课题五 转速闭环转差频率控制的变压变频调速系统设计
- 格式:doc
- 大小:159.00 KB
- 文档页数:4
《交流调速系统》课后习题答案第 5 章 闭环控制的异步电动机变压调速系统5-1 异步电动机从定子传入转子的电磁功率m P 中,有一部分是与转差成正比的转差功率s P ,根据对s P 处理方式的不同,可把交流调速系统分成哪几类?并举例说明。
答:从能量转换的角度上看,转差功率是否增大,是消耗掉还是得到回收,是评价调速系统 效率高低的标志。
从这点出发,可以把异步电机的调速系统分成三类 。
1)转差功率消耗型调速系统:这种类型的全部转差功率都转换成热能消耗在转子回路中,降电压调速、转差离合器调速、转子串电阻调速都属于这一类。
在三类异步电机调速系统中,这类系统的效率最低,而且越到低速时效率越低,它是以增加转差功率的消耗来换取转速的降低的(恒转矩负载时)。
可是这类系统结构简单,设备成本最低,所以还有一定的应用价值。
2)转差功率馈送型调速系统:在这类系统中,除转子铜损外,大部分转差功率在转子侧通 过变流装置馈出或馈入,转速越低,能馈送的功率越多,绕线电机串级调速或双馈电机调速属于这一类。
无论是馈出还是馈入的转差功率,扣除变流装置本身的损耗后,最终都转化成 有用的功率,因此这类系统的效率较高,但要增加一些设备。
3)转差功率不变型调速系统:在这类系统中,转差功率只有转子铜损,而且无论转速高低,转差功率基本不变,因此效率更高,变极对数调速、变压变频调速属于此类。
其中变极对数 调速是有级的,应用场合有限。
只有变压变频调速应用最广,可以构成高动态性能的交流调速系统,取代直流调速;但在定子电路中须配备与电动机容量相当的变压变频器,相比之下,设备成本最高。
5-2 有一台三相四极异步电动机,其额定容量为5.5kW ,频率为50Hz ,在某一情况下运行,自定子方面输入的功率为6.32kW ,定子铜损耗为341W ,转子铜损耗为237.5W ,铁心损耗为167.5W ,机械损耗为45W ,附加损耗为29W ,试绘出该电动机的功率流程图,注明各项功率或损耗的值,并计算在这一运行情况下该电动机的效率、转差率和转速。
《电力拖动自动控制系统》教学大纲《电力拖动自动控制系统》教学大纲英文名称:Automatic Control System for Electric Drive 课程编码:D***** 课内教学时数:48 学分:3适用专业:电气工程及其自动化开课单位:机械与电子工程系制定(或修订)时间:20XX年9月一、课程性质与任务本课程是电气工程及其自动化专业主干课程之一,电力电子与电力传动专业方向课程。
通过本课程的学习,应掌握电力拖动自动控制系统的基本知识、掌握交直流电机典型自动控制系统的工作原理及运用。
培养学生解决实际问题的能力,为今后从事电气工程及其自动化有关的专业工作打下基础。
二、课程教学内容的基本要求、重点和难点第一章闭环控制的直流调速系统㈠基本要求:了解闭环控制的直流调速系统的工作原理㈡教学重点:反馈控制闭环调速系统的稳态、动态分析和设计㈢教学难点:无静差调速系统和积分、比例积分控制规律㈣教学内容1、直流调速系统用的可控直流电源2、晶闸管-电动机系统的特殊问题3、反馈控制闭环调速系统的稳态分析和设计4、反馈控制闭环调速系统的动态分析和设计5、无静差调速系统和积分、比例积分控制规律6、电压反馈电流补偿控制的调速系统第二章多环控制的直流调速系统㈠基本要求:让学生熟悉掌握转速、电流双闭环调速系统的静特性、系统各变量的稳态工作点和稳态参数计算㈡教学重点:双闭环系统电路特点、如何实现转速无静差㈢教学难点:调节器的工程设计方法、三环调速系统㈣教学内容:1、转速、电流双闭环调速系统及其静特性2、双闭环调速系统的动态性能3、调节器的工程设计方法4、按工程设计方法设计双闭环系统5、转速超调的抑制――转速微分负反馈6、三环调速系统7、弱磁控制的直流调速系统第三章可逆调速系统㈠基本要求:让学生了解可逆调节系统的不同整流装置㈡教学重点:晶闸管-电动机系统的可逆线路、晶闸管-电动机系统的回馈制动㈢教学难点:有环流可逆调速系统、无环流可逆调速系统㈣教学内容:1、晶闸管-电动机系统的可逆线路2、晶闸管-电动机系统的回馈制动3、两组晶闸管可逆线路中的环流4、有环流可逆调速系统5、无环流可逆调速系统第四章直流脉宽调速系统㈠基本要求:要求学生对调速系统能运用自如㈡教学重点:脉宽调速系统的开环机械特性、脉宽调速系统的控制电路㈢教学难点:晶体管脉宽调速系统的特殊问题㈣教学内容1 脉宽调制变换器2 脉宽调速系统的开环机械特性3 脉宽调速系统的控制电路4晶体管脉宽调速系统的特殊问题第五章位置随动系统㈠基本要求:了解位置随动系统的概念㈡教学重点:位置随动系统概述㈢教学难点:位置随动系统概述㈣教学内容:1、位置随动系统概述2、位置信号的检测3、自整角机位置随动系统及其设计第六章交流调速的基本类型和交流变压调速系统㈠基本要求:使学生在掌握了交直流调速系统的基本组成原理的同时并能掌握结合工程实际,根据生产设备所提出的技术指标组成,选择控制系统结构的思路和方法㈡教学重点:交流调速的基本类型、闭环控制的交流变压调速系统――一种转动差功率消耗型调速系统㈢教学难点:交流调速的基本类型、闭环控制的交流变压调速系统――一种转动差功率消耗型调速系统㈣教学内容:1、交流调速的基本类型2、闭环控制的交流变压调速系统――一种转动差功率消耗型调速系统第七章异步电动机变压变频调速系统㈠基本要求:要求学生掌握异步电动机变压变频调速系统的各种调速方法㈡教学重点:异步电动机电压、频率协调控制的稳态机械特性转速开环、恒压频比控制的变频调速系统、转速闭环、转差频率控制的变频调速系统㈢教学难点:转速开环、恒压频比控制的变频调速系统、转速闭环、转差频率控制的变频调速系统㈣教学内容:1 变频调速的基本控制方式2 静止式变频装置3 正弦波脉宽调制逆变器4异步电动机电压、频率协调控制的稳态机械特性5 转速开环、恒压频比控制的变频调速系统 6 转速闭环、转差频率控制的变频调速系统7 异步电动机的多变理数学模型和坐标变换8矢量控制的变频调速系统第八章绕线转子异步电动机串级调速系统――转差功率回馈型的调速系统㈠基本要求:认识了解串级调速系统的原理及其应用㈡教学重点:串级调速系统性能的讨论、异步电动机在串级调速工作时的机械特征㈢教学难点:具有双闭环控制的串级调速系统、超同步串级调速系统㈣教学内容:1 串级调速原理及其基本类型2 串级调速系统性能的讨论3 异步电动机在串级调速工作时的机械特征4 具有双闭环控制的串级调速系统5 超同步串级调速系统6 串级调速系统的几个特殊问题第九章同步电动机的变频调速系统㈠基本要求:了解电动机的不同调速系统㈡教学重点:同步电动机的变频调速㈢教学难点:同步电动机的变频调速㈣教学内容:1、同步电动机的变频调速2、他控变频同步电动机调速系统和矢量调速系统3、自控变频同步电动机(无换向器电动机)调速系统三、课程学时分配四、本课程的特点及教法、学法建议电力拖动自动控制系统是一门知识综合性强、内容覆盖宽的课程。
《交流调速系统》课后习题答案第 5 章 闭环控制的异步电动机变压调速系统5-1 异步电动机从定子传入转子的电磁功率m P 中,有一部分是与转差成正比的转差功率s P ,根据对s P 处理方式的不同,可把交流调速系统分成哪几类?并举例说明。
答:从能量转换的角度上看,转差功率是否增大,是消耗掉还是得到回收,是评价调速系统 效率高低的标志。
从这点出发,可以把异步电机的调速系统分成三类 。
1)转差功率消耗型调速系统:这种类型的全部转差功率都转换成热能消耗在转子回路中,降电压调速、转差离合器调速、转子串电阻调速都属于这一类。
在三类异步电机调速系统中,这类系统的效率最低,而且越到低速时效率越低,它是以增加转差功率的消耗来换取转速的降低的(恒转矩负载时)。
可是这类系统结构简单,设备成本最低,所以还有一定的应用价值。
2)转差功率馈送型调速系统:在这类系统中,除转子铜损外,大部分转差功率在转子侧通 过变流装置馈出或馈入,转速越低,能馈送的功率越多,绕线电机串级调速或双馈电机调速属于这一类。
无论是馈出还是馈入的转差功率,扣除变流装置本身的损耗后,最终都转化成 有用的功率,因此这类系统的效率较高,但要增加一些设备。
3)转差功率不变型调速系统:在这类系统中,转差功率只有转子铜损,而且无论转速高低,转差功率基本不变,因此效率更高,变极对数调速、变压变频调速属于此类。
其中变极对数 调速是有级的,应用场合有限。
只有变压变频调速应用最广,可以构成高动态性能的交流调速系统,取代直流调速;但在定子电路中须配备与电动机容量相当的变压变频器,相比之下,设备成本最高。
5-2 有一台三相四极异步电动机,其额定容量为5.5kW ,频率为50Hz ,在某一情况下运行,自定子方面输入的功率为6.32kW ,定子铜损耗为341W ,转子铜损耗为237.5W ,铁心损耗为167.5W ,机械损耗为45W ,附加损耗为29W ,试绘出该电动机的功率流程图,注明各项功率或损耗的值,并计算在这一运行情况下该电动机的效率、转差率和转速。
课程设计任务书电气与信息工程系自动化专业班题目转速闭环转差频率控制的变压变频调速系统设计任务起止日期:2016 年 6 月 6 日~ 2016年6月17日学生姓名学号指导教师一、设计要求:设计一个转速闭环转差频率控制的变压变频调速系统:系统包括速度设定、速度显示、速度测量、速度控制、正反转控制等,且根据交流异步电动机的容量采用由三相二极管整流桥、电容滤波、基于全控型开关器件 IGBT 或 MOSFET 的三相 PWM 逆变桥构成的主电路给异步电动机供电。
已知:(1)异步电动机:额定容量 PN =3KW ,额定电压 UN =380V ,额定电流 IN =6.9A ,额定转速为 nN =1400 r/min,额定频率 fN =50Hz ,定子绕组 Y 联接。
由实验测得定子电阻 Rs =Ω,转子电阻 Rr =Ω,定子自感 Ls =,转子自感 L r = ,定、转子互感 L m =,转子参数已折算到定子侧,系统转动惯量J =0.1284kg.m2。
(2)变频电源主要技术指标:1)输入电压额定值:三相、380VAC 、50Hz,2)效率: 80%以上,3)额定输出容量: 4KVA 或 250VA ,4)额定输出电压:三相、380VAC ,5)输出频率: 5~400Hz,6)控制方式:转速闭环转差频率控制方式,SPWM 或 SVPWM 脉冲产生方式。
二、设计任务:1、绘出异步电动机T 型等效电路和简化等效电路;2、求额定运行时的转差率、定子额定电流和额定定子转矩;3、定子电压和频率均为额定值时,求空载时的额定电流;4、定子电压和频率均为额定值时,求临界转差率和临界转矩,绘出异步电动机的机械特性;5、完成系统电气原理图的设计三、设计说明书的格式要求:1、绪论a. 设计的目的和意义。
b. 设计要求。
c. 设计对象及有关数据。
2、系统结构方案的选择:3、系统结构及性能分析4、主回路的选择。
5、触发器的设计和同步相位的配合: a. 触发电路的设计与选择。
目录中文摘要 (1)ABSTRACT (1)一、绪论 (1)1、引言 (1)2、交流调速技术概况 (3)3、完成的主要工作 (3)二、矢量控制系统的介绍 (4)1、异步电动机的数学模型概述 (4)2、矢量控制思想及原理 (6)(1)矢量控制技术思想 (6)(2)矢量控制的原理 (6)3、坐标变换 (8)(1)变换矩阵的确定原则 (8)(2)功率不变原则 (9)4、3S/2R 变换 (9)(1)三相/两相变换 (9)(2)两相/两相旋转变换 (10)三、仿真模型的建立 (11)1、MATLAB/SIMULINK简介 (11)2、带转矩内环的转速、磁链闭环矢量控制系统的构框图 (13)3、各个子模块模型 (13)(1)转速调节器模型 (13)(2)转矩调节器模型 (14)(3)磁链调节器模型 (14)(4)转矩观测器模型 (15)(5)磁链观测器模型 (15)(6)带滞环脉冲发生器模型(CHBPWM) (16)(7)dq_to_abc(2r/3s)和abc_to_dq(3s/2r)模型 (16)3、带转矩内环的转速、磁链闭环矢量控制系统仿真模型 (17)四、 SIMULINK 仿真 (18)1、参数设置 (18)(1)电动机参数 (18)(2)各调节器参数 (18)(3)各给定参数 (19)2、仿真结果 (20)(1)定子磁链轨迹 (20)(2)转矩调节器输出 (20)(3)输出转矩 (20)(4)转速响应 (21)(5)转速调节器输出 (21)(6)经2r/3s变换的三相电流给定波形 (22)(7)Uab (22)3、分析 (23)五、结论 (23)致谢 (24)参考文献 (24)磁链闭环控制变频调速系统仿真模型设计重庆工商大学自动化专业 2008级自动化1班马永祥指导教师:中文摘要:该文对带转矩内环转速、磁链闭环矢量控制系统进行研究及仿真。
利用MATLAB/SIMULINK工具,构建了异步电动机矢量控制系统的仿真模型以及对各个主要模块的仿真模型,利用3/2变换计算出相电流。
一、可以作为填空题或简答题的2-1 简述直流电动机的调速方法。
答:直流调速系统常以(调压调速)为主,必要时辅以(弱磁调速),以(扩大调速范围),实现(额定转速以上调速)。
2-2 直流调压调速主要方案有(G-M 调速系统,V-M 调速系统,直流PWM 调速系统)。
2-3 V-M 调速系统的电流脉动和断续是如何形成的?如何抑制电流脉动?11-12 答:整流器输出电压大于反电动势时,电感储能,电流上升,整流器输出电压小于反电动势时,电感放能,电流下降。
整流器输出电压为脉动电压,时而大于反电动势时而小于,从而导致了电流脉动。
当电感较小或电动机轻载时,电流上升阶段电感储能不够大,从而导致当电流下降时,电感已放能完毕、电流已衰减至零,而下一个相却尚未触发,于是形成电流断续。
2-4 看P14 图简述V-M 调速系统的最大失控时间。
14 答:t1 时刻某一对晶闸管被触发导通,触发延迟角为α1,在t2>t1 时刻,控制电压发生变化,但此时晶闸管已导通,故控制电压的变化对它已不起作用,只有等到下一个自然换向点t3 时刻到来时,控制电压才能将正在承受正电压的另一对晶闸管在触发延迟角α2 后导通。
t3-t2 即为失控时间,最大失控时间即为考虑t2=t1 时的失控时间。
2-5 简述V-M 调速系统存在的问题。
16 答:整流器晶闸管的单向导电性导致的电动机的不可逆行性。
整流器晶闸管对过电压过电流的敏感性导致的电动机的运行不可靠性。
整流器晶闸管基于对其门极的移相触发控制的可控性导致的低功率因数性。
2-6 简述不可逆PWM 变换器(无制动电流通路与有制动电流通路)各个工作状态下的导通器件和电流通路。
17-18 2-7 调速时一般以电动机的(额定转速)作为最高转速。
2-8 (调速范围)和(静差率)合称调速系统的(稳态性能指标)。
2-8 一个调速系统的调速范围,是指(在最低转速时还能满足所需静差率的转速可调范围)。
2-9 简述转速反馈控制的直流调速系统的静特性本质。
思考题5-1对于恒转矩负载,为什么调压调速的调速范围不大?电动机机械特性越软,调速范围越大吗?答:对于恒转矩负载,普通笼型异步电动机降压调速时的稳定工作范围为o<s<s m 所以调速范围不大。
电动机机械特性越软,调速范围不变,因为S m不变。
5-2异步电动机变频调速时,为何要电压协调控制?在整个调速范围内,保持电压恒定是否可行?为何在基频以下时,采用恒压频比控制,而在基频以上保存电压恒定?答:当异步电动机在基频以下运行时,如果磁通太弱,没有充分利用电动机的铁心,是一种浪费;如果磁通,又会使铁心饱和,从而导致过大的励磁电流,严重时还会因绕组过热而损坏电动机。
由此可见,最好是保持每极磁通量为额定值不变。
当频率从额定值向下调节时,必须同时降低E g使) 4.44 N S金讪常值,即在基频以下应采用电动势频率比为恒值的控f 1制方式。
然而,异步电动机绕组中的电动势是难以直接检测与控制的。
当电动势值较高时,可忽略定子电阻和漏感压降,而认为定子相电压U s E g。
在整个调速范围内,保持电压恒定是不可行的。
在基频以上调速时,频率从额定值向上升高,受到电动机绝缘耐压和磁路饱和的限制,定子电压不能随之升高,最多只能保持额定电压不变,这将导致磁通与频率成反比地降低,使得异步电动机工作在弱磁状态5-3 异步电动机变频调速时,基频以下和基频以上分别属于恒功率还是恒转矩调速方式?为什么?所谓恒功率或恒转矩调速方式,是否指输出功率或转矩恒定?若不是,那么恒功率或恒转矩调速究竟是指什么?答:在基频以下,由于磁通恒定,允许输出转矩也恒定,属于“恒转矩调速” 方式;在基频以上,转速升高时磁通减小,允许输出转矩也随之降低,输出功率基本不变,属于“近似的恒功率调速”方式。
5-4 基频以下调速可以是恒压频比控制、恒定子磁通、恒气隙磁通和恒转子磁通的控制方式,从机械特性和系统实现两个方面分析与比较四种控制方法的优缺点。
答:恒压频比控制:恒压频比控制最容易实现,它的变频机械特性基本上是平行下移,硬度也较好,能够满足一般的调速要求,低速时需适当提高定子电压,以近似补偿定子阻抗压降。