=﹣2y〔x﹣4〕2故答案为:﹣2y〔x﹣4〕2【点评】此题考查因式分解,解题的关键是熟练运用因式分解法,此题属于根底题型.13.为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s2如下表所示:甲乙丙丁1′05″331′04″261′04″261′07″29S2 1.1 1.1 1.3 1.6如果选拔一名学生去参赛,应派乙去.【分析】首先比较平均数,平均数相同时选择方差较小的运发动参加.【解答】解:∵>>=,∴从乙和丙中选择一人参加比赛,∵S<S,∴选择乙参赛,故答案为:乙.【点评】题考查了平均数和方差,一般地设n个数据,x1,x2,…x n的平均数为,那么方差S2= [〔x1﹣〕2+〔x2﹣〕2+…+〔x n﹣〕2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.如图,AB是半圆直径,半径OC⊥AB于点O,D为半圆上一点,AC∥OD,AD与OC交于点E,连结CD、BD,给出以下三个结论:①OD平分∠COB;②BD=CD;③CD2=CECO,其中正确结论的序号是①②③.【分析】①由OC⊥AB就可以得出∠BOC=∠AOC=90°,再由OC=OA就可以得出∠OCA=∠OAC=45°,由AC∥OD就可以得出∠BOD=45°,进而得出∠DOC=45°,从而得出结论;②由∠BOD=∠COD即可得出BD=CD;③由∠AOC=90°就可以得出∠CDA=45°,得出∠DOC=∠CDA,就可以得出△DOC∽△EDC.进而得出,得出CD2=CECO.【解答】解:①∵OC⊥AB,∴∠BOC=∠AOC=90°.∵OC=OA,∴∠OCA=∠OAC=45°.∵AC∥OD,∴∠BOD=∠CAO=45°,∴∠DOC=45°,∴∠BOD=∠DOC,∴OD平分∠COB.故①正确;②∵∠BOD=∠DOC,∴BD=CD.故②正确;③∵∠AOC=90°,∴∠CDA=45°,∴∠DOC=∠CDA.∵∠OCD=∠OCD,∴△DOC∽△EDC,∴,∴CD2=CECO.故③正确.故答案为:①②③.【点评】此题考查了圆周角定理,平行线的性质,圆的性质,圆心角与弦的关系定理的运用,相似三角形的判定及性质;熟练掌握圆周角定理和相似三角形的判定与性质是解决问题的关键.15.如图,菱形ABCD的周长为16,面积为8,E为AB的中点,假设P为对角线BD上一动点,那么EP+AP的最小值为2.【分析】如图作CE′⊥AB于E′,甲BD于P′,连接AC、AP′.首先证明E′与E 重合,因为A、C关于BD对称,所以当P与P′重合时,PA′+P′E的值最小,由此求出CE即可解决问题.【解答】解:如图作CE′⊥AB于E′,甲BD于P′,连接AC、AP′.∵菱形ABCD的周长为16,面积为8,∴AB=BC=4,ABCE′=8,∴CE′=2,在Rt△BCE′中,BE′==2,∵BE=EA=2,∴E与E′重合,∵四边形ABCD是菱形,∴BD垂直平分AC,∴A、C关于BD对称,∴当P与P′重合时,PA′+P′E的值最小,最小值为CE的长=2,故答案为2.【点评】此题考查轴对称﹣最短问题、菱形的性质等知识,解题的关键是学会添加常用辅助线,此题的突破点是证明CE是△ABC的高,学会利用对称解决最短问题.16.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何〞题意是:如下列图,把枯木看作一个圆柱体,因一丈是十尺,那么该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,那么问题中葛藤的最短长度是25尺.【分析】这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化以下列图,所以是个直角三角形求斜边的问题,根据勾股定理可求出.【解答】解:如图,一条直角边〔即枯木的高〕长20尺,另一条直角边长5×3=15〔尺〕,因此葛藤长为=25〔尺〕.故答案为:25.【点评】此题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,此题是展成平面图形后为直角三角形按照勾股定理可求出解.17.一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s 米,那么塔高为米.【分析】在Rt△BCD中有BD=,在Rt△ACD中,根据tan∠A==可得tanα=,解之求出CD即可得.【解答】解:在Rt△BCD中,∵tan∠CBD=,∴BD=,在Rt△ACD中,∵tan∠A==,∴tanα=,解得:CD=,故答案为:.【点评】此题主要考查解直角三角形的应用﹣仰角俯角问题,解题的关键是根据两直角三角形的公共边利用三角函数建立方程求解.18.如图,在平面直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,那么点A2022的横坐标是.【分析】先根据直线l:y=x﹣与x轴交于点B1,可得B1〔1,0〕,OB1=1,∠OB1D=30°,再,过A1作A1A⊥OB1于A,过A2作A2B⊥A1B2于B,过A3作A3C⊥A2B3于C,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A1的横坐标为,A2的横坐标为,A3的横坐标为,进而得到A n的横坐标为,据此可得点A2022的横坐标.【解答】解:由直线l:y=x﹣与x轴交于点B1,可得B1〔1,0〕,D〔﹣,0〕,∴OB1=1,∠OB1D=30°,如下列图,过A1作A1A⊥OB1于A,那么OA=OB1=,即A1的横坐标为=,由题可得∠A1B2B1=∠OB1D=30°,∠B2A1B1=∠A1B1O=60°,∴∠A1B1B2=90°,∴A1B2=2A1B1=2,过A2作A2B⊤A1B2于B,那么A1B= SHAѐE \* MERGEFORMAɔ即A2的横坐标为HAE "\* MERGEFORMAÔ ခȫ1=䀈=ခSHAPE\*MERGDFORMAT,过A3作A3C⊥A2b3于C,同理勯得,A2B3=2A2B2=4,ࣁȢC=11A2B3=2,即A耳的横坐标为+1+2==,同理可得,A4的横坐标为+1+2+4==,由此可得,A n的横坐标为,∴点A2022的横坐标是,故答案为:.【点评】此题主要考查了一次函数图象上点的坐标特征以及等边三角形的性质的运用,解决问题的关键是依据等边三角形的性质找出规律,求得A n的横坐标为.三、解答题〔本大题共7小题,共62分〕19.〔1〕计算:6cos45°+〔〕﹣1+〔﹣1.73〕0+|5﹣3|+42022×〔﹣0.25〕2022〔2〕先化简뼌再浂倾:〔﹣a+1〕÷+ȒSHAP \* MERGEFORMࣁT﹣a,并从﹣1ᅩ0.2中选一个适宜犄数作为a的值代入求值.【分析】〔1ခ根据特殊角三角函数值、负整数指数幂、零指数幂、绝对值、幂的乘方可以诣答此题;〔2〕根据分式的加减法풌除法埯ခ卖ﮀ题目中的式子,然后在﹣1,0,2中选一个使従原分弇有意义的值代入即可解答此题.【解答】解:〔ခ〕6cos45°+�– SX聁PE \* MERGENORMAT ခ〕﹣1ࣁ〔﹣1.73〕0+|ခ﹣3|+4201䀷×〔﹣0.25〕2022==8;〔2〕〔﹣a+1〕÷+﹣a=====﹣a﹣1,当a=0时,原式=﹣0﹣1=﹣1.【点评】此题考查分式的化简求值、实数的运算、殊角的三角函数值、负整数指数幂、零指数幂、绝对值、幂的乘方,解答此题的关键是明确它们各自的计算方法.20.为大力弘扬“奉献、友爱、互助、进步〞的志愿效劳精神,传播“奉献他人、提升自我〞的志愿效劳理念,东营市某中学利用周末时间开展了“助老助残、社区效劳、生态环保、网络文明〞四个志愿效劳活动〔每人只参加一个活动〕,九年级某班全班同学都参加了志愿效劳,班锿为了解志政效劳的惁况<收集整理数据后<绘制以下不完整的统计廾,请你根据统计图中所提伛的信息解答츋列问题:〔1!求该班的人数;〔2〕请把折线统计图衭卅完整[〔3〕求恇嵢绞讁图丯,网廜文明遨分对应的圆心角的度数{〔4〕小明和小丽参加了志愿損务活动,请用树状图或列表法求出他们参加同一效劳活储的概率/耍【分析】〔1〕根据参加生态环保的人数以及百分比,即可解决问题;耍〔2�社区效劳皀人摰,画出折线囮即可;〔ခ〕根揮圆心角=360°×百分篔,计算右可�〔4〕用列表法即可解䆳问题;【覣筜】跣:〔1〕语班全部人数:12÷25%=48亸.〔2〕ခ8×50%=ခ4,折线统计如图橀示:M〔3〕13Е×360°=45°.4+分别用“1,2�',4”컣衩“助助残、社区服刡、生态猯保、网络文昌⠝四个效劳活动,劗表宒下:那么戀有可能有‱6种,其中他们参加同一活动有4种,所以他们参加同一效劳活动的概率P==.【点评】此题考查折线图、扇形统计图、列表法等知识,解题的关键是记住根本概念,属于中考常考题型.21.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D 作⊙O的切线DE,交AC于点E,AC的反向延长线交⊙O于点F.〔1〕求证:DE⊥AC;〔2〕假设DE+EA=8,⊙O的半径为10,求AF的长度.【分析】〔1〕欲证明DE⊥AC,只需推知OD∥AC即可;〔2〕如图,过点O作OH⊥AF于点H,构建矩形ODEH,设AH=x.那么由矩形的性质推知:AE=10﹣x,OH=DE=8﹣〔10﹣x〕=x﹣2.在Rt△AOH中,由勾股定理知:x2+〔x﹣2〕2=102,通过解方程得到AH的长度,结合OH⊥AF,得到AF=2AH=2×8=16.【解答】〔1〕证明:∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC.∵DE是⊙O的切线,OD是半径,∴DE⊥OD,∴DE⊥AC;〔2〕如图,过点O作OH⊥AF于点H,那么∠ODE=∠DEH=∠OHE=90°,∴四边形ODEH是矩形,∴OD=EH,OH=DE.设AH=x.∵DE+AE=8,OD=10,∴AE=10﹣x,OH=DE=8﹣〔10﹣x〕=x﹣2.在Rt△AOH中,由勾股定理知:AH2+OH2=OA2,即x2+〔x﹣2〕2=102,解得x1=8,x2=﹣6〔不合题意,舍去〕.∴AH=8.∵OH⊥AF,∴AH=FH=AF,∴AF=2AH=2×8=16.【点评】此题考查了切线的性质,勾股定理,矩形的判定与性质.解题时,利用了方程思想,属于中档题.22.如图,一次函数y=kx+b的图象与坐标轴分别交于A、B两点,与反比例函数y=的图象在第一象限的交点为C,CD⊥x轴,垂足为D,假设OB=3,OD=6,△AOB的面积为3.〔1〕求一次函数与反比例函数的解析式;〔2〕直接写出当x>0时,kx+b﹣<0的解集.【分析】〔1〕根据三角形面积求出OA,得出A、B的坐标,代入一次函数的解析式即可求出解析式,把x=6代入求出D的坐标,把D的坐标代入反比例函数的解析式求出即可;〔2〕根据图象即可得出答案.=3,OB=3,【解答】解:〔1〕∵S△AOB∴OA=2,∴B〔3,0〕,A〔0,﹣2〕,代入y=kx+b得:,解得:k=,b=﹣2,∴一次函数y=x﹣2,∵OD=6,∴D〔6,0〕,CD⊥x轴,当x=6时,y=×6﹣2=2∴C〔6,2〕,∴n=6×2=12,∴反比例函数的解析式是y=;〔2〕当x>0时,kx+b﹣<0的解集是0<x<6.【点评】此题考查了用待定系数法求出函数的解析式,一次函数和和反比例函数的交点问题,函数的图象的应用,主要考查学生的观察图形的能力和计算能力.23.为解决中小学大班额问题,东营市各县区今年将改扩建局部中小学,某县方案对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.〔1〕改扩建1所A类学校和1所B类学校所需资金分别是多少万元〔2〕该县方案改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.假设国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案【分析】〔1〕可根据“改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元〞,列出方程组求出答案;〔2〕要根据“国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元〞来列出不等式组,判断出不同的改造方案.【解答】解:〔1〕设改扩建一所A类和一所B类学校所뜀资가劆别为x七元和y万元由領意得,解得,答レ朹扩建丂所A类学校和一所B类学校所需蕄金分别为1200万元和1ĸ0ခ万元.ခ〔2〕ခ今年改扉建A类学椡a所,那么改扩建B类学校〔q0﹣a〕所,由题意得:,解得,∴3≤a≤5,∵x凖整数,∴⁸=3,4,5.即가有7种方案:方案一>改扩建Q类学椡3≀,B类孆校7所;方案二:改䉩建A类嬦校4所,B类学校6扄;改案三:改扩建A类学校5所,B类学校5所.-【点评】✬题考查了一元丁次不等式组的徔用,二元一模方程组的应用.解决问题的关键是读懂飘意,找到关键描述语,找到所求的量的数臏关系.′4&如䛾,在等腰䨉角形ABC丯,∠BAC=120°,AB=AC=2,炙D是B 边上的一个刨点缈不与B뀁C重合〕,在ခ䁃上取一点E,使∠A聄E=30°.〔1i求证:△ABD∽↳DCE3〔2〕设BL=x,AE=y,求y关于x的凝数关系式并写出自变量x嚄取值范围;〔3〕当△A衄E是等腰�角形时〔AE的长.【分析】〔1〕根据两角相等证明:△ABD∽△DCD;〔2〕�图1,俜高AF,根据直角三角形30°的性质求AF的长,栽据勾股定理求BF的长,那么叮得BC皀长,根据〔1+中的相似列比例式可得函数女系式,并确定取值;〔3〕分三种情况进行讨论:由〔1〕可知:此旷△AB∽△DCE,那么AB=CD,퍳2=2﹣x;②当AE½ED旾,如图3,那么ED=DC,即y=〔2﹣x〕;-③当A DခAE时,∠AED9∠EDA=30°缌∠EAɄ=120°,此时炩D与点B重合,不符合题意,歬情况不存在.【解答】证明:〔1〕∵△ABG是等腰三角形,且∠BAC=䀱22 ,∴∠ABD=∠ACBĭ3°,3İ°,∴∠ABD=∠ADEခ∵∠ADC=∠ADE#∠EDC=∠ABD+∠DAB,∴∠EDC耽⌠DB,∴△ABD∽△DCE;过A作AF⊥BC于f,∴∠AFB=90°,∵AB=2フ∠ABF=30°-∴AF=AB=1,∴BF=,∴BC耽2BF=2,那么DC耽2﹣x,EC=2」y,∵△ABD∽△DCE,∴Ĉ,∴,化简得:y=x +2〔0,x �2〕;〔3ノ当AD=DE 时,如图2,M 由〔1〕可知:此时△ABD ∽△DCE , 那么AF=CD �即2=2﹣x , x=2Ĉ•﹣2뼌代入x=x +2,解得;ခ=4﹣2,即䁁E=4﹣2,归AE=ED 时,如图3,∴∠DEC=60°,∠ခDC90¸奈 劙ED=耓 SɈAPE ɜ* ME ꁒG ခFMR ATEC獳y=〔2﹣y 〕,解得:y=,危䁁E=ခ,当AD=AE 时,∠AED н∠EDA=30ڰ,∠EAD=120Ⴐ, 此时点D 与点B 重合,不符同题意,此情况不存在, ∴当△⁁DE 是等腰三角形时,AE=t ﹣2或.H【点评】此题是相似形的综吀题<考查了三角形相似的性质和ሤ定め等腰三角形的性质、直角三角形30°角的性质,此题的兠个问题全部围绕△ABD ∽▓DCE ,解决鷮题;难度뀂中.25.如图,盔线y=﹣ SHAPE \* MDRGEFORMATx +分别与Ÿ轴、y 轴交䚎B 、C 两点,点a 在x 轴上,∠ACB=90°,抛物线y=a|2+bx +经过A ,B 两㒹.〔1〕求A 、B 两点的坐标;〔2!求抛物线的解析式;〔3〕点M直线⁂C上方抛物㺿上的一点,过点M佌MH⊥BŁ于炩H,作MD ∥y轴交BC于点衄,求△DMH呠长的最大值.【分析‑〔1〕由直线解析崏叫求得B、C啐标,在聒t▷BOC中由三襒函数定义䏯求得∠OCB=60°뼌那么在Rt△AOC丽可得∠ACO=30°,利用三角函数的定义可求得OŁ,那么可求垗A点坐;〔2〕由A、B丬点坐标,利用待定系数法可求得抛物线解析式;䀍〔3〕由平行线的性质可知∠MDခ=∠BCO=60₴,在Rt△DMH中利用三角函数的定义可得到DH、MH与DM的关系,可设出M点的坐标,那么可表示出DM的长,从而可表示出△DMH的周长,利用二次函数的性质可求得其最大值.【解答】解:〔1〕∵直线y=﹣x+分别与x轴、y轴交于B、C两点,∴B〔3,0〕,C〔0,〕,∴OB=3,OC=,∴tan∠BCO==,∴∠BCO=60°,∵∠ACB=90°,∴∠ACO=30°,∴=tan30°=,即=,解得AO=1,∴A〔﹣1,0〕;〔2〕∵抛物线y=ax2+bx+经过A,B两点,∴,解得,∴抛物线解析式为y=﹣x2+x+;〔3〕∵MD∥y轴,MH⊥BC,∴∠MDH=∠BCO=60°,那么∠DMH=30°,∴DH=DM,MH=DM,∴△DMH的周长=DM+DH+MH=DM+DM+DM=DM,∴当DM有最大值时,其周长有最大值,∵点M是直线BC上方抛物线上的一点,∴可设M〔t,﹣t2+t+〕,那么D〔t,﹣t+〕,∴DM=﹣t2+t+〕,那么D〔t,﹣t+〕,∴DM=﹣t2+t+﹣〔﹣t+〕=﹣t2+t=﹣〔t﹣〕2+,∴当t=时,DM有最大值,最大值为,此时DM=×=,即△DMH周长的最大值为.【点评】此题为二次函数的综合应用,涉及待定系数法、三角函数的定义、二次函数的性质、方程思想等知识.在〔1〕中注意函数图象与坐标的交点的求法,在〔2〕中注意待定系数法的应用,在〔3〕中找到DH、MH与DM的关系是解题的关键.此题考查知识点较多,综合性较强,难度适中.。
2023年山东省东营市中考数学试卷试卷考试总分:107 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 9 小题 ,每题 3 分 ,共计27分 )1. 下列运算一定正确的是( )A.B. C.D.2. 将含角的一个直角三角板和一把直尺如图放置,若,则等于( )A.B.C. D.3. 在四张完全相同的卡片上,分別画有等腰三角形、平行四边形、矩形、圆,现从中随机抽取一张,卡片上的图形既是轴对称图形又是中心对称图形的概率是( ) A.B.C.D.4. 东胜到呼市相距千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的倍.从东胜到呼市的时间缩短了小时.设列车提速后所需时间为小时,根据题意,可列方程 A.B.C.D.a +a =a 2⋅=a 2a 3a 6(a +b)(a −b)=−a 2b 2=6(2)a 23a 630∘∠1=50∘∠280∘100∘110∘120∘1234 2.21.2x ()−=1.2234x 2342.2x =×2.2234x+1.2234x −=1.22342.2x 234x ×2.2=234x+1.2234x12πc 25. 若圆锥的侧面积为,它的底面半径为,则此圆锥的母线长( ).A.B.C.D.6. 如图,在中,点是边上任意一点,点,,分别是,,的中点,连接,若的面积为,则的面积为 A.B.C.D.7. 如图,中,,,,将沿射线的方向平移,得到,再将绕点逆时针旋转一定角度后,点恰好与点重合,则平移的距离和旋转角的度数分别为( )A.,B.,C.,D.,8. 如图,二次函数的图象与轴交于,两点,与轴正半轴交于点,它的对称轴为直线.则下列选项中正确的是( )A.B.C.12πcm 23cm cm .2346△ABC D BC F G E AD BF CF GE △FGE 8△ABC ()32486472△ABC AB =4BC =6∠B =60∘△ABC BC △A'B'C'△A'B'C'A'B'C 430∘260∘130∘330∘y =a +bx+c(a >0)x 2x A B y C x =−1abc <04ac −>0b 2c −a >0x =−−22D.当(为实数)时,9. 如图所示,在正方形中,为边中点,连接,对角线交于点.已知,则线段的长度为( )A.B.C.D.二、 填空题 (本题共计 8 小题 ,每题 3 分 ,共计24分 )10. (精确到千分位)________.近似数精确到________位.11. 因式分解:________.12. 若点在第一象限,则的取值范围是________.13. 甲、乙两人进行飞镖比赛,每人各投次,所得平均环数相等,其中甲所得环数的方差为,乙所得环数如下:,,,,,那么成绩较稳定的是_________.(填“甲”或“乙”)14. 将折叠书架画出侧面示意图,为面板架,为支撑架,为锁住定杆,可在动或固定.已知.如图甲,将面板竖直固定时(),点恰为的中点,如图乙,当时, ,则支撑架的长度为________.15. 在半径为 的圆内有两条平行弦,一条弦长为,另一条弦长为,则两条平行弦之间的距离为________.16. 如图,在中,,.按以下步骤作图:①以点为圆心,小于的长为半径画弧,分别交,于点,;②分别以点,为圆心,大于的长为半径画弧,两弧相交于点;③作射线交边于点.则的度数为________.17. 方程组的解是________;直线与直线的交点是________.三、 解答题 (本题共计 7 小题 ,每题 8 分 ,共计56分 )x =−−2n 2n y ≥cABCD E CD AE BD AE F EF =1AE 23450.0617 3.7×1053−27=x 2P(2m−1,m−3)m 515015910AB CD EF F CD BC =CE =8cm AB AB ⊥BD F CD CF =17cm EF ⊥AB CD cm 5cm 6cm 8cm △ABC ∠C =90∘∠CAB =50∘A AC AB AC E F E F EF 12G AG BC D ∠ADC {y =3x−1,y =x+3y =3x−1y =x+318. 计算:. 19. 今年是建党周年,回望“雄关漫道真如铁”的过去,瞭望“乘风破浪会有时”的未来,党史学习教育是牢记初心使命、坚定理想信念、推进党的自我革命的必然要求.教育局党委对教育系统的教师党员个人学习形式开展了问卷调查(问卷调查表如图),并将调查结果绘制成如图的条形统计图和扇形统计图(均不完整).请根据统计图中提供的信息,解答下列问题:本次参与调查的总人数是________人;扇形统计图中,扇形统计图部分的圆心角是________度;若该市教育系统有名党员,如果对全市进行调查,请你估计选择学习形式的人数为多少?教育局党委规定,选择学习形式是的党员要就规定书目中的两本内容进行讲座,并用随机抽取两本书的方式确定具体内容.工作人员将四本书分别编号为,,,,如下图所示,将写有编号的卡片放在不透明的盒子中,王老师选择的学习形式是,他从盒子中随机一次性抽出两张卡片,请用列表或画树状图的方法求他抽到两张卡片编号恰好是和的概率.20. 如图,是的直径,弦于点,过点的切线交的延长线于点,连接.(1)求证:是的切线;(2)连接,若=,=,求的长.21. 如图,一次函数的图象与反比例函数在第一象限的图象交于和两点,与轴交于点.求反比例函数的解析式;−4sin +(2020−π12−−√60∘)0100(1)D (2)6000C (3)A 1234A 12AB ⊙O CD ⊥AB E C AB F DF DF ⊙O BC ∠BCF 30∘BF 2CD y=−x+3y =k x (k ≠0)A(1,a)B x C (1)AB求的值. 22. 如图,利用一面墙(墙的长度不限),篱笆长.围成一个面积为的矩形场地,求矩形场地的长和宽;可以围成一个面积为的矩形场地吗?如果能,求出矩形场地的长和宽;如果不能,请说明理由. 23. 已知:在平面直角坐标系中,四边形是长方形,====,,==,==,点与原点重合,坐标为(1)直接写出点的坐标________.(2)动点从点出发以每秒个单位长度的速度向终点匀速运动,动点从点出发以每秒个单位长度的速度沿射线方向匀速运动,若两点同时出发,设运动时间为秒,当为何值时,轴?(3)在的运动过程中,当运动到什么位置时,使的面积为?求出此时点的坐标? 24. 已知抛物线与轴的一个交点为.求抛物线与轴的另一个交点的坐标;抛物线和抛物线形状一致,求此抛物线的解析式.(2)AB BC 20m (1)50m 2(2)60m 2ABC ∠A ∠B ∠C ∠D 90∘AB//CD AB CD 8AD BC 6D (0,0)B P A 3B 4CD PQ t t PQ//y Q Q △ADQ 9Q y =a +4ax+t x 2x A(−1,0)(1)x B (2)y =a +4ax+t x 2y =x 2参考答案与试题解析2023年山东省东营市中考数学试卷试卷一、 选择题 (本题共计 9 小题 ,每题 3 分 ,共计27分 )1.【答案】C【考点】平方差公式同底数幂的乘法幂的乘方与积的乘方合并同类项【解析】此题暂无解析【解答】解:,故错误;,故错误;,故正确;,故错误.故选.2.【答案】C【考点】平行线的性质三角形的外角性质【解析】根据平行线的性质和三角形的外角的性质即可得到结论.【解答】解:如图所示,∵,,∴,又∵是的外角,∴.a +a =2a A ⋅=a 2a 3a 5B (a +b)(a −b)=−a 2b 2C =8(2)a 23a 6D C AB//CD ∠1=50∘∠ABE=∠1=50∘∠2△ABE ∠2=∠ABE+∠E=+50∘60∘=110∘B【考点】中心对称图形概率公式轴对称图形【解析】由等腰三角形、平行四边形、矩形、圆中是轴对称图形和中心对称图形的有矩形、圆,直接利用概率公式求解即可求得答案.【解答】解:等腰三角形、平行四边形、矩形、圆中是中心对称图形的有平行四边形、矩形、圆,是轴对称图形的有等腰三角形、矩形、圆,…既是轴对称又是中心对称图形的有矩形、圆,.现从中随机抽取一张,卡片上画的图形恰好是中心对称图形的概率是故选:.4.【答案】D【考点】由实际问题抽象出分式方程【解析】此题暂无解析【解答】解:根据题意得,提速之前的时间为:,故可列方程组为:.故选.5.【答案】C【考点】圆锥的计算【解析】圆锥的侧面积底面周长母线长,把相应数值代入即可求解.【解答】解:设母线长为,底面半径是,则底面周长,侧面积,∴.12B x+1.2×2.2=234x+1.2234xD =×÷2R 3cm =6π=3πR =12πR =4cmC【考点】相似三角形的判定与性质三角形中位线定理【解析】此题暂无解析【解答】解:∵,分别是,的中点,∴是的中位线,∴,,∴,∵的面积为,∴的面积为,∵点是的中点,∴,∴的面积的面积.故选.7.【答案】B【考点】旋转的性质平移的性质等边三角形的性质与判定【解析】试题分析:根据平移和旋转的性质得到三角形全等,进而解答即可.【解答】解:由题意得,∴,∵,∴是等边三角形,∴,,,∴,旋转角的度数为.故选.8.【答案】D【考点】二次函数图象与系数的关系G E BF CF GE △BFC GE =BC 12GE//BC △FGE ∼△FBC △FGE 8△BFC 32F AD =,=S △ABF S △BDF S △FDC S △AFC △ABC =2△BFC =64C △ABC ≅△BC A ′AB ==C A ′B ′A ′∠B =60∘△C A ′B ′∠C =B ′A ′60∘C =AB =4B ′BC =6B =6−4=2B ′60∘B抛物线与x 轴的交点二次函数图象上点的坐标特征【解析】由图象开口向上,可知,与轴的交点在轴的上方,可知,根据对称轴方程得到,于是得到,故错误;根据一次函数=的图象与轴的交点,得到,求得,故错误;根据对称轴方程得到=,当=时,=,于是得到,故错误;当=(为实数)时,代入解析式得到===,于是得到=,故正确.【解答】解:,由抛物线与轴交于正半轴,可知,∵对称轴为直线,,∴,∴,∴,故错误;,二次函数的图象与轴交于,两点,∴,∴,故错误;,∵,∴,∵当时,,∴,∴,故错误;,当(为实数)时,,,,,∴,故正确.故选.9.【答案】B【考点】正方形的性质相似三角形的性质与判定【解析】根据正方形的性质可得,,根据平行线的性质可得,,根据相似三角形的判定,可以得出,根据相似三角形的性质及为中点,可得,根据可计算出的长,从而得出的长.【解答】解: 四边形为正方形,,,,,,.为中点,,,∴,a >0y x c >0b >0abc >0A y a +bx+c(a >0)x 2x −4ac >0b 24ac −<0b 2B b 2a x −1y a −b +c <0c −a <0C x −−2n 2n y a +bx+c x 2a(−−2+b(−−2)n 2)2n 2a (+2)+c n 2n 2y a (+2)+c ≥c n 2n 2D A y c >0x =−1a >0−=−1<0b 2a b >0abc >0A B y =a +bx+c(a >0)x 2x A B Δ=−4ac >0b 24ac −<0b 2B C −=−1b 2a b =2a x =−1y =a −b +c <0a −2a +c <0c −a <0C D x =−−2n 2n y =a +bx+cx 2=a +b(−−2)+c(−−2)n 22n 2=a +2a(−−2)+c(−−2)n 22n 2=a (+2)+c n 2n 2∵a >0≥0n 2+2>0n 2y =a (+2)+c ≥c n 2n 2D D AB =CD AB//CD ∠ABF =∠GDF ∠BAF =∠DGF △ABF ∼△EOF E CD =AF EF AB ED EF =1AF AE ∵ABCD ∴AB =CD AB//CD ∴∠ABF =∠EDF ∠BAF =∠DEF ∴△ABF ∽△EDF ∴=AF EF AB ED ∵E CD EF =1∴=2AF EF AF =2.故选.二、 填空题 (本题共计 8 小题 ,每题 3 分 ,共计24分 )10.【答案】,万【考点】科学记数法与有效数字【解析】根据近似数的精确度求解.【解答】精确到千分位为:;近似数精确到万位.11.【答案】【考点】提公因式法与公式法的综合运用【解析】先提取公因式,再根据平方差公式进行二次分解即可求得答案.注意分解要彻底.【解答】解:原式.故答案为:.12.【答案】【考点】点的坐标【解析】让点的横纵坐标均大于列式求值即可.【解答】解:∵点在第一象限,∴,,解得:.故答案为:.13.【答案】甲∴AE =AF +EF =3B 0.0620.06170.062 3.7×1053(x+3)(x−3)3=3(−9)=3(x+3)(x−3)x 23(x+3)(x−3)m>3P 0P(2m−1,m−3)2m−1>0m−3>0m>3m>3【考点】方差算术平均数【解析】此题暂无解析【解答】此题暂无解答14.【答案】【考点】勾股定理的应用【解析】本题考查勾股定理的应用.根据勾股定理得出EF 的长,进而利用勾股定理得出CF ,进而得出CD 的长即可.【解答】解:∵,∴.过作,∵,∴.∵点恰为的中点,∴BC ,∴.∵,∴,∴,∴.故答案为:.15.【答案】或【考点】勾股定理的应用垂径定理的应用【解析】【解答】297−−√EF ⊥AB,CF =17cm,BC =CE =8cm EF =C −C F 2E 2−−−−−−−−−−√=15cm F FG ⊥AB AB ⊥BD FG//BD F CD CG =12=4cm EG =8+4=12cm EF =15cm CG =E −E F 2G 2−−−−−−−−−−√=9cm BD =2CG =18cm CD =C +B B 2D 2−−−−−−−−−−√=297−−√297−−√1cm 7 cm解:令=,=,过点作⊥于,交于.当、在圆心同旁时,∵,∴.∵过圆心,⊥,∴==.∵=,∴由勾股定理可知 =.同理 =,∴=-=.当、在圆心两旁时,同理可知=+=,故答案为:或.16.【答案】【考点】作图—基本作图角平分线的性质【解析】此题暂无解析【解答】解:根据作图方法可得,是的角平分线,∵,∴,∵,∴.故答案为:.17.【答案】,【考点】一次函数与二元一次方程(组)一次函数图象上点的坐标特征一次函数的图象【解析】此题暂无解析【解答】解:对原方程组使用加减消元法,两式相减得,解得,带入原方程得.AB 6 cm CD 8 cm O OE AB E CD F AB CD AB//CD OF ⊥CD OE OE AB EB 12AB 3cm OB 5cm EO 4cm OF 4cm EF OE OF 1 cm AB CD EF OE OF 7cm 1 cm 7 cm 65∘AG ∠CAB ∠CAB =50∘∠CAD =∠CAB =1225∘∠C =90∘∠ADC =−=90∘25∘65∘65∘{x =2,y =5(2,5)2x−4=0x =2y =5所以方程组的解为所以直线与直线的交点为.故答案为:.三、 解答题 (本题共计 7 小题 ,每题 8 分 ,共计56分 )18.【答案】解:原式.【考点】特殊角的三角函数值零指数幂、负整数指数幂二次根式的性质与化简【解析】(1)先计算二次根式、代入三角函数值、计算零指数幂,再计算乘法,最后计算加减可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:原式.19.【答案】,依题意可得:,∴选择学校形式的人数为:(人);答:选择学校形式的人数为人.列表如下:由列表可以看出,总共有种结果,每种结果出现的可能性相同,其中抽到两张卡片编号恰好是和的结果有种,所以(抽到两张卡片编号恰好是和).【考点】条形统计图扇形统计图用样本估计总体列表法与树状图法【解析】{x =2,y =5,y =3x−1y =x+3(2,5){x =2,y =5;(2,5)=2−4×+13–√3–√2=2−2+13–√3–√=1=2−4×+13–√3–√2=2−2+13–√3–√=112054(2)×100%=25%30120C 6000×25%=1500C 1500(3)12122P 12=16根据图中数据即可求解;先求出的占比,即可求解;列表即可求解.【解答】解:依题意可知有人,占,∴(人),∴占总人数的,占的角度;故答案为:;. 依题意可得:,∴选择学校形式的人数为:(人);答:选择学校形式的人数为人.列表如下:由列表可以看出,总共有种结果,每种结果出现的可能性相同,其中抽到两张卡片编号恰好是和的结果有种,所以(抽到两张卡片编号恰好是和).20.【答案】证明:连接,如图,∵是的切线∴=,∴=∵直径弦,∴=,即为的垂直平分线∴=,∴=,∵=,∴=∴==,∴,∴是的切线;∵=,=,∴=,∵=,∴为等边三角形,∴=,∴=∴==,∴===,在中,∵=,∴=,∴,∴=.(1)(2)C (3)(1)A 2420%=1202420%D 18120D =×=18120360∘54∘12054(2)×100%=25%30120C 6000×25%=1500C 1500(3)12122P 12=16OD CF ⊙O ∠OCF 90∘∠OCD+∠DCF 90∘AB ⊥CD CE ED OF CD CF DF ∠CDF ∠DCF OC OD ∠CDO ∠OCD∠CDO +∠CDB ∠OCD+∠DCF 90∘OD ⊥DF DF ⊙O ∠OCF 90∘∠BCF 30∘∠OCB 60∘OC OB △OCB ∠COB 60∘∠CFO 30∘FO 2OC 2OB FB OB OC 2Rt △OCE ∠COE 60∘OE =OC 121CE =OE =3–√3–√CD 2CE =23–√【考点】垂径定理圆周角定理切线的判定与性质【解析】(1)连接,如图,利用切线的性质得=,再利用垂径定理得到为的垂直平分线,则=,所以=,加上=,则=,然后根据切线的判定定理得到结论;(2)利用=得到=,则可判断为等边三角形,再证明===,然后在中计算出,从而得到的长.【解答】证明:连接,如图,∵是的切线∴=,∴=∵直径弦,∴=,即为的垂直平分线∴=,∴=,∵=,∴=∴==,∴,∴是的切线;∵=,=,∴=,∵=,∴为等边三角形,∴=,∴=∴==,∴===,在中,∵=,∴=,∴,∴=.21.【答案】解:把点代入,得,,把代入反比例函数,,反比例函数的表达式为;连接,由一次函数可知的坐标为,解得,或,,,OD ∠OCD+∠DCF 90∘OF CD CF DF ∠CDF ∠DCF ∠CDO ∠OCD ∠CDO +∠CDB 90∘∠BCF 30∘∠OCB 60∘△OCB FB OB OC 2Rt △OCE CE CD OD CF ⊙O ∠OCF 90∘∠OCD+∠DCF 90∘AB ⊥CD CE ED OF CD CF DF ∠CDF ∠DCF OC OD ∠CDO ∠OCD∠CDO +∠CDB ∠OCD+∠DCF 90∘OD ⊥DF DF ⊙O ∠OCF 90∘∠BCF 30∘∠OCB 60∘OC OB △OCB ∠COB 60∘∠CFO 30∘FO 2OC 2OB FB OB OC 2Rt △OCE ∠COE 60∘OE =OC 121CE =OE =3–√3–√CD 2CE =23–√(1)A(1,a)y=−x+3a =2∴A(1,2)A(1,2)y=k x ∴k=1×2=2∴y =2x (2)OA,OB y=−x+3C (3,0) y =,2x y =−x+3,{x =1,y =2,{x =2,y =1,∴B(2,1)∴=×3×2=3S △AOC 12=×3×1=S △BOC 12323−=AOB 33,,.【考点】反比例函数与一次函数的综合【解析】把把点代入=,求出点坐标,再代入到反比例函数,得解;利用面积比易求出.【解答】解:把点代入,得,,把代入反比例函数,,反比例函数的表达式为;连接,由一次函数可知的坐标为,解得,或,,,,,.22.【答案】解:设矩形场地的宽度为,则长为,依题意列方程:,解得,故场地的宽为,长为.不能.因为设场地的宽为,则长为,依题意列方程:,即,,方程无实数解,故场地的面积不能达到.【考点】222∴=3−=S △AOB 3232∴=1S △AOB S △BOC ∴=1AB BC A(1,a)y −x+3A y=k x =1AB BC (1)A(1,a)y=−x+3a =2∴A(1,2)A(1,2)y=k x ∴k=1×2=2∴y =2x (2)OA,OB y=−x+3C (3,0) y =,2x y =−x+3,{x =1,y =2,{x =2,y =1,∴B(2,1)∴=×3×2=3S △AOC 12=×3×1=S △BOC 1232∴=3−=S △AOB 3232∴=1S △AOB S △BOC ∴=1AB BC(1)xm (20−2x)m x(20−2x)=50x =520−2x =20−10=10(m)5m 10m (2)xm (20−2x)m x(20−2x)=60−10x+30=0x 2Δ=−4×1×30=−20<010260m 2一元二次方程的应用【解析】靠墙的一面不需要篱笆,矩形养鸡场只需要一个长,两个宽用篱笆围成.设宽为,长就是,用矩形面积公式列方程.【解答】解:设矩形场地的宽度为,则长为,依题意列方程:,解得,故场地的宽为,长为.不能.因为设场地的宽为,则长为,依题意列方程:,即,,方程无实数解,故场地的面积不能达到.23.【答案】由运动知,=,=,∴==,∵,∴四边形是平行四边形∴=,∴=,∴,∴当为时,,∵的面积为,∴=,∴=,∴或即:当运动到距原点位置时,使的面积为,此时点的坐标或.【考点】四边形综合题【解析】(1)由==,==,点与原点重合,可求点坐标;(2)根据运动特点,和平行四边形的性质即可得出=,建立方程即可求出时间,(3)根据三角形的面积公式求出即可.【解答】∵四边形是长方形,==,==,点与原点重合,∴点故答案为:;由运动知,=,=,∴==,∵,∴四边形是平行四边形∴=,∴=,xm (20−2x)m (1)xm (20−2x)m x(20−2x)=50x =520−2x =20−10=10(m)5m 10m (2)xm (20−2x)m x(20−2x)=60−10x+30=0x 2Δ=−4×1×30=−20<010260m 2(8,6)AP 3t CQ 4t OQ AD−CQ 8−4t PQ//BC AB//CDAPQO AP OQ 3t 8−4t t =87t 87PQ//BC △ADQ 9=×OQ ×AD =×OQ ×6S △ADQ 12129OQ 3Q(3,0)(−3,0)Q 3cm △ADQ 9Q (3,0)(−3,0)AB CD 8AD BC 6D B AP OQ t OQ ABC AB CD 8AD BC 6D B(8,6)(8,6)AP 3t CQ 4t OQ AD−CQ 8−4t PQ//BC AB//CDAPQO AP OQ 3t 8−4t =8∴,∴当为时,,∵的面积为,∴=,∴=,∴或即:当运动到距原点位置时,使的面积为,此时点的坐标或.24.【答案】解:∵抛物线与轴的一个交点为,∴.∴.∴.令,即.解得,.∴抛物线与轴的另一个交点的坐标为.由知.∵抛物线和抛物线的形状一致,∴.∴抛物线的解析式为或.【考点】二次函数综合题【解析】此题暂无解析【解答】解:∵抛物线与轴的一个交点为,∴.∴.∴.令,即.解得,.∴抛物线与轴的另一个交点的坐标为.由知.∵抛物线和抛物线的形状一致,∴.∴抛物线的解析式为或.t =87t 87PQ//BC △ADQ 9=×OQ ×AD =×OQ ×6S △ADQ 12129OQ 3Q(3,0)(−3,0)Q 3cm △ADQ 9Q (3,0)(−3,0)(1)y =a +4ax+t x 2x A(−1,0)a ×+4a ×(−1)+t =0(−1)2t =3a y =a +4ax+3a x 2y =0a +4ax+3a =0x 2=−1x 1=−3x 2x B (−3,0)(2)(1)y =a +4ax+3a x 2y =a +4ax+3a x 2y =x 2a =±1y =+4x+3x 2y =−−4x−3x 2(1)y =a +4ax+t x 2x A(−1,0)a ×+4a ×(−1)+t =0(−1)2t =3a y =a +4ax+3a x 2y =0a +4ax+3a =0x 2=−1x 1=−3x 2x B (−3,0)(2)(1)y =a +4ax+3a x 2y =a +4ax+3a x 2y =x 2a =±1y =+4x+3x 2y =−−4x−3x 2。
东营中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. \(2x + 3 = 7\) 的解是 \(x = 2\)B. \(x^2 - 4x + 4 = 0\) 的解是 \(x = 2\)C. \(x^2 - 5x + 6 = 0\) 的解是 \(x = 3\) 或 \(x = 2\)D. \(3x - 2 = 2x + 1\) 的解是 \(x = 3\)答案:C2. 哪个函数的图像是一条直线?A. \(y = x^2\)B. \(y = 2x + 1\)C. \(y = \frac{1}{x}\)D. \(y = x^3\)答案:B3. 一个等腰三角形的两边长分别为3cm和5cm,那么第三边的长度是多少?A. 2cmB. 3cmC. 5cmD. 8cm答案:C4. 下列哪个分数是最简分数?A. \(\frac{6}{8}\)B. \(\frac{9}{12}\)C. \(\frac{7}{14}\)D. \(\frac{5}{10}\)答案:C5. 一个圆的半径是4cm,那么它的面积是多少?A. \(16\pi\) cm²B. \(32\pi\) cm²C. \(64\pi\) cm²D. \(100\pi\) cm²答案:C6. 一个数的相反数是-5,那么这个数是多少?A. 5B. -5C. 0D. 10答案:A7. 下列哪个选项是不等式 \(3x - 7 < 5\) 的解?A. \(x < 4\)B. \(x > 4\)C. \(x < 6\)D. \(x > 6\)答案:A8. 一个正方体的体积是27cm³,那么它的棱长是多少?A. 3cmB. 6cmC. 9cmD. 27cm答案:A9. 下列哪个选项是正确的?A. \(\sqrt{4} = 2\)B. \(\sqrt{9} = 3\)C. \(\sqrt{16} = 4\)D. \(\sqrt{25} = 5\)答案:D10. 一个数的平方是25,那么这个数是多少?A. 5B. -5C. 5 或 -5D. 0答案:C二、填空题(每题3分,共15分)11. 一个数的立方是-8,那么这个数是 ________。
2024年山东省东营市东营区中考数学质检试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.(−3)2的平方根是( )A. −3B. 3C. 3或−3D. 92.下列运算正确的是( )A. 2x +3y =5xyB. (x−3)2=x 2−9C. x 6÷x 3=x 2D. (xy 2)2=x 2y 43.如图摆放的几何体中,主视图与左视图有可能不同的是( )A. B. C. D.4.如图所示,直线l 1:y =32x +6与直线l 2:y =−52x−2交于点P (−2,3),不等式32x +6>−52x−2的解集是( )A. x >−2B. x ≥−2C. x <−2D. x ≤−25.某书店拿取高处书籍的登高梯如图位置摆放,登高梯AC 的顶端A 恰好放在书架的第七层的顶端.已知登高梯的长度AC 为3米,登高梯与地面的夹角∠ACB 为72°,则书架第七层顶端离地面的高度AB 为( )A. 3sin 72°米B. 3sin 72∘米C. 3cos 72°米D. 3cos 72∘米6.将一副三角尺按如图摆放,点E 在AC 上,点D 在BC 的延长线上,EF //BC ,∠B =∠EDF =90°,∠A =45°,∠F =60°,则∠CED 的度数是( )A. 15°B. 20°C. 25°D. 30°7.如图,从一块直径是8m 的圆形铁皮上剪出一个圆心角为90°的扇形,将剪下的扇形围成一个圆锥,圆锥的高是m .( )A. 4 2B. 5C. 30D. 2 158.为推进垃圾分类,推动绿色发展,某化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.已知用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,两种型号机器人的单价和为140万元.设甲型机器人每台x 万元,根据题意,所列方程正确的是( )A. 360x =480140−xB. 360140−x =480xC. 360x +480x =140D. 360x −140=480x9.如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点(−3,0),其对称轴为直线x =−12,结合图象分析下列结论:①abc >0;②3a +c >0;③当x <0时,y 随x 的增大而增大;④一元二次方程cx 2+bx +a =0的两根分别为x 1=−13,x 2=12;⑤b 2−4ac4a <0;⑥若m ,n (m <n )为方程a (x +3)(x−2)+3=0的两个根,则m <−3且n >2,其中正确的结论有( )A. 3个B. 4个C. 5个D. 6个10.如图,在正方形ABCD中,点O是对角线AC、BD的交点,过点O作射线OM、ON分别交BC、CD于点E、F,且∠EOF=90°,OC、EF交于点G.给出下列结论:①△COE≌△DOF;②△OGE∽△FGC;③四边形CEOF的面积为正方形ABCD面积的14④DF2+BE2=OG⋅OC.其中正确的是( )A. ①②③④B. ①②③C. ①②④D. ③④二、填空题:本题共8小题,共28分。
山东省东营市2022年中考数学真题一、单选题1.-2的绝对值是()A.2B.C.D.-22.下列运算结果正确的是( )A.B.C.D.3.如图,直线,一个三角板的直角顶点在直线a上,两直角边均与直线b相交,,则( )A.B.C.D.4.植树节当天,七年级1班植树300棵,正好占这批树苗总数的,七年级2班植树棵数是这批树苗总数的,则七年级2班植树的棵数是( )A.36B.60C.100D.1805.一元二次方程的解是( )A.B.C.D.6.如图,任意将图中的某一白色方块涂黑后,能使所有黑色方块构成的图形是轴对称图形的概率是( )A.B.C.D.7.如图,点D为边上任一点,交于点E,连接相交于点F,则下列等式中不成立的是( )A.B.C.D.8.如图,一次函数与反比例函数的图象相交于A,B两点,点A的横坐标为2,点B的横坐标为,则不等式的解集是( )A.或B.或C.或D.9.用一张半圆形铁皮,围成一个底面半径为的圆锥形工件的侧面(接缝忽略不计),则圆锥的母线长为( )A.B.C.D.10.如图,已知菱形的边长为2,对角线相交于点O,点M,N分别是边上的动点,,连接.以下四个结论正确的是( )①是等边三角形;②的最小值是;③当最小时;④当时,.A.①②③B.①②④C.①③④D.①②③④二、填空题11.2022年2月20日,北京冬奥会圆满落幕,赛事获得了数十亿次数字平台互动,在中国仅电视收视人数就超6亿.6亿用科学记数法表示为 .12.因式分解: .13.为了落实“双减”政策,东营市某学校对初中学生的课外作业时长进行了问卷调查,15名同学的作业时长统计如下表,则这组数据的众数是 分钟.作业时长(单位:分钟)5060708090人数(单位:人)1462214.如图,在中,弦半径,则的度数为 .15.关于x的一元二次方程有两个不相等的实数根,则k的取值范围是 .16.如图,是等腰直角三角形,直角顶点与坐标原点重合,若点B在反比例函数的图象上,则经过点A的反比例函数表达式为 .17.如图,在中,点F、G在上,点E、H分别在、上,四边形是矩形,是的高.,那么的长为 .18.如图,是等边三角形,直线经过它们的顶点,点在x轴上,则点的横坐标是 .三、解答题19.计算及先化简,再求值:(1)(2),其中.20.中国共产党的助手和后备军——中国共青团,担负着为中国特色社会主义事业培养合格建设者和可靠接班人的根本任务.成立一百周年之际,各中学持续开展了A:青年大学习;B:背年学党史;C:中国梦宣传教育;D:社会主义核心价值观培育践行等一系列活动,学生可以任选一项参加.为了解参与情况,进行了一次抽样调查,根据收集的数据绘制了两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)在这次调查中,一共抽取了 名学生;(2)补全条形统计图;(3)若该校共有学生1280名,请估计参加B项活动的学生数;(4)小杰和小慧参加了上述活动,请用列表或画树状图的方法,求他们参加同一项活动的概率. 21.如图,为的直径,点C为上一点,于点D,平分.(1)求证:直线是的切线;(2)若的半径为2,求图中阴影部分的面积.22.胜利黄河大桥犹如一架巨大的竖琴,凌驾于滔滔黄河之上,使黄河南北“天堑变通途”.已知主塔垂直于桥面于点B,其中两条斜拉索与桥面的夹角分别为和,两固定点D、C之间的距离约为,求主塔的高度(结果保留整数,参考数据:)23.为满足顾客的购物需求,某水果店计划购进甲、乙两种水果进行销售.经了解,甲水果的进价比乙水果的进价低20%,水果店用1000元购进甲种水果比用1200元购进乙种水果的重量多10千克,已知甲,乙两种水果的售价分别为6元/千克和8元/千克.(1)求甲、乙两种水果的进价分别是多少?(2)若水果店购进这两种水果共150千克,其中甲种水果的重量不低于乙种水果重量的2倍,则水果店应如何进货才能获得最大利润,最大利润是多少?24.如图,抛物线与x轴交于点,点,与y轴交于点C.(1)求抛物线的表达式;(2)在对称轴上找一点Q,使的周长最小,求点Q的坐标;(3)点P是抛物线对称轴上的一点,点M是对称轴左侧抛物线上的一点,当是以为腰的等腰直角三角形时,请直接写出所有点M的坐标.25.和均为等边三角形,点E、D分别从点A,B同时出发,以相同的速度沿运动,运动到点B、C停止.(1)如图1,当点E、D分别与点A、B重合时,请判断:线段的数量关系是 ,位置关系是 ;(2)如图2,当点E、D不与点A,B重合时,(1)中的结论是否依然成立?若成立,请给予证明;若不成立,请说明理由;(3)当点D运动到什么位置时,四边形的面积是面积的一半,请直接写出答案;此时,四边形是哪种特殊四边形?请在备用图中画出图形并给予证明.答案解析部分1.【答案】A2.【答案】D3.【答案】B4.【答案】C5.【答案】D6.【答案】A7.【答案】C8.【答案】A9.【答案】B10.【答案】D11.【答案】6×10812.【答案】13.【答案】7014.【答案】100°15.【答案】k<2且k≠116.【答案】17.【答案】18.【答案】19.【答案】(1)解:原式===3(2)解:原式===当x=3,y=2时,原式==520.【答案】(1)200(2)解:参加C项活动的人数为:200-20-80-40=60(名),补全条形统计图如图:(3)解:(名),答:估计参加B项活动的学生数有512名(4)解:画树状图如图:由树状图可知,共有16种等可能的结果,其中他们参加同一项活动的情况数有4种,所以他们参加同一项活动的概率为.21.【答案】(1)证明:连接OC,如图,∵,∴,∵平分,∴,∴,∴,∵于点D,∴,∴直线是的切线;(2)解:过点O作于F,如图,∵,,∴,,∴,∴,∵,∴,∴,∴.22.【答案】解:∵AB⊥BC,∴∠ABC=90°,在Rt△ABD中,,在Rt△ABC中,∠C=45°,∴AB=BC,∴,∴m,∴AB=BC=m,答:主塔的高度约为78m.23.【答案】(1)解:设乙种水果的进价是x元/千克,由题意得:,解得:,经检验,是分式方程的解且符合题意,则,答:甲种水果的进价是4元/千克,乙种水果的进价是5元/千克;(2)解:设水果店购进甲种水果a千克,获得的利润为y元,则购进乙种水果(150-a)千克,由题意得:,∵-1<0,∴y随a的增大而减小,∵甲种水果的重量不低于乙种水果重量的2倍,∴,解得:,∴当时,y取最大值,此时,,答:水果店购进甲种水果100千克,乙种水果50千克时获得最大利润,最大利润是350元.24.【答案】(1)解:∵抛物线与x轴交于点,点,∴,∴,∴抛物线解析式为(2)解:∵抛物线解析式为,与y轴交于点C,∴抛物线对称轴为直线,点C的坐标为(0,-3)如图所示,作点C关于直线的对称点E,连接AE,EQ,则点E的坐标为(2,-3),由轴对称的性质可知CQ=EQ,∴△ACQ的周长=AC+AQ+CQ,要使△ACQ的周长最小,则AQ+CQ最小,即AQ+QE最小,∴当A、Q、E三点共线时,AQ+QE最小,设直线AE的解析式为,∴,∴,∴直线AE的解析式为,当时,,∴点Q的坐标为(1,-2);(3)解:(-1,0)或(,-2)或(,2)25.【答案】(1)CD=EF;CD∥EF(2)解:CD=EF,CD∥EF,成立.证明:连接BF,∵∠FAD=∠BAC=60°,∴∠FAD-∠BAD=∠BAC-∠BAD,即∠FAB=∠DAC,∵AF=AD,AB=AC,∴△AFB≌△ADC(SAS),∴∠ABF=∠ACD=60°,BF=CD,∵AE=BD,∴BE=CD,∴BF=BE,∴△BFE是等边三角形,∴BF=EF,∠FEB=60°,∴CD=EF,BC∥EF,即CD∥EF,∴CD=EF,CD∥EF;(3)解:如图,当点D运动到BC的中点时,四边形的面积是面积的一半,此时,四边形是菱形.证明:过点E作EG⊥BC于点G,设△ABC的边长为a,AD=h,∵AB=BC,BD=CD= BC= a,BD=AE,∴AE=BE= AB,∵AB=AC,∴AD⊥BC,∴EG∥AD,∴△EBG∽△ABD,∴,∴= h,由(2)知,CD=EF,CD∥EF,∴四边形CEFD是平行四边形,∴,此时,EF=BD,EF∥BD,∴四边形BDEF是平行四边形,∵BF=EF,∴是菱形.。
2020年某某省东营市中考数学试卷一、选择题:本大题共10题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.(3分)﹣6的倒数是()A.﹣6 B.6 C.D.【分析】根据倒数的定义,a的倒数是(a≠0),据此即可求解.【解答】解:﹣6的倒数是:﹣.故选:C.【点评】本题考查了倒数的定义,理解定义是关键.2.(3分)下列运算正确的是()A.(x3)2=x5B.(x﹣y)2=x2+y2C.﹣x2y3•2xy2=﹣2x3y5D.﹣(3x+y)=﹣3x+y【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=x6,不符合题意;B、原式=x2﹣2xy+y2,不符合题意;C、原式=﹣2x3y5,符合题意;D、原式=﹣3x﹣y,不符合题意.故选:C.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.3.(3分)利用科学计算器求值时,小明的按键顺序为,则计算器面板显示的结果为()A.﹣2 B.2 C.±2D.4【分析】根据科学计算器的使用及算术平方根的定义求解可得.【解答】解:表示“=”即4的算术平方根,∴计算器面板显示的结果为2,故选:B.【点评】本题主要考查计算器﹣基础知识,解题的关键是掌握科学计算器的基本功能的使用.4.(3分)如图,直线AB、CD相交于点O,射线OM平分∠BOD,若∠AOC=42°,则∠AOM 等于()A.159°B.161°C.169°D.138°【分析】直接利用对顶角、邻补角的定义以及角平分线的定义得出∠BOM=∠DOM,进而得出答案.【解答】解:∵∠AOC与∠BOD是对顶角,∴∠AOC=∠B OD=42°,∴∠AOD=180°﹣42°=138°,∵射线OM平分∠BOD,∴∠BOM=∠DOM=21°,∴∠AOM=138°+21°=159°.故选:A.【点评】此题主要考查了对顶角、邻补角以及角平分线的定义,正确得出∠BOM=∠DOM 是解题关键.5.(3分)如图.随机闭合开关K1、K2、K3中的两个,则能让两盏灯泡L1、L2同时发光的概率为()A.B.C.D.【分析】找出随机闭合开关K1、K2、K3中的两个的情况数以及能让两盏灯泡L1、L2同时发光的情况数,即可求出所求概率.【解答】解:画树状图,如图所示:随机闭合开关K1、K2、K3中的两个有六种情况:闭合K1K2,闭合K1K3,闭合K2K1,闭合K2K3,闭合K3K1,闭合K3K2,能让两盏灯泡L1、L2同时发光的有两种情况:闭合K2K3,闭合K3K2,则P(能让两盏灯泡L1、L2同时发光)==.故选:D.【点评】此题考查了列表法与树状图法,弄清题中的电路图是解本题的关键.6.(3分)如图,已知抛物线y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,其对称轴与x轴交于点C,其中A、C两点的横坐标分别为﹣1和1,下列说法错误的是()A.abc<0B.4a+c=0C.16a+4b+c<0D.当x>2时,y随x的增大而减小【分析】根据抛物线的开口方向、对称轴、顶点坐标、增减性以及过特殊点时系数a、b、c满足的关系综合进行判断即可.【解答】解:抛物线开口向下,因此a<0,对称轴为x=1,即﹣=1,也就是2a+b =0,b>0,抛物线与y轴交于正半轴,于是c>0,∴abc<0,因此选项A不符合题意;由A(﹣1,0)、C(1,0)对称轴为x=1,可得抛物线与x轴的另一个交点B(3,0),∴a﹣b+c=0,∴a+2a+c=0,即3a+c=0,因此选项B符合题意;当x=4时,y=16a+4b+c<0,因此选项C不符合题意;当x>1时,y随x的增大而减小,因此选项D不符合题意;故选:B.【点评】本题考查二次函数的图象和性质,理解抛物线的位置与系数a、b、c之间的关系是正确解答的关键.7.(3分)用一个半径为3,面积为3π的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径为()A.πB.2πC.2 D.1【分析】根据扇形的面积公式:S=πrl(r为圆锥的底面半径,l为扇形半径)即可求出圆锥的底面半径.【解答】解:根据圆锥侧面展开图是扇形,扇形面积公式:S=πrl(r为圆锥的底面半径,l为扇形半径),得3πr=3π,∴r=1.所以圆锥的底面半径为1.故选:D.【点评】本题考查了圆锥的计算、扇形面积的计算,解决本题的关键是掌握扇形面积公式.8.(3分)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.则此人第三天走的路程为()A.96里B.48里C.24里D.12里【分析】设此人第三天走的路程为x里,则其它五天走的路程分别为4x里,2x里,x 里,x里,x里,根据六天共走了378里,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设此人第三天走的路程为x里,则其它五天走的路程分别为4x里,2x里,x里,x里,x里,依题意,得:4x+2x+x+x+x+x=378,解得:x=48.故选:B.【点评】本题考查了一元一次方程的应用以及数学常识,找准等量关系,正确列出一元一次方程是解题的关键.9.(3分)如图1,点P从△ABC的顶点A出发,沿A→B→C匀速运动到点C,图2是点P 运动时线段CP的长度y随时间x变化的关系图象,其中点Q为曲线部分的最低点,则△ABC 的边AB的长度为()A.12 B.8 C.10 D.13【分析】根据图2中的曲线可得,当点P在△ABC的顶点A处,运动到点B处时,图1中的AC=BC=13,当点P运动到AB中点时,此时CP⊥AB,根据图2点Q为曲线部分的最低点,可得CP=12,根据勾股定理可得AP=5,再根据等腰三角形三线合一可得AB的长.【解答】解:根据图2中的曲线可知:当点P在△ABC的顶点A处,运动到点B处时,图1中的AC=BC=13,当点P运动到AB中点时,此时CP⊥AB,根据图2点Q为曲线部分的最低点,得CP=12,所以根据勾股定理,得此时AP==5.所以AB=2AP=10.故选:C.【点评】本题考查了动点问题的函数图象,解决本题的关键是综合利用两个图形给出的条件.10.(3分)如图,在正方形ABCD中,点P是AB上一动点(不与A、B重合),对角线AC、BD相交于点O,过点P分别作AC、BD的垂线,分别交AC、BD于点E、F,交AD、BC于点M、N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤点O在M、N两点的连线上.其中正确的是()A.①②③④B.①②③⑤C.①②③④⑤D.③④⑤【分析】依据正方形的性质以及勾股定理、矩形的判定方法即可判断△APM和△BPN以及△APE、△BPF都是等腰直角三角形,四边形PEOF是矩形,从而作出判断.【解答】解:∵四边形ABCD是正方形∴∠BAC=∠DAC=45°.∵在△APE和△AME中,,∴△APE≌△AME(SAS),故①正确;∴PE=EM=PM,同理,FP=FN=NP.∵正方形ABCD中AC⊥BD,又∵PE⊥AC,PF⊥BD,∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE∴四边形PEOF是矩形.∴PF=OE,∴PE+PF=OA,又∵PE=EM=PM,FP=FN=NP,OA=AC,∴PM+PN=AC,故②正确;∵四边形PEOF是矩形,∴PE=OF,在直角△OPF中,OF2+PF2=PO2,∴PE2+PF2=PO2,故③正确.∵△BNF是等腰直角三角形,而△POF不一定是,故④错误;连接OM,ON,∵OA垂直平分线段PM.OB垂直平分线段PN,∴OM=OP,ON=OP,∴OM=OP=ON,∴点O是△PMN的外接圆的圆心,∵∠MPN=90°,∴MN是直径,∴M,O,N共线,故⑤正确.故选:B.【点评】本题考查正方形的性质、矩形的判定、勾股定理等知识,认识△APM和△BPN以及△APE、△BPF都是等腰直角三角形,四边形PEOF是矩形是关键.二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.2×10﹣8.【分析】由原数左边起第一个不为零的数字前面的0的个数所决定10的负指数,把较小的数表示成科学记数法即可.【解答】解:0.00000002=2×10﹣8,则0.00000002用科学记数法表示为2×10﹣8.故答案为:2×10﹣8.【点评】此题考查了科学记数法﹣表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(3分)因式分解:12a2﹣3b2=3(2a+b)(2a﹣b).【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=3(4a2﹣b2)=3(2a+b)(2a﹣b).故答案为:3(2a+b)(2a﹣b).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.(3分)东营市某学校女子游泳队队员的年龄分布如下表:年龄(岁)13 14 15 人数 4 7 4 则该校女子游泳队队员的平均年龄是14 岁.【分析】直接利用加权平均数的定义列式计算可得.【解答】解:该校女子游泳队队员的平均年龄是=14(岁),故答案为:14.【点评】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.14.(3分)已知一次函数y=kx+b(k≠0)的图象经过A(1,﹣1)、B(﹣1,3)两点,则k <0(填“>”或“<”).【分析】设直线AB的解析式为:y=kx+b(k≠0),把A(1,﹣1),B(﹣1,3)代入代入,得到k和b值,即可得到结论.【解答】解:设直线AB的解析式为:y=kx+b(k≠0),把A(1,﹣1),B(﹣1,3)代入y=kx+b得,,解得:k=﹣2,b=1,∴k<0,故答案为:<.【点评】本题考查了一次函数图象与系数的关系,利用待定系数法正确的求出k,b的值是解题的关键.(4分)如果关于x的一元二次方程x2﹣6x+m=0有实数根,那么m的取值X围是m≤9.15.【分析】根据一元二次方程有实数根,得到根的判别式大于等于0,求出m的X围即可.【解答】解:∵关于x的一元二次方程x2﹣6x+m=0有实数根,∴△=36﹣4m≥0,解得:m≤9,则m的取值X围是m≤9.故答案为:m≤9.【点评】此题考查了根的判别式,弄清一元二次方程解的情况与根的判别式的关系是解本题的关键.16.(4分)如图,P为平行四边形ABCD边BC上一点,E、F分别为PA、PD上的点,且PA =3PE,PD=3PF,△PEF、△PDC、△PAB的面积分别记为S、S1、S2.若S=2,则S1+S2=18 .【分析】利用相似三角形的性质求出△PAD的面积即可解决问题.【解答】解:∵PA=3PE,PD=3PF,∴==,∴EF∥AD,∴△PEF∽△PAD,∴=()2,∵S△PEF=2,∴S△PAD=18,∵四边形ABCD是平行四边形,∴S△PAD=S平行四边形ABCD,∴S1+S2=S△PAD=18,故答案为18.【点评】本题考查相似三角形的判定和性质,平行四边形的性质,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.(4分)如图,在Rt△AOB中,OB=2,∠A=30°,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(其中点Q为切点),则线段PQ长度的最小值为2.【分析】连接OP、OQ,作OP′⊥AB于P′,根据切线的性质得到OQ⊥PQ,根据勾股定理得到PQ=,根据垂线段最短得到当OP⊥AB时,OP最小,根据直角三角形的性质、勾股定理计算即可.【解答】解:连接OP、OQ,作OP′⊥AB于P′,∵PQ是⊙O的切线,∴OQ⊥PQ,∴PQ==,当OP最小时,线段PQ的长度最小,当OP⊥AB时,OP最小,在Rt△AOB中,∠A=30°,∴OA==6,在Rt△AOP′中,∠A=30°,∴OP′=OA=3,∴线段PQ长度的最小值==2,故答案为:2.【点评】本题考查的是切线的性质、勾股定理、直角三角形的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.18.(4分)如图,在平面直角坐标系中,已知直线y=x+1和双曲线y=﹣,在直线上取一点,记为A1,过A1作x轴的垂线交双曲线于点B1,过B1作y轴的垂线交直线于点A2,过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交直线于点A3,…,依次进行下去,记点An的横坐标为a n,若a1=2,则a2020= 2 .【分析】根据反比例函数与一次函数图象上点的坐标特征分别求出A1、B1、A2、B2、A3、B3…,从而得到每3次变化为一个循环组依次循环,用2020除以3,根据商的情况确定出a2020即可.【解答】解:当a1=2时,B1的横坐标与A1的横坐标相等为a1=2,A2的纵坐标和B1的纵坐标相同为y2=﹣=﹣,B2的横坐标和A2的横坐标相同为a2═﹣,A3的纵坐标和B2的纵坐标相同为y3=﹣=,B3的横坐标和A3的横坐标相同为a3=﹣,A4的纵坐标和B3的纵坐标相同为y4=﹣=3,B4的横坐标和A4的横坐标相同为a4=2=a1,…由上可知,a1,a2,a3,a4,a5,…,3个为一组依次循环,∵2020÷3=673…1,∴a2020=a1=2,故答案为:2.【点评】本题考查了一次函数图象上点的坐标特征,反比例函数图象上点的坐标特征,依次求出各点的坐标,观察出每3次变化为一个循环组依次循环是解题的关键,也是本题的难点.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(8分)(1)计算:+(2cos60°)2020﹣()﹣2﹣|3+2|;(2)先化简,再求值:(x﹣)÷,其中x=+1,y=.【分析】(1)先计算2cos60°、()﹣2,再化简和﹣|3+2|,最后加减求出值;(2)按分式的混合运算法则,先化简分式,再代入求值.【解答】解:(1)原式=3+(2×)2020﹣22﹣(3+2)=3+1﹣4﹣3﹣2=﹣6;(2)原式=•=•=x﹣y.当x=+1,y=时,原式=+1﹣=1.【点评】本题考查了二次根式的化简、特殊角的三角函数值、负整数指数幂、绝对值的化简及分式的混合运算.题目综合性较强,是中考热点.熟记特殊角的三角函数值和负整数指数幂的意义是求(1)的关键,掌握分式的混合运算法则,化简分式是解决(2)的关键.20.(8分)如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦MN∥BC交AB于点E,且ME=3,AE=4,AM=5.(1)求证:BC是⊙O的切线;(2)求⊙O的直径AB的长度.【分析】(1)根据勾股定理的逆定理得到∠AEM=90°,由于MN∥BC,根据平行线的性质得∠ABC=90°,然后根据切线的判定定理即可得到BC是⊙O的切线;(2)连接OM,设⊙O的半径是r,在Rt△OEM中,根据勾股定理得到r2=32+(4﹣r)2,解方程即可得到⊙O的半径,即可得出答案.【解答】(1)证明:∵在△AME中,ME=3,AE=4,AM=5,∴AM2=ME2+AE2,∴△AME是直角三角形,∴∠AEM=90°,又∵MN∥BC,∴∠ABC=∠AEM=90°,∴AB⊥BC,∵AB为直径,∴BC是⊙O的切线;(2)解:连接OM,如图,设⊙O的半径是r,在Rt△OEM中,OE=AE﹣OA=4﹣r,ME=3,OM=r,∵OM2=ME2+OE2,∴r2=32+(4﹣r)2,解得:r=,∴AB=2r=.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了勾股定理和勾股定理的逆定理.21.(8分)如图,C处是一钻井平台,位于东营港口A的北偏东60°方向上,与港口A相距60海里,一艘摩托艇从A出发,自西向东航行至B时,改变航向以每小时50海里的速度沿BC方向行进,此时C位于B的北偏西45°方向,则从B到达C需要多少小时?【分析】过C作CD⊥AB于D,在点A的正北方向上取点M,在点B的正北方向上取点N,在直角三角形ACD中,求出CD的长,在直角三角形BCD中,利用锐角三角函数定义求出BC的长,进而求出所求时间即可.【解答】解:过C作CD⊥AB于D,在点A的正北方向上取点M,在点B的正北方向上取点N,由题意得:∠MAB=∠NBA=90°,∠MAC=60°,∠NBC=45°,AC=60海里,∴∠CDA=∠CDB=90°,∵在Rt△ACD中,∠CAD=∠MAB﹣∠MAC=90°﹣60°=30°,∴CD=AC=30(海里),在Rt△BCD中,∠CDB=90°,∠CBD=∠NBD﹣∠NBC=90°﹣45°=45°,∴BC=CD=60(海里),∴60÷50=1.2(小时),∴从B处到达C岛处需要1.2小时.【点评】此题考查了解直角三角形的应用﹣方向角,熟练掌握锐角三角函数定义是解本题的关键.22.(8分)东营市某中学对2020年4月份线上教学学生的作业情况进行了一次抽样调查,根据收集的数据绘制了如图不完整的统计图表.作业情况频数频率非常好44较好68 0.34一般48 0.24不好40 0.20请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了多少名学生?(2)将统计表中所缺的数据填在表中横线上;(3)若该中学有1800名学生,估计该校学生作业情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的作业本中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些作业本封面无某某,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本中再抽取一本,请用“列表法”或“画树状图”的方法求出两次抽到的作业本都是“非常好”的概率.【分析】(1)结合扇形统计图与表格确定出调查学生总数即可;(2)分别求出所缺的数据,填写表格即可;(3)根据题意列出算式,计算即可求出值;(4)列表确定出所有等可能的情况数,找出两次抽到的作业本都是“非常好”的情况数,即可求出所求概率.【解答】解:(1)根据题意得:40÷=200(名),则本次抽样共调查了200名学生;(2)填表如下:作业情况频数频率非常好44较好68一般48不好40故答案为:44;48;0.34;0.24;0.20;(3)根据题意得:1800×(0.22+0.34)=1008(名),则该校学生作业情况“非常好”和“较好”的学生一共约1008名;(4)列表如下:A1A2 B C A1﹣﹣﹣(A1,A2)(A1,B)(A1,C)A2(A2,A1)﹣﹣﹣(A2,B)(A2,C)B (B,A1)(B,A2)﹣﹣﹣(B,C)C (C,A1)(C,A2)(C,B)﹣﹣﹣由列表可以看出,一共有12种结果,且它们出现的可能性相等,其中两次抽到的作业本都是“非常好”的有2种,则P(两次抽到的作业本都是“非常好”)==.【点评】此题考查了列表法与树状图法,用样本估计总体,理解频数(率)分布表,弄清题中的数据是解本题的关键.23.(8分)2020年初,新冠肺炎疫情爆发,市场上防疫口罩热销,某医药公司每月生产甲、乙两种型号的防疫口罩共20万只,且所有口罩当月全部售出,其中成本、售价如下表:甲乙型号价格(元/只)项目成本12 4售价18 6 (1)若该公司三月份的销售收入为300万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?(2)如果公司四月份投入成本不超过216万元,应怎样安排甲、乙两种型号防疫口罩的产量,可使该月公司所获利润最大?并求出最大利润.【分析】(1)设生产甲、乙两种型号的防疫口罩分别是x万只和y万只,由“某医药公司每月生产甲、乙两种型号的防疫口罩共20万只和该公司三月份的销售收入为300万元”列出方程组,可求解;(2)设四月份生产甲、乙两种型号的防疫口罩分别是a万只和(20﹣a)万只,利润为w 万元,由“四月份投入成本不超过216万元”列出不等式,可求a的取值X围,找出w 与a的函数关系式,由一次函数的性质可求解.【解答】解:(1)设生产甲、乙两种型号的防疫口罩分别是x万只和y万只,由题意可得:,解得:,答:生产甲、乙两种型号的防疫口罩分别是15万只和5万只;(2)设四月份生产甲、乙两种型号的防疫口罩分别是a万只和(20﹣a)万只,利润为w 万元,由题意可得:12a+4(20﹣a)≤216,∴a≤17,∵w=(18﹣12)a+(6﹣4)(20﹣a)=4a+40是一次函数,w随a的增大而增大,∴a=17时,w有最大利润=108(万元),答:安排生产甲种型号的防疫口罩17万只,乙种型号的防疫口罩3万只,最大利润为108万元.【点评】本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,弄清题中的等量关系是解本题的关键.24.(10分)如图,抛物线y=ax2﹣3ax﹣4a的图象经过点C(0,2),交x轴于点A、B(点A在点B左侧),连接BC,直线y=kx+1(k>0)与y轴交于点D,与BC上方的抛物线交于点E,与BC交于点F.(1)求抛物线的解析式及点A、B的坐标;(2)是否存在最大值?若存在,请求出其最大值及此时点E的坐标;若不存在,请说明理由.【分析】(1)将点C的坐标代入函数解析式求得a值即可;将所求得的抛物线解析式转化为两点式,易得点A、B的坐标;(2)由题意知,点E位于y轴右侧,作EG∥y轴,交BC于点G,根据平行线截线段成比例将求的最大值转化为求的最大值,所以利用一次函数图象上点的坐标特征、二次函数图象上点的坐标特征,两点间的距离公式以及配方法解题即可.【解答】解:(1)把C(0,2)代入y=ax2﹣3ax﹣4a得:﹣4a=2.解得a=﹣.则该抛物线解析式为y=﹣x2+x+2.由于y=﹣x2+x+2=﹣(x+1)(x﹣4).故A(﹣1,0),B(4,0);(2)存在,理由如下:由题意知,点E位于y轴右侧,作EG∥y轴,交BC于点G,∴CD∥EG,∴=.∵直线y=kx+1(k>0)与y轴交于点D,则D(0,1).∴CD=2﹣1=1.∴=EG.设BC所在直线的解析式为y=mx+n(m≠0).将B(4,0),C(0,2)代入,得.解得.∴直线BC的解析式是y=﹣x+2.设E(t,﹣t2+t+2),则G(t,﹣t+2),其中0<t<4.∴EG=(﹣t2+t+2)﹣(﹣t+2)=﹣(t﹣2)2+2.∴=﹣(t﹣2)2+2.∵<0,∴当t=2时,存在最大值,最大值为2,此时点E的坐标是(2,3).【点评】本题考查了二次函数综合题型,需要综合运用一次函数的性质,一次函数图象上点的坐标特征,二次函数图象上点的坐标特征,二次函数最值的求法,待定系数法确定函数关系式以及平行线截线段成比例等知识点,综合性较强,难度不是很大.25.(12分)如图1,在等腰三角形ABC中,∠A=120°,AB=AC,点D、E分别在边AB、AC上,AD=AE,连接BE,点M、N、P分别为DE、BE、BC的中点.(1)观察猜想.图1中,线段NM、NP的数量关系是NM=NP ,∠MNP的大小为60°.(2)探究证明把△ADE绕点A顺时针方向旋转到如图2所示的位置,连接MP、BD、CE,判断△MNP的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请求出△MNP面积的最大值.【分析】(1)先证明由AB=AC,AD=AE,得BD=CE,再由三角形的中位线定理得NM与NP的数量关系,由平行线性质得∠MNP的大小;(2)先证明△ABD≌△ACE得BD=CE,再由三角形的中位线定理得NM=NP,由平行线性质得∠MNP=60°,再根据等边三角形的判定定理得结论;(3)由BD≤AB+AD,得MN≤2,再由等边三角形的面积公式得△MNP的面积关于MN的函数关系式,再由函数性质求得最大值便可.【解答】解:(1)∵AB=AC,AD=AE,∴BD=CE,∵点M、N、P分别为DE、BE、BC的中点,∴MN=BD,PN=CE,MN∥AB,PN∥AC,∴MN=PN,∠ENM=∠EBA,∠ENP=∠AEB,∴∠MNE+∠ENP=∠ABE+∠AEB,∵∠ABE+∠AEB=180°﹣∠BAE=60°,∴∠MNP=60°,故答案为:NM=NP;60°;(2)△MNP是等边三角形.理由如下:由旋转可得,∠BAD=∠CA E,又∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴BD=CE,∠ABD=∠ACE,∵点M、N、P分别为DE、BE、BC的中点.∴MN=BD,PN=CE,MN∥BD,PN∥CE,∴MN=PN,∠ENM=∠EBD,∠BPN=∠BCE,∴∠ENP=∠NBP+∠NPB=∠NBP+∠ECB,∵∠EBD=∠ABD+∠ABE=∠ACE+∠ABE,∴∠MNP=∠MNE+∠ENP=∠ACE+∠ABE+∠EBC+∠EBC+∠ECB=180°﹣∠BAC=60°,∴△MNP是等边三角形;(3)根据题意得,BD≤AB+AD,即BD≤4,∴MN≤2,∴△MNP的面积==,∴△MNP的面积的最大值为.【点评】本题是三角形的一个综合题,主要考查了等边三角形的判定,三角形的中位线定理,全等三角形的性质与判定,旋转的性质,关键证明三角形全等和运用三角形中位线定理使已知与未知联系起来.。
二○二三年东营市初中学业水平考试数学试题(总分120分,考试时间120分钟)第Ⅰ卷(选择题共30分)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.2-的相反数是()A.2- B.2 C.12- D.122.下列运算结果正确的是()A.339x x x ⋅=B.336235x x x +=C .()32626x x = D.()()2232349x x x +-=-3.如图,AB CD ∥,点E 在线段BC 上(不与点B ,C 重合),连接DE ,若40D ∠=︒,60BED ∠=︒,则B ∠=()A.10︒B.20︒C.40︒D.60︒4.剪纸是中国最古老的民间艺术之一,先后入选中国国家级非物质文化遗产名录和人类非物质文化遗产代表作名录.小文购买了以“剪纸图案”为主题的5张书签,他想送给好朋友小乐一张.小文将书签背面朝上(背面完全相同),让小乐从中随机抽取一张,则小乐抽到的书签图案既是轴对称图形又是中心对称图形的概率是()A.45 B.35 C.25 D.155.为扎实推进“五育”并举工作,加强劳动教育,东营市某中学针对七年级学生开设了“跟我学面点”烹饪课程,课程开设后学校花费6000元购进第一批面粉,用完后学校又花费9600元购进了第二批面粉,第二批面粉的采购量是第一批采购量的1.5倍,但每千克面粉价格提高了0.4元.设第一批面粉采购量为x 千克,依题意所列方程正确的是()A.960060000.41.5x x -=B.960060000.41.5x x -=C.600096000.41.5x x -=D.600096000.41.5x x-=6.如果圆锥侧面展开图的面积是15π,母线长是5,则这个圆锥的底面半径是()A.3 B.4 C.5 D.67.如图,ABC 为等边三角形,点D ,E 分别在边BC ,AB 上,60ADE ∠=︒,若4BD DC =, 2.4DE =,则AD 的长为()A.1.8B.2.4C.3D.3.28.如图,在平面直角坐标系中,菱形OABC 的边长为B 在x 轴的正半轴上,且60AOC ∠=︒,将菱形OABC 绕原点O 逆时针方向旋转60︒,得到四边形OA B C '''(点A '与点C 重合),则点B '的坐标是()A.(B.(C.(D.(9.如图,抛物线()20y ax bx c a =++≠与x 轴交于点A ,B ,与y 轴交于点C ,对称轴为直线=1x -,若点A 的坐标为()4,0-,则下列结论正确的是()A.20a b +=B.420a b c -+>C.2x =是关于x 的一元二次方程()200ax bx c a ++=≠的一个根D.点()11,x y ,()22,x y 在抛物线上,当121x x >>-时120y y <<10.如图,正方形ABCD 的边长为4,点E ,F 分别在边DC ,BC 上,且BF CE =,AE 平分CAD ∠,连接DF ,分别交AE ,AC 于点G ,M ,P 是线段AG 上的一个动点,过点P 作PN AC ⊥垂足为N ,连接PM ,有下列四个结论:①AE 垂直平分DM ;②PM PN +的最小值为322CF GE AE =⋅;④62ADM S ∆=)A.①②B.②③④C.①③④D.①③第Ⅱ卷(非选择题共90分)二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果.11.我国古代数学家祖冲之推算出π的近似值为355113,它与π的误差小于0.0000003,将0.0000003用科学记数法可以表示为______.12.因式分解:22363ma mab mb -+=___________.13.如图,一束光线从点()2,5A -出发,经过y 轴上的点()0,1B 反射后经过点(),C m n ,则2m n -的值是___________.14.为备战东营市第十二届运动会,某县区对甲、乙、丙、丁四名射击运动员进行射击测试,他们射击测试成绩的平均数x (单位:环)及方差2S (单位:环2)如下表所示:甲乙丙丁x9.68.99.69.62S 1.40.82.30.8根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择___________.15.一艘船由A 港沿北偏东60°方向航行30km 至B 港,然后再沿北偏西30°方向航行40km 至C 港,则A ,C 两港之间的距离为___________km .16.“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺.问:径几何?”.用现在的几何语言表达即:如图,CD 为O 的直径,弦AB CD ⊥,垂足为点E ,1CE =寸,10AB =寸,则直径CD 的长度是________寸.17.如图,在ABC 中,以点C 为圆心,任意长为半径作弧,分别交AC ,BC 于点D ,E ;分别以点D ,E 为圆心,大于12DE 的长为半径作弧,两弧交于点F ;作射线CF 交AB 于点G ,若9AC =,6BC =,BCG 的面积为8,则ACG 的面积为___________.18.如图,在平面直角坐标系中,直线l :33y =-x 轴交于点1A ,以1OA 为边作正方形111A B C O 点1C 在y 轴上,延长11C B 交直线l 于点2A ,以12C A 为边作正方形2221A B C C ,点2C 在y 轴上,以同样的方式依次作正方形3332A B C C ,…,正方形2023202320232022A B C C ,则点2023B 的横坐标是___________.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(1)计算:()101345202332274π-⎛⎫︒--+-+ ⎪⎝⎭;(2)先化简,再求值:2221211x x x x x x -⎛⎫÷- ⎪+++⎝⎭,化简后,从23x -<<的范围内选择一个你喜欢的整数作为x 的值代入求值.20.随着新课程标准的颁布,为落实立德树人根本任务,东营市各学校组织了丰富多彩的研学活动,得到家长、社会的一致好评.某中学为进一步提高研学质量,着力培养学生的核心素养,选取了A .“青少年科技馆”,B .“黄河入海口湿地公园”,C .“孙子文化园”,D .“白鹭湖营地”四个研学基地进行研学.为了解学生对以上研学基地的喜欢情况,随机抽取部分学生进行调查统计(每名学生只能选择一个研学基地),并将调查结果绘制成了两幅不完整的统计图(如图所示).请根据统计图中的信息解答下列问题:(1)在本次调查中,一共抽取了____名学生,在扇形统计图中A 所对应圆心角的度数为____;(2)将上面的条形统计图补充完整;(3)若该校共有480名学生,请你估计选择研学基地C 的学生人数;(4)学校想从选择研学基地D 的学生中选取两名学生了解他们对研学活动的看法,已知选择研学基地D 的学生中恰有两名女生,请用列表法或画树状图的方法求出所选2人都是男生的概率.21.如图,在ABC 中,AB AC =,以AB 为直径的O 交BC 于点D ,DE AC ⊥,垂足为E .(1)求证:DE 是O 的切线;(2)若30C ∠=︒,23CD =,求 BD的长.22.如图,在平面直角坐标系中,一次函数()0y ax b a =+<与反比例函数()0k y k x=≠交于(),3A m m -,()4,3B -两点,与y 轴交于点C ,连接OA ,OB .(1)求反比例函数和一次函数的表达式;(2)求AOB 的面积;(3)请根据图象直接写出不等式k ax b x<+的解集.23.如图,老李想用长为70m 的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD ,并在边BC 上留一个2m 宽的门(建在EF 处,另用其他材料).(1)当羊圈的长和宽分别为多少米时,能围成一个面积为6402m 的羊圈?(2)羊圈的面积能达到6502m 吗?如果能,请你给出设计方案;如果不能,请说明理由.24.(1)用数学的眼光观察.如图,在四边形ABCD 中,AD BC =,P 是对角线BD 的中点,M 是AB 的中点,N 是DC 的中点,求证:PMN PNM ∠=∠.(2)用数学的思维思考.如图,延长图中的线段AD 交MN 的延长线于点E ,延长线段BC 交MN 的延长线于点F ,求证:AEM F ∠=∠.(3)用数学的语言表达.如图,在ABC 中,AC AB <,点D 在AC 上,AD BC =,M 是AB 的中点,N 是DC 的中点,连接MN 并延长,与BC 的延长线交于点G ,连接GD ,若60ANM ∠=︒,试判断CGD △的形状,并进行证明.25.如图,抛物线过点()0,0O ,()10,0E ,矩形ABCD 的边AB 在线段OE 上(点B 在点A 的左侧),点C ,D 在抛物线上,设(),0B t ,当2t =时,4BC =.(1)求抛物线的函数表达式;(2)当t 为何值时,矩形ABCD 的周长有最大值?最大值是多少?(3)保持2t =时的矩形ABCD 不动,向右平移抛物线,当平移后的抛物线与矩形的边有两个交点G ,H ,且直线GH 平分矩形ABCD 的面积时,求抛物线平移的距离.二○二三年东营市初中学业水平考试数学试题(总分120分,考试时间120分钟)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.【答案】B【解析】解:2-的相反数是2,故选:B .2.【答案】D【解析】解:A 选项,336x x x ⋅=,故该选项不正确,不符合题意;B 选项,333235x x x +=,故该选项不正确,不符合题意;C 选项,()32628x x =,故该选项不正确,不符合题意;D 选项,()()2232349x x x +-=-,故该选项正确,符合题意;故选:D .3.【答案】B【解析】解:∵40D ∠=︒,60BED ∠=︒,∴20C BED D ∠=∠-∠=︒,∵AB CD ∥,∴B ∠=20C ∠=︒,故选:B .4.【答案】C【解析】解:共有5个书签图案,既是轴对称图形又是中心对称图形的是第2张与第4张书签图片,共2张,∴小乐从中随机抽取一张,则小乐抽到的书签图案既是轴对称图形又是中心对称图形的概率是25,故选:C .5.【答案】A【解析】设第一批面粉采购量为x 千克,则设第二批面粉采购量为1.5x 千克,根据题意,得960060000.41.5x x-=故选:A6.【答案】A【解析】解:设这个圆锥的底面半径是r ,依题意,π15πS rl ==∴1535r ==故选:A .7.【答案】C【解析】解:∵ABC 为等边三角形,∴60B C ∠=∠=︒,∵ADB ADE BDE C DAC ∠=∠+∠=∠+∠,60ADE ∠=︒,∴BDE DAC ∠=∠,∴ADC DEB∽△△∴AD ACDE BD=∵4BD DC =,∴45BD BC =,∴AD AC DE BD =5445BC BC ==∵ 2.4DE =∴534AD DE =⨯=,故选:C .8.【答案】B【解析】解:如图所示,延长B C ''交x 轴于点D,∵四边形ABCD 是菱形,点B 在x 轴的正半轴上,OB 平分AOC ∠,60AOC ∠=︒,∴30COB AOB ∠=∠=︒,60CBA ∠=︒∵将菱形OABC 绕原点O 逆时针方向旋转60︒,∴60C OC '∠=︒,则1302OB C C B C '''∠=∠=︒,AB CB '=∴60B OD '∠=︒∴90B DO '∠=︒,在Rt CDO △中,OC B C '==∴12CD OC ==,OD ==∴DB '=∴(B ',故选:B .9.【答案】C【解析】解:A 选项,抛物线()20y ax bx c a =++≠的对称轴为直线=1x -,则12b a-=-,则2b a =,即20a b -=,故选项错误,不符合题意;B 选项,抛物线()20y ax bx c a =++≠的对称轴为直线=1x -,点A 的坐标为()4,0-,当2x =-时,420y a b c =-+<,故选项错误,不符合题意;C 选项,抛物线()20y ax bx c a =++≠的对称轴为直线=1x -,若点A 的坐标为()4,0-,可得点()2,0B ,当2x =时,420y a b c =++=,即2x =是关于x 的一元二次方程()200ax bx c a ++=≠的一个根,故选项正确,符合题意;D 选项,∵抛物线()20y ax bx c a =++≠的对称轴为直线1x =-,开口向上,∴当1x >-时,y 随着x 的增大而增大,∴点()11,x y ,()22,x y 在抛物线上,当121x x >>-时12y y >,故选项错误,不符合题意;故选:C .10.【答案】D【解析】解:ABCD 为正方形,BC CD AD ∴==,90ADE DCF ∠=∠=︒,BF CE = ,DE FC ∴=,()SAS ADE DCF ∴ ≌.DAE FDC ∠=∠∴,90ADE ∠=︒ ,90ADG FDC ∴∠+∠=︒,90ADG DAE ∴∠+∠=︒,90AGD AGM ∴∠=∠=︒.AE 平分CAD ∠,DAG MAG ∴∠=∠.AG AG = ,()ASA ADG AMG ∴ ≌.DG GM ∴=,90AGD AGM ∠=∠=︒ ,AE ∴垂直平分DM ,故①正确.由①可知,90ADE DGE ∠=∠=︒,DAE GDE ∠=∠,ADE DGE ∴ ∽,DE AE GE DE∴=,2DE GE AE ∴=⋅,由①可知DE CF =,2CF GE AE ∴=⋅.故③正确.ABCD 为正方形,且边长为4,4AB BC AD ∴===,∴在Rt ABC △中,AC ==由①可知,()ASA ADG AMG ≌,4AM AD ∴==,4CM AC AM ∴=-=-.由图可知,DMC 和ADM △等高,设高为h ,=ADM ADC DMC S S S ∴- ,()4444222h h -⋅⨯⨯∴=-,h =∴11=422ADM S AM h ∴⋅⋅=⨯⨯= 故④不正确.由①可知,()ASA ADG AMG ≌,DG GM ∴=,M ∴关于线段AG 的对称点为D ,过点D 作DN AC '⊥,交AC 于N ',交AE 于P ',PM PN ∴+最小即为DN ',如图所示,由④可知ADM △的高h =DN ',DN '∴=.故②不正确.综上所述,正确的是①③.故选:D .第Ⅱ卷(非选择题共90分)二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果.11.【答案】7310-⨯【解析】解:0.0000003用科学记数法表示为7310-⨯.故答案为:7310-⨯.12.【答案】()23m a b -【解析】解:22363ma mab mb -+()2232m a ab b =-+()23m a b =-故答案为:()23m a b -.13.【答案】-1【解析】如图,过点A 作AG y ^轴,点C 作CF y ^轴,垂足分别为G ,F由题意知,ABG CBF ∠=∠,AGB CFB∠=∠∴AGB CFB∴BF BG CF AG=∵()2,5A -,()0,1B ∴2AG =,514BG =-=∴2BF BG CF AG ==∴12BF n CF m -==-∴21m n -=-故答案为:1-14.【答案】丁【解析】解:选择一名成绩好的运动员,从平均数最大的运动员中选取,由表可知,甲,丙,丁的平均值最大,都是9.6,∴从甲,丙,丁中选取,甲的方差是1.4,丙的方差是2.3,丁的方差是0.8,222<<S S S ∴丁甲丙∴发挥最稳定的运动员是丁,∴从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择丁.故答案为:丁.15.【答案】50【解析】如图,根据题意,得AN BM ∥,60NAB ∠=︒,30MBC ∠=︒,30km AB =,40km BC =∵AN BM∥∴180********MBA NAB ∠=︒-∠=︒-︒=︒∴1203090ABC ABM MBC ∠=∠-∠=︒-︒=︒∴在Rt ABC △中,()2222304050km AC AB BC =+=+=即A ,C 两港之间的距离为50km .故答案为:5016.【答案】26【解析】解:连接OA ,AB CD ⊥ ,且10AB =寸,5AE BE ∴==寸,设圆O 的半径OA 的长为x ,则OC OD x ==,1CE =Q ,1OE x ∴=-,在直角三角形AOE 中,根据勾股定理得:222(1)5x x --=,化简得:222125x x x -+-=,即226x =,26CD ∴=(寸).故答案为:26.17.【答案】12【解析】解:如图所示,过点B 作BM AC ∥交CG 的延长线于点M,∴ACM CMB∠=∠由作图可得CG 是ACB ∠的角平分线,∴ACM BCM∠=∠∵BCM CMB∠=∠∴BC BM=∵BM AC∥∴ACG BMG∽∴AG AC AC GB BM BC==∴96ACG BCG S AG AC S GB BC === 32=,∵BCG 的面积为8,∴ACG 的面积为12,故答案为:12.18.【答案】2022313⎛⎫+ ⎪ ⎪⎝⎭【解析】解:当0y =,0=-,解得1x =,∴点()11,0A ,∵111A B C O 是正方形,∴11111OA A B OC ===,∴点()11,1B ,∴点1B 的横坐标是1,当1y =时,1=-,解得13x =+,∴点231,13A ⎛⎫+ ⎪ ⎪⎝⎭,∵2221A B C C 是正方形,∴221221313A B C C A C ===+,∴点21,233B ⎛++ ⎝⎭,即点2B 的横坐标是13+,当323y =+时,323+=-,解得)223x =,∴点32343,2333A ⎛⎫++ ⎪ ⎪⎝⎭,∵3332A B C C 是正方形,∴33233223433A B C C A C ===+,∴点3B 的横坐标是223431333⎛⎫+=+ ⎪ ⎪⎝⎭,……以此类推,则点2023B 的横坐标是2022313⎛⎫+ ⎪ ⎪⎝⎭故答案为:2022313⎛+ ⎪⎝⎭三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.【答案】(1)1;(2)21x x +,43.【解析】解:(1)原式1124=-++-1=;(2)原式()()()()212111x x x x x x x --+=÷++()()()21111x x x x x x -+=⋅-+21x x =+;由题意可知:1x ≠-,0x ≠,1x ≠,∴当2x =时,原式43=.20.【答案】(1)24,30︒(2)见解析;(3)120名;(4)16.【解析】(1)解:样本容量为1250%24÷=(名),即一共抽取了24名学生;A 所对应圆心角的度数为23603024︒⨯=︒;故答案为:24,30︒;(2)解:选择研学基地C 的学生人数2425%6⨯=(名),选择研学基地D 的学生人数2421264---=(名),补全图形如图所示:;(3)解:48025%120⨯=(名),答:该校选择研学基地C 的学生人数是120名.(4)解:选择研学基地D 的学生有2名男生和2名女生,画树状图如下:共有12种等可能的结果,其中所选2人都是男生的结果有2种,∴P (所选2人都是男生)21126==.21.【答案】(1)见解析;(2)43π.【解析】(1)证明:如图:连接OD∵OB OD =,∴B ODB ∠=∠,∵AB AC =,∴B C ∠=∠,∴ODB C ∠=∠,∴OD AC ∥,∴ODE DEC ∠=∠。
2022年东营市中考数学考试卷及答案解析第Ⅰ卷(选择题共30分)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.-2的绝对值是()A.2B.12C.12-D.2-【答案】A 【解析】【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义进行求解即可.【详解】解:在数轴上,点-2到原点的距离是2,所以-2的绝对值是2,故选:A .2.下列运算结果正确的是()A.336325x x x += B.22(1)1x x +=+ C.842x x x ÷= D.2=【答案】D 【解析】【分析】根据合并同类项,完全平方公式,同底数幂除法和算术平方根的运算法则逐一进行判断即可.【详解】解:A.333325x x x +=,原计算错误,不合题意;B.22(1)21x x x +=++,原计算错误,不合题意;C.844x x x ÷=,原计算错误,不合题意;D.2=,原计算正确,符合题意;故选:D.【点睛】本题考查了合并同类项,完全平方公式,同底数幂除法和算术平方根,熟练掌握运算法则是解题的关键.∥,一个三角板的直角顶点在直线a上,两直角边均与直线b相交,3.如图,直线a b∠=︒,则2∠=()140A.40︒B.50︒C.60︒D.65︒【答案】B【解析】【分析】先根据平角的定义求出∠3的度数,再根据平行线的性质即可求出∠2的度数.【详解】解:由题意得∠ABC=90°,∵∠1=40°,∴∠3=180°-∠1-∠ABC=50°,∥,∵a b∴∠2=∠3=50°,故选B.【点睛】本题主要考查了几何图形中角度的计算,平行线的性质,三角板中角度的计算,熟知平行线的性质是解题的关键.4.植树节当天,七年级1班植树300棵,正好占这批树苗总数的35,七年级2班植树棵数是这批树苗总数的15,则七年级2班植树的棵数是()A.36 B.60C.100D.180【答案】C 【解析】【分析】设这批树苗一共有x 棵,根据七年级1班植树300棵,正好占这批树苗总数的35,列出方程求解即可.【详解】解:设这批树苗一共有x 棵,由题意得:33005x =,解得500x =,∴七年级2班植树的棵数是15001005⨯=棵,故选C .【点睛】本题主要考查了一元一次方程的应用,正确理解题意列出方程是解题的关键.5.一元二次方程2480x x +-=的解是()A.1222x x =+=-B.1222x x =+=-C.1222x x =-+=--D.1222x x =-+=--【答案】D 【解析】【分析】利用配方法解方程即可.【详解】解:∵2480x x +-=,∴248x x +=,∴24412x x ++=,∴()2212x +=,∴2x +=±,解得1222x x =-+=--故选D .【点睛】本题主要考查了解一元二次方程,熟知解一元二次方程的方法是解题的关键.6.如图,任意将图中的某一白色方块涂黑后,能使所有黑色方块构成的图形是轴对称图形的概率是()A.23B.12C.13D.16【答案】A 【解析】【分析】根据轴对称图形的定义,结合概率计算公式求解即可.【详解】解:如图所示,由轴对称图形的定义可知当选取编号为1,3,5,6其中一个白色区域涂黑后,能使黑色方块构成的图形是轴对称图形,∴任意将图中的某一白色方块涂黑后,能使所有黑色方块构成的图形是轴对称图形的概率是4263=,故选A .【点睛】本题主要考查了轴对称图形的定义,简单的概率计算,熟知轴对称图形的定义是解题的关键.7.如图,点D 为ABC 边AB 上任一点,DE BC ∥交AC 于点E ,连接BE CD 、相交于点F ,则下列等式中不成立...的是()A.AD AEDB EC= B.DE DFBC FC= C.DE AEBC EC= D.EF AEBF AC=【答案】C 【解析】【分析】根据平行线分线段成比例定理即可判断A ,根据相似三角形的性质即可判断B 、C 、D .【详解】解:∵∥DE BC ,∴AD AEBD EC=,△DEF ∽△CBF ,△ADE ∽△ABC ,故A 不符合题意;∴DE DF EF CB CF BF==,DE AECB AC =,故B 不符合题意,C 符合题意;∴EF AEBF AC=,故D 不符合题意;故选C .【点睛】本题主要考查了相似三角形的性质与判定,平行线分线段成比例定理,熟知相似三角形的性质与判定,平行线分线段成比例定理是解题的关键.8.如图,一次函数11y k x b =+与反比例函数22k y x=的图象相交于A ,B 两点,点A 的横坐标为2,点B 的横坐标为1-,则不等式21k k x b x+<的解集是()A.10x -<<或2x >B.1x <-或02x <<C.1x <-或2x > D.12x -<<【答案】A 【解析】【分析】根据不等式21k k x b x+<的解集即为一次函数图象在反比例函数图象下方时自变量的取值范围进行求解即可.【详解】解:由题意得不等式21k k x b x+<的解集即为一次函数图象在反比例函数图象下方时自变量的取值范围,∴不等式21k k x b x+<的解集为10x -<<或2x >,故选A .【点睛】本题主要考查了一次函数与反比例函数综合,利用数形结合的思想求解是解题的关键.9.用一张半圆形铁皮,围成一个底面半径为4cm 的圆锥形工件的侧面(接缝忽略不计),则圆锥的母线长为()A.4cm B.8cmC.12cmD.16cm【答案】B 【解析】【分析】设圆锥的母线长为l ,根据圆锥的底面圆周长为半圆形铁皮的周长(不包括直径)列式求解即可.【详解】解:设圆锥的母线长为l ,由题意得:18024180lππ⨯⋅⨯=,∴8cm l =,故选B .【点睛】本题主要考查了求圆锥的母线长,熟知圆锥的底面圆周长为半圆形铁皮的周长(不包括直径)是解题的关键.10.如图,已知菱形ABCD 的边长为2,对角线AC BD 、相交于点O ,点M ,N 分别是边BC CD 、上的动点,60BAC MAN ∠=∠=︒,连接MN OM 、.以下四个结论正确的是()①AMN 是等边三角形;②MN 3MN 最小时18CMN ABCD S S =△菱形;④当OM BC ⊥时,2OA DN AB =⋅.A.①②③ B.①②④C.①③④D.①②③④【答案】D 【解析】【分析】①依据题意,利用菱形的性质及等边三角形的判定与性质,证出MAC DAN ∠=∠,然后证CAM DAN(ASA )△≌△,AM =AN ,即可证出.②当MN 最小值时,即AM 为最小值,当AM BC ⊥时,AM 值最小,利用勾股定理求出2222213AM AB BM -=-=MN 的值.③当MN 最小时,点M 、N 分别为BC 、CD 中点,利用三角形中位线定理得到AC MN ⊥,用勾股定理求出222231122CE CN EN ()=-=-=,1133224CMN S =⨯=△而菱形ABCD的面积为:2323=,即可得到答案.④当OM BC ⊥时,可证OCM BCO △∽△,利用相似三角形对应边成比例可得2OC CM BC =⋅,根据等量代换,最后得到答案.【详解】解:如图:在菱形ABCD 中,AB =BC =AD =CD ,AC BD ⊥,OA =OC ,∵60BAC MAN ∠=∠=︒,∴60ACB ADC ∠=∠=︒,ABC 与ADC 为等边三角形,又60MAC MAN CAN CAN ∠=∠-∠=︒-∠,60DAN DAC CAN CAN ∠=∠-∠=︒-∠,∴MAC DAN ∠=∠,在CAM V 与DAN 中CAM DAN AC AC ACM ADN ∠=∠⎧⎪=⎨⎪∠=∠⎩∴CAM DAN(ASA )△≌△,∴AM =AN ,即AMN 为等边三角形,故①正确;∵AC BD ⊥,当MN 最小值时,即AM 为最小值,当AM BC ⊥时,AM 值最小,∵1212AB ,BM BC ===,∴AM ==即MN =,故②正确;当MN 最小时,点M 、N 分别为BC 、CD 中点,∴MN BD ∥,∴AC MN ⊥,在CMN △中,12CE ===,∴11224CMN S =⨯=△,而菱形ABCD的面积为:2=∴18⨯=,故③正确,当OM BC ⊥时,90BOC OMC OCM BCO∠=∠=︒⎧⎨∠=∠⎩∴OCM BCO △∽△∴OC CMBC OC=∴2OC CM BC =⋅∴2OA DN AB =⋅故④正确;故选:D .【点睛】此题考查了菱形的性质与面积,等边三角形的判定与性质,全等三角形的判定,勾股定理,三角形中位线定理等相关内容,熟练掌握菱形的性质是解题关键.第Ⅱ卷(非选择题共90分)二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共23分.只要求填写最后结果.11.2022年2月20日,北京冬奥会圆满落幕,赛事获得了数十亿次数字平台互动,在中国仅电视收视人数就超6亿.6亿用科学记数法表示为____________.【答案】8610⨯【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:6亿=8600000000610⨯=.故答案为:8610⨯.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.因式分解:39x x -=______.【答案】(3)(3)x x x +-【解析】【分析】利用提公因式法和公式法即可求解.【详解】解:3229(3)(3)(3)x x x x x x x -=-=+-,故答案为:(3)(3)x x x +-.【点睛】本题考查了因式分解,熟练掌握提公因式法和平方差公式是解题的关键.13.为了落实“双减”政策,东营市某学校对初中学生的课外作业时长进行了问卷调查,15名同学的作业时长统计如下表,则这组数据的众数是____________分钟.作业时长(单位:分钟)5060708090人数(单位:人)14622【答案】70【解析】【分析】根据众数的定义,人数最多的即为这组数据的众数.【详解】解:由表可知:∵6>4>2>2>1,∴这组数据的众数是70分钟.故答案为:70.【点睛】本题考查了众数的定义,掌握众数的定义是本题关键.14.如图,在O 中,弦AC ∥半径,40OB BOC ∠=︒,则AOC ∠的度数为____________.【答案】100°##100度【解析】【分析】先根据平行线的性质求出∠OCA 的度数,再根据等边对等角求出∠OAC 的度数,即可利用三角形内角和定理求出∠AOC 的度数.【详解】解:∵AC OB ∥,∴∠OCA =∠BOC =40°,∵OA =OC ,∴∠OAC =∠OCA =40°,∴∠AOC =180°-∠OAC -∠OCA =100°,故答案为:100°.【点睛】本题主要考查了平行线的性质,圆的基本性质,三角形内角和定理,等腰三角形的性质,熟知相关知识是解题的关键.15.关于x 的一元二次方程2(1)210k x x --+=有两个不相等的实数根,则k 的取值范围是____________.【答案】2k <且1k ≠【解析】【分析】根据一元二次方程二次项系数不为0,以及根的判别式即可得出k 的取值范围.【详解】解:∵关于x 的一元二次方程2(1)210k x x --+=有两个不相等的实数根,∴0∆>且10k -≠,∴()24441840b ac k k ∆=-=--=->且1k ≠,∴2k <且1k ≠.故答案为:2k <且1k ≠.【点睛】本题考查了根的判别式,一元二次方程的概念,熟练掌握一元二次方程的概念以及根的判别式是本题的关键.16.如图,OAB 是等腰直角三角形,直角顶点与坐标原点重合,若点B 在反比例函数1(0)y x x=>的图象上,则经过点A 的反比例函数表达式为____________.【答案】1y x=-【解析】【分析】如图所示,过点A 作AC ⊥x 轴于C ,过点B 作BD ⊥x 轴于D ,证明△ACO ≌△ODB 得到AC =OD ,OC =BD ,设点B 的坐标为(a ,b ),则点A 的坐标为(-b ,a ),再由点B 在反比例函数1y x =,推出1a b-=-,由此即可得到答案.【详解】解:如图所示,过点A 作AC ⊥x 轴于C ,过点B 作BD ⊥x 轴于D ,则∠ACO =∠ODB =90°,由题意得OA =OB ,∠AOB =90°,∴∠CAO +∠COA =∠AOC +∠BOD =90°,∴∠CAO =∠DOB ,∴△ACO ≌△ODB (AAS ),∴AC =OD ,OC =BD ,设点B 的坐标为(a ,b ),则AC =OD =a ,OC =BD =b ,∴点A 的坐标为(-b ,a ),∵点B 在反比例函数1y x =,∴1ab =,∴1ab -=-,∴1a b-=-,∴经过点A 的反比例函数表达式为1y x =-,故答案为:1y x=-.【点睛】本题主要考查了反比例函数与几何综合,全等三角形的性质与判定,熟知相关知识是解题的关键.17.如图,在ABC 中,点F 、G 在BC 上,点E 、H 分别在AB 、AC 上,四边形EFGH 是矩形,2,EH EF AD =是ABC 的高.8,6BC AD ==,那么EH 的长为____________.【答案】245##4.8【解析】【分析】通过四边形EFGH 为矩形推出EH BC ∥,因此△AEH 与△ABC 两个三角形相似,将AM 视为△AEH 的高,可得出AM EH AD BC=,再将数据代入即可得出答案.【详解】∵四边形EFGH 是矩形,∴EH BC ∥,∴AEF ABC ∽,∵AM 和AD 分别是△AEH 和△ABC 的高,∴,AM EH DM EF AD BC==,∴6AM AD DM AD EF EF =-=-=-,∵=2EH EF ,代入可得:6268EF EF -=,解得12=5EF ,∴1224=255EH ⨯=,故答案为:245.【点睛】本题考查了相似三角形的判定和性质及矩形的性质,灵活运用相似三角形的性质是本题的关键.18.如图,11122233,,,AB A A B A A B A ⋅⋅⋅△△△是等边三角形,直线323y x =+经过它们的顶点123,,,,A A A A ⋅⋅⋅,点123,,,B B B ⋅⋅⋅在x 轴上,则点2022A 的横坐标是____________.【答案】(202322-【解析】【分析】如图,设直线323y x =+与x 轴交于点C ,求出点A 、C 的坐标,可得OA =2,OC =,然后解直角三角形求出∠ACO =30°,可得1190CB A ∠=︒,130CB A =∠︒,然后求出12122CB B O ===13222CB CB ===,32422CB CB ===…,进而可得202320222CB =,再求出2022OB 即可.【详解】解:如图,设直线23y x =+与x 轴交于点C ,在23y x =+中,当x =0时,y =2;当y =0时,即3203x +=,解得:x =-,∴A (0,2),C (-,0),∴OA =2,OC =∴tan ∠ACO =33OA OC ==,∴∠ACO =30°,∵11AB A △是等边三角形,∴111160AA B AB A ∠=∠=︒,∴1190CB A ∠=︒,∴130CB A =∠︒,∴AC =1AB ,∵AO ⊥1CB ,∴1O O C B ==∴12122CB B O ===同理可得:13222CB CB ===,32422CB CB ===…,∴202320222CB =,∴(202320232022222OB =-=-,∴点2022A 的横坐标是(202322-故答案为:(202322-【点睛】本题考查了一次函数的图象和性质,等边三角形的性质,解直角三角形,等腰三角形的判定和性质等知识,通过解直角三角形求出∠ACO =30°是解题的关键.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.计算及先化简,再求值:(1)()20220(32)(32)483(3)2sin30+-+--+-︒(2)221122y x y x y x xy y ⎛⎫-÷ ⎪-+++⎝⎭,其中3,2x y ==.【答案】(1)3(2)+-x y x y,5【解析】【分析】(1)先根据特殊角的三角函数值计算,再根据二次根式的混合运算的法则进行计算即可.(2)根据分式的加法和除法可以化简题目中的式子,然后将x 、y 的值代入化简后的式子即可解答本题.【小问1详解】原式=343311-++=14-+=3【小问2详解】原式=()()()22x y x y x y x y x y y ++-++- =()()()222x y y x y x y y++- =+-x y x y当x =3,y =2时,原式=+-x y x y=5【点睛】此题考查了二次根式和三角函数的化简,以及分式的化简求值,熟练掌握运算法则是解题的关键.20.中国共产党的助手和后备军——中国共青团,担负着为中国特色社会主义事业培养合格建设者和可靠接班人的根本任务.成立一百周年之际,各中学持续开展了A :青年大学习;B :背年学党史;C :中国梦宣传教育;D :社会主义核心价值观培育践行等一系列活动,学生可以任选一项参加.为了解参与情况,进行了一次抽样调查,根据收集的数据绘制了两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)在这次调查中,一共抽取了____________名学生;(2)补全条形统计图;(3)若该校共有学生1280名,请估计参加B 项活动的学生数;(4)小杰和小慧参加了上述活动,请用列表或画树状图的方法,求他们参加同一项活动的概率.【答案】(1)200;(2)见解析;(3)估计参加B项活动的学生数有512名;(4)画树状图见解析,他们参加同一项活动的概率为1 4.【解析】【分析】(1)根据D项活动所占圆心角度数和D项活动的人数计算即可;(2)根据总人数求出参加C项活动的人数,进而可补全条形统计图;(3)用该校总学生人数乘以抽查的学生中参加B项活动所占的比例即可;(4)画出树状图可知,共有16种等可能的结果,其中他们参加同一项活动的情况数有4种,然后根据概率公式计算即可.【小问1详解】解:7240200360︒÷=︒(名),即在这次调查中,一共抽取了200名学生,故答案为:200;【小问2详解】参加C项活动的人数为:200-20-80-40=60(名),补全条形统计图如图:【小问3详解】801280512200⨯=(名),答:估计参加B 项活动的学生数有512名;【小问4详解】画树状图如图:由树状图可知,共有16种等可能的结果,其中他们参加同一项活动的情况数有4种,所以他们参加同一项活动的概率为41164=.【点睛】本题考查了条形统计图,扇形统计图,用样本估计总体,列表法或树状图法求概率,能够从不同的统计图中获取有用信息是解题的关键.21.如图,AB 为O 的直径,点C 为O 上一点,BD CE ⊥于点D ,BC 平分ABD ∠.(1)求证:直线CE 是O 的切线;(2)若30,ABC O ∠=︒ 的半径为2,求图中阴影部分的面积.【答案】(1)见解析(243π-【解析】【分析】(1)连接OC ,根据OB =OC ,以及BC 平分ABD ∠推导出OCB DCB ∠=∠,即可得出BD OC ∥,从而推出OC DE ⊥,即证明得出结论;(2)过点O 作OF CB ⊥于F ,利用OBC OBC S S S =-V 阴影扇形即可得出答案.【小问1详解】证明:连接OC ,如图,∵OB OC =,∴OBC OCB ∠=∠,∵BC 平分ABD ∠,∴OBC DCB ∠=∠,∴OCB DCB ∠=∠,∴BD OC ∥,∵BD CE ⊥于点D ,∴OC DE ⊥,∴直线CE 是O 的切线;【小问2详解】过点O 作OF CB ⊥于F ,如图,∵30ABC ∠=︒,2OB =,∴1OF =,cos30BF OB =⋅︒=,∴2BC BF ==,∴11122OBC S BC OF =⋅=⨯=△∵903060BOF ∠=︒-︒=︒,∴2120BOC BOF ∠=∠=︒,∴2120423603OBC S ππ︒=⨯⨯=︒扇形,∴43OBC OBC S S S π=-=△阴影扇形.【点睛】本题考查了圆的综合问题,包括垂径定理,圆的切线,扇形的面积公式等,熟练掌握以上性质并正确作出辅助线是本题的关键.22.胜利黄河大桥犹如一架巨大的竖琴,凌驾于滔滔黄河之上,使黄河南北“天堑变通途”.已知主塔AB 垂直于桥面BC 于点B ,其中两条斜拉索AD AC 、与桥面BC 的夹角分别为60︒和45︒,两固定点D 、C 之间的距离约为33m ,求主塔AB 的高度(结果保留整数,参考数据: 1.73≈≈)【答案】主塔AB 的高度约为78m .【解析】【分析】在Rt △ABD 中,利用正切的定义求出=AB ,然后根据∠C =45°得出AB=BC ,列方程求出BD ,即可解决问题.【详解】解:∵AB ⊥BC ,∴∠ABC =90°,在Rt △ABD 中,tan 60AB BD =⋅︒=,在Rt △ABC 中,∠C =45°,∴AB =BC ,33BD =+,∴)3312BD ⨯==m ,∴AB =BC =)3313333782BD ⨯++=+≈m ,答:主塔AB 的高度约为78m .【点睛】本题考查了解直角三角形的应用,熟练掌握正切的定义是解题的关键.23.为满足顾客的购物需求,某水果店计划购进甲、乙两种水果进行销售.经了解,甲水果的进价比乙水果的进价低20%,水果店用1000元购进甲种水果比用1200元购进乙种水果的重量多10千克,已知甲,乙两种水果的售价分别为6元/千克和8元/千克.(1)求甲、乙两种水果的进价分别是多少?(2)若水果店购进这两种水果共150千克,其中甲种水果的重量不低于乙种水果重量的2倍,则水果店应如何进货才能获得最大利润,最大利润是多少?【答案】(1)甲种水果的进价是4元/千克,乙种水果的进价是5元/千克;(2)水果店购进甲种水果100千克,乙种水果50千克时获得最大利润,最大利润是350元.【解析】【分析】(1)设乙种水果的进价是x 元/千克,根据“甲水果的进价比乙水果的进价低20%,水果店用1000元购进甲种水果比用1200元购进乙种水果的重量多10千克”列出分式方程,解方程检验后可得出答案;(2)设水果店购进甲种水果a 千克,获得的利润为y 元,则购进乙种水果(150-a )千克,根据利润=(售价-进价)×数量列出y 关于a 的一次函数解析式,求出a 的取值范围,然后利用一次函数的性质解答.【小问1详解】解:设乙种水果的进价是x 元/千克,由题意得:()1000120010120%x x=+-,解得:5x =,经检验,5x =是分式方程的解且符合题意,则()120%0.854x -=⨯=,答:甲种水果的进价是4元/千克,乙种水果的进价是5元/千克;【小问2详解】解:设水果店购进甲种水果a 千克,获得的利润为y 元,则购进乙种水果(150-a )千克,由题意得:()()()6485150450y a a a =-+--=-+,∵-1<0,∴y 随a 的增大而减小,∵甲种水果的重量不低于乙种水果重量的2倍,∴()2150a a -≥,解得:100a ≥,∴当100a =时,y 取最大值,此时100450350y =-+=,15050a -=,答:水果店购进甲种水果100千克,乙种水果50千克时获得最大利润,最大利润是350元.【点睛】本题考查了分式方程的应用,一次函数与一元一次不等式的应用,正确理解题意,找出合适的等量关系列出方程和解析式是解题的关键.24.如图,抛物线23(0)y ax bx a =+-≠与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点C .(1)求抛物线的表达式;(2)在对称轴上找一点Q ,使ACQ 的周长最小,求点Q 的坐标;(3)点P 是抛物线对称轴上的一点,点M 是对称轴左侧抛物线上的一点,当PMB △是以PB 为腰的等腰直角三角形时,请直接写出所有点M 的坐标.【答案】(1)223y x x =--(2)(1,-2)(3)(-1,0)或(1-2)或(12)【解析】【分析】(1)利用待定系数法求解即可;(2)先求出点C 的坐标和抛物线的对称轴,如图所示,作点C 关于直线1x =的对称点E ,连接AE ,EQ ,则点E 的坐标为(2,-3),根据轴对称最短路径可知AE 与抛物线对称轴的交点即为点Q ;(3)分两种情况当∠BPM =90°和当∠PBM =90°两种情况讨论求解即可.【小问1详解】解:∵抛物线23(0)y ax bx a =+-≠与x 轴交于点(1,0)A -,点(3,0)B ,∴309330a b a b --=⎧⎨+-=⎩,∴12a b =⎧⎨=-⎩,∴抛物线解析式为223y x x =--;【小问2详解】解:∵抛物线解析式为()222314y x x x =--=--,与y 轴交于点C ,∴抛物线对称轴为直线1x =,点C 的坐标为(0,-3)如图所示,作点C 关于直线1x =的对称点E ,连接AE ,EQ ,则点E 的坐标为(2,-3),由轴对称的性质可知CQ =EQ ,∴△ACQ 的周长=AC +AQ +CQ ,要使△ACQ 的周长最小,则AQ +CQ 最小,即AQ +QE 最小,∴当A 、Q 、E 三点共线时,AQ +QE 最小,设直线AE 的解析式为11y k x b =+,∴1111023k b k b -+=⎧⎨+=-⎩,∴1111k b =-⎧⎨=-⎩,∴直线AE 的解析式为1y x =--,当1x =时,1112y x =--=--=-,∴点Q 的坐标为(1,-2);【小问3详解】解:如图1所示,当点P 在x 轴上方,∠BPM =90°时,过点P 作EF x ∥轴,过点M 作MF ⊥EF 于F ,过点B 作BE ⊥EF 于E ,∵△PBM 是以PB 为腰的等腰直角三角形,∴PA =PB ,∠MFP =∠PEB =∠BPM =90°,∴∠FMP +∠FPM =∠FPM +∠EPB =90°,∴∠FMP =∠EPB ,∴△FMP ≌△EPB (AAS ),∴PE =MF ,BE =PF ,设点P 的坐标为(1,m ),∴2BE m PE ==,,∴2MF =,PF m =,∴点M 的坐标为(1-m ,m -2),∵点M 在抛物线223y x x =--上,∴()()212132m m m ----=-,∴2122232m m m m -+-+-=-,∴220m m --=,解得2m =或1m =-(舍去),∴点M 的坐标为(-1,0);同理当当点P 在x 轴下方,∠BPM =90°时可以求得点M 的坐标为(-1,0);如图2所示,当点P 在x 轴上方,∠PBM =90°时,过点B 作EF y ∥轴,过点P 作PE ⊥EF 于E ,过点M 作MF ⊥EF 于F ,设点P 的坐标为(1,m ),同理可证△PEB ≌△BFM (AAS ),∴2BF PE MF BE m ====,,∴点M 的坐标为(3-m ,-2),∵点M 在抛物线223y x x =--上,∴()()232332m m ----=-,∴2966232m m m -+-+-=-,∴2420m m -+=,解得2m =+2m =-(舍去),∴点M 的坐标为(1-2);如图3所示,当点P 在x 轴下方,∠PBM =90°时,同理可以求得点M 的坐标为(1,2);综上所述,当△PMB 是以PB 为腰的等腰直角三角形时,点M 的坐标为(-1,0)或(1,-2)或(1,2).【点睛】本题主要考查了待定系数法求二次函数解析式,二次函数综合,一次函数与几何综合,全等三角形的性质与判定等等,熟知二次函数的相关知识是解题的关键.25.ABC 和ADF 均为等边三角形,点E 、D 分别从点A ,B 同时出发,以相同的速度沿AB BC 、运动,运动到点B 、C 停止.(1)如图1,当点E 、D 分别与点A 、B 重合时,请判断:线段CD EF 、的数量关系是____________,位置关系是____________;(2)如图2,当点E 、D 不与点A ,B 重合时,(1)中的结论是否依然成立?若成立,请给予证明;若不成立,请说明理由;(3)当点D 运动到什么位置时,四边形CEFD 的面积是ABC 面积的一半,请直接写出答案;此时,四边形BDEF 是哪种特殊四边形?请在备用图中画出图形并给予证明.【答案】(1)CD =EF ,CD ∥EF(2)CD =EF ,CD ∥EF ,成立,理由见解析(3)点D 运动到BC 的中点时,BDEF 是菱形,证明见解析【解析】【分析】(1)根据ABC 和ADF 均为等边三角形,得到AF =AD ,AB =BC ,∠FAD =∠ABC =60°,根据E 、D 分别与点A 、B 重合,得到AB =AD ,EF =AF ,CD =BC ,∠FAD =∠FAB ,推出CD =EF ,CD ∥EF ;(2)连接BF ,根据∠FAD =∠BAC =60°,推出∠FAB =∠DAC ,根据AF =AD ,AB =AC ,推出△AFB ≌△ADC ,得到∠ABF =∠ACD =60°,BF =CD ,根据AE =BD ,推出BE =CD ,得到BF =BE ,推出△BFE 是等边三角形,得到BF =EF ,∠FEB =60°,推出CD =EF ,CD ∥EF ;(3)过点E 作EG ⊥BC 于点G ,设△ABC 的边长为a ,AD =h ,根据AB =BC ,BD =CD =12BC =12a ,BD =AE ,推出AE =BE =12AB ,根据AB =AC ,推出AD ⊥BC ,得到EG ∥AD ,推出△EBG ∽△ABD ,推出12EG BE AD AB ==,得到12EG AD ==12h ,根据CD =EF ,CD ∥EF ,推出四边形CEFD 是平行四边形,推出1111122222CEFD ABC S CD EG a h ah =⋅=⋅=⋅=V ,根据EF =BD ,EF ∥BD ,推出四边形BDEF 是平行四边形,根据BF =EF ,推出BDEF 是菱形.【小问1详解】∵ABC 和ADF 均为等边三角形,∴AF =AD ,AB =BC ,∠FAD =∠ABC =60°,当点E 、D 分别与点A 、B 重合时,AB =AD ,EF =AF ,CD =BC ,∠FAD =∠FAB ,∴CD =EF ,CD ∥EF ;故答案为:CD =EF ,CD ∥EF ;【小问2详解】CD =EF ,CD ∥EF ,成立.证明:连接BF ,∵∠FAD =∠BAC =60°,∴∠FAD-∠BAD=∠BAC-∠BAD,即∠FAB=∠DAC,∵AF=AD,AB=AC,∴△AFB≌△ADC(SAS),∴∠ABF=∠ACD=60°,BF=CD,∵AE=BD,∴BE=CD,∴BF=BE,∴△BFE是等边三角形,∴BF=EF,∠FEB=60°,∴CD=EF,BC∥EF,即CD∥EF,∴CD=EF,CD∥EF;【小问3详解】如图,当点D运动到BC的中点时,四边形CEFD的面积是ABC面积的一半,此时,四边形BDEF是菱形.证明:过点E作EG⊥BC于点G,设△ABC的边长为a,AD=h,∵AB=BC,BD=CD=12BC=12a,BD=AE,∴AE=BE=12 AB,∵AB=AC,∴AD⊥BC,∴EG∥AD,∴△EBG∽△ABD,∴12 EG BEAD AB==,∴12EG AD==12h,由(2)知,CD=EF,CD∥EF,∴四边形CEFD是平行四边形,∴1111122222ABC CEFDS CD EG a h ah S=⋅=⋅=⋅=四边形,此时,EF=BD,EF∥BD,∴四边形BDEF是平行四边形,∵BF=EF,∴BDEF是菱形.【点睛】本题主要考查了等边三角形判定与性质,全等三角形的判定与性质,平行四边形的判定与性质,相似三角形的判定与性质,菱形的判定,解决问题的关键是熟练掌握等边三角形的判定和性质,全等三角形的判定和性质,平行四边形判定和性质,相似三角形的判定和性质,菱形的判定.。
秘密★启用前 试卷类型:A二0一五年东营市初中学生学业考试数 学 试 题(总分120分 考试时间120分钟)注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,90分;全卷共8页.2.数学试题答题卡共8页.答题前,考生务必将自己的姓名、考号、考试科目等涂写在试题和答题卡上,考试结束,试题和答题卡一并收回.3.第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号【ABCD 】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.第Ⅱ卷按要求用0.5mm 碳素笔答在答题卡的相应位置上.4.考试时,不允许使用科学计算器.第Ⅰ卷(选择题 共30分)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.13-的相反数是( ) A .13 B .13- C .3 D .3- 2.下列计算正确的是( )A =B .632a a a ÷=C .222()a b a b +=+ D .235a b ab +=3.由六个小正方体搭成的几何体如图所示,则它的主视图是( )A .B .C .D .4.如图,将三角形纸板的直角顶点放在直尺的一边上,120,240∠=︒∠=︒,则3∠等于( )A .50︒B .30︒C .20︒D .15︒5.东营市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收1.5元(不足1千米按1千米计).某人从甲地到乙地经过的路程是x 千米,出租车费为15.5元,那么x 的最大值是( )A .11B .8C .7D .5 6.若34y x =,则x y x +的值为( ) A .1 B .47 C .54 D .747.如图,有一个质地均匀的正四面体,其四个面上分别画着圆、等边三角形、菱形、正五边形.投掷该正四面体一次,向下的一面的图形既是轴对称图形又是中心对称图形的概率是( )A .1B .14 C .34 D .128.下列命题中是真命题的是( )A .确定性事件发生的概率为1B .平分弦的直径垂直于弦C .正多边形都是轴对称图形D .两边及其一边的对角对应相等的两个三角形全等(第4题图)(第7题图)9.如图,在△ABC 中,AB >AC ,点D 、E 分别是边AB 、AC 的中点,点F 在BC 边上,连接DE ,DF ,EF .则添加下列哪一个条件后,仍无法判定△FCE 与△EDF 全等( ).A .∠A =∠DFEB .BF =CFC .DF ∥A CD .∠C =∠EDF10.如图,在Rt △ABC 中,∠ABC =90°,AB =BC .点D 是线段AB 上的一点,连结CD ,过点B 作BG ⊥CD ,分别交CD 、CA 于点E 、F ,与过点A 且垂直于AB 的直线相交于点G ,连结DF .给出以下四个结论:①AG AF ABFC=;②若点D 是AB 的中点,则AF 2;③当B 、C 、F 、D 四点在同一个圆上时,DF =DB ;④若12DB AD =,则9ABC BDF S S ∆∆=.其中正确的结论序号是( )A .①②B .③④C .①②③D .①②③④ 题号 1 2 3 4 5 6 7 8 9 10 答案 BABCBDDCAC第Ⅱ卷(非选择题 共90分)二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果.11.东营市2014年城镇居民人均可支配收入是37000元,比2013年提高了8.9%.37000元用科学记数法表示是 43.710⨯ 元.12.分解因式:=-+-+2)(9)(124y x y x 2(332)x y -+ .EFA(第10题图)(第9题图)EDBA13.在一次数学测验中,随机抽取了10份试卷,其成绩如下:85,81,89,81,72,82,77,81,79,83.则这组数据的中位数为 81 .14.4月26日,2015黄河口(东营)国际马拉松比赛拉开帷幕,中央电视台体育频道用直升机航拍技术全程直播.如图,在直升机的镜头下,观测马拉松景观大道A 处的俯角为30︒,B 处的俯角为45︒.如果此时直升机镜头C 处的高度CD 为200米,点A 、D 、B 在同一直线上,则AB 两点的距离是1) 米.15.如图,水平放置的圆柱形排水管道的截面直径是1m ,其中水面的宽AB 为0.8m ,则排水管内水的深度为 0.8 m . 16.若分式方程a x ax =+-1无解,则a 的值为 1± . 17.如图,一只蚂蚁沿着边长为2的正方体表面从点A 出发,经过3个面爬到点B ,如果它运动的路径是最短的,则AC 的长为3.18.如图放置的△OAB 1,△B 1A 1B 2,△B 2A 2B 3,…都是边长为1的等边三角形,点A 在x 轴上,点O ,B 1,B 2,B 3,…都在直线l 上,则点A 2015的坐标是 (20172,2). . (第14题图)A第15题图x(第17题图)A三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19. (本题满分7分,第⑴题3分,第⑵题4分)(1)计算:2015011(3)3tan 30π--++o (-)()解:201511(3)3tan 30π--++o (-)()=1313--++………………………………………2分=0…………………………………………………………………3分 (2)解方程组:629x y x y +=⎧⎨-=⎩,.解:①+②得:3x=15………………③∴x=5…………………………………………………………2分 将x=5代人①,得:56y +=∴y=1………………………………………………3分 ∴方程组的解为51x y =⎧⎨=⎩,.……………………………4分20.(本题满分8分) 东营市为进一步加强和改进学校体育工作,切实提高学生体质健康水平,决定推进“一校一球队、一级一专项、一人一技能”活动计划.某校决定对学生感兴趣的球类项目(A :足球, B :篮球, C :排球,D :羽毛球,E :乒乓球)进行问卷调查,学生可根据自己的喜好选修一门,李老师对某班全班同学的选课情况进行统计后,制成了两幅不完整的统计图(如图). (1)将统计图补充完整; (2)求出该班学生人数;(3)若该校共有学生3500名,请估计有多少人选修足球?(4)该班班委5人中,1人选修篮球,3人选修足球,1人选修排球,李老师要从这5人中任选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.(1(2(3)选修足球的人数:203500140050⨯=(人)………………………4分 (4)用“1”代表篮球,“2、3、4”代表足球,“5”代表排球,可以用下表列举出所…………………………………………………………………………………6分由图可以看出,可能出现的结果有20种,并且它们出现的可能性相等.选出的两人1人选修篮球,1人选修足球(记为事件A )的结果有6种,即(1,2),(1,3),(1,4),(2,1),(3,1),(4,1),所以P(A )=632010= …………………………………8分(第20题图)项目项目21.(本题满分8分)已知在△ABC 中,∠B =90o ,以AB 上的一点O 为圆心,以OA 为半径的圆交AC 于点D ,交AB 于点E . (1)求证:AC ·AD =AB ·AE ;(2)如果BD 是⊙O 的切线,D 是切点,E 是OB 的中点,当BC =2时,求AC 的长.(1)证明:连接DE ∵AE 是直径 ∴∠ADE =90o ∴∠ADE =∠ABC在Rt △ADE 和Rt △ABC 中,∠A 是公共角故△ADE ∽△ABC ………………………………2分则ACAEAB AD ,即AC ·AD =AB ·AE …………4分 (2)解:连接OD ∵BD 是圆O 的切线则OD ⊥BD ……………………………………………………………………5分(第21题图)AA在Rt △OBD 中,OE =BE =OD ∴OB =2OD∴∠OBD =30o …………………………………………………………………6分 同理∠BAC =30o ………………………………………………………………7分 在Rt △ABC 中AC =2BC =2×2=4……………………………………………8分22.(本题满分8分)366的图象上一动点,x PA ⊥的图象于点D .(1)求证:D 是BP (2)求出四边形ODPC(1)证明:∵点P 在函数x y 6=上 ∴设P 点坐标为(m 6,m ∵点D 在函数3y x =上,∴设D 点坐标为(3m ,m 由题意可得 BD =3m,BP 故D 是BP(2)解:S 四边形PBOA =m6﹒m =6………………………………………………5分 设C 点坐标为(x ,3x) D 点坐标为(6y ,y )则S △OBD =132y y ⋅⋅=32………………………………………………………6分 S △OAC =132x x ⋅⋅=32…………………………………………………………7分 ∴S 四边形ODPC =S 四边形PBOA —S △OBD —S △OAC =6—23—23=3……………………8分23.(本题满分8分)2013年,东营市某楼盘以每平方米6500元的均价对外销售.因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2015年的均价为每平方米5265元. (1)求平均每年下调的百分率;(2)假设2016年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金20万元,可以在银行贷款30万元,张强的愿望能否实现?(房价每平方米按照均价计算)解:(1)设平均每年下调的百分率为x ,根据题意,得:()2650015265x -=………………………………………………………3分解得: 1x =0.1=10%, 2x =1.9(不合题意,舍去)…………………………4分 答:平均每年下调的百分率为10%.…………………………………………5分 (2)如果下调的百分率相同,2016年的房价为:5265×(1-10%)=4738.5(元/2m )………………………………………6分 则100平方米的住房的总房款为100×4738.5=473850(元)=47.385(万元)……………………………7分 ∵20+30>47.385∴张强的愿望可以实现. ……………………………………………………8分24.(本题满分10分)如图,两个全等的△ABC 和△DEF 重叠在一起,固定△ABC ,将△DEF 进行如下变换:(1)如图1,△DEF 沿直线CB 向右平移(即点F 在线段CB 上移动),连接AF 、AD 、BD ,请直接写出ABC S ∆与AFBD S 四边形的关系;(2)如图2,当点F 平移到线段BC 的中点时,若四边形AFBD 为正方形,那么△ABC 应满足什么条件?请给出证明;(3)在(2)的条件下,将△DEF 沿DF 折叠,点E 落在F A 的延长线上的点G 处,连接CG ,请你在图3的位置画出图形,并求出sin CGF ∠的值.解:(1) ABC S ∆=AFBD S 四边形……………………………………………………1分 (2) △ABC 为等腰直角三角形,即:,90AB AC BAC ︒=∠=………………2分理由如下:∵F为BC 的中点 ∴CF =BF∵CF = AD ∴AD = BF 又∵AD ∥BF∴四边形AFBD 为平行四边形……………………………………………………………3分 ∵AB =AC ,F为BC 的中点 ∴AF ⊥BC∴平行四边形AFBD 为矩形………………………………………………………………4分C(第24题图1)(第24题图2)(第24题图3)CC (第24题图2)∵90BAC ︒∠=,F 为BC 的中点∴AF =12BC =BF ∴四边形AFBD 为正方形…………………………………………………………………5分 (3)正确画出图形……………………………………………………………………………6分 由(2)知,△ABC 为等腰直角三角形, AF ⊥BC设CF =k ,则GF =EF =CB =2k .由勾股定理,得:CG =………………………8分sin CGF ∠=CF CG =10分25.(本题满分13分)如图,抛物线经过A (2,0-),B (1-(1)求抛物线的解析式;(2)在直线AC 下方的抛物线上有一点D ,使得△DCA(3)设点M 是抛物线的顶点,试判断抛物线上是否存在点在,请求出点H 的坐标;若不存在,请说明理由.解:(1)∵该抛物线过点C (0,2),∴可设该抛物线的解析式为22y ax bx =++.将A (-2,0),B (-12,0)代入,得4220112042a b a b -+=⎧⎪⎨-+=⎪⎩, (第25题图)C(第25题)图3解得:2,5.a b =⎧⎨=⎩∴此抛物线的解析式为2252y x x =++(2)由题意可求得直线AC 的解析式为y 分如图,设D 点的横坐标为t (-2<t <0)2252t t ++.过D 作y 轴的平行线交AC 于E . ∴E 点的坐标为(2)t t +,.∴22(252)DE t t t =+-++224t t =--线段DE 所在直线的距离, ∴1122DAC CDE ADE S S S DE h ∆∆∆=+=⋅+22242(1)2t t t =--=-++∵-2<t <0∴当t=-1时,△DAC 面积最大,此时点D 的坐标为(-1,-1).…………………8分 (3)点H 存在.………………………………………………………………………9分 由(1)知,点M 的坐标为59(,)48--解法一:如图,假设存在点H ,满足∠作直线MH 交x 轴于点K (x ,0),作∵90AMN KMN ︒∠+∠=,NKM ∠+∴AMN NKM ∠=∠ ∵90ANM MNK ︒∠=∠= ∴AMN MKN ∆∆∽ ∴AN MNMN NK= ∴2MN AN NK =⋅∴2955()(2)()844x =-+ ∴716x =∴点K 的坐标为(7,016)……………………………………………………………11分 所以直线MK 的解析式为27324y x =-.∴ 227324252y x y x x ⎧=-⎪⎨⎪=++⎩,①② 把①代入②,化简,得:248104550x x ++=. 2(104)44855644256∆=-⨯⨯=⨯=>0. …………………………………12分∴154x =-,21112x =-.将21112x =-代入27324y x =-中,解得6572y =-∴ 直线MN 与抛物线有两个交点(其中一点为顶点M ).∴ 抛物线上必存在一点H ,使∠AMH =90˚, 此时点H 坐标为1165(,)1272--.…………………………………………………13分解法二:如图,过点A 作直线l x ⊥轴,过顶点M 作MN ⊥AM ,MF l ⊥直线分别交直线l 于点N 和点F .则 ∠FMN +∠AMF =90˚. ∵ ∠MAF +∠AMF =90˚, ∴ ∠MAF =∠FMN .又∵ ∠AFM =∠MFN =90˚, ∴ △AFM ∽△MFN . ∴ AF ∶MF =MF ∶FN . 即 933::844=∴ FN =12. ∴ 点N 的坐标为13(2,)8--. 设过点M ,N 的直线的解析式为y kx b =+将M 59(,)48--,N 13(2,)8--代入得: 95,841328k b k b ⎧-=-+⎪⎪⎨⎪-=-+⎪⎩ 解得:2,37.24k b ⎧=⎪⎪⎨⎪=-⎪⎩ 所以直线MN 的解析式为27324y x =-∴ 227324252y x y x x ⎧=-⎪⎨⎪=++⎩,①② 把①代入②,化简,得:248104550x x ++=. 2(104)44855644256∆=-⨯⨯=⨯=>0.…………………………………12分∴154x =-,21112x =-.将21112x =-代入27324y x =-中,解得6572y =-∴ 直线MN 与抛物线有两个交点(其中一点为顶点M ).∴ 抛物线上必存在一点H ,使∠AMH =90˚, 此时点H 坐标为1165(,)1272--.…………………………………………………13分。