常见特征选择算法20160711
- 格式:pptx
- 大小:1.06 MB
- 文档页数:41
计算机视觉技术中的特征选择方法计算机视觉技术是研究如何使计算机理解图像和视频的一门学科。
在计算机视觉任务中,特征选择是一个关键的步骤,它能够从原始数据中选择最相关、最具有区分性的特征,从而提高计算机视觉算法的性能和效果。
在本文中,我将介绍几种常见的特征选择方法,探讨它们的原理和适用场景。
一、过滤式特征选择方法过滤式特征选择方法是在特征选择和分类器训练之间进行两个独立的步骤。
该方法通过计算每个特征与目标变量之间的相关性或信息增益等指标来评估特征的重要性,并根据这些指标对特征进行排序和选择。
常见的过滤式特征选择方法有皮尔逊相关系数、信息增益和卡方检验等。
皮尔逊相关系数是通过计算两个变量之间的线性相关性来衡量特征与目标变量之间的关联程度。
该方法计算特征和目标变量之间的协方差,然后通过除以两个变量的标准差的乘积来得到皮尔逊相关系数。
皮尔逊相关系数的取值范围在-1到1之间,其中1表示完全正相关,-1表示完全负相关,0表示没有线性相关关系。
信息增益是从信息论的角度来评估特征与目标变量之间的相关性。
这种方法通过计算特征的熵和给定目标变量的条件熵之间的差异来度量特征的重要性。
信息增益越大,说明特征与目标变量之间的关联度越高。
卡方检验是一种非参数的统计方法,用于确定两个分类变量之间是否存在关联性。
在特征选择中,利用卡方检验可以评估特征和目标变量之间的独立性。
卡方检验的原理是比较实际观测值和期望观测值之间的差异,然后计算卡方统计量,根据卡方统计量的值来判断特征的重要性。
过滤式特征选择方法的优点是计算简单、效率高,可以在特征选择和分类器训练之间独立地进行。
然而,它们忽视了特征之间的相互依赖关系,可能会选择不相关的特征或遗漏关键特征。
二、包裹式特征选择方法包裹式特征选择方法是在特征选择和分类器训练之间进行一个整体的优化过程。
该方法将特征选择看作是一个子集搜索问题,通过评估不同特征子集的性能来选择最佳的特征。
常见的包裹式特征选择方法有递归特征消除、遗传算法和模拟退火算法等。
特征选择的常用方法特征选择是机器学习和数据挖掘领域中的一个重要步骤,其目的是从各种特征中选择出对目标变量有最大预测能力的特征子集。
特征选择的主要作用是降低维度、减少计算复杂度、提高模型的解释性和泛化能力。
本文将介绍一些常用的特征选择方法。
一、过滤式方法过滤式方法是特征选择中最简单和最常用的方法之一。
它独立于任何具体的学习算法,通过计算各个特征与目标变量之间的关联度来选择特征。
常用的过滤式方法包括皮尔逊相关系数、互信息和卡方检验等。
1. 皮尔逊相关系数皮尔逊相关系数是衡量两个变量之间线性相关程度的统计量,取值范围为[-1,1]。
当相关系数接近于1时,表示两个变量呈正相关;当相关系数接近于-1时,表示两个变量呈负相关;当相关系数接近于0时,表示两个变量之间没有线性相关关系。
在特征选择中,可以计算每个特征与目标变量之间的相关系数,选取相关系数较大的特征作为最终的特征子集。
2. 互信息互信息是衡量两个随机变量之间信息传递量的统计量,可以用来度量特征与目标变量之间的相关性。
互信息的取值范围为[0,+∞],互信息越大表示两个变量之间的相关性越强。
在特征选择中,可以计算每个特征与目标变量之间的互信息,选取互信息较大的特征作为最终的特征子集。
3. 卡方检验卡方检验是一种统计方法,可以用来检验两个变量之间是否存在显著的关联性。
在特征选择中,可以将特征和目标变量之间的关系建模成一个列联表,然后计算卡方值。
卡方值越大表示特征和目标变量之间的关联性越强,选取卡方值较大的特征作为最终的特征子集。
二、包裹式方法包裹式方法是一种更加复杂和计算量较大的特征选择方法,它直接使用具体的学习算法来评估特征的贡献。
包裹式方法通过搜索特征子集的所有可能组合,并使用具体的学习算法对每个特征子集进行评估和比较。
常用的包裹式方法包括递归特征消除、遗传算法和模拟退火算法等。
1. 递归特征消除递归特征消除是一种基于模型的特征选择方法。
它通过反复训练模型,并在每次训练后消除对模型贡献较小的特征,直到达到指定的特征数目。
特征选择:⽅差选择法、卡⽅检验、互信息法、递归特征消除、L1范数、树模型转载:特征选择主要从两个⽅⾯⼊⼿:特征是否发散:特征发散说明特征的⽅差⼤,能够根据取值的差异化度量⽬标信息.特征与⽬标相关性:优先选取与⽬标⾼度相关性的.对于特征选择,有时候我们需要考虑分类变量和连续变量的不同.1.过滤法:按照发散性或者相关性对各个特征进⾏评分,设定阈值或者待选择阈值的个数选择特征⽅差选择法:建议作为数值特征的筛选⽅法计算各个特征的⽅差,然后根据阈值,选择⽅差⼤于阈值的特征from sklearn.feature_selection import VarianceThresholdfrom sklearn.datasets import load_irisimport pandas as pdX,y = load_iris(return_X_y=True)X_df = pd.DataFrame(X,columns=list("ABCD"))#建议作为数值特征的筛选⽅法,对于分类特征可以考虑每个类别的占⽐问题ts = 0.5vt = VarianceThreshold(threshold=ts)vt.fit(X_df)#查看各个特征的⽅差dict_variance = {}for i,j in zip(X_df.columns.values,vt.variances_):dict_variance[i] = j#获取保留了的特征的特征名ls = list()for i,j in dict_variance.items():if j >= ts:ls.append(i)X_new = pd.DataFrame(vt.fit_transform(X_df),columns=ls)卡⽅检验:建议作为分类问题的分类变量的筛选⽅法经典的卡⽅检验是检验定性⾃变量对定性因变量的相关性。
假设⾃变量有N种取值,因变量有M种取值,考虑⾃变量等于i且因变量等于j的样本频数的观察值与期望的差距,构建统计量:from sklearn.feature_selection import VarianceThreshold,SelectKBest,chi2from sklearn.datasets import load_irisimport pandas as pdX,y = load_iris(return_X_y=True)X_df = pd.DataFrame(X,columns=list("ABCD"))(chi2,pval) = chi2(X_df,y)dict_feature = {}for i,j in zip(X_df.columns.values,chi2):dict_feature[i]=j#对字典按照values排序ls = sorted(dict_feature.items(),key=lambda item:item[1],reverse=True)#特征选取数量k =2ls_new_feature=[]for i in range(k):ls_new_feature.append(ls[i][0])X_new = X_df[ls_new_feature]互信息法:建议作为分类问题的分类变量的筛选⽅法经典的互信息也是评价定性⾃变量对定性因变量的相关性的,为了处理定量数据,最⼤信息系数法被提出,互信息计算公式如下:from sklearn.feature_selection import VarianceThreshold,SelectKBest,chi2from sklearn.datasets import load_irisimport pandas as pdfrom sklearn.feature_selection import mutual_info_classif#⽤于度量特征和离散⽬标的互信息X,y = load_iris(return_X_y=True)X_df = pd.DataFrame(X,columns=list("ABCD"))feature_cat = ["A","D"]discrete_features = []feature = X_df.columns.values.tolist()for k in feature_cat:if k in feature:discrete_features.append(feature.index(k))mu = mutual_info_classif(X_df,y,discrete_features=discrete_features,n_neighbors=3, copy=True, random_state=None)dict_feature = {}for i,j in zip(X_df.columns.values,mu):dict_feature[i]=j#对字典按照values排序ls = sorted(dict_feature.items(),key=lambda item:item[1],reverse=True)#特征选取数量k =2ls_new_feature=[]for i in range(k):ls_new_feature.append(ls[i][0])X_new = X_df[ls_new_feature]from sklearn.feature_selection import VarianceThreshold,SelectKBest,chi2from sklearn.datasets import load_irisimport pandas as pdfrom sklearn.feature_selection import mutual_info_classif,mutual_info_regression#⽤于度量特征和连续⽬标的互信息X,y = load_iris(return_X_y=True)X_df = pd.DataFrame(X,columns=list("ABCD"))feature_cat = ["A","D"]discrete_features = []feature = X_df.columns.values.tolist()for k in feature_cat:if k in feature:discrete_features.append(feature.index(k))mu = mutual_info_regression(X_df,y,discrete_features=discrete_features,n_neighbors=3, copy=True, random_state=None)dict_feature = {}for i,j in zip(X_df.columns.values,mu):dict_feature[i]=j#对字典按照values排序ls = sorted(dict_feature.items(),key=lambda item:item[1],reverse=True)#特征选取数量k =2ls_new_feature=[]for i in range(k):ls_new_feature.append(ls[i][0])X_new = X_df[ls_new_feature]2.包装法递归特征消除法:⽤⼀个基模型来进⾏多轮训练,每轮训练后,消除若⼲权值系数的特征,再基于新的特征集进⾏下⼀轮训练from sklearn.datasets import load_irisimport pandas as pdfrom sklearn.feature_selection import RFE,RFECVfrom sklearn.ensemble import RandomForestClassifierX,y = load_iris(return_X_y=True)X_df = pd.DataFrame(X,columns=list("ABCD"))refCV = RFECV(estimator=RandomForestClassifier(),step=0.5,cv =5,scoring=None,n_jobs=-1)refCV.fit(X_df,y)#保留特征的数量refCV.n_features_#保留特征的False、True标记refCV.support_feature_new = X_df.columns.values[refCV.support_]#交叉验证分数refCV.grid_scores_3.嵌⼊的⽅法基于L1范数:使⽤带惩罚项的基模型,除了筛选出特征外,同时也进⾏了降维from sklearn.datasets import load_irisimport pandas as pdfrom sklearn.feature_selection import SelectFromModelfrom sklearn.linear_model import LogisticRegressionX,y = load_iris(return_X_y=True)X_df = pd.DataFrame(X,columns=list("ABCD"))sf = SelectFromModel(estimator=LogisticRegression(penalty="l1", C=0.1),threshold=None,prefit=False,norm_order=1)sf.fit(X_df,y)X_new = X_df[X_df.columns.values[sf.get_support()]]基于树模型的特征选择法:树模型中GBDT也可⽤来作为基模型进⾏特征选择,使⽤feature_selection库的SelectFromModel类结合GBDT模型from sklearn.datasets import load_irisimport pandas as pdfrom sklearn.feature_selection import SelectFromModelfrom sklearn.ensemble import GradientBoostingClassifierX,y = load_iris(return_X_y=True)X_df = pd.DataFrame(X,columns=list("ABCD"))sf = SelectFromModel(estimator=GradientBoostingClassifier(),threshold=None,prefit=False,norm_order=1)sf.fit(X_df,y)X_new = X_df[X_df.columns.values[sf.get_support()]]。
特征选择主要有两个功能:1.减少特征数量、降维,使模型泛化能力更强,减少过拟合2.增强对特征和特征值之间的理解1 去掉取值变化小的特征 Removing features with low variance这应该是最简单的特征选择方法了:假设某种特征的特征值只有0和1,并且在所有输入样本中,95%的实例的该特征取值都是1,那就可以认为这个特征作用不大。
如果100%都是1,那这个特征就没意义了。
当特征值都是离散型变量的时候这种方法才能用,如果是连续型变量,就需要将连续变量离散化之后才能用,而且实际当中,一般不太会有95%以上都取某个值的特征存在,所以这种方法虽然简单但是不太好用。
可以把它作为特征选择的预处理,先去掉那些取值变化小的特征,然后再从接下来提到的特征选择方法中选择合适的进行进一步的特征选择。
2 单变量特征选择 Univariate feature selection单变量特征选择能够对每一个特征进行测试,衡量该特征和响应变量之间的关系,根据得分扔掉不好的特征。
对于回归和分类问题可以采用卡方检验等方式对特征进行测试。
这种方法比较简单,易于运行,易于理解,通常对于理解数据有较好的效果(但对特征优化、提高泛化能力来说不一定有效);这种方法有许多改进的版本、变种。
2.1 Pearson相关系数 Pearson Correlation皮尔森相关系数是一种最简单的,能帮助理解特征和响应变量之间关系的方法,该方法衡量的是变量之间的线性相关性,结果的取值区间为[-1,1],-1表示完全的负相关(这个变量下降,那个就会上升),+1表示完全的正相关,0表示没有线性相关。
Pearson Correlation速度快、易于计算,经常在拿到数据(经过清洗和特征提取之后的)之后第一时间就执行。
Pearson相关系数的一个明显缺陷是,作为特征排序机制,他只对线性关系敏感。
如果关系是非线性的,即便两个变量具有一一对应的关系,Pearson相关性也可能会接近0。
特征选择常⽤算法综述特征选择的⼀般过程:1.⽣成⼦集:搜索特征⼦集,为评价函数提供特征⼦集2.评价函数:评价特征⼦集的好坏3.停⽌准则:与评价函数相关,⼀般是阈值,评价函数达到⼀定标准后就可停⽌搜索4.验证过程:在验证数据集上验证选出来的特征⼦集的有效性1.⽣成⼦集搜索算法有完全搜索、启发式搜索、随机搜索三⼤类。
(1)完全搜索<1>宽搜(Breadth First Search):时间复杂度⾼,不实⽤<2>分⽀界限搜索(Branch and Bound):其实就是宽搜加上深度的限制<3>定向搜索(Beam Search):其实算是启发式的⼀种,对宽搜加上每次展开结点数的限制以节省时间空间,对于展开那⼏个结点由启发式函数确定<4>最优优先算法(Best First Search):也是有启发式函数,对宽搜取最优结点进⾏展开(2)启发式搜索<1>序列前向选择(SFS , Sequential Forward Selection)特征⼦集X从空集开始,每次选择能使得评价函数J(X)最优的⼀个特征x加⼊,其实就是贪⼼算法,缺点是只加不减<2>序列后向选择(SBS , Sequential Backward Selection)和SFS相反,从特征全集开始,每次选择使评价函数J(X)最优的特征x剔除,也是贪⼼,缺点是只减不增<3>双向搜索(BDS , Bidirectional Search)SFS和SBS同时开始,当两者搜索到同⼀个特征⼦集时停⽌。
<4>增L去R选择算法(LRS , Plus-l Minus-R Selection)形式⼀:从空集开始,每次加L个特征,去除R个特征,使得J最优形式⼆:从全集开始,每次去除R个特征,加⼊L个特征,使J最优。
<5>序列浮动选择(Sequential Floating Selection)该算法由增L去R发展,不同之处在于L和R是会变化的,它结合了序列前后向选择、增L去R的特点并弥补了缺点。
特征选择的常用方法特征选择是机器学习和数据挖掘中的一个重要步骤,它的目的是从原始数据中选择出最具有代表性和相关性的特征,以提高模型的性能和效果。
特征选择方法有很多种,本文将介绍其中一些常用的方法。
一、过滤式方法过滤式方法是指在特征选择和模型训练之前就进行特征选择的方法。
它通过计算特征与目标变量之间的相关性或其他统计指标,来评估特征的重要性,并选择出相关性较高的特征。
常用的过滤式方法有相关系数法、卡方检验法、互信息法等。
1. 相关系数法相关系数法是通过计算特征与目标变量之间的相关系数来评估特征的重要性。
相关系数的取值范围在-1到1之间,绝对值越接近1表示相关性越强。
可以根据相关系数的大小来选择相关性较高的特征。
2. 卡方检验法卡方检验法是一种统计方法,用于检验两个变量之间的独立性。
在特征选择中,可以将特征与目标变量之间的独立性作为评估指标,计算卡方值来选择特征。
卡方值越大表示特征与目标变量之间的独立性越低,特征的重要性越高。
3. 互信息法互信息法是一种衡量两个随机变量之间的相关性的方法。
在特征选择中,可以将特征与目标变量之间的互信息作为评估指标,来选择特征。
互信息的取值范围在0到正无穷之间,取值越大表示特征与目标变量之间的相关性越高,特征的重要性越高。
二、包裹式方法包裹式方法是指将特征选择作为一个子问题嵌入到模型训练过程中的方法。
它通过构建不同的特征子集,并评估模型在不同特征子集上的性能,来选择出最佳的特征子集。
常用的包裹式方法有递归特征消除法、遗传算法等。
1. 递归特征消除法递归特征消除法是一种自底向上的特征选择方法。
它通过不断地构建模型并剔除权重较小的特征,来选择出最佳的特征子集。
递归特征消除法可以根据模型的性能评估来选择特征,如准确率、均方误差等。
2. 遗传算法遗传算法是一种模拟自然选择和遗传机制的优化算法。
在特征选择中,可以将特征子集看作个体,通过遗传算法的选择、交叉和变异等操作,来搜索最佳的特征子集。
机器学习技术使用中的特征选择方法机器学习技术是如何使用特征选择方法来提高模型性能的?在机器学习领域中,特征选择是一个非常重要的任务。
通过选择最相关和最具有代表性的特征,我们可以提高模型的准确性、降低计算成本,并且减少过拟合的发生。
本文将介绍机器学习中常用的特征选择方法,并说明它们的优势和适用场景。
特征选择是从已有的特征集合中选择出一个子集,这个子集包含了对任务和模型最有意义的特征。
特征选择的目标是去除冗余和无关紧要的特征,以保留那些最相关的特征,从而提高模型的性能和泛化能力。
一种常用的特征选择方法是过滤式方法,它通过评估特征与目标变量之间的相关性来选择特征。
常用的过滤式方法包括相关系数、卡方检验、信息增益和互信息等。
相关系数用于衡量两个变量之间的线性关系,而卡方检验则用于衡量分类变量之间的相关性。
信息增益和互信息则是衡量特征对于目标变量的不确定性的减少程度。
过滤式方法的优点是计算效率高,但它们只考虑了特征与目标变量之间的关系,无法捕捉特征之间的相互作用。
另一种常用的特征选择方法是包裹式方法,它通过训练一个模型来评估特征的重要性。
常用的包裹式方法包括递归特征消除(RFE)和基于遗传算法的特征选择。
递归特征消除是一种迭代算法,它从完整的特征集合开始,每次迭代都去除最不重要的特征,直到达到指定的特征数目。
基于遗传算法的特征选择则是使用遗传算法搜索最优的特征子集。
包裹式方法的优点是可以捕捉特征之间的相互作用,但它们的计算成本较高,因为需要训练多个模型。
还有一种常用的特征选择方法是嵌入式方法,它将特征选择集成进模型训练的过程中。
嵌入式方法通过在损失函数中加入正则化项,来约束特征的权重。
常见的嵌入式方法包括L1正则化和岭回归。
L1正则化可以使得模型的部分特征权重变为0,从而实现特征选择的目的。
岭回归则通过加入一个权重衰减项来限制特征的权重,进而减小过拟合的风险。
嵌入式方法的优点是可以同时进行特征选择和模型训练,但它们的计算成本相对较高。
特征选择方法特征选择方法搜索策略一:完全搜索1,BestFirst(最佳优先)最佳优先搜索时宽度优先搜索的扩展,基本思想是将节点表按据目标的距离进行排序,再以节点的估计距离为标准选择待扩展的节点。
算法步骤:1. 用N表示已经排序的初始结点表(从小到大)2. 如果N为空集,则退出并给出失败信号3. n取为N的首结点,并在N中删除结点n,放入已访问结点列表4. 如果n为目标结点,则退出并给出成功信号5. 否则,将n的后继结点加到N中,记为N,对N中的结点按距目标的估计距离排序,并返回2步在搜索的过程中一般会用到评估函数f(n),表示从初始节点S经过n到达目的节点t的最佳路径代价f__(n)的估计:从S到n的最佳代价g__(n)的估计g(n),g(n) g__(n),即局部最小全局最小从n到t 的最佳代价h__(n)的估计h(n),若对所有结点n,都有h(n)h__(n),则算法A一定能找到一条到达目标结点的最佳路径,此时算法A 称为算法A__。
f(n) = g(n) + h(n)作为f__(n) = g__(n) + h__(n)的估计,估计值越小的点希望越高,应该优先扩展。
2,ExhaustiveSearch(穷举搜索);枚举了所有的特征组合,属于穷举搜索,时间复杂度是O(2n),实用性不高。
二,随机搜索方法。
1,RandomSearch(随机搜索):算法描述:随机产生一个特征子集,然后在该子集上执行SFS与SBS算法。
算法评价:可作为SFS与SBS的补充,用于跳出局部最优值。
2,ScatterSearchV1(离散搜索):三:序列搜索方法a.单独最优组合:RankSearch(评估器计算属性判据值并排序),Ranker(属性判据值排序);b.向前搜索:LinearForwardSelection(线性向前搜索);算法描述:特征子集X从空集开始,每次选择一个特征x加入特征子集X,使得特征函数J( X)最优。
常见的特征选择方法一、引言在机器学习和数据挖掘中,特征选择是一个非常重要的步骤,其目的是从原始数据中选择出最具有代表性的特征,以提高模型的准确性和泛化能力。
本文将介绍常见的特征选择方法。
二、过滤式特征选择过滤式特征选择是指在训练模型之前,先对原始数据进行特征选择,然后再将筛选后的特征输入到模型中进行训练。
其主要优点是计算速度快,但缺点是可能会丢失一些重要信息。
以下是常见的过滤式特征选择方法:1.方差选择法方差选择法通过计算每个特征的方差来判断其是否为重要特征。
如果某个特征的方差小于一个阈值,则认为该特征不重要。
该方法适用于二分类问题。
2.相关系数法相关系数法通过计算每个特征与目标变量之间的相关系数来判断其是否为重要特征。
如果某个特征与目标变量之间的相关系数较小,则认为该特征不重要。
3.卡方检验法卡方检验法通过计算每个特征与目标变量之间的卡方统计量来判断其是否为重要特征。
如果某个特征的卡方统计量小于一个阈值,则认为该特征不重要。
三、包裹式特征选择包裹式特征选择是指在训练模型时,将所有特征输入到模型中进行训练,然后根据模型的表现来选择最具有代表性的特征。
其主要优点是能够保留所有信息,但缺点是计算速度慢。
以下是常见的包裹式特征选择方法:1.递归特征消除法递归特征消除法通过不断地训练模型并删除最不重要的特征来进行特征选择。
该方法适用于线性模型和非线性模型。
2.基于遗传算法的特征选择法基于遗传算法的特征选择法通过模拟自然进化过程来进行特征选择。
该方法适用于处理高维数据和非线性数据。
四、嵌入式特征选择嵌入式特征选择是指在训练模型时,将选取最具代表性的部分属性作为输入变量,并在学习过程中根据目标函数调整权值或筛选属性。
以下是常见的嵌入式特征选择方法:1. Lasso回归Lasso回归是一种线性回归方法,其目的是通过调整权值来使得模型的误差最小化。
该方法适用于处理高维数据和稀疏数据。
2. Ridge回归Ridge回归也是一种线性回归方法,其目的是通过调整权值来使得模型的误差最小化。
常用特征选择方法特征选择是机器学习和数据挖掘领域中的一个重要任务,它的目的是从原始特征中选择出最具有代表性和预测能力的特征,以提高模型的性能和可解释性。
常用的特征选择方法可以分为三大类:过滤式方法、包裹式方法和嵌入式方法。
过滤式方法是基于给定的评价准则对特征进行独立评估,然后根据评估结果进行特征选择。
常见的过滤式方法包括相关系数法、互信息法和方差选择法。
首先,相关系数法是基于特征和目标变量之间的相关关系进行特征选择。
它通过计算特征与目标变量之间的相关系数来评估特征的重要性,相关系数越大表示特征与目标变量之间的相关性越强,越有可能包含有价值的信息。
常用的相关系数包括皮尔逊相关系数和斯皮尔曼相关系数。
其次,互信息法是基于信息论的概念来评估特征与目标变量之间的信息量。
互信息法通过计算特征和目标变量之间的互信息来评估特征的重要性,互信息值越大表示特征包含的信息量越多,越有可能对目标变量的预测有帮助。
最后,方差选择法是一种简单但有效的特征选择方法。
它通过计算特征的方差来评估特征的重要性,方差越大表示特征的取值变化越大,越可能包含有价值的信息。
方差选择法适用于特征是数值型的情况。
除了过滤式方法,包裹式方法也是常用的特征选择方法。
包裹式方法是将特征选择看作为一个子集选择问题,通过在特征子集上训练和评估模型来选择最佳特征子集。
常见的包裹式方法包括递归特征消除法和遗传算法。
递归特征消除法是一种迭代的特征选择方法,它通过反复训练模型并消除最不重要的特征来选择最佳特征子集。
它的基本思想是从完整特征集合开始,首先训练一个模型,然后根据模型评估特征的重要性,再去掉最不重要的特征,然后重新训练模型,直到达到指定的特征数目或达到最佳性能为止。
遗传算法是一种启发式算法,它通过模拟生物进化的过程进行特征选择。
遗传算法的基本操作包括选择、交叉和变异,通过这些操作对特征子集进行优胜劣汰和优化调整,最终选择出最佳特征子集。
最后,嵌入式方法是将特征选择融入到模型训练的过程中,通过在模型训练过程中学习特征的权重或重要性来选择特征。